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PREFACE Interview with Prof�Dr�H�O�Ruppe

Today is Monday� the �
st March ����� a pleasant evening in the conference room of
the Institute Astronautical Engineering of the Technical University of Munich� and I
have the privilege to talk to Prof�Dr�H�O�Ruppe� emeritus of the institute� Professor
Ruppe is the author of more than 
�� publications in the �eld of astronautics� includ	
ing two comprehensive double	volume books� and� before he introduced astronautics
to this university� he was head of the �Future Project O�ce� at NASA�s Marshall
Space Flight center in Alabama� It is now �� years ago that I �nished my dissertation
under his supervision at his institute� His professional help during the following years
and many pleasant talks I had with him encouraged me to write this book� Now the
book is �nally �nished� and at this occasion we want to talk about astronautics� the
past� the present and the future�

Manned Space Flight � glorious past but gloomy prospects

Prof�Ruppe� astronautics is often used as a synonym for manned space �ight� When I
look at the American Space Shuttle System STS or at the International Space Station
ISS� I get the feeling that presently manned space �ight experiences a serious crisis�
Do you agree with this point of view and� in case� can you explain to us how it came
to the present situation�

Ruppe� Till the end of world war II astronautics was essentially �manned astro�

nautics�� At that time automated space �ight was thought about but not really� It

appeared necessary for all complicated functions to have man aboard� This may be

compared to the development of aeronautics which had to do with human �ight in

machines� Of course there were models� usually from school children� but this was

used to initiate the children to the science of �ight� In the same way we thought

about unmanned �ights� for example to the moon� to bring us to human �ight to

the moon� In this way the Apollo mission followed the thoughts of the oldtimers�

man to the moon� Such developed the competition between the two superpowers for

a lunar race� Of course the total development was very complex� The then Soviet

Union had wonderful successes in both� unmanned and manned astronautics� The

United States experienced a disaster with respect to Cuba� As a consequence� the

young president John F�Kennedy proposed the challenge of a lunar race� The logic

was� that the advantage of the Soviet Union would not be decisive with respect to a

manned lunar programme� We � that is the American oldtimers in matters of space �

assured the president we could do	 So project Apollo was born in 
��
� We promised

that the job would be accomplished within ten years� As we know now� we did it

the Soviet Union failed and the United States preeminence in space was assured�

Apollo was� of course� a manned mission� Every interested citizen could follow such

a mission� since its duration was about ten days� a good time interval to capture the

interest of a large population� A big question was� what comes after Apollo� There

appeared no simple answer� A space station had already been realized both� by the

United States and by the Soviet Union� those were small stations for small crews�



Interview with Prof�Dr�H�O�Ruppe ASTRONAUTICAL ENGINEERING

So as a follow�on project a large international space station appeared attractive and

doable� As a tool for this international station a comfortable and large space shuttle

seemed attractive� This tool became a goal of its own and I think this started the

trouble which continues till today� The space station cannot compare to Apollo� and

problems with the Shuttle endanger the programme of the ISS�

But how about the manned Mars mission�

Ruppe� President George W�Bush has suggested manned return to the moon and

manned �ight to Mars� He sees the lunar �eld as a thought of training ground for

manned Mars �ights� We also have quite a �oury of unmanned Mars missions which

followed the Viking missions� So Mars has been much in the news and it seems that

we are ready to follow with man� I think this is very wrong� The manned Mars

mission probably is the most di�cult space mission we could do� Man to Mars is not

a somewhat bigger Apollo� instead of weeks it takes years� It is not possible to �y

with one vehicle from earth to the target� Instead we have to assemble a Mars �eet

in earth orbit and �y from this orbit to Mars� A crew of three may not su�ce� I do

not think that the lunar training is of much help with the Mars job�

Don�t you think that a manned Mars mission would be a way out of the present crisis�

Ruppe� Yes� I think so de�nitely� A manned Mars mission would again put an

attractive goal for manned space missions� This would keep us busy for a long time �

I think much more than ten years� It is a very attractive chance to help international

cooperation�

Recently we have seen the privately �nanced �ight of Burt Rutan�s Spaceship 

vehicle� Isn�t private astronautics another way out of the crisis�

Ruppe� I do not think so� Rutan�s vehicle showed us a jump about 
�� kilometers

high and a few hundred kilometers in distance� Even that is quite expensive and

you cannot develop real space �ight from it� The minimum for space �ight is in

my opinion an earth satellite� To do this you need a step rocket with two or three

stages� To return from orbit a capsule of sorts is necessary� We have just to look

at American or Russian or Chinese beginnings� That is hundreds or thousands of

millions of dollars away from Rutan�

The shuttle must be replaced one day� maybe even soon if another accident occurs�
Isn�t a capsule the better solution for manned space �ight�

Ruppe� This is a very di�cult question� At this time many investigations are under

way both at NASA and at United States space industry� There is no clear answer yet�

I think the main objective of the new vehicle will determine how the solution will look

like� For a lunar landing you cannot use wings� The astronauts told me that they like

the comfortable landing in a shuttle� From a reliability point of view I think there are

no signi�cant di�erences between both systems� Until now the shuttle has about 
��
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�ights with two signi�cant accidents� I think that a future shuttle will have better

rescue possibilities for the crew� Presently the capsule has better rescue capabilities �

but we have had two fatal accidents in the Soviet programme� It appears to me that

the struggle between capsule and shuttle is about even� It will be interesting to see

what the future will hold� Obviously� the winged vehicle is limited to low earth orbit

since in space the wings are just ballast and not really useful� Hence� for deep space

or lunar environment capsules are the natural solution� Mars may be an exception�

Wernher von Braun�s �rst Mars study� circa 
���� utilized winged Mars landers� You

should remember that� at this time� the Mars atmosphere was assumed to be more

dense than we learned from Viking	

Launch Vehicles � tools for astronautical activities

Well� also for me it is evident that high	altitude airplanes are not the correct way to
access space� Twenty years ago I believed that the shuttle was the best and safest
option� but today the experience spoils that view� Today I think that conventional
rockets are the best opportunity for space transportation� However� in my book I
state that it was a bad mistake from the European space agency to take the commer	
cially successful Ariane	� launcher from the market� and I believe that the Ariane	�
launch vehicle in its present form is ill	conditioned for the transportation of commer	
cial satellites� particularly because of the application of strong solid booster motors�
You worked for more than �� years on the subject of space launcher optimization�
What do you think about the present space launcher situation�

Ruppe� Well� the transport system �Ariane �� could be adapted to mission require�

ments by relatively simple modi�cations of the �rst stage� This way is not useful

for Ariane �� Here the upper stage can be changed by using di�erent propellents �

hydrogen or storable� An advanced hydrogen version has been cancelled but is still

being talked about� Nevertheless it remains basically the Ariane � with associated

high transport costs� In my opinion the decision between solid or liquid propulsion is

more or less even� at least as it concerns �rst stages reasons of availability might be

decisive for upper stages� Also there are rumors that in the case of the US�shuttle the

solid propellent company �Thiokol� had to be involved� So you see that sometimes

the problem of industrial participation might be decisive�

European nationalistic reasons will keep the Ariane � in operation� for example for the

transportation of military satellites� The space transport picture gets more di�cult if

the many available systems in US� Russia and China are considered� We can expect

survival of only some of the many systems�

Application Satellites � a shrinking market

Well� then the space launch business is presently in a di�cult situation� because
the market for satellite services is actually shrinking� But why is this so� The
telephone market is booming� television occupies more time in everyday life� and the
new GPS navigation system in my car is really a useful device� I nearly never miss
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the eight o�clock news� particularly because of the weather forecast for the next day�
Considering all this� shouldn�t we expect a booming satellite business�

Ruppe� The most important part of application satellites has to do with commu�

nications� This market is fairly saturated at present� Only the failed satellites and

of course extensions of the system have to be replaced� But I understand that glass

�bers with optical communication give a sti� competition to the satellites� So this

market may shrink compared to the past� Of course this is all undecided and only

the future will tell� Weather satellites pose di�culties of their own� We are quite

accustomed that weather surveys and predictions are provided by the governments�

So private weather prediction is rare� Military weather prediction falls into the same

class� it is not derived from private satellites� The military serve their own purposes�

After Global Positioning System we are accustomed to non�pay services� Again the

government gives us such satellites and the infrastructure which is required� It is

not a private service	 Recently there has been a big Tsunami in Asia� This lead to

the expectation of catastrophe warning satellites� Again� this is no �eld for private

enterprise I think that governments should provide this service� Observation of the

surface of the earth is a typical task for spacecraft� The military require good resolu�

tion in the order of 
� centimeters� they have a close supervision of this �eld� They

will do so in all foreseeable future� Because of this� private earth observation is rare�

Scienti�c Missions � brilliant jewels in astronautics

You often told me that you see the search for extraterrestrial life as the ultimate
goal for astronautical activities� Well� up to now we haven�t found any aliens in our
solar system� but the scienti�c deep space probes were surely worth the money� How
poor would be our understanding of the solar system without them� I am always
fascinated when I look at the pictures which the deep space probes returned to the
earth� many of them are prettier than a space artist could paint�

Ruppe� I fully agree with what you say� There is a fascinating task to determine

how life began� Did it come from space� Were comets important in this respect�

How about life on other worlds� Do other suns have planets� I think of earthlike

planets and not of giants like Jupiter� Some large planets of other suns have been

found but not small bodies like our home planet� Observations from space promise

to help but these satellites have to be much larger than the Hubble space telescope�

The Hubble telescope is the largest space observatory which has been launched so far�

No doubt there will be more potent successors� In my opinion the never ending task

of astronautics is the determination of the human role on earth and all the history

of the universe�

Prof�Ruppe� I want to thank you very much for this interesting interview�

Ruppe� I am proud to accompany this �ne book with this preface interview� I wish

you all success�
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�� Space Environment

The word �space� determines an in�nite dimension� Actually� every location which
is higher than a certain altitude �say �� km� above the surface of the earth is called
space� Space�ight or astronautics are synonyms for journeys to space� So� the word
space�ight covers a wide range of di�erent missions to di�erent destinations�

The �rst chapter of this book is concerned with the conditions required for space�ight�
In space we �nd di�erent celestial bodies� all of them have a gravitational �eld� just
that some of them have an atmosphere and some others have a magnetosphere�
The vacuum of space is not perfectly empty� there we encounter particle radiation�
x	rays� electro	magnetic waves� sunlight and meteorites� The astronauts on board of
a spacecraft need a life	support system and protection from all the hazards in space�
Space�ight requires a high developed state of the technology and a powerful industry�
sometimes also public money and the political will	power� Whenever a new planetary
mission has been completed successfully� the books on the solar system are rewritten�
For example� recommendable fundamental literature are the books of J�K�Beatty�
B�O�Leary� A�Chaikin ��The New Solar System�� Cambridge University Press� 
�����
J�G�urtler�J�Dorschner ��Das Sonnensystem�� Johann Ambrosius Verlag Leipzig� 
����
and W�Engelhardt ��Planeten Monde Ringsysteme�� Birkh�auser Verlag� Basel� 
�����

���� The Solar System

The sun is the central celestial body of our solar system� Eight planets move on nearly
circular orbits around it� The four inner planets �Mercury� Venus� Earth and Mars�
consist mainly of solid material� the four outer planets �the gas giants Jupiter� Sat	
urn� Uranus and Neptune� consist mainly of hydrogen and helium gas� Between the
orbits of Mars and Jupiter there is the �asteroid main belt�� a ring around the sun
which contains several thousand smaller objects� Outside the orbit of Neptune there
is another ring of smaller objects� called �Kuiper belt�� The outermost planet Pluto
is the most famous member of this Kuiper belt� It is assumed that comets come from
a region far behind the Kuiper belt� called �Oort�s cloud� at a distance of about 
�
light years� Except for the two innermost planets Mercury and Venus� all planets
have at least one moon� The big gas planets have many moons� Saturn is famous
for its ring system� but also the other big gas planets have rings� Objects which cir	
cle around moons have not been found in our solar system� �sub	moons� do not exist�

Celestial bodies of our solar system are the sun� planets� moons� asteroids and comets�
As soon as mankind noticed that the earth is not the center of the whole universe�
speculations on the existence of life on other planets came into fashion� Today we
know that the earth is the only celestial body of our solar system that carries life�
Our knowledge about the solar system has considerably improved with the beginning
of the age of astronautics� but we still have to �nd answers to many questions�
Astronautics is the only proper tool to explore the solar system�
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����� The Sun

The biggest nuclear reactor of our solar system� The sun is just one of about
��� billion stars in our galaxy� It consists of hydrogen ���� and helium �����
and a remainder of heavier atoms� Our sun is not much di�erent from many other
stars� regarding its size� its brightness and its age� but for us the sun is the most
important star� it provides the life	giving energy for all living beings� A nuclear
furnace at its inner core heats up the sun� Temperatures� pressures and densities in
the center of the sun are great enough to sustain nuclear fusion of hydrogen atoms�
Every second� about � billion kg hydrogen are transformed into helium� releasing an
enormous amount of energy �luminous power of the sun� ����� � 
��� Watt��

The energy works out its way to the visible surface of the sun� the photosphere�
The photosphere is a thin layer of gas� just ��� km thick� Here the diameter of the sun
is 
������ km� about 
�� times as much as the diameter of the earth� At an e�ective
temperature of ��� K the energy is emitted into space� Above the photosphere�
there is an invisible layer called chromosphere �a layer with lower radiation intensity
and a temperature of about ���� K�� The sun has also an extended atmosphere�
called corona� The inner corona is the location where magnetic �elds hold so	called
protuberances� glowing gas clouds with a life	span of � to � months� The corona
is constantly changing� it spreads out far into space �several diameters of the sun��
Plasma which �ows in radial direction away from the sun is called �solar wind��

The sun as variable star� The photosphere shows two characteristic phenomena�
sunspots and solar �ares� Up to now the nature of sunspots has still not been com	
pletely explored� but it is well	known that they have something to do with magnetism�
They are about ���� K colder than the rest of the bubbling photosphere� It is re	
markable that the quantity of sunspots is not constant in time� Sunspots appear
with a typical frequency of about 

 years �strictly speaking between � and 
� years�
when also the radiation from sun has a distinct maximum� During a time period
of many sunspots� the sun shines brighter than normal �approximately ��
���
The increased sun radiation has a noticeable in�uence on the climate of the earth�

Solar �ares are eruptions which suddenly spray upward from groups of sunspots�
These phenomena are accompanied by intensive emission of x	rays� they have a life	
span of about �� minutes� Even though the phenomenon of solar �ares has been
known for many decades� their origin is still not clear and a prediction is not possible�

Exploring the sun� Several spacecraft were designated to explore the complex
physical phenomena of the sun� it started with the American probes Pioneer � to Pio	
neer � �interplanetary solar orbit� 
���	
����� continued with the European	American
probes Helios	
 and Helios	� �near sun orbit� 
��	
��� and Ulysses �the poles of the
solar system� 
����� The American Solar	Max satellite explored the period of maxi	
mum sun activity �low earth orbit� 
����� The European probe SOHO explored the
solar plasma �ow from a position in space outside the geomagnetic �eld �it attained
a halo orbit around liberation point L
 of the sun	earth system� 
�����
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����� The Inner Planets

Mercury� Since Mercury is always close to the sun� it can be observed either early
in the morning before sunrise or shortly after sunset� otherwise the sun is too bright�
During two minutes of a total solar eclipse you can have the best view to Mercury�
In comparison with the earth� the innermost planet Mercury is much smaller �it has
just about �� of the mass of the earth�� With its diameter of ��� km� Mercury is
intermediate in size to Moon and Mars� The images of Mercury�s surface �taken by
American probe Mariner 
�� 
��	
��� show a lunarlike terrain� bespangled with
craters� The orbit of the planet has a major semiaxis of just ����� AU� Consequently�
the sunlight is ���� times more intensive on Mercury than on the earth� The surface
on the planet�s day side is quite hot �����C�� but Mercury is a good place to observe
the sun� The night	side of Mercury ��
��C� is a good place to monitor the sun near
space� for example to �nd smaller objects which can become dangerous for the earth�

Venus� Sometimes� at sunrise or at sunset� you can see an extremely bright star
on the �rmament� Probably it is Venus� the morning star and also the evening star�
Sometimes Venus is so bright that people do not believe that what they see is a planet
�they think it must be an airplane or something else�� Observed through a good
binocular telescope� Venus appears as a tiny disk with a moon	shaped silhouette�
Venus is a �sister planet� of the earth when we regard size and inner composition�
but at a sun distance of ���� AU� the solar radiation at Venus is about twice as
severe as it is near the earth �
 AU�� The conditions on the surface of Venus do not
at all resemble the conditions on the surface of the earth� The environment on Venus
is extremely unfriendly� the planet is without any life� Russian spacecraft landed on
the surface of Venus and transmitted pictures �Venera  to Venera 
�� 
��	
��
��
These images show sandy deserts with rocks and orange skies� The visibility on the
surface is surprisingly good �several kilometers�� but the skies are always overcast�
Thick clouds never allow a look at the surface from orbit� Orbiting spacecraft mapped
the entire surface of Venus� using radar imaging devices �the Russian probes Venera

� and Venera 
�� 
���� and the American probe Magellan� 
����� Nowadays Venus
is often visited by spacecraft� but many of these spacecraft are actually on the way
to another destination� Seen from the earth� Venus is the nearest planet� This is the
reason why spacecraft can ideally use Venus for a gravity swingby maneuver�

Earth� Our home planet is without any doubt the �jewel� of the solar system�
Its surface is covered with deep	blue oceans� colored continents� yellow	brown deserts
and white clouds� The earth is the only planet in our solar system that carries life�
Our planet is the most important space destination� just for a few exceptions� nearly
all space missions are �missions to planet earth�� Astronautics helps to make our
life easier� satellites are used for broadcasting� weather forecast� navigation� sur	
face monitoring� geography� ecology and so on� Space stations in low earth orbit
allow the study of biology and material science� Astronauts report that the earth
seen from space is extraordinarily beautiful� but it appears also as very vulnerable�
Unfortunately� there is also a large number of payloads that have a military character�
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Moon� The wonderful big moon of planet earth is actually an uninhabitable desert�
In a perfect full	moon night� the moonlight is so bright that you can even read a book�
You can see mountains� big impact craters� bright and dark regions ��mare�� on the
moon by the naked eye� and with a good binocular telescope in your hand and some
fantasy in your mind� you can walk on the moon through valleys and over mountains�

Sometimes the moon looks like a disk� sometimes like a crescent� but an observer on
the earth sees always the same side of the moon� tidal forces have coupled the rotation
period of the moon with the period of its orbit around the earth� An astronaut on the
surface of the moon sees the daily rotation of the earth� but he sees the earth always
at the same position in the sky �there is no �earthrise� or �earthset� on the moon��

For life on the earth� the moon and its phases are much more than a pretty spectacle�
the moon in�uences our weather and is responsible for tides �together with the sun��
Some people state that the existence of a big moon is necessary for terrestrial life�
With its gravity the moon stabilizes the orientation of the rotation axis of the earth�

The manned lunar missions of the American Apollo programme explored the moon
thoroughly �Apollo 

 	 Apollo 
� 
���	
���� For a long time their success has pre	
vented new lunar missions� but some small spacecraft have recently started the revival
�US	Clementine� 
���� Lunar Prospector� 
���� and Japan�s probe Lunar	A� 
�����

Mars� When you want to �nd Mars in the night sky� you have to look for a bright star
with reddish yellow �orange� color� Planet Mars is much brighter than some other
��xed� stars which are similar in color� With the aid of a small telescope you can see
the disk of Mars� but you cannot see any surface details� Only the camera of a space
probe makes surface details visible� Mars has the highest volcano of the solar system
�called �Mons Olympus��� Mars has a deep canyon �called �Valles Marineris���
Like other planets� Mars has impact craters� basins and mountains� The geology
of Mars� the history� the composition of surface material� the climate and meteoro	
logical phenomena are now subject of intensive studies�

In astronautics� Mars is probably the most attractive planetary space destination�
Its desert surface has been visited several times by American probes �Viking	
 and
Viking	�� 
��� Mars Path�nder� 
����� In 
���� the probe Mars Global Surveyor
mapped the surface of Mars with high accuracy �resolution better than � m per pixel��
Planet Mars is the object of wild fantasies� some people dream about human set	
tlements on Mars� with agricultural activities ��terraforming��� Unfortunately� up
to now no	one really started with the concrete preparation of a manned mission�
but at least� unmanned missions are often on the way or in the state of preparation�

Phobos and Deimos� Mars has two tiny moons� Phobos �
� � 

 � � km� and
Deimos �� � � � � km�� fear and terror which accompany war� These bodies are
probably captured asteroids �at least they are very similar to asteroids concerning
size and composition�� They surround the equator of Mars on nearly circular orbits�
Phobos in �� hours at a radius of ��� km� Deimos in ���� hour at ����� km�
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����� Asteroids and Comets

Main belt asteroids� Denoted in the year 
�� a rule named �Bode�s law� gives
a good estimate for the mean distances of the planets to the sun �consider the
sequence of numbers �� �� �� 
�� ��� ��� ��� and 
��� add � to each and divide
the result by 
��� Today it is known that this sequence cannot be deducted from
laws of celestial mechanics �and does not hold for Neptune and Pluto�� but at that
time it surprised that obviously a planet was missing between Mars and Jupiter�
and stimulated the search for one� The law seemed to be satis�ed when actually in

��
 a planet with about only 
��� km diameter� named 
	Ceres� was found� but
some time later also many others appeared on the scene� The brightest of them�
�	Vesta� is visible by the naked eye� Today� many thousand smaller celestial bodies
are known� most of them being contained in a ring surrounding the sun between the
orbits of Mars and Jupiter� called �main belt�� Initially it was assumed that these
bodies were fragments of a broken planet� but today it is known that in this region
material does not allocate to form a planet �due to gravity forces of sun and Jupiter��
These bodies consist of the very original material� which had already been present
at a time when our solar system was formed� Albedo and spectrum of the asteroids
�or correct planetoids� are not uniform� making a classi�cation into several types
necessary� On its way to Jupiter� the US	American probe Galileo visited two S	type
asteroids� ��
	Gaspra �October ��� 
��
� and ���	Ida �August ��� 
����� A discovery
that surprised the scienti�c world very much was a moon of Ida� called Dactylus�

Near earth asteroids� From the astronautical point of view� so	called �near earth
asteroids� are important for two reasons� First� a visit seems to be particularly easy�
In ����� the American probe NEAR performed a rendezvous maneuver with ���	Eros�
Then� the ones which come very near to the earth might be dangerous� The orbits
of these near earth asteroids are monitored anxiously� even if the actual danger of an
impact is very small �these asteroids move on periodic orbits� as well as the earth��
When an asteroid comes close to the earth� a radar image of its shape can be taken�

Comets� There are two types of comets� periodical comets which appear in certain�
well	de�ned time intervals� and non	periodical comets which only appear once and
never show up again� The origin of all comets is the outer solar system� which
constantly supplies new comets� We can conclude this from the fact that all visible
comets are quite young �normally� they are just several thousand years old�� When
comets come close to the gravitational �eld of a big planet �Jupiter� for example��
they can change orbit� In this way a non	periodical comet can change to become a
periodical comet� when it passes the inner solar system for the very �rst time� Comets
are often called �dirty snowball�� referring to their material composition of water ice�
stones and dust� A part of the water ice vaporizes when the comet comes near to the
sun� and solar radiation forms the impressive tail� but the comet loses the material�
Micrometeorites� meteors and dust accompany the orbit of a comet� After several
perihelion passages� all the water ice is lost� just the rocky core of the comet is left
over� Finally the comet continues the now more quiet phase of its life as an asteroid�
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����	 The Gas Giants

Jupiter� Gas giant Jupiter is the biggest planet of the solar system� Alone it contains
about �� of the mass of all planets� When Jupiter is visible as a bright star in the
night sky� it is a worthwhile spectacle if you have a good binocular telescope at hand�
You can see brilliant smaller dots near the disk of Jupiter� the Galilean moons�
To observe the famous �Great Red Spot� �a gas cloud on Jupiter�s southern hemi	
sphere� you need a very good telescope� Jupiter has also a ring system and several
other moons� but these objects are too small to be visible by a terrestrial telescope�

American deep space probes unveiled some of the secrets of the Jupiter system�
The research started with Pioneer 
� and Pioneer 

 �
��	
��� and continued with
Voyager 
 and Voyager � �
���� While the �rst probes performed �yby maneuvers�
the spacecraft Galileo �
���� attained orbit around Jupiter and studied the system
for an extended time period� The images of Jupiter are fascinating� colored clouds
form marvelous patterns on its gaseous surface� intensive storms with thunder and
lightning occur in the atmosphere� Jupiter�s moons Io� Europa� Ganymed and Callisto
are similar to each other just in size� but very di�erent in composition and topography�

Saturn� In comparison with Jupiter� Saturn has about ��� of the mass� ��� of the
diameter and twice the distance from the sun� and� because of its famous ring system�
it is also a bright star on the �rmament� When you use a binocular telescope you can
see the elliptical silhouette of the ring planet� The rings are extremely thin compared
with their other dimensions� they consist of ice� stones and dust� After a swingby ma	
neuver at Jupiter� the American probes Pioneer 

 �
���� Voyager 
 �
���� and Voy	
ager � �
��
� visited Saturn� They examined the ring system� found several moons
and they took pictures from the pale yellow cloud structures on Saturn�s gaseous
surface� The Cassini mission established orbit around Saturn in summer �����
later a sub	spacecraft of Cassini �called Huygens� landed on Saturn�s moon Titan�
Titan is the only moon of the solar system with a thick non	transparent atmosphere�

Uranus� Planet Uranus� discovered in 
�
� has about the double distance from the
sun than Saturn� Since Uranus is much smaller than Jupiter and Saturn �it has just
�� of the mass of Jupiter�� it is a faint object in the night sky� When you want to
observe it with terrestrial telescope� you have to know its exact position� Uranus ap	
pears as a light	blue disk� �ve moons �Titania� Oberon� Ariel� Umbriel and Miranda�
with approximately spherical shape are visible� Several other moons and a ring
system were discovered when Voyager � passed Uranus on January� ��th 
����

Neptune� Regarding size and composition� Neptune and Uranus are similar planets�
The existence of an eighth planet was assumed soon after the discovery of Uranus�
because the motion of Uranus deviated from the calculated orbit� In 
���� re�ned or	
bit calculation methods made the discovery of Neptune and its moon Triton possible�
Triton has a retro	grade orbit� it indicates that the origin of this moon is probably
not the Neptune system �Triton is maybe a captured asteroid�� When Voyager �
passed Neptune on August ��th� 
���� it discovered a ring and several other moons�
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����
 Pluto and the Kuiper belt

Asteroids of the Kuiper belt� Since 
��� we have known that there is one
more small planet beyond the orbit of Neptune� it is called Pluto� In 
�� Pluto�s
moon Charon was discovered� Since 
��� we have known that the solar system has
many smaller planetoids which are farther remote than Pluto� The biggest of them�
object ���� UB���� is even bigger than Pluto� Some dozens with diameters of a few

�� kilometers are known� many others are expected� These objects are called the
�Kuiper	belt�� named for an astronomer who expected this primitive	body family
already in 
��
 �his expectation was based on characteristics of some long period
comets�� Pluto� Charon but also Neptun�s moon Triton are probably the rest of a
bigger population� captured by Neptune in their actual orbits� Pluto is probably the
only planet in our solar system which maintained nearly all its original characteristics�

Pluto� Pluto is with a diameter of ���� km a little smaller than our moon� The solar
system�s smallest and most remote planet has also the highest inclination �
�
����
and the highest eccentricity �� � ������� All this indicates a non	standard origin�
For a certain time interval Pluto is nearer to the sun than Neptune� Pluto�s perihe	
lion passage was on October 

th� 
���� aphelion passage will be 
����
 years later
�perihelion radius ���� AU� aphelion radius ����� AU�� Observed from Pluto�s sur	
face� the sun would appear as a tiny disk with a diameter of 
 to ��� arc	minutes�
The sunlight on Pluto�s surface� however� is still brighter than moonlight on the earth
during a perfect full	moon night�

NASA�s Hubble Space Telescope photographed nearly the entire surface� when Pluto
rotated on its axis in late 
���� Several separate images were taken by ESA�s faint
object camera onboard the telescope and assembled by computer image processing
software� The actual map has a resolution of approximately ��� km� it covers ���
of Pluto�s surface� It con�rms that Pluto is a complex object with a dark equatorial
belt and bright polar caps� Except for the earth� Pluto has more large	scale contrast
than any other planet or moon in our solar system� This includes Pluto�s often cited
twin� Neptune�s large moon Triton� According to the pictures of the Hubble Space
Telescope� Pluto is not at all a twin of Triton� The brightness variations on the
map may be the result of topographical features like basins and impact craters� but
we know that Pluto has a thin atmosphere� where methane is the main constituent�
Most of the surface features are likely produced by the complex distribution of frost
that migrates across Pluto�s surface with its orbital and seasonal cycles�

Charon� Pluto�s only known satellite must be an impressive bright spectacle for
every observer on the surface of Pluto� Charon has a diameter of approximately 

�
km and a orbital radius of 
���� km� thus its virtual diameter appears on Pluto�s sur	
face as mighty ��� This is about ten times as much as our moon seen from the earth�
Topographical features on Charon�s surface have not been discovered yet� The orbital
period of the moon is synchronized with the planets�s rotation� once in ���� days�
The �two celestial body system� Pluto	Charon has an extraordinary mass ratio�
Charon�s mass amounts 
��� this is more than any other moon in our solar system�
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Objects of the solar system total number mass compared with earth
sun as central body 
 ������
all planets � ����� �Jupiter �
��
all moons at least �� � ��

comets �Oort�s cloud� � 
��� � 

asteroids at least ����� but � 
�� � � � 
���
planetary ring systems � � 
���

meteorites� dust 	 � 
���

Planets mass equatorial radius rotational app� diameter albedo moons
�earth � �� period �d� �arcseconds�

Mercury �����	 ��
	� �	��� �� � ���� ����� �
Venus ��	��� ���� �
��� ��	 � ���� ����� �
Earth ������ ����� ������ � ��
�� �
Mars ����� ���
� ������ 
�� � ���� ����� �
Jupiter 
���	� ����� ���
� 
� � � ���� ��
Saturn ����� �� ��
�� ���� � ���� ��� �	
Uranus ��� ��� ����� 
�� � 
�� ���� ��
Neptune ����
 
�		 ����	 ��� � ��� ��� 	
Pluto ������ ���	� ��
	� ���	� ��� ��
 �

Moons of planet radius orbital eccentricity inclination major semi�
�km� period �d� �equ�� �deg� axis �km�

Moon Earth ��
� ���
�� ����� ���� �ecl�� 
	��
Phobos Mars ������ ��
�� ����� ���� �
	�
Deimos � 	���� ����
 ������ ��	� �
��
Io Jupiter �	�� ����� ���� ��� �����
Europa � ���� 
���� ����� ��� ������
Ganymede � ��
� ����� ����� ���� �������
Callisto � ��� ����� ����� ���	 �		
���
Titan Saturn ���� ����� ����� ��

 ����	��
Titania Uranus 	�� 	���� ����� ��� 
�	��
Oberon � ��� �
�� ����� ���� �	����
Triton Neptune �
�
 ��	�� ����� ���� 
�	��
Charon Pluto ��
 ��
	� �� �	�	 �ecl�� �����

Comets perihelion orbital eccentricity inclination perihelion
radius �AU� period �y� �deg� date

Encke ��

� 
��	 ��	�� ���� Feb �� ���
Temple � ��	 ��	 ����� ����	 Mar ���	 ���
Halley ���	� �� ����� ����� Feb ��� ��	�
��� XII ����� � ������
 �
	�� Dec ��� ���

Asteroids radius Spectral mass orbital rotational year of
�km� class ����� kg� period �y� period �h� discovery

��Ceres 	���
 C ���� ��� ���	 �	��
��Pallas �	����
���� U ���� ��� ��	� �	��

�Juno �
 S �
� ���� �	�
�Vesta ���������

 U ���� 
��
 ��
 �	��
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Io

Europa

Ganymede

Callisto

Jupiter

Saturn

Uranus
Neptune

Amalthea

Metis

Adrasthea

Thebe

Leda

Himalia

Elara

Lysithea

Carme

Ananke

Pasiphae

Sinope

Mercury

Venus

Earth
Moon

Mars
Phobos

Deimos

Vesta Ceres

PallasJuno

Titan

Rhea

Japetus

Mimas

Enceladus

Thetys

Dione

Pan

Atlas

Prometheus

Pandora

Epimetheus

Janus
Telesto

Calypso
Hyberion

Helene

Phoebe

Ariel

Umbriel

Titania

Oberon

Cordelia

Ophelia

Bianca

Cressida

Desdemona

Juliet

Portia

Rosalind

Belinda

Puck

Miranda
Caliban

Sycorax

Naiad

Thalassa

Despina

Galatea

Larissa

Proteus

Triton

Nereide

Pluto
Charon

Asteroid Main Belt

Kuiper Belt

Sun

Example ���� About �ve billion years ago� a cloud of interstellar gas and dust� maybe
triggered by the explosion of a nearby star� collapsed and condensed to form our
solar system� The central mass contracted under its own gravity and heated� until
the temperatures became so high that the nuclear processes inside the sun started�
Lumps of material which did not achieve such high temperatures and pressures
became planets� Now the solar system has � sun� � planets � of them with rings��
at least �� moons and � asteroid belts �with more than 
���� smaller bodies��
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planets semiaxis eccentricity asc� node perihel inclination anomaly ���
epoch�
������� a �AU� � � ��� �p �

�� � ��� � � � sin �
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�
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���
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�� ����

 ����
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�� �

��

�
Saturn ������� ������� ��
����� 

	����	 ��	�� ����	��
Uranus ����	���� ������
 ����� �����	�� ����
� �����	
Neptune 
���
��� �������� �
����	� �
������ ������ �	�����
Pluto 
��	
���� �������� ����
�
� ������� �����

 ���



asteroids semiaxis eccentricity asc� node perihel inclination anomaly ���
epoch��������� a �AU� � � ��� �p �

�� � ��� � � � sin �
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���� Gravity Fields

Gravity holds the solar system together� The existence of gravitational attraction
between all material bodies was �rst recognized by Newton� later Einstein re�ned
our understanding of gravitational �elds� Even though we actually do not know what
really causes the mutual attraction of material bodies� we can quite well compute it�

����� Gravitational Attraction of a Spherical Celestial Body

Gravitational acceleration� Regarded are two particles� for example a bigger mass
M� and a smaller massM�� The attractive force is proportional to the product of both
masses and inversely proportional to the square of the distance r� The gravitational
acceleration vector of massM� is the gradient vector of the potential �eld of massM��

M�

M�

r attractive force � M� �M�

r�
�
� 
�

potential field � �M�

r
�
� ��

Using the universal gravity constant �� � ���� � 
���� m� �kg s��� the gravitational
acceleration �exerted by the bigger mass M� on the smaller mass M�� becomes�

g �
��M�

r�
�
� ��

Then the potential �eld of mass M� is given by the following equation�

epotential � ���M�

r
�
� ��

For every location inside the gravitational �eld of M�� we can �nd the accelera	
tion vector of gravity from the potential �eld simply by coordinate di�erentiation�
The gravitational acceleration aligned with the distance is �epotential	�r � ��M�	r

��
the gravitational acceleration vector has no component in any direction orthogonal
to the straight line of distance r� The vector aims at mass M��

Obviously� the gravitational attraction is in�nitely strong when in�nitely small parti	
cles touch each other �r� ��� but real masses are never without size� At the moment
when the small mass M� gets closer to the bigger body M�� the mass distribution of
big body M� becomes important� Then every element of mass M� attracts mass M��
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Gravitational acceleration of a spherical celestial body� In case the mass M�

is a celestial body� we may assume a more or less spherical mass distribution� Now
we calculate as a �rst step the gravitational attraction gring between mass M� and a
ring	shaped mass Mring on the surface of the spherical celestial body�

R


x

�
M�

�r

Mring


� � r� !R� � �rx

cos� � �r � x�	


Distance r is the straight line that connects particle M� with the center of the celes	
tial body� distance 
 is the distance between massM� and all the elements of the ring
�
 is determined if we know the coordinate x of the ring� the radius R of the celestial
body and the distance r�� When we integrate all the in�nitesimal small attractions of
the ring elements� just components count which are parallel with the straight line r�
We have to use the factor cos�� since components orthogonal to r cancel out� Thus�

gring � ��
Mring


�
� cos� � ��Mring

�r � x�p
�r� ! R� � �rx�

� �
� ��

The next step is to �nd the gravitational attraction of the entire surface of the
spherical celestial body� The surface area is ��R�� the area of the ring is ��R dx
�the ring radius is

p
R� � x�� the arc length at this location is

p
R�	�R� � x�� dx ��

We can follow that Mring � Msurfacedx	�R� assuming a homogeneous mass
distribution� Then we insert the relationship into the equation above and integrate�

gsurface �
��Msurface

�R

	RZ
�R

�r � x� dxp
�r� ! R� � �rx�

� � ��
Msurface

r�
�
� ��

Regarding its gravitational attraction� the spherical surface of the celestial body be	
haves as if it were collapsed on the center of the celestial body� Without further
calculations we may conclude that then the whole celestial body behaves the same�
The only requirement is that the celestial body must consist of concentric spheres
with homogeneous mass distribution� Right in the midst there is the center of gravity�
The body attracts as if its entire mass were concentrated on this center of gravity�

gcelestial body �
�� �Mcelestial body

r�
�
� �

The gravitational acceleration is a linear function of the mass of the celestial body�
We can simplify the notation for the gravitational acceleration when we introduce
individual gravitational constants for every celestial body� �planet � �� �Mplanet�
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����� The Potential Field of Oblate Celestial Bodies

Oblateness of celestial bodies� Celestial bodies are never perfectly spherical�
Particularly if a planet rotates rapidly� it has a pronounced lentiform deviation from
the spherical shape� The radius of the planet is larger at the equator than at the poles�
The oblateness is distinct for the gas planets �Jupiter� Saturn� Uranus and Neptune��
Since the planets Mercury and Venus rotate slowly� their oblateness is very small�
but the earth completes one full rotation in �� hours and Mars in ���� hours�
consequently these planets bulge at the equator �the earth � �
 km� Mars � 
 km��

Accurate representation of the �eld of gravity� We return to equation �
	���
It describes the potential �eld epotential of a spherical celestial body as function of
the distance r from the center of attraction� but equation �
	�� is just an approx	
imation for oblate celestial bodies� A more accurate approach considers distance r
and latitude angle � of every location inside the �eld� Then the potential is given by�

epotential � ��� Mplanet

r
�
�

� J� � �Rplanet

r
�� � f�

�
sin�� � 


�
g �
� ��

� J� � �Rplanet

r
�� � f�

�
sin�� � �

�
sin�g

� J� � �Rplanet

r
�� � f��

�
sin�� � ��

�
sin�� !

�

�
g ���

�
Planet Mplanet �kg� Rplanet �km� J� J� J�

Mercury 
�
�������� �
��� ������	 � �

Venus �	�������� ������ �������� ���������	 ����������

Earth ���������� �
�	��� ������	����	 ����������
�� �����������


�Moon ��
� ����� ��
	 �������� ��������	� �����������

Mars ���������� 

�� ��������� ���������� ����������

Jupiter ��	�		����
 ���� ������� ��������� �������	

Saturn ���	������� ����	 �����

� � ��������

Uranus 	���������� ����� ����
��� � �������
�

Neptune �����	����� ��� ����
��	 � �

Pluto ���� ����� ���� � � �

In the equation above� term Rplanet is the equatorial radius of the considered celestial
body� The expressions in curly braces are called �Legendre functions� of argument
sin� and degree �������� �without degree 
�� Factor J� is the most important factor�
it describes the �attening of the celestial body �the body is rather �lentiform� than
exactly �ball	shaped��� Factor J� is required if the radius of the north pole is di�erent
from the radius of the south pole �then the body is also a little bit �pear	shaped���
If the celestial body bulges at the equator and at the poles� term J� is required�
The series can be continued� but J� is already not signi�cant any more� Usually� also
the mass distribution along the equatorial line is not exactly homogeneous� Then a
similar series can be established for the potential �eld as function of the longitude�
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���� The Structure of the Atmosphere

The earth has a thin layer of gas above its surface� we call it the �atmosphere��
The atmosphere protects life on the earth� it provides oxygen for the animals and
carbon dioxide for the vegetation� Accurate knowledge about the structure of the
atmosphere is very important to space engineers� launchers experience atmospheric
drag on their way to space� and reentry vehicles use the atmosphere for braking�

����� Barometric Scale Height

Atmospheric pressure� The motion of gas molecules is a function of the gas tem	
perature T � The hotter the gas is� the faster its molecules move� Now we consider
gas inside a gas container� When many molecules hit the wall of the gas container�
these impacts are noticed as a gas pressure p� The pressure is a function of the
temperature� since it depends on the impact velocity of the gas molecules� When we
increase the density  of the gas by a reduction of the volume of the container� the
number of molecules that hit the container wall increases correspondingly� the gas
pressure p is also a function of the gas density � This relationship can be expressed as�

p � 	 � T �  �
� ��

Term 	 is the gas constant �it is the Boltzmann	constant 	� � ���
�� J molK divided
by the mean molecular mass M of the gas�� If a gas ful�lls condition �
	�� exactly�
it is called a �perfect gas�� For example� the terrestrial atmosphere is almost such a
perfect gas �M � �� gram mol and 	 � ������� J kgK��

Barometric representation� The atmosphere is tied up to the celestial body by
the gravitational attraction� Now we consider an in�nitesimal thin layer of the atmo	
sphere as a gas container� If we move upwards and change the radius from r to r!dr�
the pressure diminishes by dp� since the gas in the layer has the speci�c weight g � �

p
p� dp

r

r ! dr

dp � � g �  � dr �
� 
��

Using the perfect gas law �
	��� we �nd�

dp

p
� � g

	 T
� dr �
� 

�

The gravitational acceleration g is a function of the distance r from the center of
gravity� However� in comparison with the whole celestial body the atmosphere is
very thin� usually� and thus we make nearly no mistake when we approximate g by
the constant value g� �in case of the earth g� � ���
��� m s���
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Scale height� It follows from equation �
	

� that the atmospheric pressure is an ex	
ponentially declining function of the altitude� The scale height hscale is introduced as�

hscale � 	T	g �
� 
��

The perfect gas law �
	�� proves a geometrical interpretation of the scale height�
hscale is the thickness of a hypothetical atmosphere� where the �sea	level� conditions
�density and temperature� do not change with the altitude� For the earth we can cal	
culate a scale height of hscale � ����
 km �assuming ����
� K ground temperature��
but pressure� density and temperature are functions of the altitude� When we as	
sume that at least the temperature remains approximately constant� we can readily
integrate equation �
	

�� We �nd a formula which de�nes the aerostatic pressure
p as function of the altitude �expression r � r��� Then a similar relationship must
apply to the air density � since the density is a linear function of the pressure for a
perfect gas with constant temperature� Therefore we can denote�

p�r� � p� � e��r � r��	hscale �
� 
��

�r� � � � e��r � r��	hscale �
� 
��

On the surface of the earth �sea	level radius r� � ��� km� we have an aerostatic
pressure of p� � 
�
��� N m� and an air density of � � 
���� kg m�� approximately�
Equation �
	
�� is called �barometric representation� of the atmospheric pressure�
but actually the real pressure deviates pretty much from the value given by the
barometric representation� Particularly the assumption of a constant atmospheric
temperature is not correct� The atmosphere consists of several layers with individual
temperature pro�le� where the radiation from sun and earth is di�erently absorbed�
The atmosphere is continuously in motion and changes its content of dissolved water
�there are wind� clouds� rain� hail� snow and many other meteorological phenomena��
The climate of a particular geographical location has a considerable in�uence on the
properties of the atmosphere� Pressure� temperature and density vary continuously�

����� The Earth�s Atmosphere

The troposphere� The lowest layer of the atmosphere is called troposphere�
it is the zone of weather phenomena� It ranges from sea	level up to an altitude
of about 

 km �the highest altitude of the troposphere depends on the geograph	
ical latitude� it is higher on the equator and lower on the poles�� The troposphere
is characterized by a declining temperature pro�le� when we climb� it gets colder�
The temperature gradient is not exactly constant� it ranges from �� up to 
�� for
every kilometer� A typical pro�le for a summer day in Europe is a linear drop of the
temperature from 
�� Celsius at sea	level to ������ at 

 km altitude� The pressure
declines exponentially from 
 bar at ground level to ����� bar at 

 km altitude�
The molecular composition of the air is almost invariant� the atmosphere consists of
�� nitrogen� �
� oxygen and 
� other gases �water steam� carbon dioxide� some
inert gases�� The air composition nearly does not change up to an altitude of �� km�
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The stratosphere� The next two layers of the earth�s atmosphere are both to	
gether called stratosphere� The stratosphere ranges from the top of the troposphere
�about 

 km� up to an altitude of about �� km� Its �rst layer is characterized by
a nearly constant temperature pro�le �approximately 	����� Celsius from 

 km up
to �� km�� This layer absorbs the infrared radiation of the earth� The second layer
absorbs the ultraviolet radiation of the sun� and the temperature increases slightly
with the altitude �approximately 
� Celsius for every kilometer�� For example� at
an altitude of �� km there is the aerostatic pressure of just ����� bar and the air
density of ���
�� kg m�� at a temperature of about 	����� Celsius� Jet airplanes
and balloons can access the stratosphere� Sometimes airplanes encounter the strato	
spheric �jetstream�� a strong horizontal wind which blows constantly in one direction�
From the meteorological point of view the stratosphere is stable� without vertical heat
convection there are no clouds in the stratosphere �in contrast to the troposphere��

The mesosphere� The mesosphere ranges from top of the stratosphere �� �� km�
up to an altitude of about �� km� Altitudes higher than �� km are called �space��
Thus� the mesosphere contains all layers of the atmosphere between stratosphere and
space� The mesosphere is characterized by a slightly decreasing temperature pro�le�
Aircraft and balloons can just exceptionally enter this airspace� space launchers and
reentry vehicles can remain inside the mesosphere just for a short time period�

The thermosphere� In space� molecular dissociation and other photochemical re	
action processes are dominant� and the composition of the rest	atmosphere changes
with the altitude �the mean molecular weight becomes smaller with the altitude��
The rest	atmosphere reacts sensitively on solar radiation� Consequently� the atmo	
spheric properties �density� temperature� composition� are functions of the intensity
of the sunlight� they depend on the hour of the day� on the geographical latitude�
on the season� and on time	variant activity of the sun �sun spots and solar �ares��
The density can be several times higher on the day	side than on the night	side�
Particularly uncertainties in the prediction of solar �ares complicate seriously the
calculation of the drag force for a satellite on orbit� The thermosphere begins in
space ��� km� and ends at an altitude of about ��� km� Referring to the predomi	
nance of positive ions and free electrons� the thermosphere is also called ionosphere�

The exosphere� Collisions between particles become rare above ��� km altitude�
where the exosphere begins� The motion of charged particles is dominated by the
magnetic �eld of the earth� and neutral particles move on conic orbits� Above 
���
km we �nd nearly no oxygen or nitrogen molecules any more �just atoms�� The
higher we climb� the less we can encounter heavy atoms� Above 
���� km� hydrogen
is practically the only constituent of the atmosphere �protons and hydrogen atoms��
In the exosphere� these hydrogen particles can reach a velocity faster than the earth
escape velocity �about 

 km s�� the hydrogen gas disappears from the earth�s at	
mosphere� Like in the thermosphere� the concentration of particles in the exosphere
depends on the solar activity� The exosphere ends at about ����� km� where we
practically cannot encounter particles from the atmosphere any more�
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Example ���� The earth�s atmosphere consists of several layers with di�erent
temperature pro�le� The troposphere� the lowest layer� is the region of weather
phenomena� The stratosphere� on top of the troposphere� is a meteorological stable
region which can be accessed by high altitude airplanes and balloons� The transition
region between stratosphere and near�earth space is called mesosphere� In near earth
space we encounter hot ionized gas of extremely low density� called thermosphere�
The uppermost layer of the atmosphere is called exosphere� it is a region where still
light weight gas particles can be encountered� Always some particles are faster than
the escape velocity of earth� thus gas from the exosphere is constantly lost into space�
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����� Atmospheres of other Celestial bodies

Conditions for having an atmosphere� What we call exosphere is a gas with
extremely low density� Its temperature is a function of the average velocity of the gas
particles� where collisions between the particles are rare� Some particles move slower�
some others move faster� Always� some particles are faster than the escape velocity
of the celestial body� these particles leave the gravitational �eld on a hyperbolic orbit�

As a consequence� the exosphere will rarefy until all the gas has escaped into space
�detailed analysis shows that the permanence of the exosphere is proportional to
the expression exp�v�	��	T ��� where v is the parabolic escape velocity� 	 the gas
constant and T the gas temperature�� Thus three factors increase the probability that
a celestial body has an atmosphere� the mass of the planet �velocity v�� the molecular
weight of the atmospheric gas �higher molecular weight means a lower gas constant 	�
and the degree of coldness of the gas �the temperature T inside the exosphere��
In case of the earth� hydrogen is the dominant constituent of the exosphere� but
hydrogen disappears from the exosphere into space� Continuously the lost hydrogen
is replaced �by photochemical splitting of water molecules� by volcanic eruptions� solar
wind� and other processes�� Planet Venus has about the same mass as planet earth�
but Venus can keep a much denser atmosphere because the temperatures inside its
exosphere are much colder� It is well	known that our moon has no atmosphere�
With a diameter of ���� km Pluto is smaller �approximately � �� than our moon�
but the outermost planet Pluto is so cold that it can even keep a methane atmosphere�

Origin of atmospheres� The atmospheres of the gas giants Jupiter� Saturn� Uranus
and Neptune are called �primary atmospheres�� because they consist of original gas�
This gas was already present when the planets were born� Probably� these big planets
have no de�ned surface �the density of the gas is more or less a continuous function
of the depth�� Main constituents of the atmospheres are hydrogen �more than ��� of
the volume� and helium� methane and traces of other constituents are insigni�cant�
The existence of aerosols �ammonia� is responsible for clouds� Particularly in case
of Jupiter� strong winds form impressive patterns of clouds �strongest winds blow in
equatorial regions� with 
�� m s in case of Jupiter and ��� m s in case of Saturn��

Since the gravitational �elds of Venus� Earth and Mars are considerably smaller�
these planets have lost their primary atmospheres �original hydrogen and helium gas��
but volcanic eruptions replaced the lost gas and formed secondary atmospheres�
Chemical� physical and geological processes �and in case of the earth also biological
processes� have changed the original composition of these atmospheres substantially�
Until now the atmospheres of Venus� Earth and Mars are changing continuously�

The gravity of planet Mercury is too small to keep gases� Also moons of our solar
system are too small for having real atmospheres �except for Saturns�s moon Titan��
When the volcanic processes had stopped on these celestial bodies� they started
losing their secondary atmospheres� but ionized gas atoms are permanently liberated
by radioactivity� and now there are extremely thin atmospheres above their surfaces�
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The Venus atmosphere� The troposphere of the atmosphere of Venus is much hot	
ter than the troposphere of the earth� At the surface we �nd temperatures around
���� Celsius� The surface temperature varies slightly with the latitude and with the
day	night cycle �a Venus day lasts 

 earth	days�� The aerostatic pressure is �� bar�
there is nearly no wind and no other meteorological phenomenon� The main con	
stituents of the atmosphere are carbon dioxide ������ volume� and nitrogen �������
Thick clouds cover the sky at altitudes between �� km and � km� They are formed
by droplets of concentrated sulphuric acid� The clouds surround Venus once in a time
period of four earth	days� the cloud cover rotates faster than the rest of the planet�
The mesosphere begins at an altitude of about 

� km� where temperature conditions
are similar to the conditions inside the mesosphere of the earth� but when we move
upwards towards the exosphere of Venus� the temperature does not increase much�
Carbon dioxide and clouds prevent heat radiation from the surface of Venus and thus
the exosphere of Venus is much colder than the exosphere of the earth�

The Mars atmosphere� Mars has a thin cloudless atmosphere which consists of
carbon dioxide ����� volume ��� of nitrogen ������ argon �
���� and oxygen ���
���
Unfortunately� there is nearly no water on Mars� Between ���� bar and ���
� bar� the
surface pressure is comparable with the aerostatic pressure at an altitude between ��
km and �� km above earth� This is well su�cient for an aerodynamic braking maneu	
ver of an entry vehicle� The mean surface temperature is 	��� Celsius� but the temper	
ature varies substantially with the day	night cycle �about ��� Celsius� and with the
latitude �about ��� Celsius�� Even positive degrees Celsius can be encountered on a
summer day near the equator of Mars� The poles are covered with carbon dioxide ice
�maybe there is also some water ice�� The temperature variations are responsible for
strong winds on Mars� which cause dust clouds and change the topography of Mars�

The atmosphere of Saturn�s moon Titan� The only moon in our solar system
with a thick non	transparent atmosphere is Saturn�s Titan� The pressure at Titan�s
surface amounts 
�� bar at cold temperatures �about 	
��� Celsius�� The atmosphere
consists of nitrogen gas with small fractions of methane and other substances which
form haze and clouds� Hydrogen gas from Titan�s exosphere gets lost into space�

Pluto�s atmosphere� Planet Pluto has also an atmosphere above its ice cover�
The atmosphere is extremely cold� thin and consists mainly of methane� Surface
pressure and temperature vary between ��� � 
��� bar at 	�
�� Celsius �near sun�
and ����
��� at 	���� Celsius �distant sun�� planet Pluto moves on an eccentric orbit�
The colder it is� the more methane is frozen and the less dense is Pluto�s atmosphere�
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���� The Structure of the Magnetosphere

Some celestial bodies are surrounded by a magnetic �eld� The reasons for planetary
magnetism are not completely explored �responsible are probably electrical currents
inside the planet�� The magnetic �elds are strongly in�uenced by particle radiation
from the sun� There is a region around a planet where its magnetic �eld dominates
the motion of charged particles� We call this region the magnetosphere of the planet�

��	�� Planetary Magnetic Fields

Magnetic dipole moment� The earth has such a magnetosphere� The strength of
the magnetic �eld of the earth is determined by its dipole moment� ��
��� Gauss cm��
Usually� the magnetic dipole inside a planet is not coincident with the rotation axis�
In case of the earth� the inclination is about 

�� the dipole is displaced about ��� km
from the center of the earth� Astonishingly� the moon and the other inner planets
Mercury� Venus and Mars have nearly no magnetic �eld �in every case� the magnetic
�eld of the earth is more than 
��� times stronger�� but all the big gas planets are
mighty magnetic dipoles� We �nd the strongest planetary magnetism near Jupiter�

�� � 
��� Gauss cm�� The magnetism is responsible for intensive particle radiation�

Orientation of the magnetic dipole� Planetary magnetism is not time invariant�
Often� aircraft make use of the so	called �magnetic heading angle� for navigation�
Geographical information on navigation charts has to be changed in a typical time
interval of 
� years� because the location of the magnetic north pole moves slowly�
The earth reverses the polarity of its magnetic dipole in about ������ years�

Magnetic �eld lines� Outside the planet� the magnetic dipole is noticed as a
magnetic �eld� The �eld lines are an in�nite number of imaginary curves which
connect the magnetic poles from the south to the north� The magnetic �eld is strong
in the vicinity of the planet� more distant the �eld is weaker� Far away from the
planet the magnetic �eld lines are deformed by radiation from the sun� the solar
wind consists of moving protons which� on their part� have also a magnetic �eld�

��	�� Magnetism and Particle Radiation

The radiation belts� The hot ionized gas inside the magnetosphere �called plasma�
consists mainly of protons and electrons� The particles move rapidly� but the plasma
is sort of trapped inside the magnetosphere� In case of the earth� the hot plasma
forms two radiation belts �so	called �van	Allen belts��� there is an inner belt �between
r � ��� km and r � 
���� km� which consists of high	energetic protons� and there is
an outer belt of high energetic electrons �maximum intensity at about r � ����� km��
Nearer to earth there is the comparatively cold plasma of the inner magnetosphere�
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The motion of charged particles� The trajectory of a charged particle inside
the magnetic �eld is the result of the superposition of three individual movements�
First� there is the so	called Lorentz force which causes the particle to execute a

spiral movement around magnetic �eld
lines �rotation period ����
	������
 s��
Second� there is an oscillation �up and
down between the poles� parallel with
the �eld lines of the magnetic �eld
�oscillation period about ��
s to 
 s��
Third� there is a drift of the plasma
in direction parallel with the equator
�rotation period about �� minutes��
Ions drift in another direction than
electrons �in case of the earth protons
move westward� electrons eastward��

Interaction of solar wind and magnetic �eld� Proton radiation from the sun
perturbs the outer magnetosphere substantially� When the solar wind �ows around
the planet� the magnetosphere causes similar phenomena like an obstacle in a su	
personic wind channel� There is a hypersonic shock wave� the magnetosphere is
compressed at the day side and stretched at the night side� The �magnetic tail�
on the night side ranges deeply into space �for example in case of planet earth
about 
��� times the radius� in case of Jupiter even behind the orbit of Saturn��
The outer magnetosphere shows a very turbulent behaviour ��magnetic storms���
all phenomena are subjected to the constantly changing strength of the solar wind�

Example ��
� The magnetosphere of the earth is substantially in�uenced by solar wind�
it causes a similar �ow characteristic like an obstacle in a hypersonic wind channel�
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��
� Man in Space

According to our knowledge� humans are the only beings who ever managed to travel
to space� However� space is a dangerous environment for man� in space humans
are weak� pretentious and vulnerable� They need complicated technical systems to
maintain life in space� An extensive training programme of several years is necessary
to prepare astronauts for the hazards of space �ight�

��
�� Man on the way to space and back

Accelerations� Before launch the crew feels normal weight �
 g� or ���
��� m s���
Lift	o� takes place with a low acceleration �for example 
�
 g��� Then the launcher
speeds up and the crew experiences an increase of weight� When the operative stage
is nearly empty� the launcher accelerates rapidly and weight seems to be several times
higher �for example � g�� sometimes up to  g��� The stress lasts for a few minutes�
Finally� after burnout of the upper stage� the astronauts feel weightlessness �zero	g��
The crew is exposed to similar accelerations during the re	entry �ight phase� for a
time interval of a few minutes a deceleration of � g� can be measured inside a space
shuttle �or � g� inside a capsule�� Acceleration stress is uncritical if the astronauts sit
in an upright position on a special arm	chair� where the acceleration vector points in
direction of their eyesight� In such a position� a man can stand 
� g� for some minutes
�for shorter time intervals up to �� g��� Special centrifuges have been developed for
the training of astronauts� in which launch accelerations can be simulated�

Noise and vibrations� Typically� ���� to ���� of the power of rocket engines is
released in form of noise� In case of big space launchers the sound pressure level
is several hundred times higher than the sound pressure level of civil jet airplanes�
Unprotected exposure of a space crew would lead immediately to permanent deafness�
The structure of the cabin and the helmet reduces the noise to an acceptable level�
but still the noise is distracting for the crew� Inside the helmet� the launch is as loud
as for example a train which passes nearby� Astronauts reported that the �ring of an
attitude control thruster appears to be as loud as a shotgun blast� Also low frequency
vibrations can cause discomfort to the astronauts� particularly if some organs of the
body resonate in response �the body as a whole resonates with a frequency between
�	
� Hz� the head between ��	�� Hz� the eyeballs between ��	�� Hz��

Return from space� During the reentry �ight phase� ionized air �ows around the
vehicle with extremely high temperature� Thermal protection is required to keep the
temperature inside the cabin in the allowed limits �for example below ��� Celsius��
Communication with the ground station is not possible in this �ight phase� the
plasma air �ow that surrounds the vehicle causes a radio transmission �black out��

Space shuttles land like conventional airplanes� capsules use parachutes for landing�
In case of abnormal landing� the crew needs life	saving equipment� An emergency
sender must ensure that the rescue party arrives soon after a crash landing�
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��
�� Man Living in Space

Size of the cabin� If the cabin is too small for the crew� it will cause psychological
stress� claustrophobia and aggressiveness between crew members� particularly in case
of long space missions� For short time intervals �maximum 
	� days� a volume of

 m� man may be su�cient� If mission duration is longer �for example about a week��
the crew needs at least a volume �	� m� man� �Comfortable� are 	
� m� man for
long duration space missions� comparable with submarines and polar expeditions�

Atmosphere for breathing� If the astronauts carry no space suits� their cabin must
be pressurized� Without pressure� humans would become unconscious after about 
�
seconds and die after � minutes �June ��th 
�
� three Russian cosmonauts died when
their Sojus 

 spacecraft suddenly lost pressure�� Already an atmospheric pressure
higher than ��� bar prevents that the blood boils� but in a low pressure atmosphere
a man needs pure oxygen for breathing� Man can just survive in normal air �with
�
� oxygen and �� nitrogen� if the cabin pressure is at least ��� bar� For structural
reasons a low cabin pressure is advantageous� Conventional jet airplanes use a cabin
pressure which corresponds to a �ight altitude of � km ���� bar�� passengers consider
a low pressure as more comfortable� The American space station SKYLAB used an
atmospheric pressure of ���� bar� with �� oxygen and ��� nitrogen� Space cabins
are never perfectly closed� a small amount of gas disappears through the seals of the
hatches and cables ��outgassing��� A low atmospheric pressure in a space station has
also the advantage that the e�ect of outgassing is automatically reduced� The cabin
air must be ventilated� since it does not circulate automatically in zero	gravity�

When astronauts leave their cabin for extra vehicular activities� a space suit must
carry their life support system� Sometimes� light weight and movableness of the space
suits require that the pressure inside the space suit is lower than the cabin pressure�
Then the normal cabin pressure must be reduced slowly� or the spacecraft must
provide a special lock chamber for a slow decompression of the astronauts�

Cabin temperature� The temperature control system of the human body regulates
the inner core temperature of the body always to �� Celsius� With comfortable
clothes� an ambient temperature of ��� Celsius is considered as optimal for working�
Inside space cabins� the temperature ranges from 
�� to ��� Celsius� typically�

If the ambient temperature deviates just a few degrees from these optimal values�
man soon notices discomfort� Temperatures below 
�� Celsius cause the �ngers and
limbs to become sti� and numb� Working is physically fatiguing at temperatures
higher than ��� Celsius� the heat causes the body to sweat and slow down�

Every day the human metabolism requires food equivalent to ��� kWh �or ���� kcal��
The air condition system of the cabin must consider that the astronauts themselves
are heaters� A normally working man produces ��� kW �
�� kcal h� heat energy�
sleeping he produces still ���� kW ��� kcal h�� The heat is lost through the skin
����� through the exhaled air in the lungs �

��� and by drinking cold water �����
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Food� water� oxygen and hygiene� During an average working day� the human
metabolism consumes about ����� kg of dry food� ����� kg of water and ����� kg
of oxygen� The body expels ����� kg water ������ kg by perspiration and exhaled
breath� 
���� kg urine� and exhales 
��
� kg carbon dioxide� Inside a space cabin�
carbon dioxide and other waste gas must be removed from the atmosphere� Filtering
requires about 
�� kg chemicals per man and per day �for example lithium hydroxide��
Thus� the life of an astronaut must be supplied with about � kg materials every day�
A comfortable bath in a shower cubicle requires about � kg water �a sponge is more
economical�� In case of a long space trip� also a laundry facility should be available�

The consumption of water is expensive� particularly in case of a long space mission�
It is comparatively easy to recycle the water for washing� Sometimes also the recycling
of drinking water is considered� but astronauts prefer to drink fresh water anyway
�and water processing equipment is also heavy�� Waste water as well as fresh water
can be used in an ideal manner for radiation shielding� therefore �at water tanks
should be integrated in the outer cabin walls� Drinking water can be produced from
hydrogen and oxygen in fuel cells� while electrical energy is generated additionally�

Weightlessness� The feeling of weightlessness can be experienced on board of an
aircraft when it �ies a special �zero	g� trajectory� The feeling is strange and tensing�
however� the feeling just lasts for half a minute on board of the aircraft� On board of
an orbiting spacecraft� weightlessness is the usual gravity environment for the crew�
The short time e�ect of �zero	g� is sea	sickness� The bad feeling is so strong that
astronauts are incapable of working for about one or two days� Later the weightless	
ness is perceived as comfortable� but the serious long term e�ect of weightlessness is
muscular atrophy and a softening of the bones� Physical training and sports can di	
minish this e�ect just partially� Particularly the reduction of calcium in the bones is
an unwanted e�ect� decalci�cation can limit the duration of long time space missions�
It is possible to simulate gravity inside a large space station� the station may have
the form of a ring� and rotate about its main axis� but it is necessary that the radius
of the station is su�ciently large �several 
�� meters�� If the radius is too small�
other gyroscopic e�ects are strong and the rotation is more disturbing than helpful�

Example ��� Working in space outside
the space cabin is extremely exhausting�
Astronauts have to carry a space suit
when they leave their cabin for such
extra�vehicular activities �servicing� re�
pair or erection of a space station�� For
the purpose of extra�vehicular activities
the USA developed a special space chair
�MMU� �manned maneuvering unit���
The space chair is an element of the
space shuttle system� it is equipped with
an autonomous life support system and
a propulsion unit �control thrusters��
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��
�� Health Hazards in Space

Radiation� A nuclear process inside the sun generates energy� this energy is emitted
from the surface of the sun by radiation� Solar radiation contains electro	magnetic
waves �visible light� infrared and ultraviolet light� microwaves in the radio	frequency
spectra�� X	rays and gamma rays� electrons� protons �solar wind�� neutrons and alpha
particles� Particle emission from the sun increases considerably during time periods
of solar �ares� The solar radiation interacts with the magnetic �eld of the earth and
forms the so	called �van Allen radiation belt� ���� high energetic protons� 
�� alpha
particles�� While the radiation inside the van Allen belt is high� charged particles
are trapped� and thus the van Allen belt is also a protection for the earth� This
protection does not exist outside the van Allen belt� for example on moon or on
Mars� or on other planets without a magnetic �eld�

Solar radiation is not the only radiation which can be encountered in space� other
high energetic rays come from processes inside or outside the galaxy� for example
from the birth or death of stars or from the genesis of the universe �the �big bang���

We distinguish between ionizing and non	ionizing radiation� The non	ionizing radia	
tion consists of light and microwaves which can e�ectively be blocked by appropriate
shielding� Ionizing radiation produces ions when it passes through matter� It has a
damaging e�ect on living beings since it destroys molecules inside the cells directly�
The �dose� is decisive for the grade of the destruction� radioactivity has no negative
e�ect on man if the dose is lower than a certain �not really well	known� level� Also
after having been exposed to a harmful dose� man can recuperate quite well� but if
the dose exceeds a certain limit� man will witness nausea immediately and die later�
The damaging e�ect of radioactivity seems to be more serious for animals with a
higher evolutionary state� for example insects survive when the dose is hundred times
higher than the dose which would be su�cient to kill a man�

On earth� life is protected from cosmic radiation by the atmosphere and the magnetic
�eld of the earth� In space radiation can be seen as a serious health hazard for
astronauts� Particularly during time periods of solar �ares� the radiation from the
sun can be so strong that it would kill an unprotected crew�

The radiation protection of the atmosphere and the magnetic �eld on the surface of
earth corresponds to a layer of about 
� meters of water or 
 meter of lead �
 kg cm�

water�� Unfortunately� such a good protection is impossible in space� normal space
cabins have protection material that corresponds to a thickness of just �	� g cm��
This is not su�cient to protect the crew of an interplanetary spacecraft in case of
solar �ares� then a special protection room must be available� with about 
� times
as much surface material �
�	�� g cm�� where for example drinking water containers
as well as waste water containers can be used�� The Apollo capsule had a protection
capability equivalent to �� g cm�� the Lunar Module just 
�� g cm�� the crew would
not have survived the strike of a strong solar �are during the moon landing mission�
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Sunlight� Also the non	ionizing radiation from the sun is harmful to a space crew�
Sunlight consists of �
� infrared light� ��� visible light and �� ultraviolet light�
The light is so bright that even a short glance at the sun would burn the retina of
unprotected eyes� While the human eye sees light in visible spectra and senses the
infrared wavelengths� the eye does not detect the most harmful ultraviolet radiation�
Windows of space cabins and visors of space helmets must attenuate the brightness
of sunlight and �lter out or re�ect the hazardous ultraviolet light� Seen from outside�
windows of space cabins and visors of space helmets look like silver or golden mirrors�

Meteorites and space debris� Fortunately� there is just a small probability that a
meteorite or the piece of broken satellite hits an orbiting spacecraft� If cabin pressure
is lost in consequence of an impact� the crew has to slip on space suit immediately
and repair the leak �assuming the leak is accessible�� So	called �meteoric showers�
consist of dust from comets� microscopically small particles with a mass smaller than
a microgram �the occurrence of meteoric showers can be predicted in some limits��
Meteoric showers can destroy sensitive instruments and optics� or even disable a deep
space probe completely� but for the space crew the cabin of the spacecraft or even
the space suit provides su�cient protection against the impact of micrometeorites�

The human health factor� Even the healthiest astronaut can get sick during a
long space travel� Smaller health problems include sea	sickness� headache� respiratory
diseases� in�ammation of the eyes� diarrhea and other digestion problems� To provide
help in case of a smaller disease� medicine has to be available inside the space cabin�
The astronaut has also a psyche which can get sick� especially during long space trips�
The drug kit must supply stimulants� sleeping tablets� pain killers and also narcotica�
Also the soul needs attention� astronauts want to talk regularly to their relatives over
the telephone� audio and video entertainment is necessary on long space journeys�

If a space traveling astronaut gets seriously ill he has to return to earth immediately�
Since a fast return to earth is not possible during a long interplanetary space mission�
the crew members should be able to perform smaller surgical operations themselves�

Example ���� �Star�Trek� is the
name of a famous TV series� How�
ever� just in science��ction �lms
it is possible to travel to remote
galaxies� We know that physical
laws prohibit that a spacecraft can
�y faster than the speed of light�
Will we ever be able to explore
remote star systems and �nd other
civilizations� or will extraterrestrial
creatures come to visit our planet�
Surely� we cannot expect that the
technology for interstellar �ight
will be available on earth one day�
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���� Progress in Technology and Future Space Flight

Satellites� space stations and interplanetary probes are complicated systems�
�high	tech� is the well	known basis for space�ight� Particularly computers� but also
other electronic equipment �telemetry� telecommunication and power supply devices�
experience a rapid development in our present time� The advance in propulsion
technology is slow �compared with electronics�� but also rocket propulsion systems
can still be improved if better materials and re�ned construction methods are used�
When astronautics is considered� many proposals for future space projects appear�
These proposals are considered and discussed everywhere in public �for example at
congresses� in magazines and on television�� You can observe that people discuss
future space projects assuming a certain �basis of technology�� Often the discussion
is con�icting because everyone takes a di�erent technological environment as a basis�
Certainly� some ideas are not feasible today because the technology is missing�
It can be expected that more advanced projects will become possible in the future�
but like always� the prediction of the future is a di�cult undertaking� Nearly always
the reality turns out to be di�erent from what we expected it to be�

����� Technological Environment for Space Projects

Basis of available technology� No	one really doubts that a project is feasible
if there is a very similar project that has already been executed� but also if it is
predictable that the technology required for a certain project can be acquired in a
short period of time� we may say that the project is based on �available technology��
For example� projects based on �available technology� do not depend on a space
transport capacity which is 
��� times cheaper than today �space hotels for everyone��
or new computers which are 
��� times faster than today�

Basis of anticipated technology� At least in some areas it is reasonable to ex	
pect great technological progress� Seen from today� computers will become faster�
cheaper and smaller� but what are the limits� Is it possible to equip computers with
human	like intelligence one day� Today we use the chemical energy of the propellent
for rocket propulsion� but much more energy can be released by a nuclear process�
The technology for nuclear space�ight is not available today� but it could be available
one day� Maybe the procurement of this non	available technology is impossible or
will make every e�ort� If a space�ight project requires such a technology� it is just fair
when we state in a discussion that the project is based on �anticipated technology��
Depending on the point of view� the procurement of the technology is more or less
easy� but in any case� the availability of the technology in the future is not proved�

Basis of science �ction� If a project assumes a technology that surely violates
well	known physical laws� we leave the basis of �anticipated technology�� Nearly
all science �ction movies fall into the category of infeasible space missions� Often�
astronautical engineers study these unrealistic space projects as �mental exercises��
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����� Future Exploration of our Solar System

Manned missions to planet earth� Some space scientists dream about future
cities in space� people could live there� or at least spend their vacations there�
Such a space	trip would be an impressive experience� the earth is very beautiful
when visitors observe it from space� Particularly the moon is an exciting place�
A comfortable hotel on the surface of the moon would o�er visitors incomparable
holidays� To make such a travel possible for everybody� space	trips should be cheap�

Today� the feasibility of manned missions to earth orbit is su�ciently proved�
The American Apollo project proved the feasibility of manned moon missions�
but immense costs� high risk and serious health hazards are always involved�
today they prohibit �space tourism� and �space cities�� Drastic cost reductions for
space transportation �much more than factor 
�� are just possible when �anticipated
technology� is taken as a basis for discussion� When we take �available technology�
as a basis for discussion� the ideas of cities in space or hotels on moon are unrealistic�

Manned missions to other planets� Planet Mars is the next candidate for a
manned exploration� Several detailed studies exist� these studies examine how such
a Mars project could be realized� All these studies state that a future manned
Mars mission will be expensive �probably more expensive than the Apollo project�
and dangerous for the life of the crew� but all studies also state clearly that a
manned Mars mission is possible with available technology� A manned spacecraft
could land on the surface of Mars approximately ten years after project initialization�
Within the mission� visiting the moons of Mars �Phobos and Deimos� is possible�

Venus is the planet that moves on an orbit around sun with the nearest distance to
the earth� In the past some American space probes established orbit around Venus�
Russian probes �Venera 
� and Venera 
�� landed on the surface and transmitted
some pictures� They demonstrated that it is possible to reach the surface of Venus�
but a return from the surface of Venus back to earth seems to be impossible� �rst�
Venus has about the same gravity as earth� a large space launcher is necessary to reach
orbit from surface� Then� there is the extreme environment on the surface of Venus
�pressure� temperature and chemistry�� the Russian probes died shortly after landing�
Even when we discuss an unmanned Venus sample return mission� we must admit
that such a mission is not possible if we assume the basis of available technology�
Certainly� a manned Venus mission requires anticipated technology�

The American probe Mariner 
� demonstrated the feasibility of an unmanned Mer	
cury �yby mission� Planet Mercury has a much smaller gravity than planet Venus
�Mercury is bigger than our moon and smaller than Mars�� but Mercury has no at	
mosphere which could be used for a braking maneuver� Thus� landing on Mercury
would require an immense amount of rocket propulsion� For a spacecraft that comes
from earth� even the establishment of an orbit around Mercury is extremely di�cult�
Thus� also a manned Mercury mission requires non	existing propulsion technology�
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Between the orbits of Mars and Jupiter there is the �asteroid main belt�� This main
belt contains most of the about ����� known asteroids and comets� smaller celes	
tial bodies with more or less well	known orbits� If we compare their orbits with
the orbit of Mars� most of the asteroids and comets are farther distant from earth�
but asteroids and comets have nearly no gravitation� and� once orbit has been es	
tablished� landing on the surface seems to be easy� Considering this� a mission to a
well	located asteroid or comet seems to be even easier than a mission to planet Mars�
but the large majority of asteroids and comets are no targets for a manned mission�

Obviously� landing on one of the gas giants Jupiter� Saturn� Uranus and Neptune is
impossible because none of these planets has a de�ned solid surface� Without doubt�
their moons are more interesting targets for a manned planetary exploration� When
we compare a manned mission to one of these moons with a mission to planet Mars�
we have to realize that all these targets are extremely remote� extremely cold and
located inside a strong gravity �eld� When we plan such a manned mission on the
basis of available technology� we realize that these missions require unrealistic large
spacecraft and unrealistic long travel times� To get spacecraft with a realistic size�
we have to anticipate technology which does not exist today� Beyond Saturn there
are Uranus� Neptune and Pluto� obviously too remote for a manned mission�

Thus� on the basis of available technology� there are just a few celestial bodies which
are possible targets for manned missions� Moon� Mars and its moons and some well	
located asteroids or comets� Missions to other targets require non	existing technology�

Unmanned planetary missions� The situation is di�erent when we consider mis	
sions of unmanned space	probes� �yby missions open the entire solar system for
unmanned exploration� Landing on the surface is extremely di�cult if the planet
or moon has no atmosphere� Landing on the surface of an asteroid or comet is easy
�once orbit has been established�� Sample return missions are possible in a few special
situations only �again� moon� Mars and some asteroids and comets��

Terraforming� Some scientists study the possibility of exporting terrestrial life to
other planets� for example to Mars or to Venus� The procedure should work as follows�
genetically changed micro	organisms survive in the thin atmosphere of Mars� Then�
as time goes by� these micro	organisms change the atmosphere of Mars and generate
better conditions for other life on Mars� The atmosphere gets warmer and water
ice �inside Mars� melts� As a next step plants are brought from earth� which can
now exist there� When su�cient vegetation grows on Mars� animal life is exported�
Finally� human Mars settlements are possible� Terraforming is a perfect example for
a project based on anticipated technology� First� we do not know if the project is
possible at all� Then� we do not know how di�cult it is and how long it might take�
Finally� if it is possible� we do not know whether we should do it� Today� the project
is nothing else than an exciting idea� Space scientists should study such a project�
but when they talk about terraforming they must clearly state that the technology
for the project is not available� Otherwise the public will believe that space engineers
really intend to realize the project �terraforming� soon�
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����� Interstellar Space�ight

The search for extraterrestrial life� Our knowledge about other remote solar
systems is rather poor� On the basis of indirect measurements we may conclude that
probably also other suns in our galaxy have planets� Obviously� some of these planets
could carry extraterrestrial life� Maybe even intelligent beings could exist there�
A mission to a distant star would be extraordinarily exciting�

Manned interstellar missions� It is not necessary to explain in detail why a
manned interstellar mission is impossible when we take available technology as a
basis for the discussion� The technology we would have to anticipate for a manned
interstellar mission is far away from the technology which we have today� Certainly
nuclear propulsion is required for an interstellar mission� and the technology of nuclear
propulsion is not at all predictable� According to our present knowledge� �ight with a
velocity faster than light is impossible� Anyway� mission duration would become very
long in comparison with the lifetime of humans �probably more than one generation��
We hate to agree� but interstellar �ight just works �ne in science �ction �lms�

Unmanned interstellar missions� Also unmanned interstellar missions are unre	
alistic today� but the technology we have to anticipate is much more realistic than the
technology we would need for a manned mission� A very near �yby at sun with large
solar sails could give an extremely light spacecraft a velocity of up to 
�� of the ve	
locity of light� maybe� Equipped with an extremely small computer with human	like
arti�cial intelligence and a long lifetime� such a spacecraft could �y autonomously to
a near star� It could explore the distant solar system and return data to the earth�
Today there is no reason why such a mission should be impossible in the future�

Visits of extra�terrestrial creatures on earth� In comparison to humans� other
intelligent life can have a very advanced state� if it really exists in deep space� Some
people state that earth is regularly visited by extraterrestrials� However� in spite of
many reports� there is no single proof for this and there is no o�cial statement of an
acknowledged space agency about the existence of extraterrestrials� At least it is not
evident that they have ever visited earth� and it is not plausible that governments
or space agencies hide the proofs for their existence� Four plausible answers can be
given to the question why extraterrestrials obviously do not frequently contact us�

	 Intelligent life is extremely rare in space� and " if it exists " far remote�

	 Interstellar �ight is too di�cult� even with any advanced technology�

	 Every �intelligent� society extinguishes itself before interstellar �ight is possible�

	 Spacecraft �y frequently through our solar system� without being noticed by us�

The search for extraterrestrial life is one of the most challenging tasks of astronautics�
On our planet� up to now humans are the only beings which have ever developed a
technical civilization� This includes the capability of space	�ight� the capability of
manipulating genetic material and also the construction of atomic bombs� Finding
other intelligent life in space could prove that it is possible for mankind to survive�
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�� Rocket Propulsion

A vehicle which expels exhaust fumes to generate a thrust force is called �a rocket��
Rocket motors are used to propel space launchers� satellites and missiles� because
of immense noise and high speci�c fuel consumption� rocket motors are not used to
propel ships� aircraft or cars� Astronautical activity� however� requires rocket motors�
These motors work also in vacuum of space� in contrast to other engines� and
in practice rockets are the only engines which work in space� Refueling on the
way to orbit or in orbit is not possible� usually� Thus� extremely high perfor	
mance is necessary to save any small amount of valuable propellent� rocket motors
are high	technology power	drives� Many publications are concerned with rocket mo	
tors because of their importance to space �ight� Fundamental books were written by
G�P�Sutton ��Rocket Propulsion Elements�� John Wiley # Sons Inc�� New York� 
���
sixth edition�� and M�Barr$ere� A�Jaumotte� B�Fraeijs de Veubeke� J�Vandenkerckhove
��Rocket Propulsion��Elsevier Publishing Company� Amsterdam� 
�����

The second chapter of this book is concerned with the technology of rocket propulsion�
In the �rst section we want to examine the theory� the amount of propellent that a
rocket can carry is limited� and this has as consequence that we need a vehicle with
more than one stage to achieve a velocity fast enough to reach space� A large variety
of chemical substances is theoretically usable as rocket propellent� the second and
the third section of this chapter discuss performance and combustion properties of
the few practically important chemicals� The expansion in a hypersonic nozzle� a
complicated process that involves many physical and chemical phenomena� is studied
in the fourth section� Finally we will have a look at the construction of liquid engines
and solid motors� the only rocket propulsion systems which are really in use today�

���� Theory of Rocket Motors

One property enables rocket motors to operate also in space� rockets carry all working
�uid for expulsion inside themselves� This feature makes the distinction between
rocket motors and other jet propulsion systems� so	called duct engines �breathe� the
gases of the ambient atmosphere� but the working �uid for rocket motors is exclusively
propellent� Obviously� the amount of propellent a rocket can carry inside is limited�
The theory of rocket motors examines the consequences of this property�

����� Expulsion of Propellent

Ejection principle� Consider the famous example of the hunter who is sitting in
a boat on a lake� The boat is supposed to be in rest with respect to the water�
Suddenly the hunter �res a shot� The bullet �ies away with high velocity� After the
shot has been �red� boat and hunter will not remain in rest� the gun recoil will drive
the boat in the other direction� opposite to the direction of the shot�
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The linear momentum of a mechanical system �product of mass M and velocity �v�
can just be changed by application of external forces� according to Newton�s law�
Before shooting the linear momentum of the whole system �boat� hunter and bullet�
was certainly zero� because everything was in rest� Now� after shooting� everything is
moving� The �new� linear momentum of the system must still be zero� as result of the
absence of external forces� The linear momentum is a vector� the vector of the linear
momentum of the bullet has the same length as the vector of linear momentum of
boat and hunter� The two vectors aim exactly in opposite directions and cancel out�

In this example the bullet is the �working �uid�� and the propulsion energy is pro	
vided in the chemical form of gun powder� Note that it is possible to change the me	
chanical energy of the system without application of external forces� In contrast to the
linear momentum ��V � M ��v �� the kinetic energy �E � 
	� �M v� � is not a vector�
The shot transformed chemical energy to mechanical energy �via thermal energy��
After shooting the mechanical energy of the whole system is not zero any more�

The �hunter in a boat� is not a good example for
a rocket� since shooting does not give a continuous
thrust force� but when we exchange the gun by
a �re extinguisher� we really have a rocket� We
can observe that this propulsion system would also
work in space� The thrust force is independent
of the velocity of the vehicle� By using rocket
propulsion the vehicle can achieve a velocity higher
than exhaust velocity �the velocity of the expelled
working �uid relative to the vehicle�� We can also
recognize that e�cient rocket propulsion requires
a high relative velocity of the working �uid�

Classi�cation of rocket propulsion systems� A rocket motor requires working
�uid �always stored inside the vehicle� and energy �not necessarily but often stored
inside the vehicle�� Energy is needed to accelerate the working �uid before exhaus	
tion� The usual way is to heat up the working �uid in a thrust chamber and expand
the gases in a nozzle� The energy can be provided by the working �uid itself �chemical
reaction of the propellent�� by solar cells �electric energy to supply an arc or resistor��
by the sun directly �parabolic mirror�� by a nuclear reactor �direct heating or using
thermal	electric converters�� Ion	engines accelerate the charged working �uid in an
electric �eld� this avoids heating of the propellent and expansion in a nozzle� When we
consider also combinations� we realize that many options exist� Of all these theoret	
ical possibilities� in practice just two options are really used� chemical �bipropellent
or monopropellent� liquid rocket engines and solid rocket engines� Despite of good
potential for the future� electric propulsion systems still live a shadowy existence�
Astronautics is done utilizing chemical motors� The energy is stored inside the work	
ing �uid �the propellent�� A chemical reaction of the propellent releases this energy
to generate heat for the acceleration of the exhaust fumes in a hypersonic nozzle�
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Liquid propellent rocket motors� The combination of liquid hydrogen LH� as
fuel and liquid oxygen LOX as oxidizer is often used as propellent for so	called �liquid
rocket engines�� The stage carries fuel and oxidizer in separate tanks �or in one tank
separated by a partition�� For structural stability reasons a tandem arrangement of
cylindrical tanks is favorable� and the tanks have to be pressurized� The engine needs
pumps to feed fuel and oxidizer into the thrust chamber� Just turbines are light and
powerful enough to drive these pumps� Two di�erent ways exist to provide the ther	
mal energy for the turbines� some more modern constructions use the heat of chamber
wall cooling exclusively �closed �expander� cycle engines�� more conventional con	
structions use a separate gas generator �open cycle engines�� Closed cycle engines are
more e�cient but also more complicated �more expensive�� and in practice this princi	
ple just works if LOX LH� is used as propellent� It is necessary to cool the wall of the
thrust chamber� otherwise the chamber would not stand temperatures of over ���� K�
Cooling is done via propellent that runs through small pipes at the outer surface of
the chamber� Small attitude or trajectory control thrusters use a simple pressurized
feed system� the chemical reaction is a catalytic decomposition of monopropellent
�hydrazine�� After the reaction the gases are expanded in a hypersonic nozzle�

Solid propellent rocket motors� A �rework rocket is a perfect example for a �solid
rocket engine�� Now the thrust chamber contains the total amount of propellent from
the beginning� and pumps or turbines are not required� The solid propellent contains
an appropriate mixture of fuel and oxidizer in one substance� After ignition the sur	
face of the propellent burns� gases are generated and expanded in a hypersonic nozzle�
To avoid that the structure is exposed to high temperatures for an extended time
interval� the propellent burns usually from inside to outside� The burn velocity must
be limited� otherwise the pressure would grow without limits and the motor would
explode like a bomb� Now tank and chamber are just one unit� and the chamber
pressure is consequently much smaller than in case of liquid engines �up to �� bar��
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����� Thrust and Impulse of a Rocket Stage

Thrust acceleration� We consider a rocket propulsion vehicle� while the motor is
operative the vehicle expels propellent� and the rocket mass M is a function of time�
A snapshot is taken at the instant t� During the in�nitesimal short time interval dt
the in�nitesimal small amount of propellent mass dM is ejected� We introduce the
mass �ow rate as m � �dM	dt �m is also called �rate of expenditure of propellent��
or �fuel consumption rate��� Often� but not always� the mass �ow rate is constant�

dM � �m � dt ��� 
�

M�t� � M� �m � t ��� ��

Ifm is constant in time� we can readily integrate equation ��	
� to �nd equation ��	���
Term M� is the initial rocket mass� The exhaust fumes leave the �nal cross	sectional
area of the rocket motor Aend with the average relative velocity cend� It can be
assumed that the �nal static pressure pend �in area Aend� is di�erent from the ambient
static pressure p�� The thrust force S is composed of two parts� the ejected mass dM
imparts to the rocket the momentum cend � dM �the change of the linear momentum
during time interval dt is equivalent to the �rst part of the thrust force�� and then
the di�erence of the static pressure pend � p� multiplied by the �nal cross	sectional
area Aend is equivalent to the second part of the thrust force� We can write�

M�t�

Aend

pend

cend

p�

dM � �m � dt

S � cend �m
!Aend �pend � p��

S � c �m ��� ��

The �rst part �momentum thrust� contributes much more to the thrust of a rocket
engine than the second part �pressure thrust�� Note that the �pressure part� can also
be a negative thrust component� in case the nozzle is over	expanded �pend � p���
The thrust does not depend on the velocity of the vehicle� but on its �ight altitude�
In space the thrust is higher� since p� equals zero in space� The notation can be
simpli�ed when we introduce the e�ective exhaust velocity c� a quantity that depends
on the �ight altitude� c is nearly a linear function of the ambient aerostatic pressure�
but the e�ective exhaust velocity c is constant for the �ight in the vacuum of space
�because the available power for the expulsion of propellent is usually not a variable��
We obtain the thrust acceleration s as the ratio of thrust force and rocket mass�

s �
c �m
M

��� ��

Even when the thrust force is constant� the thrust acceleration is a function of time�
Exhausting propellent the rocket mass diminishes� and the thrust acceleration grows�
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Speci�c Impulse� The thrust of the rocket stage can vary during the time interval
of operation� The integral of the total thrust is termed �impulse of the stage��
If we measure the impulse of a stage and divide it by the consumed propellent
mass� we obtain the e�ective exhaust velocity �if we form c �

R
Sdt 	

R
mdt ��

Thus� the e�ective exhaust velocity c can be regarded as �mass speci�c impulse��
More in common use to characterize the performance of a rocket stage is famous
so	called Ispecific� the �weight speci�c impulse��

Ispecific �
c

g�
�with� g� � ���
��� m s� � ��� ��

The speci�c impulse Ispecific of a rocket stage has the dimension of seconds� it is
an important performance parameter which can be measured without di�culties�
The e�ective exhaust velocity c of the stage follows from multiplication of this value
with the gravity acceleration g� on the surface of the earth� We have to resist the
temptation of using factor 
� instead of ���
���� a change of the exhaust velocity by
just two percent makes a lot of di�erence to the performance of a rocket stage�

There exists a transparent physical interpretation for the speci�c impulse� to lift	o�
from the surface of earth� the rocket stage of mass M� needs at least a mass �ow rate
of m � M�	Ispecific� Then the initial thrust acceleration s of the stage is exactly g��
When we assume that this hypothetical stage may consume its total massM� in form
of usable propellent� then the speci�c impulse is exactly the burn time of the stage�

Ciolkovskij�s equation� The time integral of thrust acceleration s of a rocket stage
�in zero	gravity vacuum �ight� corresponds to a change of the velocity %v � We form�

%v � v� � v� �

Z �

�

s dt � �c
Z �

�

dM

M
��� ��

The result of integral ��	�� is the famous Ciolkovskij equation�

%v � �c � ln M�

M�
��� �

or� M� � M� � e�%v	c ��� ��

Equation ��	� is of fundamental importance to astronautics� Usually many forces act
on a moving rocket� but Ciolkovskij�s equation was established neglecting all forces
except for thrust� The result is a relationship between the mass ratio of the rocket
stage �ratio of burnout massM� and ignition massM��� the performance of its engine
�e�ective exhaust velocity c�� and the �ideal velocity� �or �delta	v� capability %v�
of the rocket stage� The %v requirement of a maneuver can be found separately by
trajectory computation� disregarding in an approximation the actual construction of
the rocket� It is remarkable that the %v capacity does not depend on the value of
the thrust S itself� but on the exhaust velocity c and on the mass ratio M�	M� only�
If we make the thrust of a rocket stage lower� the stage just burns longer� Exclusively
accelerated by thrust force� it will �nally achieve the same characteristic velocity %v �



�� ASTRONAUTICAL ENGINEERING

����� Multi Stage Rockets

Payload mass ratio� We make use of a simple mass model� Essentially� the rocket
stage consists of four sub	masses� payload� engine� structure �tanks� and propellent�

Mignition � Mpayload !Mengine !Mstructure !Mpropellent ��� ��

Mburnout � Mpayload !Mengine !Mstructure ��� 
��

Di�erence between ignition mass and burnout mass is the amount of usable propellent
�the simpli�ed model considers any residual propellent as if it were structure mass��
The stage will execute a �ight mission which requires a particular %v capacity� Using
Ciolcovskij�s equation ��	�� we �nd the relationship between %v �divided by e�ective
exhaust velocity c� and the required mass of usable propellent as�

Mpropellent � Mignition �Mburnout � Mignition � �
� e�%v	c� ��� 

�

In particular� the model will analyze size e�ects� It will indicate what happens if we
change the size of a rocket stage� Compared are stages of di�erent size which have
to perform approximately the same type of mission �for example the launching of
a satellite�� This premission justi�es the following assumptions� approximately the
engine mass is a linear function of the ignition mass� and approximately the struc	
ture mass is a linear function of the propellent mass� We may write in a simpli�cation�

Mengine � Cengine �Mignition ��� 
��

Mstructure � Cstructure �Mpropellent ��� 
��

Compared to their weight liquid rocket engines develop high thrust� Cengine � 
����
Light weight tanks may contain propellent of about 
� times their weight� Cstructure �

������ Now we can relate all terms in equation ��	�� to the initial mass and write�

R �
Mpayload

Mignition
� �
 ! Cstructure� � e�%v	c � Cengine � Cstructure ��� 
��

R�%v� for a single stage rocket

Cengine � ���
� Cstructure � ����
��
�
��
�
����
����
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c c

Term R is called �mass ratio� of
the rocket stage �the inverse value is
called �growth factor� of the stage��
The plot shows the ratioR as expo	
nentially declining function of the
requirement %v of the mission� For
realistic values Cengine � ���
 and
Cstructure � ��
�� the %v capacity
of the stage is much higher than
the exhaust velocity c of its engine�
but in any case the �nal velocity
which can be reached is limited�
even if the stage carries no payload�
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Mass ratio of multi�stage rockets� Structure mass and engine mass limit the
%v capability of a rocket stage� If the empty stage had no weight� the rocket could
accelerate to unlimited �nal velocity� but if a realistic rocket which carries a real
payload should become fast� empty tank mass must be discharged� For high %v

requirements a multi	stage rocket has to be considered� In a �tandem arrangement�
the payload mass of a stage is exactly the ignition mass of the next stage� Therefore�

Mignition � �Mignition�stage�

�Mpayload�stage� � �Mignition�stage�

�Mpayload�stage� � �Mignition�stage�

���

�Mpayload�stageN � Mpayload ��� 
��

Equation ��	
�� is valid for every stage� but we have to distribute the overall mission
%v requirement among all stages and write for the mass ratio R of a N 	stage rocket�

R � Rstage��%v�� � Rstage��%v�� � � � RstageN �%vN � ��� 
��

with� %v � %v� !%v� ! � � � !%vN ��� 
�

If the overall velocity requirement %v is distributed in equal portions among all
stages� and if the stages consist of the same technology �if for all stages exhaust
velocity c and weight factors Cengine and Cstructure are the same�� we may conclude�

R �
Mpayload

Mignition
�
�
�
 ! Cstructure� �

N
q
e�%v	c � Cengine � Cstructure

�N
��� 
��

R�%v� for a multi stage rocket

Cengine � ���
� Cstructure � ��
�

N � �
N � �
N � 
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c c

The �gure shows mass ratio R of
N	stage rockets as function of %v �
with stage number N as parameter�
Quantity Mpayload means the pay	
load mass of the multi	stage rocket
�and the payload mass of its last
stage as well�� Term Mignition

means the total mass of all stages
together at the beginning of �ight�
including payload mass Mpayload�
Also for multi	stage rockets� R is
an exponentially decreasing func	
tion of the mission requirement %v �

As expected� for a given ratio R the %v capacity increases with the number of
stages� but the bene�t is negligible small for missions with low %v requirement�
If the mission requirement %v is lower than the value of exhaust velocity c� the mass
ratio R of a single stage rocket is nearly as good a the ratio R of a multi stage rocket�
but if %v is higher than �c� a multi	stage rocket is necessary� Then ratio R becomes
very small� indicating that either the payload is very small or the rocket is very big�
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Optimal number of stages� The next point in question is the optimal stage
number N of a multi	stage rocket� We regard N as parameter open for optimization�
As we have seen� of strong in�uence on the optimal number N are the technology
of the stages �characterized by the exhaust velocity c� and the %v requirement of
the mission� The more stages are used� the more complex and expensive the rocket
system becomes� Also for safety reasons a con�guration with too many stages should
be avoided� On the other hand� the rocket shall have a su�cient payload capacity�

Ruppe�s formula serves for �nding the optimal stage number N � We must divide the
%v requirement of the mission by the average exhaust velocity c� and round the result
to a natural number� The result is approximately the optimal number of stages�

Noptimal � integer�
%v

c
� ��� 
��

Ruppe�s formula is an empirical law� It is considered that costs and complexity grow
with the number of stages� Formula ��	
�� can be clari�ed using an example�

R�N� for a LEO launcher �%v	c � ���	����

Cengine � ���

Cstructure �

����
��
�
��
�
����
����

N1 2 3 4 5
.00

.02

.04

.06

.08

.10

A launcher is developed for
satellite transportation to low
earth orbit �%v � ��� km s��
the space launcher will use
high energetic liquid propel	
lent LOX LH� �c � ��� km s��
The optimal number follows as
N � �� For a single	stage sys	
tem �N � 
� the payload is
too small �or even vanishing��
for many stages �N � �� �� �����
the payload is not much better
than for a two	stage system�

Optimal size of the stages� Equation ��	
�� shows that all stages contribute in
the same way to the performance of a multi	stage launcher �total mass ratio R is
the product of all the individual mass ratios of the stages�� For equal mass ratios we
may expect a payload maximum� If stage X of a N 	stage rocket has a di�erent mass
ratio �stage X can be any one of the stages�� equation ��	
�� has to be rewritten as�

R �
Mpayload

Mignition
�
�
�
 ! Cstructure� � e�%vX	c � Cengine � Cstructure

�
� ��
 ! Cstructure� �

N��
q
e��%v �%vX�	c � Cengine � Cstructure

�N��
��� ���

In the equation above it is not necessary that stage X shares the same �equal� portion
of the total %v requirement of the mission� The di�erential quotient �R	�%vX
vanishes for %vX � %v	N � indicating a maximum� The stage is of appropriate size�
if it makes approximately the same contribution to mission %v as all the other stages�
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R�%vX	%v� for a rocket �%v	c � ���	����

Cstructure � ��
�

Cengine � ���


N � �� �� �� �

� %vX	%v0 1/5 1/4 1/3 1/2
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.04
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.08

Multi	stage rocket systems are
optimized if every stage con	
tributes approximately with
the �same portion� %vX to
the total �ight performance
�if %vX � %v	N�� The plot
shows mass ratio R of a multi	
stage rocket as function of ra	
tio %vX	%v � stage X may be
anyone of the N stages �for
%vX � � we actually have
N � 
 stages� for %vX � %v

we have just one single stage��

Stages of equal size� Usually� the �rst stage of a rocket is big and the upper stage
is small� Considered is now a multi	stage rocket where all stages are exactly of the
same size as the payload mass� Then we can express the mass ratio R of the stages
�equation �	
�� in form of a simple series� beginning with N �the last stage� and
counting down to 
 �the �rst stage�� For a di�erent payload mass the sequence of
RX shows a more complicated but similar behaviour� We can use equation ��	
�� to
calculate the velocity capability %vX of stage X as a function of ratio RX �

RX �
N �X ! 


N �X ! �
�� ���

�

�
�
�

�
�
�

�
�



�
� ��� �
�

%vX � �c � ln �RX ! Cengine ! Cstructure

 ! Cstructure

�
%v � %v� ! ���!%vX ! ���!%vN ��� ���

Upper stages share bigger parts of the total �ight performance than other stages�
usually� Equation ��	��� explains why� the improvement of a small upper stage is
cheaper and easier than the improvement of a big booster stage �raising the exhaust
velocity c or reducing the factor Cstructure�� Particularly if the upper stage is not
too small� improvements have a strong in�uence on the total �ight performance %v �

Another interesting result can be obtained when we consider the empty stages as
weightless� Now the model corresponds to a single stage rocket� where structure mass
and engine mass are treated in the same way as if they were a part of the payload mass�
The total propellent mass is divided into equal portions �equal to the payload mass��
With Cengine � � and Cstructure � �� equation ��	��� takes the simple form of�

%v � �c� � ln�R�� ��� � cX � ln�RX� ��� � cN � ln�RN � ��� ���

The �stages� can have di�erent exhaust velocities c� when a single stage system which
uses more than one sort of propellent is under consideration� Since the �upper stage�
has the lowest mass ratio �RN � 
	��� we can conclude that the propellent with the
best exhaust velocity cN should be burned last� At the beginning of the �ight �when
R� � � 
�� the rocket should expend propellent with the lowest exhaust velocity c��
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Parallel staging� The situation is similar for multi	stage rockets in �parallel ar	
rangement�� Many launchers lift	o� while core stage and strap	on booster motors
are burning simultaneously �it improves �ight safety greatly if no engines have to be
started during the ascent mission�� If we arrange the sub	masses of such a launcher
appropriately� we may regard it as if it were a tandem	staged vehicle�

Considered is a rocket where core stage and several booster motors burn parallel�
During �ight phase 
 of stage 
 the vehicle increases its velocity by %v�� Flight phase

� of stage � begins when the booster motors are
empty and dropped� The core stage continues the
mission alone and increases its velocity by %v��
Stage 
 consists of the following sub	masses� the
booster motors� the amount of propellent which
the core stage expends while the boosters are
burning� and the structure necessary to store this
part of propellent� Sub	masses of stage � are the
complete structure of the core stage� the rest of
propellent in the core stage and the engines of the
core stage� Thus� the structure of the core stage is
thought as intersected into two sub	structures� For
mass ratio R we can write the same relationship
as if the launcher were a tandem	staged vehicle�

stage 
 stage �

R �
Mpayload

Mignition
�
�
�
 ! Cstructure�� � e�%v�	c � Cengine� � Cstructure�

�
���
 ! Cstructure�� � e�%v�	c � Cengine� � Cstructure�

�
��� ���

Again� overall velocity requirement is %v � %v�!%v�� Term c indicates the average
exhaust velocity of a stage� but factors Cengine and Cstructure are di�erent now�

Cengine� �
Mengines�boosters

Mignition�phase�
� Cstructure� �

Mstructure�boosters !Mstructure�phase�

Mpropellent�boosters !Mpropellent�phase�

Cengine� �
Mengines�corestage

Mignition�phase�
� Cstructure� �

Mstructure�corestage

Mpropellent�phase�

Compared to tandem	staged vehicles� factor Cengine� of the �rst stage is a little better
now� without counting� the engines of the core stage push additionally� The �ight
phase � starts when the core stage is partially empty� and the factor Cstructure� of
the second stage is considerably deteriorated� Since engine weight is subordinated
in comparison to structure weight� from the energetic point of view the concept
of parallel staging is worse than the concept of tandem staging� The core stage
wastes energy to accelerate the booster motors� The concept requires that the core
stage burns much longer than the booster motors� As a consequence� parallel	staged
launchers need strong booster motors supporting a comparatively weak core stage�
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���� Rocket Propellent

As we have seen� rocket propulsion systems require not only working �uid but also
energy to accelerate the working �uid before the exhaustion� In case of so	called
chemical engines the propellent itself is the container for this energy� The combus	
tion process transforms the chemical energy of the propellent into thermal energy
�heat�� the exhaustion process transforms the thermal energy into kinetic energy�
The content of energy available for propulsion is the most important characteristic
factor for chemical propellent� Theoretically� a large variety of chemical substances
can be used as rocket propellent� Practically� just a few options are really used today�

����� Properties of Chemical Rocket Propellent

Propellent performance� Obviously� a high content of chemical energy is desirable
because this implies a high relative velocity of the exhausted gas� However� if large
and heavy tanks are necessary for storing the propellent� the e�ciency of the entire
propulsion system is considerably deteriorated� Ciolcovskij�s equation ��	� shows
that two factors have a main in�uence on the performance of a rocket stage� the
exhaust velocity c and the ratio M�	M� �the ratio burnout mass to ignition mass��
For low density rocket propellent more structure weight is needed� not only the mass	
speci�c energy content is important� but also the volume	speci�c energy content�
Solid propellent has a high density� solid booster motors are comparatively compact�
So	called cryogenic propellent �lique�ed gases� has a comparatively high energy con	
tent per unit of mass� Unfortunately� this propellent has also a low density�

In��ight handling� Liquid propellent has to be stored in tanks and conducted via
pipes to the engines� Therefore special materials have to be used if the propellent
is a chemical aggressive substance� Corrosion must be avoided� Cryogenic liquids
require that tanks and pipes are equipped with special insulating material for heat
protection� Usually� the propellent is used for thrust chamber cooling before it is
combusted �it runs through small pipes at the outer surface of the thrust chamber��
Attention has to be paid to the speci�c heat of the substances� their heat transfer and
pumping properties� and to the variation of these properties with the temperature
�vapor pressure� viscosity� freezing point� chemical decomposition and so on�� When
the propellent enters the thrust chamber� oxidizer and fuel are injected through small
ori�ces and mix in form of thin sprays� It is an advantage if the propellent ignites
spontaneously� for so	called �hypergolic propellents� no ignition system is required�

Storability and stability� Long duration space missions require storable propellent�
For this liquid propellent should have good chemical stability and a low vapor pressure
even at elevated temperature� Cryogenic liquid propellent cannot be stored for an
extended time period� it vaporizes and disappears through seals and even through
tank walls� On the other hand� solid propellent can be kept stable for many years
without chemical decomposition and minimal reaction with the atmosphere�
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Propellent production and ground handling� The production of propellent
should be a simple chemical process which requires just ordinary industrial equip	
ment� The source substances and materials for propellent production should be cheap
and available in su�cient quantity� If the substances are dangerous� ground handling
involves safety concerns� Personnel that handles dangerous substances must be appro	
priately protected� if the propellent is toxic or chemically aggressive� special clothes
against accidental spills are necessary� Use of gas masks and a limited exposure time
is prescribed for personal that gets into contact with toxic gases of vaporized propel	
lent� Non	toxicity is a highly desirable property of propellent� as well as non	toxicity
of its chemical reaction products� Toxic exhaust gases can impose limits to the �ight
rate of surface launched vehicles� Chemical rocket propellents have the property that
their fuel component can burn when it gets mixed with atmospheric oxygen� If the
fuel is an explosive substance this means severe �re hazard� and special precautions
are necessary during the entire production process�

����� Cryogenic Propellent

Lique�ed gases� A gas changes to its liquid phase when it is cooled down below a
certain temperature� Liquid substances which are under normal ambient conditions
gaseous are called �cryogenic liquids�� These liquids are produced from gas by a
thermodynamic process� subsequently compressing� cooling and expanding the gas�
It is di�cult to keep lique�ed gas for an extended period of time in rocket tanks�
cryogenic propellent cannot be used for long duration space missions� but because of
its high speci�c impulse� cryogenic propellent is often used for space launchers�

Liquid hydrogen LH� as fuel� Hydrogen when burned with oxygen produces
water vapor� releasing comparatively much thermal energy per unit of mass� Another
positive property is that LH� is an excellent regenerative coolant for rocket engines�
but lique�ed hydrogen is also a substance with extremely low boiling point ��� K�
and very low density �� kg m��� Large	volume tanks of cold	resistant material are
required to store the liquid� Tanks may not lose their strength if hydrogen atoms enter
the wall material� Heat insulating jackets are necessary to prevent that air moisture
condenses at the outer surface of tanks and forms unwanted ice layers� The fueling
procedure of a hydrogen tank is not unproblematic� since other gases and liquids
solidify in liquid hydrogen� improper fueling can create solid particles which can
later plug valves� ori�ces or small pipes� Sometimes liquid hydrogen can be replaced
by liquid methane� a denser cryogenic substance which is lower in performance�

Liquid oxygen LOX as oxidizer� Liquid oxygen can easily be manufactured by pu	
ri�cation of lique�ed air� Compared with liquid hydrogen� the oxidizer is much denser
and less volatile �at normal pressure conditions liquid oxygen has a boiling point of
�� K and a density of 

�� kg m��� LOX is non	toxic� non	corrosive and safely
storable in clean tanks� Like LH�	tanks� LOX	tanks require special heat insulation�
Liquid �uorine as oxidizer would give a higher speci�c impulse than LOX� but �uorine
is an extremely aggressive and toxic substance� improper for space applications�
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Kerosene as fuel� Kerosene in combination with liquid oxygen can be seen as cryo	
genic propellent� since the oxidizer is a lique�ed gas� Compared with liquid hydrogen�
kerosene is denser and thus the fuel requires smaller tanks� As a disadvantage� the
energy content per unit of propellent mass is much smaller� Kerosene is a colorless
oily liquid� it is non	toxic� everywhere available and easy to handle� Burning with
oxygen it forms a yellow	white brilliantly radiating �ame� The physical properties of
kerosene fuel can vary slightly� depending on the source substances �mineral oil� and
on the production process� Typically� kerosene has a density of �
� kg m� ���� K�
and a freezing point of ��� K� Kerosene can be replaced by other hydrocarbon fuels
with similar properties �petroleum derivatives like jet fuel� diesel or aviation gaso	
line�� So	called rocket propellent RP	
 is a speci�cally re�ned petroleum product
which is particularly suitable for the application in rocket motors �RP	
 has a low
content of aromatic substances which could cause deposits inside cooling passages��

substance freezing boiling density viscosity vapor press�
point point �kg�m�� �����Ns�m�� �bar�

liquid hydrogen ��� K ��� K �� �� K� � �� K� ���
 ��
 K�
�H�� �� ��� K� �
 ��� K� 	��� �
� K�

liquid methane ���� K ����� K � ��
 K� ���� ��
 K� ��

 ���� K�
�CH�� ��� ���
 K� ���	 ���
 K�

liquid oyxgen �� K ���� K ��
� ��	 K� 	�� �� K� ���� �	� K�
�O�� �� ��� K� ��� ��� K�

liquid �uorine �
�� K 	��� K ���� �	� K� 
�� ��� K� ���	 ��� K�
�F�� �� ��
 K� �� ��� K� ����� ��� K�

hydrocarbon fuel �����
� K 

� K 	�� ��	� K� ��� ��	� K� ���� �
 K�
RP�� �CH���
� �	� ��� K� ��� �
�� K� ���
 ��� K�

����� Storable Liquid Propellent

Hydrazine� The chemical substance hydrazine N�H� can either be used as liquid
monopropellent �for trajectory or attitude control thrusters� or as fuel in bipropellent
rocket stages �in combination with the oxidizer nitrogen tetroxide N�O��� Hydrazine
can be stored in clean� sealed tanks for many years �decades�� It is a colorless liquid�
which spontaneously decomposes when it gets into contact with a catalyst� or it
ignites when it is mixed with the oxidizer� The ground handling of hydrazine is not
easy� for personnel the substance is a toxic� cancer	causing chemical� Its vapor may
explode when mixed with air� accidentally spilled on cloth it can ignite spontaneously�
The density of hydrazine is with 
��� kg m� ���� K� comparatively high�

Unsymmetrical dimethylhydrazine and monomethylhydrazine� Both fuels
UDMH ��CH���NNH�� and MMH �CH�NHNH�� are derivatives of hydrazine with
similar properties� These fuels are extensively used in bipropellent rocket propulsion
systems �sometimes in form of a mixture with pure hydrazine�� Usually� nitrogen
tetroxide is the oxidizer� Compared to pure hydrazine� UDMH and MMH give slightly
lower performance to rocket engines� but these substances are used because they are
more stable liquids with better shock resistance and better heat transfer properties�
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Nitrogen tetroxide as oxidizer� The yellow	brown liquid nitrogen tetroxide
�N�O�� is the most common oxidizer for the fuel hydrazine and its derivatives�
Pure N�O� is already quite corrosive� but particularly when it absorbs air moisture
�or gets otherwise mixed with water� N�O� forms an aggressive chemical substance�
In�ammable material can ignite spontaneously when it gets into contact with N�O��
The exhaust fumes are extremely toxic� Liquid nitrogen tetroxide has a high density�
but the high vapor pressure causes comparatively heavy tanks� The substance is
in its liquid phase just between ��� K �freezing point� and ����� K �boiling point��
In space applications attention must be taken to avoid freezing this liquid� N�O� can
be stored for decades� if clean sealed tanks made of appropriate material are used�

substance freezing boiling density viscosity vapor press�
point point �kg�m�� �����Ns�m�� �bar�

hydrazine ���� K 
	��� K ���
 ���
 K� ��� ���
 K� ���� ���
 K�
�N�H�� ��� �
�� K� �	� �

� K� ���� �
�� K�

unsymmetrical dimethyl� ��� K 

� K ��� ���	 K� �� ���� K� ���
 ��	� K�
hydrazine ��CH���NNH�� 	�� �� K� �� �
�� K� 	�� �

� K�

monomethylhydrazine ��� K 
�� K 	�� ���
 K� 	�� ���
 K� ����� �
�� K�
�CH�NHNH�� 	�
 �
�� K� �� �
 K� ��� ��	 K�

nitrogen tetroxide ��� K �� K �� ���
 K� �
 ���
 K� ���� ���
 K�
�N�O�� �
�� �
�� K� 
�� �
�� K� ��
 �
�	 K�

����	 Solid Propellent

Solid propellent for space applications� Solid propellent is used in large booster
stages� in smaller launch	assist motors� in spin	stabilized kick	stages for satellites� in
tactical missiles and in gas	generators� Each of these di�erent applications needs a
di�erent optimal propellent� High performance and comparatively low thrust is very
important to upper stages� Launch	assist motors put emphasis on another property�
non	toxicity of the exhaust gases� Minimum smoke is important to some missile
applications� but unimportant for space applications� Solid propellent in rocket mo	
tors is used to generate thrust �the combustion temperature is higher than ���� K��
If solid propellent is burned in gas generators� the purpose is to generate power
�then the combustion temperature is much lower� usually between ��� and 
��� K��

The chemical composition of solid propellent in�uences its burn velocity� the combus	
tion temperature and the combustion pressure� Basically� solid propellent consists
of fuel� oxidizer and binder �all in one substance�� but some properties of solid pro	
pellent can be in�uenced by adding other ingredients to the composition� Up to ten
additives are sometimes used to get a �tailored� solid propellent� The production of
solid propellent is a complicated process which requires a lot of empirical knowledge
�gained from experiments�� As a consequence� the exact composition of a particular
solid propellent varies not only among manufacturers� but is also di�erent for di�erent
motor applications� Practically� the industry develops a new propellent composition
for every new motor� Particularly� the production of solid propellent is a dangerous
and expensive procedure when large booster motors are manufactured�
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Composite propellent� The most common solid propellent for space applications
consists of a heterogeneous mixture of aluminum powder as fuel ��� to ��� Al��
crystals of ammonium perchlorate as oxidizer ���� to �� NH�ClO�� and polybu	
tadiene as binder ��� to 
���� The in�ammable binder keeps fuel and oxidizer close
together and forms a rubbery �or plastic	like� substance� The size� the shape and
the distribution of the particles inside the grain in�uence the burn characteristics�
Usually� a blend of particle sizes is used to maximize the volume speci�c weight of
the propellent� Up to �� curing agent is added to solidify the binder �to form long
molecular chains from the prepolymer molecules�� Its performance can be increased
by adding high energetic radicals �for example acrylic acid� or explosives �crystalline
nitramines� to the binder� In comparison with other solid propellents� the production
of composite propellent is easy� the propellent is reliable and its combustion prop	
erties are well	known� It has a high density �between 
�� kg m� and 
��� kg m��
and a good performance� The �ame temperature is about ���� K� and the exhaust
fumes are toxic �HCl� and smoky �burned aluminum powder��

Double�base propellent� Lower in performance and more dangerous in production
is so	called double	base propellent� Essentially� double	base propellent consists of
nitrocellulose dissolved in nitroglycerin� with minor percentages of plasticizers and
other ingredients� The propellent grain is a homogeneous substance� where both the
main components are explosives� The performance of double	base propellent increases
if more nitroglycerin is used ���� to ����� but physical properties get poor if the
percentage of nitroglycerin is high� In comparison with composite propellent� double	
base propellent has a lower density �� 
��� kg m�� and lower �ame temperature
�for example ���� K�� Burning the propellent gives non	toxic� clean exhaust fumes�
A mixture of composite propellent and double	base propellent in one substance is
possible �so	called composite double	base propellent��

Solid propellent ingredients� Besides fuel� oxidizer and binder� several other
ingredients are used to optimize the properties of solid propellent� Burn rate modi�ers
are used to accelerate or decelerate the combustion velocity� Plasticizers are used
to improve the mechanical properties of the solid propellent during the production
process� Curing agents �or cross	linkers� cause the binder to solidify� where a long
processing time is desirable� Stabilizers and bonding agents improve the chemical
properties of the propellent� these substances prohibit deterioration if the propellent
is stored for a long time interval� Energetic binders or energetic plasticizers contribute
by an exothermal chemical reaction to the combustion process�

solid propellent composite double base composite�double�base
processing method cast �STS�SRM� extruded extruded

typical ����
 amm�perchl� ���� nitrocellulose ��� amm�perchl�
solid ����� aluminum 
�� nitroglycerin ���� aluminum
propellent ���� polymer binder 
�� diethyl phthalate ���� nitrocellulose
composition ���� epoxy curative ��� potassium sulfate ���� nitroglycerin
in percent ���� catalyst ��� ethyl centralite ��� triacetin
of weight �iron oxide� ��� additives �wax� ��� stabilizers
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���� The Combustion Process

The combustion of liquid or solid propellent is a quite complex process� where many
di�erent chemical and physical phenomena are involved �including thermodynamics�
reaction kinetics� �uid dynamics� heat transfer and so on�� The combustion inside
the thrust chamber of a rocket engine releases the chemical energy of the propellent�
The process should be e�cient and stable� it should generate high	temperature uni	
form gas� Our knowledge about combustion is based on experiments rather than on
analytical understanding� We know the composition of the substances which enter
the thrust chamber and we know the composition of the exhaust fumes� but we have
hardly more than an idea what happens inside the thrust chamber� Even though
mathematical models and computer programs do exist and are in use� engineering
depends on empirical techniques and experiments� Some phenomena do still resists
analysis of computer programs �computational �uid dynamics�� usually neglected
or simpli�ed are reaction kinetics� turbulent e�ects� uncertainties in the size and
distribution of droplets� time variations in local temperature and gas composition�
Only experienced engineers can read the results of computer simulations correctly�

����� Combustion of Liquid Propellent

Injection zone� Fuel and oxidizer are injected through a matrix of many small
ori�ces� they enter the thrust chamber with high velocity �between  and �� m s�
and mix in form of thin sprays� Heat radiation from the combustion zone lets the
small droplets of fuel and oxidizer evaporate� The region inside the thrust chamber
near to the injection ori�ces contains a heterogeneous mixture of liquid and vapor	
ized propellent� as well as already some hot	burning gas� The gas �ow is unsteady
�turbulent�� it includes �rst chemical reactions� local explosions and shock waves�

Rapid combustion zone� The gas �ow enters the rapid combustion zone where its
temperature and its speci�c volume increase substantially� Now nearly all droplets
are vaporized� Chemical reactions occur intensively in form of many small local
explosions� here the combustion is not a steady �ow process� The reaction front
is carried along mainly via shock waves� but also via radiative and convective heat
transfer� Temperature� pressure� and gas composition change rapidly in time for
every individual small region within this zone�

Stream�tube zone� Then the �ow enters the stream	tube zone where its axial ve	
locity increases considerably� Now turbulent mixing across streamline boundaries and
local radial velocities become smaller� Chemical reactions continue at a lower rate�
the gas composition is driven to its chemical equilibrium� High chamber tempera	
tures cause the chemical reactions to proceed rapidly� a few milliseconds after having
been injected� the propellent leaves the chamber again and enters the convergent part
of the nozzle� The propellent is burned in the combustion chamber at high tempera	
tures and high pressures� therefore the combustion rate in rocket motors is very high�
Combustion e�ciency ranges from ��� to ����� in well designed thrust chambers�
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Instabilities� Combustion instabilities can cause extensive oscillations and destroy
the rocket motor� Therefore it is the aim of a proper design to prevent the occurrence
of instabilities and keep the combustion always stable� Instabilities are excited if the
combustion is not �smooth� but �rough�� and interacts with the natural frequencies
of the feed system or with the structure of the vehicle�

type of instability frequency excited by interactions between

longitudinal �pogo� vibrations ����� Hz thrust force and
�propellent �ow rate disturbances� propellent feed system

�chugging� ����� Hz chamber pressure and
�feed system instability� propellent feed system

�buzzing� ������� Hz structure� injectors and
�acoustic resonance� propellent feed system

�screaming� or �screeching� above ���� Hz chamber resonance frequency
�thrust chamber pressure waves� and combustion process

The occurrence of combustion instabilities can hardly be predicted by means of com	
puter programs� and the avoidance of instabilities is more an empirical than an
analytical process� The natural frequencies of the vehicle and its propellent feed sys	
tems can readily be calculated or measured� Often it is easy to alter these natural
frequencies by minor structural modi�cations� Low frequency �pogo� oscillations can
be damped by including energy absorbing devices into the �uid �ow lines and into
the tanks� �Buzzing� is usually more annoying �noisy� than really dangerous� More
dangerous is high	frequency �screaming� �
���	���� Hz�� accompanied by more vi	
bratory energy� This phenomenon takes place exclusively inside the thrust chamber�
but it can destroy an engine in less than one second� Shock waves inside the chamber
are re�ected by the injector face� the converging part of the nozzle and the chamber
wall� Unfortunately� high	frequency instabilities are most common in the develop	
ment of new engines� It is tried to make the combustion stable at all �ight conditions
by the incorporation of ��xes�� injector face ba&es� acoustic energy absorbers or
energy absorption cavities� perforated combustion chamber liners are added to the
design �often by using an experimental approach �trial and error��� The design of
the injector has a major in�uence on instabilities� and seemingly minor modi�cations
can have a substantial e�ect on the appearance of instabilities�
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����� Combustion of Solid Propellent

Motor ignition� The solid rocket motor is ignited by an electric signal which triggers
a hot gas generator� Within milliseconds the complete surface of the propellent grain
burns� The free volume of the chamber �lls with hot gas and the chamber pressure
grows until equilibrium �ow has been established�

Burning solid propellent grain� Like the combustion of liquid propellent� the
combustion of solid propellent involves complex chemical and physical phenomena�
At the burning surface of the solid propellent grain� the constituents of the propellent
transform into their liquid or into their gaseous phase� Chemical reactions take
place in a heterogeneous mixture of solid material� liquid droplets and �owing gas�
The physical and chemical processes which occur during the combustion are not
completely understood� and mathematical models are oversimpli�ed and unreliable�
The processes depend sensitively on many quite unknown variables� accumulation
of solid particles� size of liquid droplets� intermediate chemical reaction products�
three	dimensional �ow behaviour and velocity of chemical reactions�

combustion zones in a solid rocket chamber

cold zone

preheated
zone

degraded
zone

propellent burning surface �ame

primary
reaction
zone

secondary
reaction
zone

Experimental analysis with test burners give insight into the combustion process�
It can be observed that most of the chemical reactions occur inside the �ame above
the burning surface� With increasing chamber pressure the visible length of this
�ame becomes shorter� and the volume speci�c energy release increases� In case of
composite propellent the �ame is irregular ��ickering� and attached to the burning
surface� and in case of double	base propellent the �ame is more regular and seemingly
detached from the surface� More distant from the surface the �ame is less brilliant�
but still reactions take place until the gas has reached equilibrium composition�

Essentially� the burning surface can be divided into two main zones� the outermost
zone ��degradation zone�� accepts the heat radiated by the �ame� This zone is very
thin� here the solid propellent melts and vaporizes� and the �rst chemical reactions
take place� The combustion proceeds via heat conduction from the degradation zone
to the �preheated zone� inside the propellent grain� The thickness of the preheated
zone is strongly in�uenced by the actual burn velocity of the solid propellent�
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The burn velocity must be a stable function of the chamber pressure� the motor
explodes if chamber pressure and burn velocity grow simultaneously without limits�
The burn velocity can be in�uenced by adding catalysts to the solid propellent�
Catalysts can in�uence the reactions inside the �ame� the heat transfer rate from
the �ame to the propellent grain and the heat conduction properties inside the grain
�catalysts in�uence just the velocity but not the chemical equilibrium of a reaction��

The combustion process will stop when the chamber pressure is rapidly diminished�
Sudden depressurization occurs when most of the propellent has been consumed� or
when a solid motor is stopped intentionally by opening additional gas escape areas�

Combustion instabilities� During the time interval of normal operation� solid
rocket motors experience often substantial variations of the combustion pressure� The
burn velocity increases if the pressure grows and decreases if the pressure diminishes�
When instabilities occur� the pressure oscillates by sometimes more than ��� of its
nominal value� Even when they do not destroy the motor� these pressure oscillations
must be avoided because they lead to an unacceptable growing of the thrust�

Initially� the volume inside the thrust chamber of the solid motor is loaded with
about ��� of solid propellent� and the motor is more or less empty at burnout�
During the time interval of burning� the geometry of the gas cavity inside the motor
is very complex and alters its size substantially� The remaining solid propellent is
an energy	absorbing viscoelastic material� but the combustion process is a strong
energy source for vibrations� Low frequency pressure variations essentially uniform
throughout the volume can be excited ��bulk mode� oscillations� where the gas ve	
locity in the nozzle oscillates with a frequency below 
�� Hz�� The wall of the thrust
chamber can also re�ect noise and establish acoustic waves �in radial and axial direc	
tion�� Usually these waves are at lower frequency �because of the size of the thrust
chamber�� but also harmonic frequencies of the basic vibration modes can be excited�
Normally these oscillations disappear after a few seconds� as the burning proceeds
and the resonance behaviour of the chamber alters�

Avoidance of instabilities in the design phase of solid rocket motors is a complicated
procedure� The physical and chemical phenomena are in�uenced by many complex
factors which are simply too di�cult for a mathematical simulation� Minor changes
in the grain composition and grain geometry a�ect substantially the occurrence of in	
stabilities� Consequently� the avoidance of instability is mainly an empirical process�
Not always in the development of a solid motor occurs unstable burn behaviour�
but making experiments with full	scale motors is unfortunately very expensive�

The vibrational properties of the burning solid propellent are analyzed with sub	scale
models ��T	burners��� but the conclusions for the full	scale motor drawn from these
experiments are dubious� Experiments with T	burners are appropriate to prove that
a change in the propellent composition has no e�ect on oscillations� rather that they
can prove the stability of a new motor design� Particularly if the solid rocket motor is
big� the design of an appropriate grain con�guration becomes an expensive procedure�
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����� Propellent Application and Performance

Liquid rocket propellent� The performance of a rocket stage is characterized by
the value of its speci�c impulse� The following table gives an overview over some
example applications for propellent in liquid rocket engines�

fuel LH� LH� RP�� kerosene UDMH MMH
mix���� ��� � UDMH
oxidizer LOX LOX LOX LOX N�O� N�O�
ingition electric spark hypergolic runon hypergolic

engine name SSME RL��� F� RD���� Viking�V TR����
application USA USA USA Russia Europe USA
vehicle Shuttle Centaur Saturn�� Vostok Ariane� Delta

�ow rate�
oxidizer �kg�s� �	 ��� ��	� ��� ��
�
 	���
fuel �kg�s� �	�� ���� ��� �� ����� ����

chamber�
pressure �bar� ��� 
��� �� �� �	 ���
temperature ��C� 

�� 
��� 
�	� 
��� 
��� 

��

performance�

Ispecific �v� �s� ���� � 
�� 
� ��	� 
�

thrust �v� �kN� ���� �
� 	� ���� ��� 
thrust �sl� �kN� ���	 � ���� 	�� ��	 �

Propellent for control thrusters� Usually� small control thrusters work with the
catalytic decomposition of monopropellent hydrazine over a heated catalyst test bed�
but also bipropellent systems are used� particularly if better performance is required�

attitude control thrusters chamber press��bar� thrust �N� Ispecific �v� �s�

hydrazine catalytic decomposition�

CHT ���� Germany satellites �������� ��������� �������

CHT ��� Germany� upper stages �������� ������ ��	��
�

MRE��� USA� deep space probes ���
	�� ����� �������

bipropellent �N�O���NO� � MMH at ������

Leros ��� UK� satellites ��� �� ��

R��A� USA� space shuttle ���� 
����

	 �	��
��

Composite solid rocket propellent� Solid rocket propellent has many disadvan	
tages for space applications �for example� it is comparatively bad in performance��
Nevertheless it is used for big and small boosters� and also for upper stages�

composite propellent total mass �t� propellent �t� thrust �kN� Ispecific �s�

SRM� big shuttle booster ����� ��
�� ����� �avg�� ����v�� �� �sl�

Castor A� small booster ���� ���� 
��� �avg�� �
	�sl�

Star ��� upper stage ��
�� ��

 �� �avg�� �		�v�
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����	 Computation of the Chamber Temperature

Propellent performance analysis� The combustion process inside the chamber
liberates the energy which is stored in a chemical form inside the propellent� Then
this energy heats up the products of the chemical reaction �usually exhaust gases��
A �ow process in the nozzle transforms the heat of the gases into kinetic energy�

The chamber enthalpy� To analyze the combustion process and the subsequent
�ow process we make use of the concept of the �enthalpy�� In thermodynamics�
the enthalpy H of a gas is the quantity useful to characterize the capability of the
gas to generate mechanical work� By de�nition� the enthalpy H of a gas is the sum of
its inner energy E �the potential energy and the kinetic energy of all gas molecules�
and the product of pressure and volume p � v �the work done on or by the gas�
v is the chamber volume�� For the conditions inside the thrust chamber we may write�

Hchamber �Echamber ! pchamber � vchamber ��� ���

�Echamber !M � 	 � Tchamber ��� ���

We get equation ��	��� from equation ��	��� by using the perfect gas law pv � M	T �
Term 	 �the gas constant� is the universal gas constant 	� � ���
�� J mol K divided
by the mean molecular massM �in gram mol�� Then termM �in grams� is the mass of
the entire gas which is being contained at the moment inside the combustion chamber�
and term Hchamber is the absolute enthalpy of the chamber gas �in Joule or Nm��
To �nd the speci�c enthalpy h we have to divide this value by mass M of the gas�

The pressure inside the chamber� We consider the burning gas �mass M� inside
the combustion chamber as a mixture of perfect gases� a constituent has the massMk�
The molecular mass Mk of the constituent is nearly identical with the number of pro	
tons and neutrons of the gas molecule� For example� hydrogen H� has the molecular
mass � gram mol� oxygen O� �� gram mol� water steam H�O 
� gram mol and so on�
We use the term nk to specify the amount of substance of a constituent of the gas�
nk is the mass of a constituent divided by the molecular mass of this constituent�

nk �
Mk

Mk
��� ��

Term nk has the dimension of mols� The gas mixture has the mean molecular mass�

M �

P
nkMkP
nk

�
MP
nk

��� ���

Every constituent of the gas inside the chamber contributes to the total pressure with
its partial pressure pk� Since all constituents are treated as perfect gases� we have�

pchamber �
X

pk �
X

nk
	� � Tchamber
vchamber

��� ���

The sum of all partial pressures pk is exactly the total chamber pressure pchamber�
Equation ��	��� is the perfect gas law for a mixture of gases�
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The chamber gas is a mixture of perfect gases� therefore we can divide the partial
pressure pk of a constituent by the total pressure pchamber to verify that this ratio is
equal to the ratio nk	

P
nk� The amount of a substance divided by the total amount

of all substances is called molar fraction of the constituent �pk	pchamber � nk	
P

nk��

Speci�c heat� Since we consider the gas in the combustion chamber as perfect gas�
its inner energy E and its enthalpy H are just functions of the gas temperature T �
The speci�c heat at constant pressure cp� the speci�c heat at constant volume
cv and their ratio � are important factors �speci�c means �per mol of the gas��
to get the mol	speci�c values of enthalpy and inner energy we have to multiply the
absolute enthalpy H and the absolute inner energy E with the factor M	M �� Thus�

cp �
��Hchamber �M	M�

�T
� cv �

��Echamber �M	M�

�T
��� ���

The factors cp and cv have the dimension J mol K� Using the perfect gas law we �nd�

cp �
�

�� 

	� � cv ! 	�� cv �




�� 

	� � cp �	�� � �

cp
cv

��� �
�

The relationships above determine the values for cv and � when the value for cp is well	
known� The ratio � �without dimension� of the speci�c heats is always greater than 
�
typical values for � in rocket thrust chambers range between � � 
�
 and � � 
����

Every constituent has its individual speci�c heat value cp�k� We have to �nd a mean
value for the entire chamber gas� using the molar fractions of all constituents�

cp �

P
nk � cp�kP
nk

�



pchamber

X
pk � cp�k ��� ���

The speci�c heats cp�k allow us to de�ne the chamber enthalpy as a function of the
chamber temperature� Then the change of the chamber enthalpy in relation to a
reference temperature is�

%Hchamber �
X�

nk �
Z T �chamber

T �reference

cp�k dT
�

��� ���

Unfortunately� the values for cp�k are not constant� they increase slightly with T
�except for gases where the molecules consist of just one atom� for example in	
ert gases�� The combustion temperatures inside a rocket combustion chamber are
so high that it would be inadequate to assume constant values cp�k for the gases�
Speci�c heats are functions of the temperature� tabulated in chemistry handbooks�
More important for us are the integral values �so	called �mean	speci�c heat values���

cp�mean value�T � �



T � ���
� �K�
�
Z T

�
���� �K�

cp dT ��� ���

Reference temperature for these mean integral values of cp is �� Celsius� usually�
Using such tables avoids the integration of the speci�c heat temperature functions�
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The following tables show values of cp �dimension J mol K� for a selection of gases�
rocket chambers contain a mixture of some of these gases after the chemical reaction�
�the values for atomic hydrogen� nitrogen and oxygen are constant� cp �

�
� � 	���

T ��C� H� O� H�O OH CO� CO N� NO NH�

� �	���� ����� 

��� ������ 
��	�� �����
 ������ ������ 
�����

��� ������ 

��� 
	��� ���	 ���	�� 
����� 
����� 
����� ����

���� 
���	 
���� ���
 
����� �����
 
��� 
��
 
����� ���
��

���� 

�
� 
���� ���
� 
��
� ����� 
��	�� 
���� 
��
�� �����

���� 
����� 
	��� ����
� 
����	 ����� 
����� 
��
�� 
���� ���	

���� 
��
�� 
����� ������ 
���	� ����	� 
����
 
��	�� 
���� ����


��� 
��
		 ����� ������ 
���� ���
�	 
��
		 
����
 
��� �	�
��

The concerning integral values of cp are �J mol K� reference temperature �� Celsius��

T ��C� H� O� H�O OH CO� CO N� NO NH�

� �	���� ����� 

��� ������ 
��	�� �����
 ������ ������ 
�����

��� ����� 
��

 
���
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���	 
	���� 
����� ��
�� 
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��
�
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��

���� 
���� 
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����� ���
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When the chamber temperature is approximately well	known� the temperature func	
tions of the speci�c heats of the chamber gases can be interpolated from the tables
�for example� we can approximate these functions by parabolic curves��

Exhaust velocity and chamber enthalpy� We use the principle of �conservation
of energy� to calculate the propellent performance from the chamber enthalpy� The
expansion in the nozzle is considered as an isentropic �ow process� without friction�
without heat transfer through the walls and without heat input� Since the gas does
not do any mechanical work inside the nozzle� the sum of enthalpy and kinetic energy
must be the same for every location inside the nozzle� For the conditions at the
entrance and exit of the nozzle we can write�

Hchamber !
M

�
c�chamber � Hend !

M

�
c�end ��� ���

Usually� the velocity c inside the chamber is comparatively small� it can be neglected�
but the velocity cend at nozzle exit should be as high as possible� We may conclude
that two factors are important for the best performance� a good thrust chamber has
to work with a high mass	speci�c chamber enthalpy and with a low exit enthalpy�
A high speci�c chamber enthalpy is achieved if high energetic propellent is used and
if the combustion e�ciency is good� The rocket motor has a low exit enthalpy if the
pressure inside its chamber is high and the gas has a low speci�c heat ratio ��
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The chemical reaction process� A chemical reaction is actually a complicated
procedure� it involves several intermediate reactions where high energetic atoms and
free radicals play a part� For the calculation of the energy that is released by a
chemical reaction� it is usually su�cient to know the composition of the reactants
before and after the reaction� The overall amount of converted energy is independent
of the intermediate states and the velocity of the reaction �reaction kinetics��

We can calculate the heat of the reaction %Hreaction of a rocket propellent when we
know the gas composition before �reactants nj� and after �products nk� the reaction�
For an exothermic �	� or endothermic �!� reaction� the following formula can be used�

%Hreaction �

productsX
k��

�
nk �%Hformation�k

��reactantsX
j��

�
nj �%Hformation�j

�
��� ���

substance phase molecular mass %Hformation %Sstandard cp���
�C�

M �gram�mol� �kJ�mol� �J�mol K� �J�mol K�

O gaseous ������ ����	 ������� �����

O� gaseous 
����		 � ������� ���
��
H gaseous ������ ������	 ������ ����	�
H� gaseous �����		 � �
���	� �	�	
�
OH gaseous ������
 ���� �	��
�� ���	��
H�O gaseous �	����
 ����	
 �		�	
� 

����

C gaseous ������� ����� ��	��� ���	
	
CO gaseous �	����� ������
 ������� �����
CO� gaseous ���� �
�
��� ��
��	� 
�����

CH� gaseous ������ ���	�
 �	���� 
���
�
C�H� gaseous 
����� �	��
 ������ ������
C�H� gaseous ���� ���
�	� ������ �
���	

N gaseous ������ ���� ��
�
�� ����	�
N� gaseous �	���
� � ������� ������
NO gaseous 
������ ����� ������ ������
NO� gaseous ������ 

��� ���� 
����
NH� gaseous ����
�� ���	�	 ������ 
�����
HNO� gaseous �
����	 ��
�
�� ���� �
�
��
N�O� gaseous ������ ����� 
��
�� ������
N�H� gaseous 
����� ���
�
 �
	���� ���	�


H�O liquid �	����
 ��	��	
� ����
 ���
��
C�H�� liquid 	����� ���	�	 ����� ������
C
H�� liquid ������ ���� 
�	�� �����
C�H�� liquid ����
 ������ 
���� �����
N�O� liquid ������ ������ ������	 ������
N�H� liquid 
����� ������ ����� �	�	�
Al�O� liquid �������� ��������� ����
 ������

Al crystal ����	�� � �	���� ����
C graphite ������� � ��� 	����
NH�ClO� solid ����	� �������� �	��	 ��	���
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In tables on thermochemical data we �nd the �heat of formation� of substances�
so	called %Hformation� The heat of formation of a chemical substance is the
enthalpy released �	� or absorbed �!� when one mol of a substance is formed from
its constituent atoms at standard conditions �
 bar and ��� Celsius or ����
� K��
The heat of formation is a relative value� By de�nition� the values for elementary
substances �H�� O�� N�� Al� graphite	C and so on� equal zero�

For example� 
 mol H� together with 
 � mol O� produces 
 mol of H�O� The re	
actants �hydrogen and oxygen gas� are supplied at standard conditions� after the
reaction the product �water or water steam� is transformed back again to standard
conditions� The enthalpy release amounts ������ kJ when water is produced and
��
��� kJ when the product is steam� The standard heat of formations of both
reactants is zero by de�nition� Burning of 
 mol OH gas with 
 � mol hydrogen
gas H� produces water steam H�O and an enthalpy of ��
���	�����
����
 kJ�
Gas that consists of free hydrogen atoms H can be produced by splitting H� molecules�
the reaction consumes �
��� J mol at standard conditions ���� Celsius��

The heat of formation is not a function of the pressure in case of perfect gases�
but the reaction is performed at a temperature which is di�erent from ��� Celsius�
Then the conversion of energy is the same� but the energy which is produced �or ab	
sorbed� by the reaction di�ers slightly from the standard heat of reaction� Reactants
and reaction products have di�erent speci�c heat constants �equation �	���� usually�
It requires a slightly di�erent amount of enthalpy to bring the reactants from ���

Celsius to the reaction temperature than to bring the reaction products from reaction
temperature back to ��� Celsius� The standard heat of formation must be corrected�
using the reaction temperature and the speci�c heats of reactants and products�

Heat of reaction and chamber enthalpy� The reactants which are present in
the chamber before the reaction are not at standard conditions� usually� They may
have entered the chamber colder or hotter than ��� Celsius� When the fuel has been
used for chamber wall cooling� it enters the combustion chamber already at elevated
temperature �if staged combustion is used� the propellent can be quite hot already��
First� we have to calculate the enthalpy which is required to bring the reactants from
their actual temperature Tinjection to the standard temperature ����
� K� Then we
have to calculate the enthalpy which is required to bring the reaction products from
standard temperature to combustion temperature Tchamber� The reaction at standard
temperature changes the gas composition and produces the standard heat of reaction�
The heat of reaction is used to bring the reactants from Tinjection to ����
� K and
to bring the reaction products from ����
� K to Tchamber�

%Hreaction � �
reactantsX

j��

�
nj �

Z ������ K

T �injection

cp�j dT
��productsX

k��

�
nk �

Z T �chamber

������ K

cp�k dT
�

��� ��
Term nj is the amount of substance of a reactant� term nk of a reaction product�
When we use the equation above together with law ��	��� we are able calculate the
combustion temperature� provided that the composition of the chamber gas is known�
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Example ���� Hydrazine is often used as monopropellent in small control thrusters�
It decomposes over a heated catalyst bed according to the equation�


 N�H� �  �
� x� NH� � �
 ! � x� N� � � x H�

Term x is the degree of ammonia dissociation� x can be in�uenced by the size�
geometry and temperature of the catalyst bed� and by the stay time of the propellent
in the catalyst bed �anyway � 
 x 
 
�� The reaction of � mol hydrazine involves�

nN�H�
� � mol � nNH�

� ��
� x�	� mol� nN�
� �
 ! �x�	� mol� nH�

� �x mol

Using the molecular masses of ammonia �� ���� nitrogen �� �	� and hydrogen �� ���
we can �nd the mean molecular mass of the reaction products as a function of x�
Then we estimate the combustion temperature �approximately ���� K�� take the
speci�c heats of the products from a table and calculate the mean speci�c heat value�

Mproducts �
nNH�

MNH�
! nN�

MN�
! nH�

MH�

nNH�
! nN�

! nH�

�
� ��

� ! �x

gram

mol

	

cP�products �
nNH�

cP�NH�
! nN�

cP�N�
! nH�

cP�H�

nNH�
! nN�

! nH�

�
� �
�� 
�x

� ! �x

J

molK

	

We can observe that the average molecular weight and the average speci�c heat
decrease slightly with the value of x� The reaction enthalpy can be calculated knowing
the heat of formation of the gaseous reaction products and the liquid reactant� By
de�nition� the values of heat of formation of hydrogen H� and nitrogen N� are zero�

%Hreaction � nNH�
%HNH�

! nN�
%HN�

! nH�
%HH�

� nN�H�
%HN�H�

� ��	���
� x��������� ! � ! � � 
 � ����� �J�

If no ammonia is dissociated �x � ��� the reaction delivers the highest amount of heat�
We may expect the best performance of the thruster at this point� We can calculate
the chamber temperature approximately as�

Tchamber � Tinjection !
�%Hreaction

nNH�
cP�NH�

! nN�
cP�N�

! nH�
cP�H�� � Tinjection ! �


���� �

�x�	�
��� �x� �K�

�
The chamber temperature is nearly a linear function of x� If x � �� the reaction
products NH�� N� and H� are about ���� K hotter than the liquid reactant�
but the temperature increases just by ��� K if the ammonia is completely dissociated�
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����
 The Composition of the Chamber Gas

The principle of conservation of matter� It is well	known that a chemical reac	
tion changes the molecules of the reactants� but not their atoms� After the reaction
the products are composed of exactly the same atoms as the reactants before the
reaction� The amount of substance remains unchanged for every chemical element�
To �nd the amount of a chemical element �or atom�� we have to count the number of
atoms in a molecule� then multiply this number by the amount of substance of the
concerning molecular species and add up the result for all molecules� This amount is
the same before and after the reaction for any one atomic species that participates�
Term atoms�n� is the number of atoms of a particular atomic species in substance n�

for each atomic species �
reactantsX

j��

atoms�nj� � nj �
productsX
k��

atoms�nk� � nk
��� ���

When mixed with oxygen and ignited� hydrogen burns with a nearly colorless �ame�
The product of the reaction is water or steam� The complete combustion of hydro	
gen in a stochiometric mixture �H� ! 
 � O� � H�O� transforms 
 mol H� and

 � mol O� into 
 mol H�O �for example the complete combustion of � kg hydrogen
with 
� kg oxygen produces 
� kg water vapor� with 	��
��� kJ heat of formation��
LOX LH� rocket engines operate �fuel rich�� it means they do not burn the pro	
pellent combination LOX LH� at �or even near� the stochiometric proportion of �
�much more hydrogen is injected� a typical mixture ratio is between ��� and �����
Additionally� the high combustion temperature causes an incomplete reaction� Apart
from water vapor H�O� we �nd in the reaction products also H� and O�� atomic gases
�hydrogen H and oxygen O� and hydrogen monoxide gas �OH�� Applied to the com	
bustion of LOX LH� in a rocket chamber� the atom mass balances ��	��� are�

O� � � nO��oxidizer � 
 � nH�O ! � � nO�
! 
 � nO ! 
 � nOH

H� � � nH��fuel � � � nH�O ! � � nH�
! 
 � nH ! 
 � nOH ��� ���

The fuel hydrazine �N�H�� combined with the oxidizer nitrogen tetroxide �N�O��
can be used as storable rocket propellent� Also rocket engines which work with such
a combination do not operate with the stochiometric proportion of 
����� usually�
Hydrazine burns �� N�H� ! N�O� � � H�O ! � N�� and decomposes simultaneously
�� N�H� � � NH� ! N��� The atom mass balances according to equation ��	��� are�

N� � � nN�H��fuel ! � � nN�O��oxidizer � �nN�H�
! �nN�O�

! �nN�
! nNH�

! nNO ! nN

O� � � nN�O��oxidizer � � � nN�O�
! nH�O ! �nO�

! nO ! nOH ! nNO

H� � � nN�H��fuel � �nN�H�
! �nH�O ! �nNH�

! �nH�
! nH ! nOH ��� ���

The main reaction products water steam �H�O�� ammonia �NH�� and nitrogen �N��
dissociate and form several gas components which consist of elementary molecules�
atoms� and free radicals� A very small part of fuel and oxidizer remains unreacted�
Other molecules which could be encountered theoretically �for example hydrogen
peroxide H�O�� are neglected� because the probability of their existence is very small�
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The chemical equilibrium� When we want to calculate the composition of the
combustion products� we notice that the law of the conservation of matter ��	���
is not su�cient� For reversible chemical reactions there exist the so	called state of
equilibrium� where the rate of forming products is exactly equal to the rate of the
reverse reaction� Once equilibrium has been reached� the concentration of reactants
and reaction products is constant in time� The equilibrium of a chemical reaction
depends on the chemical aggressiveness of the substances �the chemical potential or
�Gibbs free energy��� it is always a function of the temperature and the mixture of
the reactants� sometimes also a function of the pressure� Using the conditions of the
chemical equilibrium� we can calculate the composition of the gas in a rocket chamber
�assuming that the residence time of the gas is long enough to reach this equilibrium��

When a reversible chemical reaction of a mixture of perfect gases is in its equilibrium�
the so	called �equilibrium constant� relates the partial pressures of the participants�
The equation of condition for the equilibrium constant K�T � can be written as�

K�T � �



�pstandard��
�
Y

p�kk �
�
� �

X
�k
�

��� �
�

In this equation� term pstandard is the standard pressure� usually 
��
��� bar�
Term pk is the partial pressure of gas k that participates in the chemical reaction�
Term �k is the stochiometric molar concentration coe�cient� The sign of �k is
negative if the gas k is a reactant and positive if the gas k is a reaction product�
For example� when we consider a reversible reaction with the reactants A and B and
the reaction products C and D� we can write the equation of the reaction as�

�A �A! �B �B �� �C � C ! �D �D ��� ���

According to formula ��	�
�� the equilibrium constant K�T � for the reaction above is�

K�T � � �pstandard�
��A ! �B � �C � �D� � p

�C
C � p�DD
p�AA � p�BB

��� ���

Equation ��	��� can be transformed into a representation which uses expressions of nk
�amount of substance� instead of partial pressures pk �using the perfect gas law �	����
It can be observed that the chemical equilibrium for a reversible reaction is just
independent of the pressure if the condition � � �A ! �B � �C � �D � � is valid�
For example� this is the case for the �water gas� reaction �CO ! H�O �� CO� ! H���
but this is not the case for the �oxyhydrogen gas� reaction �H� ! 
 � O� �� H�O��
A higher pressure drives the equilibrium to the side of a more complete combustion
�the oxyhydrogen reaction reduces the mol	number� the water gas reaction does not��

The equilibrium constant is a function of the temperature� We can calculate K�T �
when we know the standard reaction enthalpy %H � the standard reaction entropy
%S and the speci�c heats cp�k�T � of the constituents of the mixture of perfect gases
�these values are tabulated in chemistry handbooks�� For the combustion of gases� the
values of K�T � are extremely large if the temperature is low �indicating a complete
combustion� and small if the temperature is high �indicating dissociating reactants��
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equilibrium constant lnK�T � as function of inverse temperature 
���	T �K�

ln�K�T �� �



	�
X

�k
�%Hk

T
�%Sk

�
�

d ln�K�T ��

dT
�

P
�k
�
%Hk

�
	�T �

��� ���

with� %Hk � %Hstandard�k !

Z T �chamber

T �standard

cp�k dT

and� %Sk � %Sstandard�k !
Z T �chamber

T �standard

cp�k
T

dT

Reaction enthalpy and entropy can be obtained from their standard conditions
�usually pstandard�
��
��� bar� Tstandard�����
� K� by integration of the tempera	
ture functions of the speci�c heats cp�k�T � of the gases� Approximately we get�

K�T �H�	
�

�
O�

��H�O �
p
pstandard pH�O	�pH�

p
pO�

�
�� e�������T���
��

�
��� ���

K�T �H�� �

�
H�

�
p
pstandard

p
pH�

	pH
�� e��
����T�
����

�
��� ���

K�T �O�� �

�
O�

�
p
pstandard

p
pO�

	pO
�� e�������T�
����

�
��� ��

K�T �OH�� �

�
H�	

�

�
O�

�
p
pH�

p
pO�

	pOH
�� e��
���T������

�
��� ���

K�T �CO	 �

�
O�

��CO�
�
p
pstandard pCO�

	�pCO
p
pO�

�
�� e����

�T������

�
��� ���

K�T �NO�� �

�
N�	

�

�
O�

�
p
pN�

p
pO�

	pNO
�� e�������T������

�
��� ���

The exponential approximations cover a wide range of di�erent temperatures T �
they are usually accurate enough when the combustion temperature is not exactly
known �but they are not really accurate for a certain well	de�ned temperature��
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When hydrocarbon fuel is burned in a rocket chamber� the reaction products include
water steam as well as carbon dioxide and carbon monoxide� and the water gas
reaction takes place �CO ! H�O�� CO� ! H��� We can �nd the equilibrium constant
for the water gas reaction when we divide equation ��	��� by equation ��	���� Thus�

K�T �CO	H�O��CO�	H�
�

pCO�
pH�

pCOpH�O
�

K�T �CO	 �

�
O�

��CO�

K�T �H�	
�

�
O�

��H�O

� e���	T � ������

When water vapor dissociates it forms hydrogen gas and hydrogen monoxide gas
�
� H� ! OH �� H�O� This reaction is equivalent to the reaction H� ! �

� O� �� H�O
running simultaneously with the reaction OH �� �

� H� ! �
� O�� We may write for

the concerning equilibrium constant�

K�T � �
�
H�	OH��H�O �

p
pstandard pH�Op

pH�
pOH

� K�T �H�	
�

�
O�

��H�O �K�T �OH��	 �

�
H�	

�

�
O�

We can observe that it is not necessary to consider a reaction in the calculation of the
equilibrium conditions when a set of equivalent reactions has already been considered�
When the oxyhydrogen gas reaction and the reaction of dissociating hydrogen monox	
ide have already been included in the equations� the calculation of the equilibrium
for the reaction �

� H� !OH��H�O would provide no additional information anymore�

Example ���� The composition of the �re gases inside a rocket chamber is a function
of the mixture ratio� the temperature and pressure� The �gure shows the composition
�in mole per cent� for the combustion of a hydocarbon fuel RP�� �CH������� burned
at a pressure of �� bar with the oxidizer LOX� as a function of the mixture ratio for
temperatures from 

�� K to 
��� K �the arrows indicate increasing temperatures��
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Let us now consider that the propellent combination LOX LH� is burned in a
rocket chamber� The combustion gas is a mixture of H�O� H�� O�� H� O and OH�
The combustion chamber works with a certain �well	known� pressure pchamber�
and this pressure is sum of all the partial pressures of the constituents of the gas�

pchamber � pH�O ! pH�
! pO�

! pH ! pO ! pOH ��� �
�

The mass balances ��	��� for a certain mixture ratio x �oxidizer mass divided by fuel
mass� make one more equation available for the calculation of the partial pressures�

x � �

��
�

nO�

nH�

�
pH�O ! �pO�

! pO ! pOH
�pH�O ! �pH�

! pH ! pOH
��� ���

We have to divide the mixture ratio x by the factor 
�� since 
 mol of oxygen weighs

� times more than 
 mol of hydrogen� The combustion gas is regarded as a mixture
of perfect gases� we can readily use equation ��	��� to replace the amount of a sub	
stance by the partial pressure �replace nk by pk�� Now we have two equations for six
unknown partial pressures �pH�O� pH�

� pO�
� pH� pO and pOH�� The four missing re	

lationships are provided by the nonlinear equations ��	���� ��	���� ��	�� and ��	����
These equations relate the partial pressures depending on the temperature Tchamber�
We can estimate Tchamber and solve the equation system for the gas composition� and
then use the equations ��	��� and ��	�� to improve the value for Tchamber iteratively�

Example ��
a� Higher chamber pressures shift the chemical equilibrium of the �re
gases inside a rocket chamber into the direction of a more complete combustion�
The �gure shows the composition �in mole per cent� for the combustion of the
cryogenic propellent combination LOX�LH� as a function of the mixture ratio for
pressures ranging from �� bar to ��� bar �the arrows indicate increasing pressure��
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Performance optimization� Now we have seen how to compute the temperature
and the composition of the chamber gas� however� ultimately we are interested in a
performance optimization of the combustion process� Equation ��	��� allows us con	
clude that the speci�c chamber enthalpy h � H	M should be as high as possible� we
introduce as performance criterion the theoretical �maximum exhaust velocity� cmax�
ignoring the velocity cchamber and the enthalpy Hend in the �nal area of the nozzle
�such an exhaust velocity can actually never be achieved because this would require
an in�nite nozzle size and an expansion of the gas below the freezing point�� Anyway�

cmax �

r
� Hchamber

M
�

r
� cp Tchamber

M
�

s
�� 	 Tchamber

��� 
�
��� ���

The mixture ratio in�uences the chamber temperature Tchamber but also the speci�c
heat ratio � and the gas constant 	 �the universal gas constant 	� � ��
��� J kmol K
divided by the mean molecular mass M in kg kmol of the gas�� However� the optimal
mixture ratio is also a function of the chamber pressure pchamber� Numerical eval	
uation of the equation ��	��� for the propellent combination LOX LH� shows that
optimal mixture ratios require �fuel	rich� combustion �x � ��� to ���� much more hy	
drogen is used than what would be required for the stochiometric proportion x � ���
The combustion is incomplete because high temperatures inside the chamber cause
the water molecules to dissociate� and it is a way to increase in the speci�c enthalpy
by using more hydrogen �reducing the combustion temperature simultaneously�
or by burning the gas at a higher pressure �a higher pressure shifts the equilibrium
of the reaction H� ! 
 � O� �� H�O into the direction of more water steam H�O��

Example ��
b� Rocket chambers that burn the propellent combination LOX�LH�
operate usually �fuel rich�� much more hydrogen is used in a performance optimal
mixture than what would be required for a stochiometric combustion with oxygen�
The fuel rich operation has also the advantage of a lower chamber temperature�

cmax �m s�

T �K�

1

5000
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mixture ratio (oxidizer/fuel)2 3 4 5 6 7 8
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4000

3000

2000

1000

0
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(from 50 to 250 bar)



ROCKET PROPULSION ��

���� Hypersonic Nozzles

The hot �re gases stay just for a few milliseconds inside the combustion chamber
before they enter the hypersonic rocket nozzle� A thermodynamic expansion process
inside the rocket nozzle converts the heat energy of the �re gases into kinetic energy�
Also the expansion of the gas is a quite complex process that involves many di�erent
chemical and physical phenomena �consider that the gas is still reacting inside the
nozzle�� The exhaust fumes must leave the �nal cross sectional area of the nozzle with
a high relative velocity� the �nal gas �ow should be uniform and parallel with a mini	
mum content of heat energy� The thermodynamics of a one	dimensional �ow process
leads us to simple relationships� these equations are useful in practice when we want
to analyze the performance of a thrust chamber� However� when we want to design
the shape of the nozzle� we have to solve the Euler equations for a two	dimensional
�ow �eld �for example using the �method of characteristics��� A computation of the
�ow �eld inside the nozzle that considers also friction in the boundary layers near
the walls requires the numerical integration of the Navier Stokes equation system�
However� particularly because of still insu�cient knowledge about reaction kinetics
at high temperatures and the interaction with turbulent boundary layer e�ects� the
problem cannot be considered as completely solved by computational �uid dynamics�
These numerical computer solutions must be interpreted by experienced scientists�

��	�� Thermodynamic Phenomena inside the Rocket Nozzle

The speci�c enthalpy� We have already introduced the chamber enthalpy Hchamber

as a thermodynamic state variable that is useful to characterize the capability of
the combustion gas to generate mechanical work� Let us now consider a certain
amount of gas inside a special gas container� this container is capable to alter its
volume� but it is closed in such a way that the gas cannot escape from it� A cylinder
with a piston would be a perfect realization of such a gas container� Heat can
cross the borders of the gas volume� however� the working gas itself stays always in	

side the container� The gas should
be a perfect gas� p � v � 	 � T �
the state variables p �pressure��
v �speci�c volume v � 
	� and
T �temperature� characterize the
actual thermal situation for the gas
�	 is the individual gas constant��
Now there are two ways how we
can increase the energy content of
the gas �its �inner energy��� we can
press the piston into the cylinder
and reduce the volume� or we can
transmit heat into the gas across
the borders of the gas container�

inner energy e

heat� dq

work� �pdv
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The state variables p� T and  are independent of the gas quantity in the container�
therefore let us now use lower case letters to indicate mass speci�c quantities for
the inner energy e� the enthalpy h� the volume v and the heat q� �Mass speci�c�
means here now �per kilogram of the gas�� The �rst law of thermodynamics �the
energy conservation law� states the following condition for the inner energy of the gas�

de � �pdv ! dq ��� ���

Both� the work �pdv and the heat dq enter the gas and increase its inner energy de�
The in�nitesimal mechanical work exerted on the gas by pressing the piston against
the pressure of the gas is the product �pdv �the negative sign comes from the fact that
the volume is reduced� dv is negative�� We can denote that this work is reversible� it
means that the entire work comes back when we expand the gas and let the gas push
the piston back to its original position� Term dq is in�nitesimal heat that crosses
the borders of the gas volume� Now we introduce the speci�c enthalpy h � e!p�v� or�

dh � de! pdv ! vdp ��� ���

Enthalpy h and inner energy e are both state variables �as well as p� T � and v��
which means that these values are not functions of the way on which the gas came
to its actual state� We can measure these values �or compute them from measured
values� disregarding the history of the gas� The heat q� however� is not a state
variable� its actual value depends on the way how the gas has changed its state� Our
intention is now to analyze the heat �ow dq related to the change in temperature dT �
The quantity dq	dT depends on the conditions how the change in state is performed�

dq � de! pdv � cv �

�
dq

dT

�
v�constant

�
de

dT
��� ���

dq � dh� vdp � cp �

�
dq

dT

�
p�constant

�
dh

dT
��� ��

The speci�c heat values cv �at constant volume� and cp �at constant pressure��
according to the equations above� have now the dimension J kg K �and not anymore
J mol K� in contrast to the de�nition �	���� These speci�c heats are approxi	
mately constant �but actually they are functions of the temperature� compare �	����
We can use the enthalpy de�nition dh � de!d�pv� together with the perfect gas law
pv � 	T to show that the speci�c heats stand in a certain relation to each other�

dh

dT
�

de

dT
!
d�pv�

dT
� cp � cv ! 	 ��� ���

The ratio � of the speci�c heats is even more important than cv and cp when we
examine the change in state of the hot gas that �ows through a rocket nozzle� Thus�

� �
cp
cv
�

�
cv �




�� 

� 	� cp �

�

�� 

� 	

	
��� ���

The speci�c heat ratio � is an approximately constant� dimensionless quantity
�� 
�
 to 
�� for the �re gas mixture in a rocket nozzle�� � is a typical propellent
characteristic� its value depends mainly on the number of atoms in the gas molecules�
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The speci�c entropy� Let us return to the example of the gas captured inside a
cylinder by a piston mechanism� Compressing or expanding the gas is obviously a
reversible process� the mechanical work done by the piston on the gas comes back
when the original volume is re	established �provided that we execute an adiabatic
change in state where all the heat remains inside the gas container� dq � ���
However� this is obviously not the case when we put the mechanical energy with
a mixer into the gas� the energy conservation law is still valid and the mechan	

ical energy that drives the mixer
increases the inner energy of the
gas �the gas temperature grows��
but the process is irreversible� the
increased temperature will not au	
tomatically drop and drive the
twirling	stick of the mixer in or	
der to bring back the mechanical
energy of the process� The mechan	
ical energy has dissipated during
this irreversible process� it heats up
the gas and can be treated in the
same way as if it were heat energy
that had entered the gas container�

inner energy e
entropy S

heat dq
mixer

work �pdv

The irreversible mechanical work transferred from the mixer to the gas �and in the
same way the heat energy dq that crosses the borders of the container� is stored inside
the gas in a new state variable called entropy� The speci�c entropy dS is by de�nition�

dS �
dq

T
��� ���

The second law of thermodynamics declares an important property of this new state
variable� the entropy of a closed system �where no heat or work crosses the borders of
the system� can never shrink but just grow� in contrast to the energy which is constant
inside a closed system� Thus� when we consider for example the whole universe as a
closed system� we can conclude that its entropy will grow until �nally all processes
reach their equilibrium state �which means that the universe will come to an end��
The fundamental importance of the entropy as a new state variable is the fact that
it gives the coordinate �time� a unique direction� an irreversible adiabatic process
can just run into the direction of growing entropy �dS � ��� and a cyclic process with
heat produced by friction must discharge this heat to outside� Mathematics explains
entropy using the statistical probability that a certain state will occur in the future�
strictly speaking� it is not impossible that the entropy of a closed system shrinks� but
it is extremely unlikely� Our objective is to calculate the �ow process inside a rocket
nozzle and therefore we can forget all the philosophical considerations about entropy�
Instead of this we use the de�nition ��	��� to rewrite the equation ��	��� in the form�

TdS � de! pdv � dh� vdp ��� �
�

The expression TdS on the left side of this equation vanishes for an isentropic process�
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The isentropic change in state� A change in state of a gas is called �isentropic�
when its entropy remains constant� and this requires automatically that the process is
adiabatic �without heat transfer through the walls� and reversible �without friction��
We consider that dS � � and divide the equation ��	�
� by the temperature T to �nd�

dS �
de

T
!

p

T
dv �

dh

T
� v

T
dp � � ��� ���

Let us remember that de � cv � dT � dh � cp � dT and � � cp	cv ��	��� �	� and �	����
The perfect gas law pv � 	T in its di�erential form becomes�

dp

p
!
dv

v
�

dT

T
��� ���

Now we can transform the isentropic change in state ��	��� into a notation that ex	
presses the pressure p as a function of the volume v and integrate this relationship�

dp

p
! �

dv

v
� �� � p � v� � constant ��� ���

Term � characterizes an isentropic change in state� The exponent in equation ��	���
accepts another value when the gas changes its state and the entropy is not constant�
For example� the exponent equals 
 for an isothermal change in state �T � constant��
it equals � during an isobaric change in state �p � constant� or� during an isochoric
change in state �v � constant�� The general case is the so	called polytropic change
in state� where the exponent can take an arbitrary value� For the expansion inside
a rocket nozzle we will assume that the change in state takes place approximately
at constant entropy �however� heat input by friction or by chemical reactions can
shift the exponent during the expansion slightly into the direction of a smaller value��

p

pchamber
�

�
v

vchamber

	��
�

�


chamber

	�
�

�
T

Tchamber

	 �
���

��� ���

When we know just one state variable at a certain location inside the rocket nozzle
�for example the temperature T � pressure p� speci�c volume v or the density ��
then we can use the relationships ��	��� for the isentropic change in state to cal	
culate the state of the gas at this location from the conditions at another location�
for example from the conditions inside the combustion chamber�

The steady �ow process� Up to now we have considered the change in state of gas
inside a closed system �without mass �ow across the borders of the system�� now we
want to extend the theory and incorporate that gas can enter and leave this container�

We consider the nozzle as a gas container�
gas enters the nozzle through the combustion
chamber area Achamber and leaves the nozzle
through the exit area Aend� The expansion
becomes a steady �ow process when we
disregard the special run	on �or shut	o��
operation� the �ow pattern is then constant
in time� and the matter that enters �or leaves�
the nozzle is the same for every instant�

Achamber Aend

m
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Now we have to introduce the velocity c of the gas molecules as a new state variable�
The gas velocity is actually a vector that has two components in a two dimensional
�ow �eld� however� let us now assume that the axial velocity component �parallel with
the centerline of the nozzle� is everywhere much higher than the radial velocity com	
ponent �perpendicular to the centerline of the nozzle�� The gas velocity c becomes a
scalar quantity when we neglect the radial component of the gas velocity vector�
Strictly speaking� this assumption is just valid for the centerline of the nozzle�
but the �one	dimensional streamline theory� has the advantage that the situation
for the gas is the same for every location on a cross sectional area of the nozzle�

The mass �ow rate m is constant for every sectional area A of the nozzle� therefore�

m �
c �A
v

�  � c �A � constant� � d


!
dc

c
!
dA

A
� � ��� ���

Equation ��	��� constitutes the �matter conservation law� for a steady �ow process�

Let us now equate the forces that act on the nozzle� gas that enters or leaves imparts
a linear momentum to the open gas container� and the pressure in the entry area is
di�erent from the pressure in the exit area� The pressure forces on the walls cancel
out when they act in radial direction� and therefore we just have to consider the
pressure forces on the wall of the nozzle in axial direction� We can write�

m � �cend � cchamber� ! �A � p�end � �A � p�chamber �
Z end

chamber

p dA ��� ��

The same law written in a di�erential notation is also called �Euler equation�� thus�

m dc! d�pA� � p dA� � c dc � �v dp � �dp


��� ���

Finally� we have to reconsider the energy conservation law for a steady �ow process�
Energy forms which could be involved are the kinetic energy of the gas� its enthalpy� a
change in the chemical composition of the gas� potential energy in case the gas moves
inside a gravitational �eld� heat input or output and mechanical work done on or by
the gas� When we neglect the small quantity of heat exchanged through the walls of
the nozzle and when we ignore that the gas is still reacting inside the nozzle� then we
just have to consider that the change in the enthalpy of the gas is transformed into
kinetic energy� Then the energy conservation law for the nozzle �ow process becomes�

hchamber�hend� c�end
�
� c�chamber

�
� � dh!c dc� � ������

The conservation laws for mass ��	���� linear momentum ��	��� and energy ��	���
enable us to calculate the conditions everywhere inside the rocket nozzle from the
conditions inside the combustion chamber �for example the pressure� velocity and
temperature at a certain location�� Note that we have used for the derivation of these
conservation laws considerations concerning the integral forms of these equations�
Di�erentiation of these equations is not always possible� for example� the di�erential
forms are not valid at a discontinuity of the �ow pattern �at a so	called shock wave��
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The speed of sound and the Mach number� In gas dynamics there are two more
quantities frequently used for the description of a �ow �eld� the local velocity of sound
�termed a� and the local Mach number �the quotient of actual velocity and speed of
sound� Mach � c	a�� The velocity of sound �or sonic speed� refers to the propaga	
tion of small pressure disturbances in a compressible medium� and in gas dynamics
the sonic speed is directly a square root function of the local temperature� a �

p
�	T �

To analyze the conditional equation for the velocity of sound let us consider a pres	
sure disturbance propagating inside a gas medium� We imagine that a control volume
�for example the shape of a cylinder� travels along with the sound wave� its constant
cross sectional area is always parallel with the wave front� The conservation laws for
matter ��	��� and linear momentum ��	���� applied to the steady �ow process inside
the control volume with constant cross sectional area �dA � ��� take now the form of�

velocity a

sound wave

d


!
dc

c
� �

c dc � �dp


or together�

c� � a� �
dp

d
��� ��

Provided that the pressure disturbance is small� we can assume an isentropic change
in state� Then equation ��	��� determines the density  as a function of the pressure p�

dp

p
! �

dv

v
�

dp

p
� �

d


� � ��� 
�

The conditional equations for the velocity of sound and the Mach number follow as�

a �

s�
dp

d

�
isentropic

�

r
�
p


�
p
� 	 T ��� ��

Mach � c	
p
� 	 T ��� ��

The sonic speed is well	known to be approximately ��� m s for the standard condi	
tions on the surface of the earth �� � 
��� 	 � ���� J kg K� T � ����
� K�� however�
the gas inside the thrust chamber of a rocket is much hotter and the local velocity of
sound is everywhere in the nozzle considerably higher than ��� m s� Note that we
used the assumption of a small perturbation with isentropic change in state for the
derivation of the conditional equation for the speed of sound� this assumption is not
valid anymore for strong perturbations caused by an explosion� and the shock wave
caused by an explosion travels much faster than determined by the equation ��	���
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��	�� Velocity and Temperature in the Isentropic Nozzle

St�Vernant�Wantzel equation� Integration of the Euler equation ��	��� yields�

cend �

s
��
Z end

chamber

vdp! c�chamber ��� ��

The assumption of an isentropic change in state of the gas� where p � v� � constant�
leads us to the St	Vernant	Wantzel equation �also called Zeuner	Wantzel equation��

cend �

s
��

�� 

�pv�chamber

�

� �

pend
pchamber

�
���
�

�
! c�chamber

�

s
��

�� 

	 Tchamber

�

� �

pend
pchamber

�
���
�

�
! c�chamber ��� ��

The St	Vernant	Wantzel equation expresses the exhaust velocity cend �the relative
velocity of the exhausted gases in the �nal area of the nozzle� as a function of
the pressure ratio pend	pchamber� the velocity in the chamber is usually neglected
�cchamber � ��� We can also use this equation to determine the velocity c as a function
of the pressure p at any other location inside the nozzle when we simply omit the index
�end�� We have already seen that� in order to achieve a high exhaust velocity� a high
speci�c chamber enthalpy is desirable� the expression in front of the opening square
bracket in equation ��	�� is two times the speci�c chamber enthalpy� For a calorically
perfect gas �cp � constant� we can integrate equation ��	�� to �nd h � cp �T � Thus�

hchamber � cp � Tchamber � �

�� 

	 � Tchamber ��� ��

The individual gas constant of the chamber gas 	 is the universal gas constant
	� � ��
��� J kmol K divided by the mean molecular mass of the gas� and� consid	
ering this� it is often stated that the St	Vernant	Wantzel equation explains why a low
mean molecular mass M of the chamber gas is desirable for a high exhaust velocity�
However� we can readily verify that the exhaust velocity cend is a function of three
factors only� the speci�c chamber enthalpy hchamber� the isentropic exponent � and
the pressure ratio pend	pchamber� The mean molecular mass of the chamber gas is
actually just important in case it has an in�uence on these main performance factors�

Temperatures in the rocket nozzle� The �re gases experience during the very
small time interval of the expansion a considerable decrease of pressure and an in	
crease of the speci�c volume� The state of the gas is determined by the perfect gas
law� and when we assume an isentropic change in state of the gas �equation �	����
we can readily calculate the temperature drop that accompanies the pressure drop�

Tend � Tchamber � � pend
pchamber

�
���
� ��� �

When we want to determine the temperature T inside the nozzle at a location di�erent
from the exit area� we may simply omit the index �end� and use the same relationship�
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Duct area� The equation ��	��� explains the decrease of the gas density  during
the isentropic expansion process inside the rocket nozzle� and we can rewrite it as�

end � chamber � � pend
pchamber

�
�
� ��� ��

However� our intention is now to calculate the area A of the nozzle as a function of the
pressure drop p	pchamber� The matter conservation law �m �  � c �A� equation �	���
indicates that we have to consider the density of the gas ��	�� and its velocity�
We ignore in equation ��	�� the chamber velocity �cchamber � �� and conclude�

m

A
� chamber � � p

pchamber
�
�
� �
s

��

�� 

	 Tchamber
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� �

p
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�
���
�
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�
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�
�
� � �
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�	�
�

�
��� ��
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A �
m

chamber
p
�hchamber

�
�
�

p

pchamber
�
�
� � �

p

pchamber
�
�	�
�

�����
��� ���

Term m is the mass �ow rate� a value that is usually predetermined for the
combustion chamber of a certain rocket engine �as well as the speci�c enthalpy h�
the density  and the pressure p inside the combustion chamber�� The exponent � is
essentially a characteristic of the propellent� We can learn from equation ��	��� that
the duct area A of the nozzle is a nonlinear function of the pressure drop p	pchamber�
According to the equation above the duct area is in�nitely large �A � ��
for two occasions� �rst p � pchamber �this comes from the assumption that the
velocity in the combustion chamber is zero� and then pend � � �expanding the gas to

an in�nitely small pressure��
The equation is obviously
not valid for the two bound	
ary values� however� the nu	
merical evaluation shows us
that there exist a minimum
duct area that is called the
�throat of the nozzle��
Between the chamber and
the throat there is the �con	
vergent part of the nozzle��
between the throat and the
exit area there is the �di	
vergent part of the nozzle��
Hypersonic nozzles are also
called Laval nozzles� named
after the Swedish engineer
Carl G�P�Laval �
��� 	 
�
���

duct area A � �p� h	m�chamber for several values �
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Velocity and pressure in the throat area� Let us now take a closer look at the
conditions for the gas in the throat area� It is easy to show that the local velocity
of sound �the acoustic speed a� prevails in the throat of an isentropic rocket nozzle�
term dA	A in the throat is zero by de�nition� and we can take the di�erential forms of
the conservation laws for matter and linear momentum ��	�� and �	��� to calculate�

d


!
dc

c
� � � c dc � �dp


� c�throat �

�
dp

d

�
A�constant

��� �
�

For an isentropic process this is exactly the condition ��	�� for the sonic speed� thus�

cthroat � a �
p
� 	 Tthroat ��� ���

Machthroat � 
 ��� ���

There is� however� a requirement for the presence of the velocity of sound in the throat
area of an isentropic rocket nozzle� the local acoustic velocity �or critical velocity�
is just established when the pressure in the combustion chamber is su�ciently high�
or� in other words� the critical pressure ratio �or Laval pressure� pthroat	pchamber
must be present in the hypersonic rocket nozzle� We �nd this pressure ratio when we
equate the condition ��	��� with the throat velocity determined by equation ��	���
neglecting again the chamber velocity and considering the relationship ��	�� Thus�

cthroat �

s
� 	 Tchamber�

pthroat
pchamber

�
���
� �

s
��

�� 

	 Tchamber

�

� �

pthroat
pchamber

�
���
�

�

The result is�
�

pthroat
pchamber

	
critical

�

�
�

�! 


	 �
���

��� ���

The critical pressure ratio is exclusively a function of the isentropic exponent �� for
example its value is ����� for � � 
�
� ����� for � � 
��� ����� for � � 
�� and so on�

In case the pressure ratio pthroat	pchamber is greater than the critical pressure ratio�
the velocity of sound can not be established in the throat of the rocket nozzle� Such
a situation can occur when the pressure in the �nal nozzle area is too high� and�
consequently� the chamber pressure is not high enough� Then the throat velocity
is smaller than the sonic speed and the divergent part of the nozzle decelerates the
gas �ow �the divergent part of the nozzle operates as a di�user�� Everywhere in the
nozzle the gas �ows with subsonic speed� However� when the chamber pressure is
high enough� it establishes the critical pressure and the critical velocity in the throat�

cthroat �
p
� 	 Tthroat �

p
�� 	 Tchamber	��� 
� ��� ���

The pressure in the throat pthroat cannot become smaller than determined by the
critical pressure ratio ��	���� and the velocity in the throat cthroat cannot become
greater than determined by equation ��	���� The divergent part of the nozzle operates
as a hypersonic nozzle� the gas �ows at supersonic speed and accelerates while the
duct area grows and the pressure drops� An expansion of the gas beyond the critical
throat pressure in the hypersonic part of the nozzle requires a divergent duct area�
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Optimal �nal pressure� We can use the St�Vernant	Wantzel equation ��	�� to
calculate the velocity cend of the gas as function of the pressure pend in the �nal
duct area of the rocket nozzle� and obviously the exhaust velocity is high when the
�nal pressure is low� However� ultimately we are interested in a thrust optimization�
and the pressure in the �nal nozzle area contributes to the thrust of the engine too�

The entire thrust of the engine consists of two parts� the momentum thrust cend �m
and the pressure thrust Aend � �pend � p��� compare equation ��	��� Term p� is the
ambient pressure �it ranges from p� � 
 bar at the surface of the earth down to
p� � � bar in the vacuum of space�� The e�ective exhaust velocity ceffective is then�

m dt

pend

cend

p�

chamber throat end

ceffective � cend !
Aend

m
�pend � p��

��� ���

�compare equation �	��

In order to �nd the optimal expansion as a function of the �nal pressure we have
di�erentiate the equation ��	��� with respect to pend� The conventional procedure is�

dceffective
dpend

� � � � dcend
dp

!
Aend

m
!
dAend

dp
� p� p�

m
� � ��� ��

Equation ��	�� is the conditional equation for the pressure pend in the �nal duct area
of a rocket nozzle with optimal thrust� The �rst two terms of the left hand side of this
equation cancel out� because the conservation laws for matter �equation �	��� and
linear momentum �the Euler equation �	��� state A	m � v	c and dc	dp � �v	c�
We can conclude that the �optimum expanded� nozzle operates with the ambient
pressure in the �nal duct area� pend � p�� A rocket nozzle that operates with the
ambient pressure in the �nal duct area is also called an �adapted nozzle��

The expansion ratio� We have seen that it would be optimal to operate the nozzle
always with the ambient pressure in the �nal duct area� However� then we would
have to construct a expandable nozzle for a space launcher that climbs through the
atmosphere from sea	level to space� Initially� the nozzle would be comparatively
short� later in space it would be extremely big� Since it is obviously for practical rea	
sons impossible �or at least too di�cult� to construct a nozzle with variable size� the
optimal size is a compromise solution� The expansion is characterized by the ratio ��

� �
Aend

Athroat
��� ���

Typical values for the expansion ratio � range from � �comparatively short� ground
level adapted nozzles� to 
�� �comparatively long� vacuum adapted rocket nozzles��
For ground level operation �boosters and �rst stages�� nozzles operate often with
overexpansion �overexpansion is possible up to about ��� of the ambient pressure��
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��	�� Overexpanding Nozzles

Pressure shocks� Let us now consider a rocket nozzle with a large exit area Aend

and a comparatively low throat pressure pthroat� The expansion of the exhaust gases
in the divergent part of the nozzle cannot lead to a �nal pressure that is consider	
ably lower than the ambient pressure �for example pend � ��� � p��� In such a case�
however� a separation of the gas �ow from the nozzle wall takes place� accompanied
by pressure shocks inside the nozzle which can transform the supersonic �ow instan	
taneously into a subsonic �ow� Pressure shocks inside hypersonic rocket nozzles may
not occur during normal operation� but they play a role during startup and shutdown�
These shock waves can cause destructive loads for the wall structure of the nozzle�

Conditions for the occurrence of a pressure shock� The sudden rise in pressure
takes place inside a very thin front� In order to analyze this phenomenon with the one
dimensional �ow theory we apply the conservation laws for matter� linear momentum
and energy �the integral forms of the equations �	��� �	� and �	��� to a constant
area control volume placed over the thin shock front� The index �
� characterizes the
conditions immediately before the shock� the index ��� the conditions after the shock�

shock wave

21
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�
c�� ��� �
�

To �nd the second of these equations we have to divide the equation ��	�� by the
constant control volume area A � m	�c�� to �nd the third equation we have to use
the perfect gas law p � 	T and replace the speci�c enthalpy h by the expression cp�T
�the speci�c heat at constant pressure is cp � �		��� 
�� compare equations �	����
The equations ��	���� ��	��� and ��	�
� provide a nonlinear system for the calculation
of the velocity c� the pressure p and the density  immediately after the shock� as	
suming that these values are well	known immediately before the shock� The equation
system has obviously the trivial solution that nothing happens in the control volume
�c� � c�� � � �� p� � p��� but it exists also another solution� This other solution is�
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The expression Mach� � c��	��	T�� � c���	��p�� is the square of the Mach number
immediately before the shock� The equations ��	��� to ��	��� are the well	known
relationships of gas dynamics valid for a rectangular pressure shock inside a gas pipe�
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Entropy change� As the next point we want to examine under which conditions
pressure shocks can occur inside a nozzle� We can readily verify that pressure shocks
cannot occur when the gas is �owing with sonic speed� because the equations ��	���
to ��	��� accept the trivial solution when the Mach number equals 
� Pressure shocks
can also not occur when the gas �ows with subsonic speed� because a shock is always
accompanied by a change in the entropy of the gas� and we can see that the conditions
for an isentropic change in state �equations �	��� are not satis�ed for a pressure shock�
To integrate the conditional equation ��	�
� for the entropy change we can calculate�

dS �
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T
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T
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Using ��	��� and ��	���� the entropy change for the rectangular shock wave becomes�
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The entropy change is positive for Mach numbers greater than 
 and negative for
Mach numbers smaller than 
� indicating that subsonic pressure shocks cannot exist�

Pressure ratios in the overexpanding nozzle� The pressure ratio in a rocket
nozzle with isentropic expansion can be expressed as a function of the Mach number�
The relationship follows from the energy conservation law cp �Tchamber � cp �T!c�	��
divided by the velocity of sound a� � �	T and transformed using the equation ��	��

p � pchamber �
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For example� the pressure in the �nal area of the nozzle is pend � ����
� � pchamber
for an exponent � � 
�� and a �nal Mach number Mach � �� and in this example
an engine is adapted to the sea	level pressure pend � 
 bar when operates with a
chamber pressure of pchamber � � bar� Equation ��	�� shows that the �nal pres	
sure pend diminishes proportionally when we start to reduce the chamber pressure�
When the chamber pressure gets smaller than a certain value� a pressure shock in the
�nal area of the nozzle takes place that increases the pressure ratio instantaneously�
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The equation above indicates that in any case a pressure shock will occur when we
diminish the chamber pressure below ���� bar �in practice� however� the �ow will sep	
arate earlier from the walls and oblique shock waves will take place inside the nozzle��
The shock front travels upstream towards the throat when we continue to reduce the
chamber pressure� however� it disappears when it reaches the throat� Finally� when
the chamber pressure is smaller than the critical pressure �
�� bar� equation �	����
the gas �ows through the nozzle with subsonic velocity at every location�
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pressure ratio p	pchamber as a function of the Mach number �� � 
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It is obvious that these pressure shocks may not occur during the normal operation�
The example� however� illustrates what happens during start	up and shut	down�
when a rocket engine designed for sea	level operation is ignited� the pressure in the
thrust chamber grows rapidly and blows the pressure shock wave out of the nozzle�
but the shock front enters the nozzle again from behind when the engine in stopped�
The engine must be constructed to stand the additional loads of the shock wave�
In case a ground	level adapted engine has been designed for variable thrust� its
throtteability is limited because the chamber pressure may not be controlled below a
certain value� The expansion ratio � �equation �	��� of nozzles designed for ground	
level ignition is usually much smaller than the ratio � of nozzles for vacuum operation�

��	�	 The Shifting Chemical Equilibrium

The reacting expansion process� The chemical reaction that burns the propellent
takes place at high temperatures and high pressures �for example� liquid rocket en	
gines operate with combustion chamber temperatures of about ���� K at pressures of
up to ��� bar�� and� as a consequence of the high combustion temperature� a consid	
erable portion of the propellent remains unreacted� The chamber gases are extremely
hot when they enter the nozzle� We have seen that the pressure drop in the nozzle
is accompanied by a temperature drop� the gases are considerably colder when they
leave the nozzle �for example 
�� K� equation �	�� The equilibrium for reversible
chemical reactions is a function of the temperature �sometimes also a function of the
pressure� compare equation �	���� during the expansion it changes rapidly into the
direction of a more complete combustion� the gases are still reacting inside the nozzle�
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Heat input� The expansion becomes a �diabatic �ow process� when we consider that
heat is produced inside the �owing gas by the chemical reactions� The �rst step in our
analysis is to calculate the heat input� the conservation law for the number of atoms
��	��� together with the chemical equilibrium for every individual reaction ��	�
�
allows us to calculate the chemical composition of the gas as a function of the tem	
perature and pressure� then equation ��	��� allows us to calculate the heat of reaction
%Hreaction as a function of the composition of the gas �or %hreaction� divided by the
mass of the gas�� The heat of reaction is a relative value� when we want to calculate
the chamber temperature from this value� we have to consider the temperature of the
gas before the combustion and the speci�c heat cp of the gas after the combustion�
However� our intention is now to �nd the heat released when the temperature drops�
The change in the heat of reaction is the energy input for the diabatic �ow process�

cp � T� � hchamber !%hreaction�T� p� ��� ���

According to the equation above� the value for the speci�c heat of reaction %hreaction
equals zero when the gas is at chamber conditions� Term T�� the stagnation point tem	
perature �or total temperature� of the �owing gas� is well	known to be constant for an
isentropic nozzle expansion process� For an expansion with heat input� however� the
total temperature T� � h	cp is a function that grows with dropping temperature T �

total temperature T� as a function of T for LH� LOX propellent �x � ����

dT�	dT � ����
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T� � Tchamber !
dT�
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� �T � Tchamber� ��� 
���

As an example� the �gure above shows T� as a function of T for the propellent com	
bination LOX LH� �mixture ratio x � ����� the pressures range from �� to ��� bar�
We can see that T� is� independent of the pressure p� approximately a linear function
of the temperature T �then we have dT�	dT � ���� for temperatures below ���� K��
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Conservation laws for a diabatic �ow process� Let us now reconsider the con	
servation laws for matter� linear momentum and energy �the equations �	�� to �	����

matter� m �  � c �A �
c �A � p
	 � T � constant ��� 
�
�

linear momentum� c dc � �dp


� �	 T
dp

p
��� 
���

energy� cp T� !
c�chamber

�
� cp T !

c�

�
��� 
���

These three conservation laws serve as an equation system for the calculation of the
pressure p� the temperature T and the gas velocity c everywhere inside the nozzle from
the conditions in the combustion chamber �we can use the perfect gas law p � 	T
to eliminate the density  and the de�nition h � cp � T to eliminate the enthalpy h��
Term m in equation ��	
�
� is the constant mass �ow rate and A is the duct area�
The expansion in the nozzle is an isentropic �ow process when the �ow �eld is free of
pressure shock waves and the stagnation point temperature �or total temperature� T�
equals the chamber temperature Tchamber at every location inside the rocket nozzle
�the idealized case of a �frozen equilibrium��� However� heat input from chemical
reactions causes the total temperature T� to grow during the expansion in the rocket
nozzle� and the expansion process is actually a diabatic �ow process with heat input
and growing entropy� The idealized case of a �shifting equilibrium� considers the heat
input by chemical reactions during the expansion of the gas in the rocket nozzle�

Exhaust temperature� We can di�erentiate the energy conservation law ��	
���
and insert the linear momentum conservation law ��	
��� to �nd the relationship�

� 	
�� 


�
dT� � dT

�
� c dc � �	 T

dp

p
��� 
���

Term cp is the speci�c heat of the gas at constant pressure� cp � �		���
�� When the
gas composition changes with the shifting equilibrium the value � is nearly constant�
Assuming the validity of equation ��	
��� with a constant factor dT�	dT we can write�

�

�� 


�

� dT�

dT

�dT
T

�
dp
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This relationship for a polytropic change in state can be integrated at once� Therefore�

Tend � Tchamber � � pend
pchamber

�
���

����dT��dT  ��� 
���

For example� for an isentropic expansion process �T� � constant� we �nd the nozzle
exit temperature Tend � 
�� K �assuming Tchamber � ���� K� pchamber	pend � ���
and � � 
���� A diabatic expansion process with heat input by a shifting chemi	
cal equilibrium� dT�	dT � ����� however� gives for the same chamber conditions a
considerably hotter nozzle exit temperature� Tend � 
��� K� We can estimate the ac	
tual nozzle exit temperature between these two boundary values� because neither the
frozen chemical equilibrium �the adiabatic �ow process� nor the shifting equilibrium
�the diabatic process� represents the actual situation in the rocket nozzle accurately�
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Exhaust velocity� We have seen that heat input by chemical reactions in the rocket
nozzle raises the temperature of the exhausted gas considerably� ultimately� however�
we are interested in �nding the in�uence of the heat input on the thrust of the engine�
Therefore we have to calculate the exhaust velocity cend in the �nal area of the nozzle�
The exhaust velocity follows immediately from the energy conservation law ��	
���
when we insert the actual temperature Tend �according to the equation �	
��� and
the total temperature T� �according to the equation �	
���� Then we can write down�

cend �
q

� cp
�
T� � Tend

�
! c�chamber ��� 
��

�

s
��

�� 

	 Tchamber

�

� dT�

dT

��

� �

pend
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�
���

����dT��dT 

�
! c�chamber

Interesting is now the comparison of the exhaust velocity cend for the shifting
chemical equilibrium ��	
�� with the exhaust velocity for the frozen equilibrium
�the St�	Vernant	Wantzel equation �	��� We may expect that the calculated per	

formance of the nozzle increases when
we consider that heat is transferred to
the gas �ow� The �gure on the left
shows the improvement of the exhaust
velocity as a function of � for several
pressure ratios �pchamber	pend from ��
to ��� bar�� assuming cchamber � � and
dT�	dT � ����� The calculated perfor	
mance improves by a few percent only�
a disappointing result for a considerable
amount of heat input to the gas �ow�
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Estimated performance� The actual performance of the nozzle is somewhere in
the middle between the performance calculated using the frozen equilibrium and
the performance calculated with the shifting equilibrium� The calculation with
frozen equilibrium under	estimates the performance by a few percent� the shifting
equilibrium over	estimates the performance� Comparison with experiments shows
that for small engines the frozen equilibrium calculation is the better representative�
for big engines� however� the shifting equilibrium calculation is more appropriate�
The composition of the hot pressurized gas changes very fast during the expansion�
but chemical reactions require �nite time intervals� The reaction time depends es	
sentially on the molar composition of the nozzle gas� its temperature and pressure�
The calculation of the reaction velocity is usually very di�cult �and therefore often
not done in the design of rocket nozzles�� because some of the rate constants are not
accurately known for gas under extraordinary conditions� The velocity of chemical
reactions is not the only problem that still resists an accurate computer calculation�
the actual �ow in the nozzle involves friction� heat transfer to the walls� turbu	
lent boundary layer e�ects� multi	phase working �uid with small droplets� energetic
noise and oscillations and so on� The calculated performance is anyway not accurate�
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Duct area� Let us now use the matter conservation law ��	
�
� to calculate the
duct area of the nozzle for the diabatic expansion as a function of the pressure ratio�
We can readily transform this equation and insert the temperature T according to the
equation ��	
��� and the velocity c according to the equation ��	
��� The intention
is to compare the diabatic duct area with the adiabatic duct area �equation �	����
therefore we neglect again the velocity in the combustion chamber �cchamber � ���
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When we compare the duct area for the diabatic nozzle expansion process
�dT�	dT � ����� with the duct area for the adiabatic process �dT�	dT � ��
numerically� we �nd that the real nozzle must be bigger than the isentropic nozzle�
The �gure below shows the enlargement of the duct area as a function of � for

several pressure ratios �pchamber	pend
from �� to ��� bar�� Even though the
heat input has just a small in�uence
on the gas velocity in the nozzle� it
causes a comparatively high increase
of the gas volume �a reduction of the
density�� In case the nozzle is designed
using the isentropic expansion theory
ignoring the in�uence of heat input�
the mass �ow rate m through the noz	
zle is actually smaller than expected�
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the heat input causes a �thermal blocking� of the �ow through the isentropic nozzle�

Situation in the throat� In order to analyze the e�ect of heat input on the throat
conditions in the rocket nozzle we make use of the Mach number� Mach � c	

p
�	T �

Remember that the Mach number equals 
 in the throat area of an isentropic nozzle�
We di�erentiate the equation for the Mach number c� � Mach� � �	T to �nd�

�
dc

c
�

d�Mach��

Mach�
!
dT

T
��� 
���

The objective is now to express the nozzle area as a function of the Mach number�
therefore we use again the conservation laws for matter� linear momentum and energy�
The di�erential form of the energy conservation law �equation �	
��� considers al	
ready that heat energy is transferred to the gas �ow by using the factor dT�	dT � ��
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The di�erential forms of the conservation laws for the diabatic �ow process are then�
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The expressions dc	c� dp	p and dT	T can readily be eliminated from the equations
�system �	
�� to �	

��� The result is a relationship between dA	A and d�Mach�� �
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This relationship can be integrated �numerically and analytically� to �nd the duct
area as a function of the Mach number� however� now we are mainly interested in what
happens in the throat of the nozzle� For Mach � 
 the equation ��	

�� simpli�es to�

dA

A
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�
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�

�
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The expression in square brackets equals zero for an isentropic expansion process
�dT�	dT � ��� but the expression is greater than zero for a diabatic expansion pro	
cess with heat input �dT�	dT � �� the speci�c heat ratio � is always greater than 
��
This indicates that dA	A is positive and that the sonic point Mach � 
 lies in the
divergent part of the nozzle now� The condition for the throat area is dA	A � ��
and this shows that the Mach number is smaller than 
 in the throat of the nozzle�

Mach� �

� dT�	dT


� � dT�	dT
��� 

��

The Mach number Mach � c	a as a substitute for the velocity c and the velocity of
sound a� � �	T as a substitute for the temperature T play a key role in gas dynamics�
The square of the velocity of sound a� ��	��� however� equals dp	d just in case of
an isentropic expansion process� For an expansion with heat input ��	

�� we have�

dp

d
� Mach�throat � a� �


� dT�	dT


� � dT�	dT

c�

Mach�
��� 
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To verify the relationship above we have to use the perfect gas law p � 	T in its
di�erential form dp	p � dT	T ! d	� Finally we want to transform the di�eren	
tial equations ��	
���� ��	


� and ��	

�� in a way that they express the velocity c
as a function of the Mach number �or the square of the Mach number�� The result is�

dc

c
�

�
�
� dT�	dT �

��� 
� Mach� ! ��
� dT�	dT �

�
d�Mach��

Mach�
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�

We can readily verify that it is possible to integrate this relationship analytically�
provided that the heat input factor dT�	dT is constant �for example dT�	dT � ������
We will use the equations ��	

�� and ��	

� later to examine the shape of the nozzle�
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��	�
 Nozzle Geometry

The two�dimensional axisymmetric �ow �eld� When we want to analyze the
�ow �eld of the hot gas inside a hypersonic rocket nozzle in order to design the shape
of the nozzle we have to study the di�cult subject of �computational �uid dynamics��
The computation of two �or three� dimensional �ow �elds is today usually performed
by means of standard programs on powerful computers �such as �nite element meth	
ods� for example�� The �method of characteristics�� however� is another very elegant
way to solve some problems of gas dynamics mainly with analytical transformations�
Let us now examine the application of this important method to the computation of
the axisymmetric �ow through a hypersonic rocket nozzle�

Steady �ow through a volume element� We remember that the one	dimensional
streamline theory uses of the conservation laws for mass� linear momentum and en	
ergy in order to analyze the �ow through the rocket nozzle� Therefore we start with
the formulation of the conservation laws for mass and linear momentum� however�
this time we consider just an in�nitesimally small control volume inside the nozzle�
The volume element is located in the �ow �eld at the position x and y� the x	
coordinate is the centerline of the nozzle� the y	coordinate aims in radial direction�
The gas velocity �c is now a vector with the axial velocity component U and the radial
component V �the velocity in z	direction W vanishes in an axisymmetric �ow �eld��
The angle � is the angle between the velocity vector �c and the axis of the nozzle�

�c �

�
 U

V
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�
A �

�
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�
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Six surfaces con�ne the volume�

A� � �y ! ��� � dy� d� dy

A� � A�

A� � y d� dx

A� � �y ! dy� d� dx

A� � dx dy

A� � A� ��� 

��

x

y

z

y

�

�c

dx

dy

d�

A�
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The control volume has not the shape of a cube but the shape of a prism� front and
back face have the same area A� � A� � the side face area A� equals A�� but the
bottom face A� is smaller than the top face A�� Term d� is an arbitrarily small angle�
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Conservation of matter� The law of conservation of matter �or mass� for a steady
�ow process states that the mass that enters the constant control volume at a certain
instant is equal to the mass that leaves the volume at the same instant� Therefore�Z

A
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!
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The scalar vector product of velocity vector �c and surface vector d �A �rectangular to
the surface�� multiplied by the density � is exactly the mass �ow rate through the
control area� Note that no mass enters or leaves through the side faces A� and A��
When we evaluate the expressions in square brackets for the four control surfaces
A� to A� �determined by the equations �	

�� we �nd a partial di�erential equation�
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Conservation of linear momentum� The conservation law for the linear momen	
tum applied to the in�nitesimally small control volume is a little more complicated
than the matter conservation law� the equilibrium of forces is a vector equation that
considers also pressure forces which act on the surfaces� We can write it down as�Z
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No matter crosses the side faces A� and A�� and therefore these surfaces do not con	
tribute to the equilibrium of forces with a change in linear momentum ���c ����c�d �A ��
The surface A�� however� is inclined against the y	axis �the angle is d�� and thus
it contributes to the equilibrium of forces with a pressure force pd�A in y	direction�
Evaluation of the equation ��	
��� brings us �nally two partial di�erential equations�
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The equation system ��	
��� is also called �Euler equation� for a steady �ow �eld�
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When we evaluate the equation ��	
��� we �nd out that the contribution of the
pressure force pd�A on the side face A� cancels out because the top surface A� is
larger than the bottom surface A�� The two terms UV and V� come from the fact
that the control volume grows with the y	coordinate� the Euler equations in the form
of equation ��	
��� for an axisymmetric �ow �eld are not identical with corresponding
equations for a plane �ow �eld �a �eld with no change in the parameters along
the z�axis�� The matter conservation law ��	
��� would also be di�erent when we
considered a plane �ow �eld� We can eliminate the terms UV and V� from the
equation system ��	
��� when we insert the matter conservation law ��	
���� Thus�
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Now these equations accept the same form as for the description of a plane �ow �eld�

Conservation of the angular momentum� It is one of the essential statements of
the �boundary layer theory�� developed by Ludwig Prandtl �
��	
����� that friction
in a �ow �eld plays a role only in thin layers next to the walls� and that the �ow �eld
distant from the walls is nearly free of friction� Therefore the expansion in a rocket
nozzle is usually �rst calculated as a frictionless �ow process� and then corrected
considering the the boundary layer friction� We have used an in�nitesimally small
control volume to establish the conservation laws for matter and linear momentum�
however� we have not considered that shearing forces might act on the surfaces� the
result is the �Euler equation� for a frictionless �ow �eld �incorporation of shearing
forces would lead us to the �Navier	Stokes� equations�� The important e�ect of the
absence of shearing forces is that the �ow �eld is �free of rotation�� it means that the
forces cause the �uid elements to translate but not to rotate� Rotation free motion of
a �uid element in a plane or axisymmetric �ow �eld demands the following condition�
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The condition ��	
��� for all elements in a rotation	free �ow �eld as a consequence
of the absence of shearing torques is actually the conservation law for the angular
momentum �in a three	dimensional rotation	free �ow �eld� �� � ���r� �c � ���
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Transformation of the fundamental equations of gas dynamics� The objec	
tive is now to transform the conservation laws for matter ��	
�
�� linear momentum
��	
��� and angular momentum ��	
��� in a way that we can eliminate the partial
derivatives ��x and �y� and replace them by total derivatives of other coordinates�
The �rst step is to add the Euler equations ��	
��� and incorporate the matter con	
servation law ��	
�
�� The result is called �fundamental equation of gas dynamics���
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The expression �p	� in the equation above equals the square of the velocity of sound
a� just in case of an isentropic expansion� in case of an expansion with heat input�
however� the term �p	� is more accurately determined by the equation ��	

���
Note that the fundamental equation of gas dynamics for an axisymmetric �ow in the
form ��	
��� is not identical with the corresponding equation for a plane �ow �eld�
the expression on the right hand side V	y would disappear in the description of a
plane �ow �eld� The next step is to replace the velocity components U and V by the
�ow velocity c and the �ow angle � �compare equation �	

��� We can di�erentiate�
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Then we insert the derivatives ��	
�� into the equations ��	
��� and ��	
��� to �nd�
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The problem is to �nd directions in the x	y	plane where the partial derivatives �	�x
and �	�y can be composed to total derivatives� The new coordinates are curves in the
x	y	plane called � �right running characteristic� and � �left running characteristic��

The directions of these curves at
a location x� y are determined by
the angles ��� !� with respect
to the local �ow direction ��
Thus� at the location �x� y� the
right running characteristic �
has the inclination angle � � �
with respect to the centerline
of the hypersonic rocket nozzle�
the left running characteristic �
has the inclination angle �! ��
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The total derivatives of � and c with respect to the new coordinates � and � are then�
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Now we have to select the angle � appropriately with the intention to combine the
equation ��	
��� with the equation ��	
���� The composition of the partial derivatives
to total derivatives is just possible when the angle � satis�es the following condition�
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In case of an isentropic expansion we have �p	� � a� and dT�	dT � �� and this
means that in an isentropic �ow �eld the angle � is exactly the Mach angle� However�
equation ��	

�� represents the term �p	�more accurately for a diabatic expansion�

We multiply equation ��	
��� once by the factor ! sin�� the second time by � sin�
and add the result every time to the equation ��	
���� multiplied by the factor cos��
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The modi�cation is now nearly complete� the only transformation that is still missing
is the analytical integration of the expression cot� � dc	c in the two equations above�
We can integrate this expression when we consider that in the relationship ��	
�
�
the angle � is exclusively a function of the Mach number �assuming that the heat
input factor dT�	dT is constant� for example dT�	dT � ������ The equation ��	

�
relates also the expression dc	c to the Mach number� and the integration yields�
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Integration brings us the angle ����� an angle that is called �Prandtl	Meyer� angle�
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Intersection of the characteristics� The analytical transformation of the conser	
vation laws for matter� linear momentum and angular momentum onto the character	
istics leads us to the di�erential equation system ��	
��� and ��	
���� the integration
of the energy conservation law leads us to the Prandtl	Meyer angle �equation �	
����
The analysis is a little complicated� let us therefore summarize the �nal result�
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These equations describe the relationships between the �ow direction �angle �� and
the �ow velocity �angle �� along the right running characteristic � ��	
��� and the left
running characteristic � ��	
���� When the values for � and � are well	known at two
neighboring locations inside the �ow �eld �for example at the upper location 
 and
the lower location ��� the equations ��	
��� and ��	
��� can be used to compute the
corresponding values at another location �for example at a location � downstream��

The procedure works as follows� the angles �� and �� determine at the location 
 the
inclination tan��� � ��� of the right running characteristic �� and �� and �� deter	
mine at the location � the direction tan��� ! ��� of the left running characteristic ��
We assume that the characteristics are nearly straight lines and bring them to in	
tersection at point �� Then we replace in an approximation di�erentials by di�erences�
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The equations for the di�erences
above serve as a linear system
for the calculation of the �ow
angle � and the Prandtl	Meyer
angle ���� at the location � in
the �ow �eld� and then we �nd
the angle � at point � by solving
the nonlinear equation ��	
����
With the knowledge of the an	
gles � and � the situation is
entirely determined at point ��
because the Mach number is a
direct function of the angle �
�it follows from equation �	
�
��
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Construction of the �ow �eld� Now we can use the method of characteristics to
calculate the complete �ow pattern� provided that we know the situation �that means
�ow angle and Mach number� along one of the borderlines of a two	dimensional �eld�

For example� we can compute the nozzle contour which belongs to a certain Mach
number pro�le predetermined along the centerline of the nozzle� or we can compute
the steady hypersonic �ow �eld in a certain nozzle with divergent contour for a pre	
determined Mach number in the throat area �or immediately behind the throat area��

In every step we bring characteristics of two nearby points to intersection� and cal	
culate �ow angle and Mach number on the intersection point� Then we use the
situation on this new point to proceed in the calculation with bringing the character	
istics of the new point to intersection with the characteristics of another nearby point
in the �ow �eld� The method of characteristics transforms the problem of �nding
the solution to a system of partial di�erential equations into the problem of solving
a system of many �comparatively simple� equations� However� the characteristics
are not exactly straight lines� and for accuracy their grid should be closely meshed�
The �nal calculation of the mesh of characteristics must be performed on a computer�

Example ��� The method of characteristics can be used to calculate the �ow pattern
inside a hypersonic rocket nozzle� The example shows the isentropic expansion in the
divergent part of an axisymmetric rocket nozzle� the expansion begins with a parallel
�ow in the throat of the nozzle �Mach �� and ends with a parallel �ow at the exit of
the nozzle �Mach 
���� The �ow �eld is determined for every point of the mesh of
characteristics by the �ow direction and the �ow velocity �indicated by the direction
and length of the arrows� the Mach angle between �ow direction and characteristics��

estimated
nozzle contour

predetermined velocity profile
along the nozzle centerline

predetermined velocity
profile in the
throat

parallel flow

expanding
flow

parallel
flow

Mach number3.53.252.852.151.51.0

exit area
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��
� Liquid Rocket Stages

Propulsive maneuvers in space�ight are always performed by means of rocket motors�
We talk about liquid rocket engines when these motors operate with liquid fuel and
liquid oxidizer� Di�erent concepts are in use to feed liquids into thrust chambers�
There the propellent is burned� expanded and exhausted with high relative velocity�

��
�� Tanks and Structures

Liquid propellents� A large variety of di�erent liquids is theoretically usable as
fuel or oxidizer in bipropellent �or tripropellent� systems� however� when we take
a look at existing launch vehicles or spacecraft we can see that there are actually
only three bipropellent combinations which are really in common use today� These
three liquid propellents are� the high energetic combination LOX LH�� the lower
energetic �but less voluminous� combination LOX kerosene� and �nally the storable�
hypergolic combination nitrogen tetroxide hydrazine �N�O� N�H�� or derivatives��

Propellent accommodation� Regarding weight and structure �rmness� spherical
tanks are most e�cient to store pressurized liquids� However� often ball shaped tanks
do not meet the optimal launcher dimensions �slender	bodies�� and therefore large
propellent quantities are usually stored in cylindrical tanks with semi	spherical ends�
Fuel and oxidizer can either be stored in two separate tanks� �usually arranged in a
tandem con�guration with external piping� or in a single tank with a partition that
separates two compartments �usually a semi	spherical bulkhead with internal piping��
Sometimes we �nd also stages which use several tanks in a parallel con�guration�

During the �ight the stresses and loads are not the same for all locations on the
surface of a tank� and therefore the wall thickness of the tank structure material

�stainless steel or aluminum alloy�
is usually not constant� The mass
of a spherical tank is essentially
a function of the tank material�
the inner pressure and the stor	
age volume� When we compare
tanks of di�erent size for a certain
type of liquid propellent we might
expect that tank mass is propor	
tional to the tankage �propellent
mass�� however� in fact larger
tanks have a lower speci�c weight�
in practice it is more appropriate
to assume that the tank weight
is approximately proportional to
the surface of the �lling amount�
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Space launchers store propellent in pressurized tanks� for structural �rmness reasons
and in order to avoid pump cavitation �typical pressures range from �� to ��� bar��
The pressure gas may not chemically react with the liquid� or condense or dissolve
in the liquid� For example� the helium pressure gas can be taken from a ball	shaped
high	pressure container near the engines� or combustion gas can be taken from the
engines or from another gas generator� Tanks that store cryogenic liquids �liquid
hydrogen and liquid oxygen� require heat insulation in order to minimize the propel	
lent vaporization in the tanks and the formation of unwanted ice layers on the outer
surface of the tank �ice layers do not only increase the lift	o� mass of the launcher�
pieces that break o� during the initial �ight phase can hit and damage the vehicle��
Propellent lost by vaporization prior to launch has to be re�lled shortly before lift	o��
Filling cryogenic propellents into tanks is not easy� liquid or even gaseous pollutant
can solidify in liquid hydrogen� and the vapor of liquid hydrogen is quite explosive�

Motion of the vehicle can cause sloshing �and vortexing� of the liquids in the tanks�
particularly when the tank is partly empty� The sloshing is dangerous because it can
interact in resonance with the attitude stabilization system of the vehicle and be	
cause it can uncover the tank outlet and allow gas bubbles to enter the discharge line�
The motion of the liquid in the tanks is usually diminished by ba&es �metal sheets��

It is unfortunately not possible to use the entire propellent charge of the tank for
propulsion� a quite large amount �typically ��� remains after burnout in the tanks
and in the lines �wetting the tank walls or trapped in grooves� valves� instruments and
so on�� This residual propellent deteriorates the performance of the vehicle� and thus
an e�ort is made in the construction of tanks to maximize their expulsion e�ciency�
It can be a problem to ensure that no gas enters the discharge lines of the tanks�
Especially for the application in zero	gravity environment of space� several di�er	
ent devices have been developed in order to guarantee bubble free feeding of liquid
propellents to the engine� including bladders� piston mechanisms� bellows and �lters
�metal screens with many small openings which attract the liquid by surface tension��

Lines and valves� The outlets at the bottom of the tanks are connected with
the engines via pipes which convey the propellent components to the turbo	pumps�
These pipes are usually made of stainless steel� heat insulation is required in case the
pipes conduct cryogenic liquids� The �ow through the lines is initiated and controlled
by high	precision valves� such as drop ball valves �for switch on and o�� or burst di	
aphragms �for one single start�� Many liquid rocket engines use �lters in their lines
in order to prevent that dirt or other particles �debris from burst diaphragms� cause
malfunction in the valves or regulators� Lines and valves in liquid rocket engines are
intensively tested for utmost reliability� because a single malfunction of a valve or
a leak in one line will usually have the failure of the whole mission as the consequence�

Swivel mounted thrust chambers ��nozzle gimballing� for thrust vector control�
require that the pipe lines are �exible or that pipes are joined by �exible �ttings�
For example� �exibility can be provided by two right	angle turns in the lines where
special �pivotable� connections allow the pipes to de�ect when the engine is swiveled�
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��
�� Thrust Chambers

Injectors� The injector is usually a disk with many small ori�ces placed at the entry
wall of the cylindrical combustion chamber� Its function is to introduce the propellent
into the combustion chamber in the form of thin sprays which contain an optimal
mixture of fuel and oxidizer� Propellent provided from the feed system in liquid form
must vaporize during the injection� however� the propellent can also be provided in
the form of gas when it comes from a precombustion chamber or when it has been
used for chamber wall cooling �hydrogen is usually injected as a gas� and oxygen is
vaporized during the injection by heat from the hydrogen�� Several injector proper	
ties in�uence the e�ciency and stability of the combustion� the number of holes in
the injector face� their distribution and size� the injection velocity and the inclina	
tion of the jets of fuel and oxidizer and so on� The engineering of injectors for rocket
motors is rather based on empirical approaches than on analytical understanding�
The injector pressure drop for liquid propellents ranges from � to 
� bar� typically�

In case of LOX LH� engines or LOX kerosene engines the electrical spark ignition
system is usually integrated in the injector system� Engines that burn the hypergolic
propellent combination N�O� N�H� ignite spontaneously without special igniter�

The chamber size� A cylindrical container serves as the combustion chamber�
For weight reasons the combustion chamber should be short and as small as possible�
however� its volume must be large enough to ensure a good combustion e�ciency�
The length of the chamber is compared with the volume vchamber for a particular pro	
pellent combination using the characteristic chamber length L� � vchamber	Athroat�
typical values for L� range between ��� and 
�� meters for the propellent combinations
LOX LH� or N�O� N�H�� or between 
� and ��� meters for LOX kerosene�

The nozzle contour� The nozzle begins with a converging section at the exit wall
of the combustion chamber �opposite to the injector face�� The diameter of the
well	rounded throat is smaller than the diameter of the combustion chamber �typ	
ical values for the throat diameter range between ��� and ����� A �bell	shaped�
diverging section of the nozzle is the best compromise� it is possible to permit large
divergence angles right behind the nozzle throat ���� up to ����� because the pres	
sure is still high and the gas is able to expand rapidly� but the divergence angle at
the end of the nozzle is small in order to minimize divergence losses �usually �� to ����

The contour of a bell	shaped nozzle can be approximated by a circular throat section
patched together with a parabolic section� Even though the �ow �eld in the exhaust
area of a rocket nozzle with bell	shaped contour is not exactly uniform and parallel�
the kinetic energy losses are actually small �nozzles with the optimum contour would
be too long�� The expansion area ratio � � Aend	Athroat determines the size of
the nozzle� ground level adapted nozzles are shorter than vacuum adapted nozzles
�for example the retired engines of Saturn	�� � � 
� for F
 and � � ��� for J��
or � � � for America�s SSME� and � � 
�� for Japan�s upper stage engine LE	�A��
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Cooling of the thrust chamber wall� The chemical reactions inside the thrust
chamber of a large liquid rocket engine transform an enormous amount of energy per
unit of time� Just a small part of this energy �between ���� and ��� is transferred
to the chamber walls� but without cooling the wall material would melt immediately�
Thrust chambers of large liquid engines are regeneratively cooled� before the propel	
lent enters the combustion chamber it is used to absorb the wall heating �the fuel com	
ponent is usually used for cooling�� The combustion temperature is consequently hot	
ter and the heat energy that had entered the chamber walls is not lost for propulsion�
The liquid that comes from the turbopump feeding system �ows through a tubu	
lar cooling jacket �an assembly of many small pipes brazed together� before it pro	
ceeds to the injector� The diameter of the cooling tubes is not uniform along the
nozzle surface� the highest heating rates occur at or near the throat and thus is
is advisable to let the coolant �ow faster at this location� The inlet manifold of
the cooling jacket is often placed at the throat or at the combustion chamber to
provide that fresh coolant absorbs the intensive heating� Then the coolant �ows
though small individual circumferential pipes� aggregates in the alternate tubes and
proceeds directly to the injector� The e�ciency of regenerative cooling of thrust
chambers can be supported by other cooling methods� such as transpiration ��lm�
cooling of highly stressed surfaces or dump cooling of the nozzle exit area �occa	
sionally also radiation cooling�� The pressure loss in the cooling jacket depends on
the diameter of the tubes and ranges between �� and ��� of the chamber pressure�

Hydrogen is an excellent regenerative coolant for rocket engines� the liquid increases
its enthalpy considerably when it vaporizes under high pressure in the cooling jacket�
The energy picked up by thrust chamber wall cooling can be used to drive turbopumps
of the feed system �expander cycle engines�� avoiding the necessity of a gas generator�
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��
�� Turbopump Feed Systems

Pumps and turbines� The turbopump feed system is another main component of a
powerful liquid rocket engine� The problem is to feed liquids with large �ow rates and
high pressures into the thrust chamber� these liquids are sometimes chemically ag	
gressive or extremely cold� the feed system must be a lightweight construction with a
high reliability� there is nearly no time for warming	up or checking	out the hardware�
�ow instabilities are a permanent threat due to the nearby presence of the thrust
chamber as a strong source for vibrations� dynamic loads during the �ight can also
cause instabilities� bubbles in the liquids can cause pump cavitation� propellent leak	
age can form explosive gas and so on� The only advantage in comparison with other
engines is that the operation time �or lifespan� is very short� usually below 
� minutes�

A key parameter in the selection of a turbopump feed system is the propellent density�
pumps are basically constant volume �ow machines� and the shaft power that is re	
quired for a certain pump head �%p	� is inversely proportional to the �uid density�
Larger pumps are necessary for feeding rocket engines with low density propellent�
When the engine operates with a propellent combination where oxidizer and fuel
have approximately the same density �such as LOX kerosene or nitrogene tetrox	
ide hydrazine for example�� then the pumps for the two di�erent liquids have approx	
imately the same optimal shaft speed and it is possible to drive these pumps with the
same turbine �without reduction gear�� However� since the optimal turbine speed is
usually higher than the pump speed� it will anyway save weight and turbine power to
interpose a reduction gear between the turbine shaft and the pump shaft� When the
fuel has a much lower density than the oxidizer �liquid hydrogen  liquid oxygen��
the fuel pump needs more speed �and more than one stage� than the oxidizer pump�
and it can be an advantag to use separate pump assemblies for the di�erent liquids�

Pumps in liquid rocket engines are usually centrifugal pumps �occasionally also axial
�ow pumps�� with carefully designed shaft seals to prevent leakage �explosive or corro	
sive propellent� and with carefully designed lubrication systems �in case of cryogenic
propellent the liquid itself is the lubricant� oil would freeze at low temperatures��
The pump power for a certain propellent is determined by the �ow rate multiplied
by the pressure raise� and in order to get a pump with a small size it is advisable to
select the pump speed as high as possible �the highest pump speed is limited by the
beginning of impeller blade cavitation�� The �ow rate is proportional to the speed
�number of revolutions per minute�� the pressure raise or pump head is proportional
to the square of the pump speed and the consumed power is proportional to the cube
of the pump speed� For example� the pumps in the large liquid rocket engine F

�LOX kerosene� of Saturn	��s �rst stage operated with a common shaft drive at a
speed of ���� rpm and consumed a power of ����� hp� The more modern engine of
the Space Shuttle SSME� however� uses for fuel and oxidizer di�erent pump assem	
blies �each with precombustion and pre	pump�� the �	stage high	pressure hydrogen
pump consumes ����� hp shaft power� operates with a speed of ���� rpm� and feeds
hydrogen with a pressure of �� bar into the cooling jacket of the thrust chamber�
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The power to drive the pumps of large liquid rocket engines comes from axial gas
turbines� they consist usually of a set of up to three �rotating and �xed� blade rings�
A turbine transforms the enthalpy of a gas into shaft power by expanding the gas�
The shaft power of a turbine is therefore proportional to its mass �ow rate multi	
plied by the decrease of the enthalpy of the working gas� where the decrease of the
enthalpy of the working gas can be calculated from the pressure drop and the temper	
ature drop assuming approximately an isentropic expansion �where p�v� � constant��

In liquid rocket engines there are various ways where the working gas comes from
and where it goes to after the expansion� the working gas can be bleed gas from the
combustion chamber� or it can be supplied by a separate gas generator� or it can be
gas from thrust chamber wall cooling� or it can come from a pre	combustion chamber�
After the expansion the gas can be discharged into the thrust chamber at a location
where the pressure is considerably lower� or it can be discharged to outside by a sep	
arate exhaust nozzle� or� provided that its pressure is still considerably higher than
the chamber pressure� the gas can be injected into the main combustion chamber�
Di�erent propellent combinations and di�erent working principles of the feeding sys	
tem require quite di�erent turbine constructions� a high turbine inlet temperature is
desirable for a low �ow rate �single crystal material and special alloys allow turbine
inlet temperatures between 
��� K and 
��� K�� However� the necessity of blade
cooling can be avoided when the working gas comes from a gas generator with a
temperature below the melting point of the blade material� A high turbine speed is
desirable for a good e�ciency� but sometimes the construction of the engine demands
that the pumps are connected directly to the turbine� and e�ciency and the shaft
speed are a compromise �turbines operate with an e�ciency between ��� and �����
The turbine power of large liquid rocket engines with high chamber pressure can reach

����� hp and more� and this is usually more than the power of aircraft turbo	engines�
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Gas generators� Often the pressure gas that is used for driving the turbines of a
large liquid rocket engine is generated by a gas generator� Gas generators are similar
to combustion chambers regarding their function� but the combustion is performed
with the intention to generate power �and not thrust�� and thus the propellent is usu	
ally burned with a di�erent mixture at a lower temperature �for example 
��� K only��
The lower temperatures avoid the necessity of cooling for turbine and gas generator�

Propellent feeding cycles� There are basically two di�erent classes of turbopump
feed system for large liquid rocket engines� so	called open cycles and closed cycles�
Open cycle engines discharge the working gas of the turbopumps without expanding
it in the main thrust chamber� usually in a separate nozzle and sometimes in the main
nozzle at a location near the end where the pressure is considerably lower than the
chamber pressure� Closed cycle engines �also called topping cycle engines� expand
the working gas of the turbines in the main thrust chamber� they are more expensive
but o�er a slightly better performance because the energy content of the propellent
is more e�ciently used� Several sub	classes can be identi�ed within these two main
classes� also mixed forms are thinkable but have not been realized yet �for example
rocket engines with a closed fuel cycle and an open oxidizer cycle�� In common
use are open gas generator cycle engines for all propellents and closed cycle en	
gines with staged combustion for LOX LH� propellent �occasionally LOX kerosene��

Open cycle engines� In so	called �combustion tap	o� cycle engines� the pressure
gas for driving the turbopumps comes directly from the main combustion chamber�
However� the gas is usually not the optimal mixture for the turbine �it is too hot�� and
thus it must be cooled down with fuel or oxidizer before it enters the turbine� Better is
the use of a separate gas generator� the so	called �gas generator cycle engine�� where
it is easy to adjust the optimal mixture of fuel and oxidizer for the generation of tur	
bine shaft power �the gas generator consumes between 
� to �� of the propellent��
The turbine exhaust can either be discharged into the main nozzle at a lower pressur	
ized location downstream� or better into a special small hypersonic exhaust nozzle�
Open cycle engines that use hot vaporized coolant from the thrust chamber cooling
jacket for driving the turbopumps are called �coolant bleed cycle engines�� These
cycles have the advantage of the absence of a gas generator� but the turbine power is
limited to relatively low values by the maximum temperature of the cooling jacket�

Closed cycle engines� It is possible to feed the turbine exhaust gases directly into
the combustion chamber� provided that the pressure raise of the pumps is compara	
tively high and the chamber pressure is comparatively low �in practice below � bar��
The disadvantage of the working principle of �expander cycle engines� is that hydro	
gen� the best regenerative coolant� does not work e�ciently at low chamber pressures
�engines that burn LOX LH� propellent operate with a chamber pressure between

�� bar and ��� bar�� The solution to the problem is the use of a precombustion cham	
ber� actually nothing else than a high	pressure gas generator� However� in contrast
to gas generator cycle engines� these �staged combustion cycle engines� inject the to	
tal turbine exhaust gas into the main combustion chamber� These engines are more
expensive but also the most e�cient rocket engines with the highest speci�c impulse�
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Example ���a� Open cycle engines discharge the working gas for driving the turbines
either with a separate nozzle to outside or into the main nozzle at a location
downstream where the pressure is su!ciently low�

Example ���b� Closed cycle �or topping cycle� engines inject all the working gas for
driving the turbines into the main combustion chamber and expand it through the
entire pressure ratio of the nozzle�
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Example ���� Japan�s LE�� engine for the �rst core stage of the H� launcher and
Europe�s Vulcain engine for the core stage of the Ariane�� launcher are similar in
size but quite di�erent in their construction� both engines burn the high energetic
propellent combination LOX�LH�� but the LE�� engine uses a closed combustion cycle
feeding system with a preburner while the Vulcain engine uses an open cycle feeding
system with a gas generator and two turbopumps� The consequence of the di�erent
feeding cycle is that the more advanced LE�� is slightly better in performance than
the Vulcain engine� but the LE�� is also the heavier and more expensive rocket motor�
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Example ���� The Space�Shuttle�s main engine SSME represents still the today�s
state of the art for large liquid rocket engines� reignitable� reusable� high speci�c
impulse ����� s vacuum� and variable thrust ����	 kN �sl�� ���� kN �v� at ��� �
throttleable between �� and ��� �� The �gure shows the simpli�ed �ow chart of the
closed cycle feeding system of the SSME with precombustion� separate low pressure
and high pressure turbopump assemblies for fuel and oxidizer �LOX�LH� propellent��

Ignition and control� The liquid propellent �ow is usually initiated by a solid pro	
pellent start grain �occasionally also by a small auxiliary pressure gas feeding system�
that builds up the operational pressure in the gas generator or in the precombustion
chamber �the reignitable engine of the Space	Shuttle SSME uses exclusively the tank
pressure to initiate the propellent �ow�� The burning start cartridge ignites the
propellent in the combustion chamber� engines which are made for several burning
phases with non	spontaneously ignitable propellents �LOX LH� or LOX kerosene�
use usually electrical spark igniters near their injectors to activate the combustion�
The control of the valves which regulate the propellent �ow to the combustion cham	
ber �or in the precombustion chamber� needs a carefully designed computer system�
the building	up of pressure during the starting sequence must be quick and smooth�
prohibiting an accumulation of unburned propellent in the thrust chamber which
could cause an explosion of the engine� Some engines allow in some limits a variation
of the thrust force� usually by a control of the chamber pressure and sometimes by a
control of the mixture ratio �the optimal ignition mixture ratio deviates usually from
the thrust optimal operational value� later the mixture ratio is controlled with the
objective that at burnout both propellent components are completely consumed��
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��
�	 Liquid Engine Sub�Masses

A simple stage mass model� Let us now return to the beginning of this chapter�
in section ��
 we analyzed the theory of rocket propulsion� using a simple mass model
�equations �	� to �	
��� There we assumed that for a certain rocket stage the struc	
ture mass is approximately proportional to the propellent mass and the engine mass
is approximately proportional to the thrust force� However� the actual relationships
are obviously more complicated� when we want to re�ne the liquid stage mass model
for a more detailed consideration� we can also try the following nonlinear mass model�
The model assumes that the structure mass is approximately proportional to the sur	
face of the tanks� and that the speci�c engine mass gets smaller with growing thrust�
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structure mass of several liquid rocket stages
as a function of the propellent mass
( LOX/LH2, LOX/kerosene, storable propellent )

dry mass of several liquid rocket engines
as a function of the vacuum thrust

Mstructure � C � �Mpropellent	�
�����

with C���� for  � ��� kg m�

and C���� for  � 
��� kg m�

��� 
���

We have to look at existing hard	
ware to �nd the constants in the
model above� the constant C in
the equation ��	
��� assumes ap	
proximately the value ��� for high
energetic propellent �the white line
in the diagram� and ��� for low
energetic propellent �the dark line��
Masses have the dimension of kgs�

Mengine � C � S exponent

with C � ���

and exponent � ���

��� 
���

The constants C and exponent in
equation ��	
��� are actually not
functions of the propellent type�
they take for example the values
C � ��� and exponent � ���
when the thrust S is speci�ed in kN
and the engine mass Mengine in kg
�the line in the �gure on the left��

The nonlinear model is still simple but usually more accurate than the linear model�



ROCKET PROPULSION ��

A more detailed engine mass model� For weight analysis the nonlinear model
is better than the linear model of the section ��
� however� for some other studies
it is insu�ciently detailed� For example� when we want to analyze the in�uence
of mixture ratio or feeding cycle on the payload capacity of a new space launcher�
we have to use a more detailed model� The following model considers not only
thrust but also propellent type� feeding cycle� chamber pressure� and expansion ratio�

Mengine � 
��� � �Mturbopumps !Mvalves !Mchamber !Minjector !Mnozzle�
��� 
�
�

with� Mchamber � ��� � S����

Minjector � ���� � S����

Mturbopumps � Cpropellent � Cturbopumps � �S � pchamber���
�
Mvalves � ���� � �S � pchamber���
�
Mnozzle � � � S � �������� � Cnozzle ! ������� ���� � Cnozzle�	pchamber�

Cpropellent � ��
� for high energetic propellent and ��

 for low energetic propellent�
Cturbopumps � ��� for engines with prepumps and 
�� for engines without prepumps�
and Cnozzle � 
�� for regeneratively cooled nozzles and ��� for dump cooled nozzles�
The masses M have again the dimension of kilograms� the vacuum thrust S of the
engine is speci�ed in kN and the chamber pressure pchamber in bar� Term � is the
expansion ratio� Equation ��	
�
� represents a so	called analytical statistical model�
which means it considers not only statistical data but also physical relationships�

engine S �kN� pchamber �bar� � actual mass �kg� model mass

LOX�LH� propellent�

SSME �prepumps�� ���� �� �	 
��� 
��
RL���A�� �� � 	 ��	 ���
J�� ��� � �	 ���	 �
��
LE�� ���	 �
� � ��� ���
LE�� ��� 
� �
� � 
�
Vulcain �dump cooling�� ��� ��� � ��� �	��
HM��B� �
 
� 	
 ��� ���
YF��
�  �� � �
� �

LOX�kerosene propellent�

F�� 	��� �� �� 	
�� ��
�
H�� �
� 
	 �	 �	� �	�
RS���A� ��
� 	 	 ���� ��

RD���� � thrust chambers�� ��� �� 
� 	��� ����
RD����� 	
 ��� ��� ���� ���

storable propellent�

Viking �C� ��� �	 �� 	�� ���
RD���
� ��� ��� �� ��	� ��	

The model ��	
�
� gives also estimates for the masses of the sub	systems of a liquid
rocket engine� however� like all mathematical models is often not really accurate�
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���� Solid Rocket Motors

Solid rocket propulsion is ideal for military purposes� and� since the space industry is
often involved in the fabrication of missiles� it does not surprise us that solid rocket
motors are also manufactured for space applications� Solid rocket motors are of	
ten acclaimed for being comparatively safe and cheap� because they need no feeding
system �and no other movable components except for a movable nozzle perhaps��
However� the assumption that solid propulsion for space applications is cheap and
safe is not backed up by experience� and in fact solid propulsion involves many
disadvantages when it is applied to space�ight� The performance of a solid rocket
motors is usually lower than the performance of a liquid stage of the same size�
the thrusting behavior of a solid motor is not uniform and the control is di�cult�

����� Solid Propulsion for Space Applications

Composite solid propellent� Solid rocket motors use so	called composite �cast�
propellent� named HTPB �an abbreviation for hydroxy	terminated polybutadiene�
or CTPB �carboxy	terminated polybutadiene�� It is a mixture of aluminum pow	
der �fuel� and ammonium perclorate �oxidizer�� held together in one heterogeneous
substance by a binder �for example polybutadiene�� Solid propellent is �tailored�
for a certain application� it means the mixture of fuel� oxidizer and binder varies sub	
stantially from one application to another and contains also several other ingredients�
The material form resembles rubber or plastic� it burns irregular with a bright
smoky �ame and releases toxic exhaust gases which contain liquid and solid droplets�

Small solid strap�on booster motors� The disadvantages �low performance and
di�cult controllability� are less crucial when solid propulsion is applied to small�
�xed	canted launch assist boosters� These motors weigh about � to 
� tons� their
thrust is high in comparison with their weight �about �ve times as much�� and the sea	
level speci�c impulse ranges from ��� to ��� seconds� Typical examples are the PAP
boosters of the Ariane	� vehicle and the Castor IV boosters of the Atlas IIAS vehicle�

Big solid strap�on booster motors� The disadvantages of low performance and
bad controllability are more serious when solid propulsion is applied to larger motors�
However� ignoring this point the American Space Shuttle followed the concept of the
Titan VI vehicle� and also the modern launchers of Europe Ariane	� and Japan H�
use big solid strap	on boosters with steerable nozzles to assist the initial �ight phase�
The weight of these motors ranges from � tons �H�� to ��� tons �Space Shuttle��

Solid upper stages� Solid propulsion is also used in upper stages� and� since
upper stages require a high exhaust velocity and a small burnout mass� a class of
kick motors has been developed that uses cases of �ber material �wound	�lament	
reinforced plastic�� Solid upper stage motors weigh between 
 and 
� tons� they often
use spin stabilization and operate with a speci�c impulse of ��� to ��� seconds�



ROCKET PROPULSION ���

Small all solid launchers� There exist also some small space launchers which
use solid propulsion exclusively� for example the US	Pegasus vehicle or the Japanese
M� vehicle� The poor performance of solid propulsion makes at least three stages
necessary for orbital �ight capacity �sometimes four or even �ve stages�� However�
some advantages are also involved when a launch vehicle uses solid motors exclusively�
the propellent is storable for a long time interval� and the launch procedure needs
comparatively little time for checking	out the hardware �tanking is not required��
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Space Shuttle SRB

four segments loaded with propellent grain
(11 point star-shaped perforation in the
foreward segment, a double-truncated-cone
in the aft segments and aft closure)

nominal thrust ��	�� kN
speci�c impulse �sl� �� s
speci�c impulse �v� ��� s
expansion ratio ������
chamber pressure �
�
 bar
gross mass �	��� t
propellent mass ��
�� t
inert mass 	��� t
length ��� m
diameter 
��� m

thrust time function �t�Example ��	� Thiokol�s reusable Solid
Rocket Boosters SRB for the American
Space Shuttle System are the largest solid
rocket motors that have ever been �own�
Each motor consists of four metal seg�
ments loaded with solid propellent grain�
a conical nose section with avionics and a
parachute recovery system� and a movable
nozzle at the rear end� The construction
of the joints between the segments were
redesigned after the burnthrough of a seal
ring that led to the catastrophic failure of
the Challenger mission in January ��	��
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����� The Burning Rate of Solid Propellent

Burning rate and chamber pressure� The combustion velocity of a solid propel	
lent grain is responsible for the chamber gas generation rate� and thus it in�uences
the thrust of the motor directly� The reaction front propagates with a certain velocity
into the burning solid propellent grain� This velocity� called �burning rate�� is an
important propellent characteristic �a typical value for the burning rate of a solid
propellent in a space application is for example 
 cm per second�� The burning rate
depends on the composition of the solid propellent� the combustion pressure and the
temperature of the grain before the combustion �and also on some other factors��
The burning rate can be increased by the addition of a catalyst to the propellent
composition� or by imbedding silver or aluminum wires in the propellent grain�

The empirical function r � a�pnchamber describes the in�uence of the chamber pressure
pchamber on the burning rate r of a solid propellent approximately� where the term a
is the �temperature coe�cient� �indicating that this value is in�uenced by the grain
temperature� and the term n is the �burning rate pressure exponent� or �combustion
index�� The value for the pressure exponent must be smaller than 
� otherwise the
motor would explode �detonate�� typical values for n range between ��� and ��� �for
example n � ��� for a HTPB propellent�� The pressure sensitivity of the burning rate
of a certain propellent cannot be calculated� it must be measured using special testing
equipment �for example so	called �strand burners��� Flight loads and other accel	
erations can also cause a compression of the propellent� for example� an increase in
the burning rate has been experienced with some spin stabilized upper stage motors�

Burning rate and grain temperature� The burning rate of a solid propellent
is also sensitive to the temperature of the grain prior to combustion� the propellent
burns faster when it is hot and slower when it is cold� The thrust of a solid launcher
can vary by a few percent depending on the temperature� It can be dangerous� for
example� that the sun heats the strap	on boosters of a space launcher uneven from
one side� and that consequently one strap	on booster burns faster than the other one�
Strand burners can be used to �nd the temperature sensitivity of the burning rate�

Erosive burning and surface cracks� Pressure and grain temperature have the
most signi�cant in�uence on the burn behaviour of a solid propellent� however� also
the temperature of the burning surface is important� The burning rate is higher at
locations near the exhaust� since there is hot combustion gas that �ows quickly over
the burning surface and� consequently� the heat transfer rate to the surface is high�
This e�ect is called �erosive burning�� it amounts a few percent� Also defects in
the surface �cracks and holes� cause an increase of the burning rate� The reason for
surface cracks can be stresses during manufacturing� transportation� thermal cycling�
or assembly� Solid propellent grain can accept a cumulative damage during the time
prior to launch� and the number of cracks in the propellent grain can limit the stora	
bility of the propellent grain� The motor is not usable anymore after its �aging limit��
when a deterioration of the propellent grain prevents a reliable and safe operation�
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����� Grain Con�guration

Propellent geometry� The science that analyzes the behaviour of burning solid
propellent as a function of the the grain con�guration and the chemical composition is
called �internal ballistics�� Solid propellent is a rubber	like �or plastic	like� substance�
and the geometrical form of the grain has a main in�uence on the thrust	time function
of a solid rocket motor �the �grain� is the shaped propellent mass inside the motor��
the mass �ow rate �or gas generation rate� of the motor is simply the burning rate
multiplied by the area of the burning surfaces� The pressure in the motor� however�
can react sensitively on small changes of the burning surfaces� because the burn	
ing rate itself is an increasing function of pressure� A constant pressure �or thrust�
time function is called �neutral burning�� the burning behaviour is called �progres	
sive� when the thrust increases in time and �regressive� when the thrust decreases�

The �end	burner� with cylindrical grain
on the left� for example� provides an ap	
proximately neutral burning behaviour�
This grain con�guration has also the ad	
vantage that the volume inside the motor
is e�ciently used �the motor has a high
�volumic loading fraction��� however� it
is di�cult to achieve a high thrust force
when the motor case is a slender body� and
the rear motor case �close to the nozzle�
is exposed for an extended time interval
to hot combustion gases� The grain con	
�guration with an internal burning tube
is an example for progressive burning be	
haviour� Progressive burning is usually
a disadvantage in space�ight� because it
is wanted that the lift	o� thrust is high
�later the thrust may decrease�� Regres	
sive burning behaviour requires holes in
the form of a star or a wagon wheel� some	
times several holes or slots in the holes
and so on� The size of these holes varies
usually along the length of the motor�
Grooves and holes in radial direction can
add a progressive or regressive behaviour
to the burning� depending on the incli	
nation of the holes with respect to the
centerline of the grain� Wires or catalysts
can be incorporated at certain points into
the grain in order to prede�ne a thrust
time function for the solid rocket motor�

end burner

multi perforation star tube

waggon wheelslots tube

internal burner
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Grain stresses and failures� Solid propellent behaves under high stress like a
viscoelastic material� the deformation is not only a nonlinear function of the load
but also a function of the time interval of the exposure to the load� The material
does not return to its original form when the load is removed� Solid propellent is
a nearly incompressible substance that can stand pure compression� but it can eas	
ily be damaged by tension or shearing forces� Excessive stress can cause cracking
of the burning surface� which in turn can be the reason for an unwanted increase
of the burning rate and consequence in a bursting of the motor� Both� the coe�	
cient of thermal expansion and the modulus of elasticity of solid propellent� is quite
di�erent from the corresponding parameters of the case material� new� unwanted
burning surfaces can result from a separation of the propellent grain from the walls�
Pieces that break	o� from the grain during the combustion do not only reduce the
speci�c impulse of the motor but can also damage the throat when they are exhausted�

The manufacturing process of a solid propellent grain �mould casting or extruding� is
not easy� attention has to be paid that the grain is essentially free of �aws �voids and
surface cracks�� that the grain has everywhere the predetermined chemical composi	
tion and that its burning behaviour is predictable� When the motor case itself is used
as a casting mould� it must be observed during the curing process �heating in an oven�
that the thermal expansion coe�cient of the grain is much higher than the coe�cient
of the metal case� and that cooling down the motor can lead to tensile stresses in the
grain or in the insulation between the grain and the motor case� When the grain is
manufactured outside the motor case and installed later� it has to be assured that the
bonding between grain and case is free of voids and that the seals of the motor case
are tight under all conditions �a leak in one of the joints between the segments of a
solid booster motor was responsible for the accident of the American Space Shuttle
Challenger�� When the motor case is made of wound	�lament	reinforced	plastic ma	
terial� the propellent grain itself can be used as a mandrel for coiling up the �bers�
Attention has to be paid during all phases of the production that the grain is never
mechanically over	stressed or overheated� The grain is a in�ammable substance� and
a inadvertent ignition will almost always result in a catastrophe�

The deformation of the grain under stress and the damaging e�ect of excessive stress
are usually analyzed using �nite element methods� The in�uence of cumulative dam	
age� however� can still not satisfactorily be predicted by computer programs� and
empirical methods have to be used to consider the nonlinear behaviour of the material�

����	 Solid Motor Cases

Metal cases� The motor case of a solid rocket motor is not only the combustion
chamber� but usually also an essential part of the structure of the vehicle� and thus
it has to stand not only internal but also external loads� Metal cases made of steel or
titanium alloy have the advantages of a well	known stress resistance and a good tem	
perature resistance� furthermore the material is rugged �appropriate for pasting the
propellent on the case walls� and unproblematic during the whole production process�
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Fiber material cases� The disadvantage is that metal cases for high chamber
pressures are comparatively heavy� and thus modern constructions use more often
now so	called �wound	�lament	reinforced	plastic cases�� These plastic cases get their
strength from many extremely thin �bers wrapped around the combustion chamber
in precise pattern and glued together with a plastic binder �usually epoxy resin��
Fibers can stand strong tension but only tension� therefore the �laments have to be
aligned with the directions of the principal tension �that means at least two rect	
angular oriented �lament layers are required�� Shearing forces which occur during
the normal operation have to be taken over by the weaker binder material� and thus
the actual strength of the composite material is much lower than the strength of the
�bers themselves �typically by a factor � to ��� Plastic cases require more heat insula	
tion because the plastic softens at temperatures above 
���C� and the volume of the
motor gets larger than with a metal case� Typical �ber materials are glass� Kevlar�
graphite and carbon� where graphite or carbon �bers are preferred because of their
best strength to density ratio� Plastic is sensitive to sunlight and air moisture� and
mechanical properties can deteriorate when the case is stored for a longer time period�

����
 Solid Motor Nozzles

Nozzle shape� The combustion gas is expanded in a hypersonic nozzle which
has a convergent part� a throat and a divergent part� Cooling method is usually
heat radiation �there is no propellent that could be used for regenerative cooling�
and� particularly in the throat region� material ablation �melting� vaporization and
decomposition of material imbedded in the matrix of temperature resistant �bers
serves as a heat sink�� The throat erodes during the burn time interval� and abrasion
can cause the throat diameter to grow by a few percent �where an increase below
�� is usually acceptable�� Appropriate materials �such as carbon �bers in a carbon
matrix� allow surface temperatures of �����C and more� Advances in material
science can make considerable weight reductions and performance improvements
possible� and the selection of the appropriate material is a key to success in the de	

sign of new solid rocket motor nozzles�
The solid rocket motor nozzle has
rather the shape of a cone than the
shape of a bell� because a bell	shaped
nozzle would not stand the exces	
sive erosion �the constant bombard	
ment with liquid and solid droplets in
the combustion gas�� Nozzles with a
small divergence cone angle are compar	
atively long and have a weight penalty�
but nozzles with a large divergence
cone angle involve divergence losses and
a deterioration of the speci�c impulse
�typical cone half angles � 
�� to �����

actuator

throat
insert

nozzle
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Thrust vectoring� It is not always necessary to equip a solid rocket motor with
a thrust vectoring capability� for example spin stabilized upper stages� rocket mo	
tors in winged vehicles� or small strap	on boosters do usually not need a control
of the thrust direction� However� thrust vectoring capability is required when the
solid motor is operative and has to take over the stabilization of the launch vehicle�
Older solid rocket motors used often �secondary injection control�� but today the
more modern constructions use nearly always �movable nozzles�� a thrust vectoring
technology which is superior in weight and performance�

The �secondary injection control�
in�uences the thrust direction by the
appropriate injection of a �uid �gas
from a gas generator� direct bleed
from the chamber� or a stored liquid
from an external container� through
ori�ces in the divergent part of the
nozzle� The additionally entering
gas has the e�ect of forming oblique
shock waves in the hypersonic noz	
zle which cause a slight deviation of
the main gas �ow� The injection
of secondary liquids has the disad	
vantage of an excessive consumption
of �uid when the control moments
required for vehicle stabilization are
large� and it has also the disad	
vantage of a slight reduction of the
speci�c impulse� Hot gas injection
thrust vector control is more attrac	
tive because this gas is su�ciently
available in a solid rocket motor�
but the conduction of hot gas in
pipes and the control with valves
is still not unproblematic from the
material science point of view�

Example ���� Martin Ma�
rietta�s Titan III was
the �rst satellite carrier
that employed strong solid
strap�on booster motors�
In contrast to other vehi�
cles� however� the solids
of the Titan III vehicle
operated during the ini�
tial boost phase without
support from the propul�
sion of the core stage�
the engines of the core
stage were ignited when
the boosters were empty�
The thrust vector was
pivoted by the controlled
injection of a �uid �nitro�
gen tetroxide� stored in an
external tank� through �
�ow injector valves which
surrounded the nozzle exit
cone� The secondary in�
jection control system was
later in the Titan IV ve�
hicle replaced by movable
nozzle thrust vectoring� a
method that is superior in
weight and performance�

The disadvantages involved with secondary injection control can be avoided with the
use of movable nozzles in solid rocket motors� However� the throat of a solid rocket
motor nozzle is exposed to extreme stresses �temperature� pressure and mechanical
abrasion�� and the construction of a movable nozzle becomes even more problematic�
The convergent part of a movable nozzle is connected with the combustion cham	
ber via �exible joints� which can be sealed rotary joints or sealed �exible bearings�
Strong mechanical actuators are necessary to pivot the nozzle� Common types of
movable nozzle use the deformation of multi	layer bearing packs �with stacked elas	
tomeric layers between metal sheets� that act as seals and as load transfer bearings�
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����� Ignition and Control of Solid Rocket Motors

Ignition systems for solid rocket motors� The designer of the ignition system
for a solid rocket motor is faced with the following three problems� the ignition may
not at all occur at a moment when this is not wanted� then� immediately at the right
moment� the system must in�ame the entire grain surface that is intended to burn�
and �nally the system should weigh as little as possible� The igniter is usually a small
solid rocket motor inside the motor case� placed at the front end of the free volume
of the grain� The ignition occurs in stages� a signal triggers the electrical current
that burns a bridgewire to ignite the booster charge� and then the booster charge
in�ames the main charge of the igniter �solid rocket propellent or explosive pellets��
The hot combustion exhaust gases leave the igniter through one or several holes
�actually sonic or supersonic nozzles� and in�ame the propellent when they �ow
over the grain surface to the nozzle� or the basket that contains the pellets explodes
and the pellets in�ame the propellent when the impinge on the surface of the grain�

Protection against inadvertent ignition provides a so	called �safe and arm� device�
This device is essentially a electrical switch that keeps the igniter circuit grounded in
its safe position� supported by mechanical �safeguards� that prevent a motor ignition
even in case of an unwanted release� Launch assist strap	on booster motors can be

ignited from outside through their
nozzles with externally mounted
igniters� which are then a part of
the ground equipment and add no
weight penalty to the structure of
the empty rocket motor� and the
motor is �safe� when the igniter is
not present� However� also static
electricity� induced current from
electromagnetic radiation and me	
chanical shocks can be the en	
ergy source for an unintentional
ignition� The �gure on the left
shows the igniter construction of
the solid booster motors of the
American Space Shuttle system�

igniter grain

igniter
exhaust
nozzle

initiator grain

pellet charge basket

safe and arm
device

motor chamber pressure
transducer

114.49 cm

Burnout control and reignition� The amount of solid propellent that remains un	
burned in the chamber is called slivers� With advanced grain design technology there
are nearly no slivers today in modern solid rocket motors� However� the total impulse
which a solid rocket motor develops in a certain mission is not accurately predictable�
and thus e�orts have been made to control the burnout instant by a sudden chamber
depressurization �opening additional gas escape areas�� It has also been tried to con	
struct solid rocket motors for controlled burnout and re	ignition� but in summary we
can say that all these tries have not proved to be worthwhile� because then the only
great advantage of solid rocket motors for space applications gets lost� the simplicity�
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��� Attitude and Trajectory Control Thrusters

Nearly all spacecraft need maneuvering systems in order to control their attitude
and their trajectory� The attitude and trajectory control system is usually equipped
with a certain number of small thrusters� their orientation is �xed with respect to
the vehicle� For example� to be able to control the rotational motion separately
from the translational motion� a satellite requires at least two times � thrusters�
and a spacecraft that is intended to maneuver in the vicinity of a space station
�rendezvous and docking� is often equipped with even more thrusters� Auxiliary
propulsion systems provide small thrust forces between ���� and ��� N� typically�
Like large rocket engines in main propulsion systems� auxiliary propulsion systems
of spacecraft should be light weight constructions that consume propellent sparingly�
However� the principal design aspects for auxiliary propulsion systems are� reliable
working during a long operation time� and accurately predictable thrust for many
small maneuvers� These features demand the application of pressure gas feed systems�

����� Gas Pressure Feed Systems

Pressure gas� The pressure gas is usually an inert gas� such as helium �some	
times nitrogen� stored in a spherical tank� It is used to feed the propellent into
the thrust chamber by displacing it from the propellent tank �but the gas can also
be used for other purposes� for example for the operation of valves�� The amount
of gas which is required for propellent feeding depends on the gas pressure� on the
chamber pressure and on the propellent volume� A high chamber pressure leads to
a comparatively high speci�c impulse of the propulsion system� but a high chamber
pressure is also responsible for heavy propellent tanks� Therefore it is necessary to
make a tradeo� between performance and weight� Spherical high pressure gas tanks
operate with pressures between � and �� bar� the tank pressure is always lower �for
example between 
� and �� bar�� The chamber pressure is accurately controlled by
high	precision valves� �Positive expulsion devices� in the tanks provide a mechanical
separation of the pressure gas from the propellent �for example piston mechanisms�
bellows� bladders and so on�� they prevent that the pressure gas reacts with the pro	
pellent� dissolves in the propellent or enters the discharge line of the propellent tank�

Propellent� Essentially� there are three types of propellent for auxiliary thrusters�
cold gas �any pressurized gas� for example hydrogen� helium or nitrogen�� hydrazine
N�H� as monopropellent� and �nally hydrazine �or MMH� a derivative of hydrazine�
burned with nitrogen tetroxide N�O� �or MON� a mixture of NO with N�O���

Thrust chambers� The gas pressure feed system transfers the propellent via small
pipes from the tank to the thrusters� which are usually mounted in the periphery of
the spacecraft ��xed at rods or directly at the outer wall�� The heat loads for the
thrust chambers are comparatively small� particularly in case of pulsed operation�
the radiation cooled nozzles of auxiliary thrusters require no special cooling system�
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����� Auxiliary Propulsion Systems

Classi�cation� A large variety of di�erent thruster constructions for attitude and
trajectory control is o�ered to satellite manufactures and launch service providers�
The following table lists performance data of models from the German space industry�

thruster thrust chamber speci�c mass length nozzle
name pressure impulse diameter

cold gas �nitrogen�hydrogen or argon��

CGT � ���� N  bar �� s ��� g � mm

arcjet �hydrazine��

HAJ � ��� N �	 bar �
� s

hydrazine monopropellent�

CHT ��� ��� N �� bar ��	 s ��� g ��
 mm �	 mm
CHT � ��� N �� bar ��	 s 
�� g ��� mm ��� mm
CHT � ��� N �� bar ��	 s ��� g ��
 mm 	�� mm
CHT � ��� N �� bar ��� s ��� g ��� mm � mm
CHT �� �� N �� bar �
� s �� g �� mm �� mm
CHT �� �� N � bar �
� s 
�� g ��� mm 

 mm
CHT �� �� N �� bar ��� s ���� g 
�� mm 	� mm

MON�MMH bipropellent�

S �� N  bar �	� s ��� g ��� mm 
� mm
S�� �� N � bar �	� s 
�� g �
	 mm 
� mm
S���� �� N � bar ��� s 
�� g �
	 mm 
� mm
S���� �� N � bar 
�
 s �	�� g �
� mm �	 mm
S���� �� N �� bar 
�	 s 
�� g �
� mm �	 mm

Cold gas thrusters� The simplest system with the lowest speci�c impulse is the
cold gas thruster� its advantages are high reliability �because of the simplicity�� ex	
cellent controllability �because of extremely low thrust� and cold exhaust plumes�
Typical applications for cold gas thrusters are manned maneuvering units for extra
vehicular space activities and the precise control of a docking maneuver between
a capsule and a space station� Since almost any pressure gas can be used as pro	
pellent� cold gas thrusters are attractive to utilize some waste gas as working �uid
�for example carbon dioxide� in order to control a manned space vehicle during a long
mission� The energy for propulsion comes exclusively from the pressure of the gas�
The speci�c impulse of the system improves when gas with light weight molecules is
used� but storing pressure gas in tanks is easier when the gas molecules are heavier
�theoretical values range from ��� seconds for hydrogen to � seconds for nitrogen��

Resistor jets and arc jets� The speci�c impulse of an auxiliary thruster is improved
when the working gas is heated up before the expansion� and heating up the gas can be
performed electrically with a resistor or a light arc� In space however� electrical energy
is usually not disposable in large amounts� and therefore resistor jets or arcjects use
often a monopropellent as working �uid� For example� the propellent hydrazine
decomposes in the thrust chamber and releases additional energy for propulsion�
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Hydrazine monopropellent thrusters� The usual way to control the attitude and
the trajectory of a satellite with auxiliary propulsion is the application of hydrazine
thrusters� The propellent hydrazine is frequently used in bipropellent systems using
nitrogen tetroxide as oxidizer� however� the liquid releases energy when it decomposes
over a heated catalyst bed �iridium�� The gaseous reaction products are nitrogen�
hydrogen and ammonia� In comparison with a cold gas system the hydrazine thruster
has the advantage of a better speci�c impulse �typical values range from ��� to ���
seconds� for cold gas systems from �� to � seconds only�� The position keeping sub	
system of an earth orbiting satellite requires a %v capacity of 
�� to ��� m s for every
year in space� typically� and thus a quite large portion of the initial satellite mass
amounts to propellent ���� to ����� Hydrazine thrusters are controlled by precision
valves often in pulse mode �multiple small impulses for accurately reproduceable %v��
A thrust regulation can readily be achieved by a reduction of the chamber pressure�

Bipropellent thrusters� The speci�c impulse of hydrazine control thrusters can be
increased to values between �� and ��� seconds when an oxidizer is used �nitrogen
tetroxide or MON�� Hydrazine burned with nitrogen tetroxide is a so	called hyper	
golic combination� it means that the fuel ignites spontaneously when it is mixed with
the oxidizer� These auxiliary propulsion systems are then actually nothing else than
usual rocket engines for storable propellent� however� they use a pressure gas feeding
system instead of a turbopump feeding system� The �gure below shows the sketch
of a typical 
� N bipropellent �MON MMH� thruster for the control of a satellite�

The application of a pressure gas feeding system
is sensible for the accurate control of many com	
paratively short thrusting maneuvers during a long
operation time period �ten years or more�� but tanks
for pressure gas feeding systems are heavier than
tanks for turbopump feeding systems� Thus� for a
single maneuver that requires a large %v capacity� the
application of an engine with turbopump feeding sys	
tem is preferable� In comparison with monopropellent
systems� bipropellent systems are more economical
regarding propellent consumption� and thus bipro	
pellent thrusters are now frequently used in modern
satellites for attitude and trajectory control maneu	
vers which require comparatively much propulsion�

oxidizer
(MON)

fuel (MMH)

chamber

nozzle
(diameter 3.7 cm)

thrust : 10 N
specific impulse: 291.5 sec
chamber pressure: 9 bar

typical bipropellent thruster:

valves

Some complex attitude control systems operate bipropellent together with monopro	
pellent thrusters� where the bipropellent thrusters are used for the more propulsive
maneuvers and the monopropellent thruster are used for more precise maneuvers�
The reaction control system of the American Space Shuttle� for example� operates
with many thrusters ��� primary and � vernier thrusters�� but the vehicle is also
equipped with a complex orbital maneuvering unit that uses large gimballed engines
for the initialization of the descent maneuver and for orbital transfer maneuvers�
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�� Launch Services

It is well	known that space launchers are very expensive� but space is not accessible
without launchers� and thus the availability of a launch facility is a key position for
the success of a space programme�

The third chapter of this book is concerned with the technique of launcher design�
When a space launcher system is optimized during the preliminary design phase�
the optimization objective ��application�� is quite a di�use quantity� It includes all
missions the new launch system will have to perform when it is �nally operational�
We will have a look at the tasks for launchers in the �rst section of this chapter�
Many practical engineering aspects have to be considered during the preliminary
design phase �for example� how many stages� what kind of propellent and so on��
We will put emphasis on these practical engineering aspects in the second section�
The cost performance ratio is probably the most important design aspect� at least for
commercial launch services� Even when the technical parameters �costs� and �per	
formance� are not accurately de�ned� we can make mathematical models of costs and
performances� In the third section we will evaluate the quality of commercial launch
services using such a cost performance model� The technique of space launcher opti	
mization is demonstrated in the fourth section� taking as an example the European
Ariane launcher family in the scenario of strong market competition at the end of
the last century� Finally� in the �fth section of this chapter� we will see that even
today the use of modern technology does not bring improvements automatically�

The models we use in this chapter are based on material which is provided by the
space launcher dictionary of S�J�Isakovits ��International Reference Guide to Space
Launch Systems�� AIAA� Washington D�C�� 
��
 an 
����� the annual volumes of
Interavia�s �space directory�� A�Wilson ��Jane�s Space Directory�� Jane�s Information
Group� London� 
��	
���� and the ESA launch vehicle catalogue �developed by
Aerospatiale under ESA contract number �
�� �� F BL� Paris� rev�

� Dec� ������

���� Applications for Space Launchers

Most launchers which exist today are �by	products� of ballistic missile programmes�
National prestige and military interest are usually the reasons for their development�
When the missile system is operative� it seems to be comparatively easy to modify
the weapon for the transportation of military satellites� When the launch system is
operative� it seems to be lucrative to o�er it also for commercial satellite launches�
A scienti�c research programme often serves just as an alibi to get public funding for
a national launcher programme� However� not all space launchers are originated in
military programmes� the American Saturn	� is an example for a launcher develop	
ment as a �tool� for a scienti�c space programme� the European Ariane	� launcher is
an example for a launcher development with commercial interest as the main reason�
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����� Target Orbits

The launcher system should be optimized for the transportation of space payloads�
Here the word �space� means the selection of some quite di�erent earth orbits�
Most payloads go to one of the following space destinations�

Low earth orbit LEO� A launcher has the best payload capacity when it departs
from a launch site near the equator into eastern direction to reach a low earth orbit�
Thus� for many payloads the low earth orbit is simply the �cheapest� orbit �micro	
gravity research� bio	medical experiments� astronomical observations and so on��

Polar earth orbit PEO�Many big military spying satellites with heavy optics go to
polar orbit because they have to observe the complete surface of the earth� Low earth
orbits with high inclinations are also used by non	military earth observation satellites
�environmental surveillance� discovery of earth resources� meteorological monitoring
and so on�� The oblateness of the earth causes a gyroscopic e�ect on polar orbits�
this perturbation depends on the inclination and can be used to synchronize a polar
orbit with the direction of the sunlight �to establish a sun	synchronous orbit SSO��

Medium earth orbit MEO� Mobile telecommunication systems and satellite nav	
igation systems use direct links to satellites with non	directional antennae �without
directing a parabolic antenna towards the satellite�� For global coverage these orbits
have to be inclined with respect to the equator� When a lower orbital altitude is used�
the data transmission requires less electrical power� but then more satellites are nec	
essary for permanent availability of the system �the altitude should not be too low�
otherwise satellites will have to be replaced frequently due to short orbital lifetimes��

Geostationary transfer orbit GTO� The geostationary earth orbit o�ers the
advantage that �xed antennae can be used for the communication between ground
stations and data relay satellites� Since the orbit has the altitude of ��� km above
the equator� data transmission requires more electrical power� and the orbit cannot
be used for communication when the ground stations are near the north pole or
near the south pole� Usually� launchers deliver GEO	satellites into the transfer orbit
�circularization is done by satellite	integrated	propulsion or by a separate kick stage��

Molnya orbits� Russia uses communication satellites on high eccentric� inclined
orbits to cover the north polar regions of the country� With an orbital period of 
�
hours these Molnya orbits are not geostationary orbits� but at least the satellites stay
some hours during well	known time intervals over the desired geographical region�

Earth escape trajectories� Some scienti�c probes leave the gravitational �eld
of the earth on escape trajectories� When a planet is the target� the launcher has
to bring the space probe to a hyperbolic orbit� When the moon is the target� the
launcher has to bring the payload to a �more or less� parabolic escape trajectory�
Escape orbits are also the destination for the �payload� of another exotic project�
we should think of the recent collision of pieces of a broken comet with planet Jupiter
and install a global defense system against those asteroids on an earth impact orbit�
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����� Commercial Market for Satellite Launch Services

Typical annual launch frequency� When we regard the situation at the end
of the ��th century �year ������ we count 
�� payloads as a typical number for
the world	wide annual launch frequency� About ��� of these satellites are military
payloads� Most of the spying satellites have to be replaced frequently� because they
�y at low altitudes for a better optical resolution� The remaining ��� have civilian
character� but only half of them are commercial satellites �in case of a public �nanced
satellite project the launch system is usually prede�ned by the government�� Thus� a
typical number is �� satellites per year open for launch service market competition�
From these �� commercial satellites about 
� �better say 
� to ��� go to geostationary
position� the principal share of the rest �maybe �� satellites� goes to low earth orbit�

The GTO market� The geostationary position GEO is typical for commercial
satellites� where most of them are telecommunication services� Satellites are ideal
for broadcasting over extended geographical regions� For �xed	link telecommuni	
cation services� however� terrestrial alternatives seem to be superior in price and
quality ��ber optics�� GEO satellites weight between 
��� kg and ���� kg� typically�
The typical weight of GEO communication satellites increases slowly� but probably
there remains a market for smaller GEO satellites �with masses below 
��� kg��
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The LEO market� The principal market share of commercial LEO satellites con	
sists of private mobile telecommunication facilities� Satellite based global telephone
services compete with ground based �or aircraft based� alternatives� The technol	
ogy changes rapidly� and improved electronics can quickly generate an over	capacity�
the market is not at all stable� the annual launch frequency may increase or decrease
considerably� Satellite based telephone services make use of many small satellites�
These systems are preferably installed by multiple launching �several satellites share
one big launcher�� replacing out	of	order satellites should be done by single launching�

Market for earth observation and navigation� Extraordinary military implica	
tions make an open commercial market for both applications improbable� It can be
expected that also in the future global satellite positioning systems are installed and
operated by military organizations� and that surface imaging will always be censored�

Replacement of satellites� The service life of satellites is limited� The satellite
needs propulsion for stabilization of the orbit� otherwise it would slowly drift away
from its position �essentially because of drag exerted by the rest atmosphere� and
gravitational forces from the sun and the moon�� The position keeping sub	system
consumes propellent equivalent to a %v capacity of 
�� m s to ��� m s per year�
corresponding to a propellent mass fraction of ��� to ��� and a life	span of � to 
�
years� typically� It would be easy to extend the service life of satellites simply by pro	
viding more propellent to the position keeping subsystem� However� the technology
changes rapidly and electronic and computer equipment is out	of	date just after a
few years� and an extended satellite lifetime means a reduced instrumental payload�

Probably� a longer service life will become desirable with more established technology�
Solar electric propulsion could greatly extend the operation time of satellites�
but then also other parts of the satellites will have to be improved �the radiation
in space deteriorates the solar cells� secondary batteries have a limited number of
discharge recharge cycles� micro	meteorites destroy optical surfaces and so on��

����� In�uences on the Commercial Launch Market

Ballistic missiles� A ballistic missile is not an optimal construction for the launch	
ing of satellites� Its �application� is quite di�erent from the application of a launcher�
The missile is extremely expensive and its construction is a military secret� How	
ever� inter	continental ballistic missiles can be used for launching small satellites�
Sometimes satellite launches are o�ered at a dumping price when a missile system is
�phased out� �due to disarmament or when a new system is going to be installed��

The space shuttle� Experience shows that the American space shuttle is too big
and too expensive for commercial satellite launches �the only sensible application for
the space shuttle is the erection and operation of the international space station ISS��
A permanent lunar base or a manned Mars mission require even a bigger launcher�
When an unmanned launcher derived from shuttle technology is available� it can o�er
launches at a very low speci�c price� and create a new sector of space applications�
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���� General Space Launcher Design Aspects

Theoretically� launch system optimization is a nonlinear optimization problem�
Some design parameters are predetermined� some others are open for optimization�
The ones open for optimization have to be adjusted appropriately� There are �con	
tinuous� parameters �engine thrust� propellent mixture ratio� stage size and so on�
and �integer� parameters �the number of stages� the number of engines and so on��
Essentially� the parameters open for optimization have to be adjusted in a way
that the launcher gets the maximum payload capacity for a certain reference orbit�
For maximum payload capacity the launcher has to �y on an optimum trajectory�
Since every modi�cation requires another optimum trajectory� launcher optimization
is the problem of nonlinear parameter optimization based on trajectory optimization�

Practically� many other design aspects have to be considered too� The launcher is
nearly never a completely new development� existing components have to be used�
The launcher must have good payload capacity� but it should also have a high suc	
cess rate� it should deliver accurately into target orbit� it should not pollute the
environment and so on� The launching should stress the satellite as little as possible�
Very important is the availability of the launch service �this is the time interval
between contract and launch� and the �exibility of the launcher concerning payload
mass and target orbit� In this section we will generalize some launcher design aspects�

Engineering is a di�cult subject when commercial� political and emotional aspects
are involved� Technical problems can �simply� be solved by using mathematics�
when our calculations are obviously correct� everyone will trust in our conclusions�
We leave this strong mathematical base when we discuss �non	technical� questions�
Consider� for example� the design of a car� We want to �nd out what is a good
car� and what guarantees a market success� Therefore we optimize it and consider
just technical aspects� Then the car should have a good price performance ratio�
this means low fuel consumption with medium motor power for average highway
speed� the car should have plenty of space for luggage and place for many persons�
The importance of every design aspect depends on the �opinion� of the customers
�a di�erent opinion is not necessarily wrong�� Obviously� the optimization result is
a family car� it does not at all �t for sports cars� but psychological aspects are also
important� and the �image� of a sports car sells quite good� Neither can we ignore
psychology in astronautical engineering� when a company wants to sell a space plane
project to tax	paying public� the design aspect �good looking� is also very important�

����� Performance Optimization�

The growth factor� The initial mass of a launcher divided by its payload mass
for a given target orbit is called the �growth factor� of the launcher� Usually� the
optimization objective in launcher design is �minimization of the growth factor��
It is assumed that a space launcher with a small growth factor has also low payload	
speci�c launch costs� Such a point of view is at least approximately correct�
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Optimal number of stages� Usually� space launchers consist of several stages�
The staging principle is applied to discharge empty tanks �propellent is the main share
of the initial mass� it is consumed during the mission�� It is necessary that launchers
consist of �enough� stages� otherwise they would have insu�cient payload fractions�
but on the other hand� costs and complexity increase with the number of stages�
Ruppe�s formula gives an answer to the question �how many stages are optimal��
consider the di�culty of the mission �represented by the %v capacity required to
reach the orbit� and �state of the art� �represented by the average exhaust velocity
c of the propellent�� then form the integer value of the quotient %v divided by c�
It determines approximately the optimal number of stages� When �high technol	
ogy� is used� the exhaust velocity c is ��� km s� typically� We �nd �two stages� as
optimum for LEO transportation �%v � � km s� and �three stages� as optimum
for GTO transportation �%v � 
� km s�� When �antiquated technology� is used�
c � ��� km s� and one more stage is necessary to have the optimal stage number�

Sometimes it is stated that �single stage to orbit� launchers �so	called SSTO systems�
are optimal for LEO transportation� but a single stage launcher has just a su�cient
payload capacity when it is supported by strap	on boosters �and then it is a 
!
 �
stage system� actually�� A single stage launcher without boosters has an extremely
bad growth factor �or cannot reach the orbit�� even when lightweight tanks are used�

Optimum size of the stages� Every stage should share approximately the same
portion of the %v requirement of the mission as all the other stages� For example� in
case of a two	stage LEO launcher �%v � � km s�� each stage should raise the velocity
by about ��� km s� Therefore the �rst stage has to be bigger than the second stage�
The mass of the launcher at the ignition of a stage divided by the total mass of the
launcher at burnout of this stage should be approximately the same for every stage�

Parallel staging� Two stages can operate either
one after the other in a tandem arrangement or
burn together in a parallel arrangement� where a
core stage is supported by strap	on booster mo	
tors� While a tandem arrangement is better from
the energetic point of view� parallel arrangement
is better for safety reasons �all engines are ignited
before lift	o��� Sometimes parallel staging o�ers
also the option of a better system �exibility� when
more �or fewer� booster motors can be used for
a launch� In a parallel arrangement the thrust
acceleration of the booster stage has to be higher
than the thrust acceleration of the core stage� oth	
erwise the core stage wastes energy to accelerate
the booster motors� The booster stage must be
separated before burnout of the core stage� oth	
erwise the two stages operate as only one stage�

tandem

staged
parallel

staged
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Circularization in GEO position� The transfer from GTO to GEO is called
�circularization� of the orbit� The upper stage of a GTO launcher can perform this
maneuver when its engine is constructed for shut	down and re	ignition�
More in common practice is the other possibility to establish a circular orbit� a satel	
lite can use propulsion from its position keeping subsystem� This method avoids that
the upper stage enters the orbit �energetically it is the same as using one more stage��

Possibilities to support the lift�o� phase� Today� conventional strap	on booster
motors represent the only established launch assist facility� alternatives are not in use�
but naturally� some other launch assist methods are imaginable�

	 re�lling consumed propellent during the lift	o� phase�
	 launching from a high mountain �for example Kilimanjaro� Kenia��
	 launching from a vessel� to be �exible in the launch location ��sea	launch���
	 launching from a catapult on a mountain uphill slope�
	 providing additional propulsion using rope drives�
	 launching from pipes� where exhaust gases generate additional propulsion�
	 providing additional propulsion energy via radiation �laser energy��

All alternatives seem to be practicable� but probably these options are not cheaper
than the use of booster motors �in every case the cost saving potential is very small��

����� The Appropriate Propellent

High energetic liquid propellent LH��LOX� The combination of lique�ed hy	
drogen as fuel and lique�ed oxygen as oxidizer is also called �cryogenic propellent�
�referring to the fact that these liquids are gases under normal ambient conditions��
The combination LH� LOX has a high content of chemical energy per unit of mass�
consequently LH� LOX rocket engines operate with high speci�c impulse �exhaust
velocities up to ��� km s�� The high performance is the greatest advantage of this
propellent� space launchers which use LH� LOX as main propellent do not need
as many stages as launchers which use low energetic propellent �when one �high
energetic� stage replaces two �low energetic� stages�� Another advantage is that pro	
pellent and exhaust gases are non	toxic� The disadvantage is that this propellent has
a low density �it requires large and heavy tanks� and cannot be stored for an extended
time period �hydrogen gas disappears through seals and tank walls�� Launchers have
to be tanked shortly before the mission� In case the start is some hours behind sched	
ule� the propellent lost by evaporation has to be re�lled� LH� LOX cannot be used
in upper stages when these stages ignite much later� However� the advantages over	
ride the disadvantages� LH� LOX is probably the best propellent for space launchers�

Kerosene�LOX� The fuel is the more �problematic� partner in the combination�
when we replace hydrogen by kerosene� we get the less explosive and better storable
propellent combination kerosene LOX �which is also often used in space launchers��
The lower energy content reduces the exhaust velocity to just ��� km s� typically�
but the much higher density allows the construction of more compact rocket stages�
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Storable liquid propellent� When we talk about storable liquid propellent� we
mean the combination of the fuel hydrazine N�H� �or the hydrazine derivatives MMH
or UDMH� and the oxidizer nitrogen tetroxide N�O�� The propellent is hypergol�
this means it will ignite spontaneously when the fuel is mixed with the oxidizer�
Hydrazine decomposes when is �ows over a catalyst bed� rocket stages need no com	
plicated ignition system when they use hydrazine as fuel� Chemical aggressiveness
makes the propellent to an unlovely toxic substance� Besides storability the propel	
lent combination hydrazine nitrogen tetroxide has the advantage of a high density�
The density is about three times higher than the density of LH� LOX propellent�
lighter and more compact tanks can be used for the construction of space launchers�
The advantages make N�H� N�O� propellent to a real alternative to LH� LOX
propellent� even though its exhaust velocity is much lower �typically just ��� km s��

Solid propellent� When solid propellent is used in military missiles� it has many ad	
vantages in comparison with liquid propellent� solid rocket stages are storable for long
time periods� they are compact� shock resistant� it is comparatively easy to transport
them� and they need a short time of preparation before use� Solid propellent missiles
can accelerate extremely fast� When solid propellent is used in space launchers� its
application involves mainly disadvantages� the performance is comparatively bad� the
structures are heavy� and thrust vector control in direction and magnitude is impossi	
ble or at least di�cult� The irregular burn behaviour stresses the payload and leads to
a low �ight precision� Sometimes the thrust is too high and a reduction would be de	
sirable� but such a thrust reduction would lead to a lower speci�c impulse� When big
solid rocket stages are applied� toxic exhaust gases are bad for the environment near
the launch site� For space applications the disadvantages override the advantages�
we can conclude that solid propulsion should not be used for astronautical activities�

In space transportation there is just one exception where solid motors are sensible�
they can be used as small strap	on boosters to assist the lift	o� phase� High thrust is
required to boost the heavy vehicle� low performance is not a serious problem since
the motors are discharged in the early �ight phase� When the attitude stabilization
is performed by the core stage� the boosters need no thrust vector control system�

The situation is di�erent when big solid boosters are used �or when the booster motors
operate without the core stage�� Now the solid boosters have to be equipped with
thrust vector control� This can either be done by �secondary injection� �in�uencing
the thrust direction by the appropriate injection of a liquid through ori�ces into the
divergent part of the nozzle� or by �nozzle gimballing� �making a swivel	mounted
nozzle with a �exible throat�� The modern technique of nozzle gimballing is better in
performance and therefore more often used now� Experience shows that then these
big solid booster motors are not cheaper or more reliable than their liquid alternatives�

Sometimes spin	stabilized solid �kick motors� are used as launcher upper stages�
Light	weight composite carbon	�ber material for structures gives these stages a com	
paratively good performance� but in�exibility in the application and bad injection
accuracy make the use of solid kick motors in space launchers to a wrong strategy�
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����� Optimal Launcher Size

Launcher families� Sometimes� the weight of the satellite is smaller than the
payload capacity of the launcher� Then the launcher �ies on a non	optimal trajectory
to annihilate its over	performance �or it uses ballast load or it uses less propellent��
Compared with a launcher of exactly the right size� the launch costs are higher now�
When the satellite is too big� the launcher cannot be used any more� and the launch
service competitor loses the business� A �launcher family� o�ers the option to adapt
the performance of the launcher in a way that it matches the size of the satellite�

Booster motors for selection� The performance of a launcher can be upgraded by
using strap	on booster motors to assist the lift	o� phase� It has to be made sure that
the launcher is not over	stressed when many strong boosters are applied� In a similar
manner the performance of a launcher can be downgraded� simply by omitting some
boosters when they are not necessary for the launch of a small satellite� Now it has
to be seen that the launcher is still strong enough to lift	o� from the launch pad�
If the launcher is too heavy to lift	o� without boosters� there is sometimes the option
to charge it with a smaller amount of propellent �so	called propellent �o�	loading���

Several compatible upper stages� Another way to adapt the payload capacity of
a launcher is using a selection of upper stages with di�erent performances� However�
it is important that upper stages with a lower performance are also considerably
cheaper� Otherwise the launch service customer has to pay for the launch of a small
satellite almost the same price as for the launch of a big satellite�

Multiple launching� In comparison with smaller launchers� bigger launchers have
higher absolute costs but lower speci�c costs� The costs per kilogram payload reduce
with the size of a launcher� In a rough approximation we can assume a square root
function as a basis� a launcher with double payload capacity is not twice as expensive�
it costs just about 
��
� times more� When we use a big space launcher for launching
two or more small satellites� we can expect a reduction of the speci�c launch costs�
The cost saving potential of this so	called �multiple launching� is considerable�

satellites absolute transportation costs speci�c transportation costs

� ��� ��� 

� �� �� 


 ��
 �	 

 ��� �� 

Multiple launching is practicable but it includes also some severe disadvantages�
First� all satellites have to go to more or less the same orbit� and second� all satellites
have to �t into the payload bay� However� all satellites must be ready at the same
time� This is the main problem when di�erent launch service customers are involved�
If one satellite is missing� the space launcher is in a fatal way too big for the business�
Experience shows that double launching is a commercial option� but it does not follow
automatically that there is also a market for the launching of three or four satellites�
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����	 Flight Safety Aspects

Quali�cation and quality� Satellites are extremely expensive �a satellite costs two
or three times more than the launcher� typically�� The customers for satellite launch
services have no patience or understanding when fatal launch failures happen often�
The design aspect ��ight safety� is of high importance to the launch service providers�
Launchers undergo extreme certi�cation procedures to guarantee a low failure rate�
Usually� the quali�cation process is so rigorous that the quality of a launcher cannot
be increased any more by the application of even stricter quali�cation procedures�
but quality is not only a function of quali�cation procedures�

Safety by using a parallel staged launcher concept� A high �ight safety can
also be achieved by system built	in reliability� A parallel staged launcher is considered
to be safer than a tandem stage system� The manned US space shuttle is a single stage
system supported by two big solid booster motors� First� the liquid main engines of
the orbiter are ignited and checked	out� Then� if theses motors work properly� the
boosters are ignited and the vehicle lifts	o�� The start is interrupted when problems
in the liquid engines are detected �then these engines are simply switched	o� again��
Today� many new launcher developments follow the safety strategy demonstrated
by the American space shuttle �for example Europe�s Ariane	� and Japan�s H���
Except for upper stage engines� all engines are ignited before the lift	o� takes place�
Particularly because of improved �ight safety� the single stage launcher supported by
strap	on boosters is the best launcher concept� The advantages are�

upper stage

core stage

boosters for

selection

a parallel staged

launcher:

	 the �ight safety is greatly improved�
	 it is easy to build a launcher family�
	 the thrust of all engines is used for the lift	o��
	 the body of the vehicle is comparatively short�

The principle involves the following disadvantages�

	 the engine checkout consumes propellent before lift	o��
	 the nozzles must be adapted to the pressure at sea	level�
	 the core stage wastes energy to accelerate the boosters�

The boosters must have a higher thrust acceleration and a shorter burn time than
the core stage� otherwise the staging principle is violated� Nozzles for operation at
sea	level are shorter than nozzles for operation in the vacuum of space� the shorter
nozzles mean a performance reduction for the engines of the core stage� To avoid this
disadvantage it is sometimes considered to equip the engines with extensible nozzles�
but such a risky and di�cult construction has never been used in a space launcher
�probably extensible nozzles are more problematic than helpful��

For GTO	launches an upper stage is required� which has usually a better perfor	
mance because the nozzle of its engine is made for operation in the vacuum of space�
The GTO upper stage should not be too small in comparison with the �rst core stage�
and then the �rst stage should not reach a low earth orbit �it should be suborbital��
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Redundant core stage engines� The parallel staging concept assures that all main
engines are operative when the US space shuttle lifts	o�� If in a later �ight phase
problems in one of the three main engines are detected� the problematic engine can
simply be switch	o�� Now the maximum engine thrust is not required any more� and
the vehicle can �y with a lower thrust level� The space shuttle is able to continue
its mission on another trajectory� where the entire propellent is consumed by the
remaining two engines� The safety principle of using redundant engines is also used
by other space launchers �for example it was used by the American Saturn	� launcher�
where it was not necessary to terminate the mission in case of an engine problem��

Redundant upper stage engines� We have seen that fatal �ight failures by engine
ignition problems can be avoided when a parallel stage launcher is used for LEO
transportation� all engines are checked	out at lift	o�� For the transportation of GEO
satellites we need at least one upper stage� One or several engines have to be ignited
during the �ight �sometimes more than one time� in case of restartable engines��
Usually� single engines are used for the propulsion of upper stages �since the gravity
losses are small for orbital �ight� these upper stage engines are comparatively small��
Instead of using only one single engine� we could equip the upper stage alternatively
with two or three even smaller engines� This would o�er the following advantages�

	 the �ight safety is improved when one of these engines is redundant�
	 now less strict quali�cation tests are required� this makes the engines cheaper�
	 the interstage between core stage and upper stage becomes shorter now�

It is a disadvantage that several small engines are more expensive than a single engine�
but without redundancy� an engine malfunction will lead to a total launch failure�

The statistics shows that upper stage ignition problems can lead to fatal �ight failures�
For the following consideration the European Ariane	� launcher family serves as an
example� its hypergolic second stage never failed to ignite� while year 
��
� after ��
successful launches� ignition problems of the cryogenic third stage were responsible
for � of � launch failures� Obviously� the ignition of the third stage is a safety problem�
Now we consider to equip the third stage of the launcher with a redundant engine�
Since the thrust of one engine alone would su�ce for the injection of the satellite�
the entire weight of the additional engine is now at the expense of payload capacity�
The HM	B upper stage engine weighs 
�� kg and costs about � million euros� Thus�

launcher additional upper stage engine launch costs payload

Ariane�� ��� kg �ca����millUS"����� ��� �	�� 

Ariane�P ��� kg �ca����millUS"����� ��� ���� 

Ariane�L ��� kg �ca����millUS"����� ���� �
�� 

In any case� the redundant upper stage engine increases the launch costs and reduces
the payload capacity� When the payload is small� the use of a spare engine is expensive
and deteriorates the capacity considerably� but the penalty for the additional engine
gets smaller when the payload gets bigger �compared with the size of the upper stage��
and engine problems will not automatically cause the loss of the expensive satellite�
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���� Evaluation of Commercial Launch Services

Consider the situation at the beginning of the �
st century� worldwide there are just
a few launch service providers which compete in the satellite transportation market�
and new competitors from Russia� China and Japan press into the shrinking market�
We might expect that the launch service providers use �optimized vehicles� to survive
in this scenario of strong competition� Surprisingly� we see many di�erences when we
take a closer look at the construction of some di�erent launch vehicles� These di�er	
ences have historical reasons and involve operational advantages and disadvantages�

����� Launch Vehicles

ESA�s Ariane�	 launcher family� The original intention for the development of
Europe�s commercially most successful space launcher in 
�� was simply to close
the gap in space technology between Europe and the USA� Therefore a quite �con	
servative� design was selected� �rst and second stage use N�O� UDMH propellent
�essentially with the same type of engine�� the high energetic LOX LH� upper stage
brings the satellite accurately into the geostationary transfer orbit� Later the Ariane
vehicle was completed by solid and liquid strap	on booster motors� The launcher
did not close the gap in space technology between Europe and US	America� however�
it won more than ��� of the commercial market for GTO	satellite transportation�
Three technical reasons are responsible for this success� �rst� the launch site in
Kourou is much better than America�s launch site in Cape Kennedy �it brings 
��
more payload�� second� the availability of di�erent booster motors allows the com	
position of a launcher family ��exible in payload capacity�� and third� the accurate
non	restartable liquid upper stage is optimal for commercial GTO transportation�
The production of Ariane	� was discontinued after the �rst test �ights of its successor
�the Ariane	� launch vehicle�� and Ariane	� performed its last �ight in February �����

ESA�s Ariane�
 launcher� Already in 
��� Europe planned to replace its launcher
by a bigger vehicle� because that time it was expected that the manned space shut	
tle �Hermes� �another space project which was later dropped� would require a new
transport facility� A single stage vehicle supported by two strong solid booster motors
was considered as safer and cheaper� safer because it avoids that engines are ignited
during the �ight� and cheaper because it needs fewer components� The new launcher�
named Ariane	�� should use LOX LH� as main propulsion� It was also expected that
the vehicle� equipped with an appropriate upper stage� would give better speci�c
costs for GTO satellite transportation when the option of �multiple launching� was
used frequently �the simultaneous launch of two or three satellites with one launcher��
However� the transportation of a manned vehicle to a low earth orbit is a wrong �nom	
inal mission� for a commercial GTO satellite launcher� and Ariane	� su�ers still from
this wrong initial concept� the launcher is too big for commercial satellite launches�
the core stage is too large in comparison with the upper stage� and the use of two
big solid booster motors is not appropriate for the composition of a launcher family�
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Ariane�	 boosters ��stage ��stage 
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 H���
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�� ���� ��� 
	�� ����
propellent mass �t� 
��� ��� �
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� 
�	 �� �� �� ���
GTO payload �t�� ��� ��� 
�� 
�� 
�� �� ��	
price �millUS"����� ����� ����� ����� 	���� ������ ������� ��������

� from Kourou

Example 
��� ESA�s Ariane� launcher� designed as a starting model for the European
space activities� won the commercial market against the competition from America�
Three technical reasons were responsible for the success� the vehicle was optimized for
satellite transportation to the commercially interesting geostationary transfer orbit�
its launch location was better� and a launcher family �exible in price and capacity
was available� The successor model Ariane��� however� is a vehicle that is optimized
for the transportation of a manned space glider to low earth orbit� but the vehicle
is ill�conditioned for the commercial satellite transportation market� it is too large�
the �rst core stage has not the correct size in comparison with the small upper stage�
and the big solid booster motors prohibit the composition of a launcher family�
It can be expected that the wrong nominal mission during the preliminary design phase
of the new launcher will discontinue the European success in space transportation�
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US�America�s Delta�II launch vehicle� In 
��� already the Douglas Aircraft
Company started with the development of a new launcher from components of mili	
tary programmes �the Thor ballistic missile and the Vanguard vehicle�� In the follow	
ing years the Delta vehicle became a reliable system with a good �ight history� the
launcher of the USA that was most often used for the transportation of small GTO
satellites� However� the Delta II had too many components �up to nine launch assist
motors� just six ignite at lift	o��� and the use of a spin	stabilized solid upper stage
was certainly a disadvantage for the transport of commercial satellites� The company
McDonnell Douglas �later a part of Boeing� continued the development of the Delta
launcher family with the construction of two high energetic stages� the second stage
was replaced in 
��� �Delta	III� and the �rst stage in ���� �Delta	IV�� The Delta IV
launcher is now a completely new vehicle in the payload class of ESA�s Ariane	�
or Martin Marietta�s Titan	IV� optimized for the transport of commercial satellites�

US�America�s Atlas�IIA launch vehicle� The history of this commercial GTO
launcher began with the modi�cation of the Atlas ICBM in 
��� and the incorpora	
tion of the Centaur upper stage� Atlas II� America�s high technology space launcher�
was a good space launcher when we compare the payload mass with the lift	o� mass�
The �rst stage and the second stage used the same tank �burnout of the �rst stage
was de�ned by the instant when the two strong liquid booster engines were dropped��
the high energetic Centaur upper stage could be ignited two or even three times to
bring a geostationary satellite to its �nal destination orbit� Small solid strap	on
boosters were available to increase the payload capacity �Atlas	IIAS�� In 
��� the
Atlas	Centaur programme of the company General Dynamics was sold to the com	
petitor Martin Marietta �later Lockheed	Martin� due to a consolidation phase in the
US aerospace industry� and it was decided to continue the development to match the
competition from Europe� The new Atlas	V launcher is essentially a version with
stretched tanks and improved engines� using the high performance RD	
�� engine
from Russia in the �rst stage and a single RL	
� engine in the Centaur upper stage�

US�America�s launchers Titan IV and Titan II� Also Lockheed Martin�s Titan
launcher was originally a military missile programme �the development started in

��
 using components of the Titan ICBM�� In 
��� a two stage version �Titan	II�
brought the Gemini capsule to orbit� the use of two big solid solid booster motors
was introduced in 
��� �Titan	IIIC�� Later a selection of di�erent upper stages was
made available for the launcher �Centaur� Transtage� IUS� PAM�� the control of
the big solid boosters was changed from secondary injection to gimballed nozzles�
and the Titan	IV vehicle became the biggest commercial launcher of the USA� A four
stage version of Titan IV was used for GTO transportation �the core stage ignites
after booster burnout�� In comparison with Atlas� the launcher represents more the
other strategy of cost saving� simply make it bigger than invest into high technology�
However� the main applications for the launcher were always the transport of heavy
military spy satellites to low earth orbit� The launcher was not at all cheap and just
used when its capacity was really needed ��nally� in ����� the company Lockheed
Martin decided to stop the production of Titan in favor of the Atlas launch vehicle��
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sp�impulse �sl�v��s� ��������� ��	��� �
�� �
�� �
diameter�height �m� 
����
�� 
����
�
 
������� 
�������� �
����

launcher D����� D����� Atlas IIA Atlas IIAS Titan III Titan IV
boosters CastorIV GEM CastorIV SRM SRMU
upper stage Star 	B Star 	B Centaur Centaur Transtage Centaur
lift�o� mass �t� ��	 �
� �	� �
 �	� 	��
GTO payload �t� ��� ��	� ��	� 
�� �
 �	���
LEO payload �t�� 
��� ���� ���� 	�
� ��� ����
price �millUS"����� ���� ���� 	���� ������� �
����� ���

� ��� km circular from Cape Canaveral� Delta and Titan without upper stage

Example 
��a� The American launchers Delta�II� Atlas�II and Titan�IV could not
compete with the European Ariane� launcher family on the commercial GTO market
�because of heavy upper stage structures� too many components� and a launch site
far away from the equator�� However� due to a consolidation phase in the American
aerospace industry� the launcher �eet has now been reduced in number and modernized
to match the competition from Europe� Japan and China in the ��st century�
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Delta IV GEM Stage � Stage � Stage �
�common core� � m fairing� �� m fairing�

propellent solid LOX�LH� LOX�LH� LOX�LH�
stage mass �t� ���
 ��	�� �
��
� 
��	�
propellent mass �t� ���� ����� ����� ������
thrust �sl�v� �kN� ������� �		�� ������ ������
sp�impulse �sl�v��s� ���
�	 
��� ���� ����
diameter�height �m� �������� ���
�
��� ������� �����
��

Delta IV version M M ����� M ���� M ���� H
boosters � � GEM � GEM  GEM � Core
fairing size �m�  �  � �
lift�o� mass �t� �� ��
 �	� 

� ��	
GTO payload �t� �� �� ��	 ��� �
��
LEO payload �t�� 	��� ���	 ���� ���� �
��
price �millUS"����� �� 	� �� ��� ��

� ��� km circular from Cape Canaveral

Example 
��b� In order to match the competition from Europe� Japan and China
in the ��st century� America started new launcher developments� The Delta IV
launch vehicle consists of a high energetic core stage �propelled by the strong� newly
developed LOX�LH� engine named RS��	� and a modi�ed Centaur upper stage
�propelled by a single RL��� engine�� A selection of � or  GEM solid booster motors
is available to support the lift�o� phase� The strongest version of the Delta launcher
family uses as its �rst stage three common core stages in a parallel arrangement�

Global players� At the end of the last century� the American space industry �	
nally responded to the competition from Europe and started the development of new
launch vehicles� With their precursors the Delta IV and Atlas V vehicles have ac	
tually not much more in common than the names� Both vehicles are now two	stage
liquid launchers supported by solid strap	on booster motors� Two upper stages with
di�erent fairing size are available for both vehicle types� and all these upper stages are
modi�ed Centaur stages which use high energetic propellent� Following the recipe for
success of the retired Ariane	� launcher� a variety of vehicles with di�erent capacity
can be composed� It can be expected that the Ariane	� launcher will not be able to
compete with these new� optimized space launcher families on the commercial market�
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Atlas V solid Stage � Stage � Stage �
stap�ons �common core� �Centaur� �Centaur�

propellent HTPB LOX�RP� LOX�LH� LOX�LH�
stage mass �t� ��	 
���� �	���� �
����
propellent mass �t� 
	�	 �	� ����	� �����
thrust �sl�v� �kN� ��
� 
	��� ����� � # ����
sp�impulse �sl�v��s� ���� 
��� ��� ���
diameter�height �m� ��������� 
�	�
�� 
������� 
�������

Atlas V version �� ��� ��� ��� �
� �� ���
boosters � � � � 
  �
lift�o� mass �t� 

 

� 
�	 �� �� ��� ��
GTO payload �t�� ��� �� �� ��� ��� ��� 	��
LEO payload �t�� ���� ���
 ����� �
��� ����� �	��� �����
price �millUS"����� �� 	� �� �� ��� ��� ���

� GTO with only one RL��� engine� LEO with two RL��� engines

Example 
��c� The newest versions of the Atlas launcher family are propelled by a
single RD��	� engine �a two chamber derivative of the four chamber RD���� engine
from Russia�� Two di�erent payload fairings are available� and there is the option to
choose from of � to � solid strap�on boosters in order to adapt the capacity of the
launcher to size and weight of the satellite� LEO�launches are performed by using a
stretched version of the Centaur upper stage with two RL��� engines� The strongest
version of the family is not being marketed commercially � the �Atlas V Heavy� vehicle
is composed of three �rst core stages coupled together� like the Delta IV H launcher��

In order to meet a possible competition from states of the former Soviet Union� the
American industry founded joint ventures to market the Russian space launchers�
In parallel with o�ering the Atlas vehicle to launch service customers� the company
Lockheed	Martin has taken over the marketing of Russia�s Proton launcher �actually
a competition to the Atlas vehicle�� The company Boeing is the main contractor for
the Delta launcher family� but Boeing participates also in the company �Sea Launch��
responsible for the marketing of Ukraine�s Zenit launcher �actually a competition to
the Delta launcher family�� Even though the adaptation of Soviet technology in the
American industry was certainly a reasonable idea� it can be expected that not all of
the launch vehicles will survive in a scenario of strong market competition�
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Russia�s Soyuz launcher� The A	system �Vostok A
� Molniya A�e� Soyuz A�� is
the workhorse of the Russian space programme� An early version brought in 
��
the �rst satellite �Sputnik� into space� later the vehicle evolved into several variants
and became with a �ight rate of more than �� launches per year the world�s most fre	
quently used space launcher� The yearly �ight rate dropped to about 
� to �� �ights
after the disintegration of the Soviet Union� but the planning is to continue the use of
this reliable launcher in a cooperation between France and Russia �a joined venture
Starsem was founded in 
����� The Soyuz vehicle is a two	stage launcher that utilizes
LOX kerosene as propellent� the core stage is supported by four strap	on booster
motors with the same propulsion� and a set of di�erent upper stages is available�
When we compare the vehicle with western models we see di�erences in the con	
struction� the liquid engines use four thrust chambers fed by the same turbo pump�
it makes the engines more compact without reducing the reliability� The interstage
between �rst stage and upper stage consists of a framework without coating sheets�
the engine ignites before the upper stage has been separated from the �rst core stage�

Russia�s Proton launcher�Operational since 
���� the D	system Proton is present	
ly the largest Russian space launcher� The �rst stage is propelled by six single
chamber gimballed liquid engines� and six fuel tanks are assembled in a way around
the central oxidizer tank that the vehicle looks like a core stage supported by strap	
on booster motors� However� Proton is a conventional three stage vehicle that uses
storable N�O� UDMH propellent� its nominal mission is to bring heavy payloads
to low earth orbit� A fourth stage with LOX kerosene propellent is available for
high energetic missions� but the launch location in Tjuratam �Baikonur� is extremely
bad for GEO launches �just 
�� of the Protons LEO performance reaches GEO��
Russia had to face severe �nancial problems after its turn to democracy� and thus
the Russian space agency Glavkosmos o�ered the experienced Proton launcher at a
dumping price to the commercial market ���	� millUS'
����� Now an agreement
between the USA and Russia regulates the commercialization of Proton in a joined
venture of the Russian space agency and the aerospace company Lockheed	Martin�

Ukraine�s Zenit launcher� The J	system Zenit was developed in parallel with the
Energia heavy launcher �its �rst stage is more or less identical with Energia�s strap	on
boosters�� and today it is the newest large space launcher of the former Soviet Union�
operational since 
���� Zenit has a comparatively small launch history of just about
two �ights per year� The vehicle is a two stage LEO launcher that uses LOX kerosene
propellent� however� an upper stage is available for GTO launches �a derivative of
Proton�s fourth stage�� After the end of the Soviet Union it was expected that Rus	
sia would not use this launcher anymore for launching heavy spy satellites� and the
Ukraine started o�ering the vehicle to the commercial satellite transportation market�
Initially� a joined venture o�ered unsuccessfully launch services with Zenit from
Australia�s Cape York site �nearer to the equator than Baikonur�� but later the
company Sea Launch o�ered successfully launch services from a modi�ed oil plat	
form� The company Sea Launch is a joined venture between the Ukraine �launcher��
Russia �upper stage�� Norway �launch platform� and Boeing �integration and launch��
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Soyuz A� boosters stage � stage 
 �Molniya�

propellent LOX�ker� LOX�ker� LOX�ker� LOX�ker�
stage mass �t� #�� ���� ���� ��
propellent mass �t� #
��� ��� �������� ���
thrust �sl�v� �kN� #	�
���� ������� ���	 ���
sp�impulse �sl�v��s� ���
�� ����
�� �

� �
�
diameter �m� ���	 ��������� ���� ��
height �m� ���� �	�� ��� 
��

Proton D��e stage � stage � stage 
 stage 

propellent N�O�UDMH N�O�UDMH N�O�UDMH LOX�RP�
stage mass �t� ���� ����� ���� �����
propellent mass �t� ���� ��� �� ���

thrust �sl�v� �kN� 		��	�� ���� ��
� �	�
sp�impulse �sl�v��s� �	��
�� �
�� �
�� �
���	
diameter �m� �� �����#��	� ��� ��� 
�����
height �m� ���� �
�� ��� ���

Zenit J�� stage � stage � stage 


propellent LOX�ker� LOX�ker� LOX�ker�
stage mass �t� 
���� 	��� �����
propellent mass �t� 
�	�	 	��� ����
thrust �sl�v� �kN� ��������� ���� �	���
sp�impulse �sl�v��s� �

� �
�� �
���	
diameter�height �m� 
��� 
��� 
������� 
������

launcher Kosmos Tsyklon Vostok Proton Zenit Energia
stages � �C�� � �F��  boosters 
 �D�� � or 
 � core


 �F�� � core  �D�e�  boosters
lift�o� mass �t� ��� �	����� ��� ��� ����� ���
LEO payload� �t� ��	 �� �� �A�� �� �D�� �
�� 		
GTO payload �t� � � � ��� �D�e� �
 �

� ��� km circular from Tjuratam

Example 
�
� After the disintegration of the former Soviet Union� Russia and the
Ukraine entered the market for commercial satellite transportation with an immense
space experience and an excellent launcher �eet� However� according to their �nancial
situation� these countries continued space activities just at a considerably lower level�
Companies in America and Western Europe took over the management for the
commercialization of the best Soviet space launchers� Vostok� Proton and Zenit�
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Japan�s H� space launch vehicle� Japan�s capability to put payloads into or	
bit was developed from American technology� starting in 
�� with the N
 launcher
which was initially nothing else than licensed versions of the American Delta launcher�
An improved version of the N
 launch vehicle� the N�� was used successfully in the
time period between 
��
 and 
�� with a typical launch rate of two �ights per year�
However� a commercialization of the launcher was impossible due to the American
license contract� and� like the American Delta	II launcher� the N� was not a very
good construction for the launch of satellites� it was a complicated system that con	
sisted of many quite di�erent components �� small solid strap	on booster motors� an
LOX kerosene �rst stage� an N�O� Aerozine second stage� and a solid kick stage��
Japan replaced the second stage of the N� launcher by a self	developed high energetic
stage �with LOX LH� propellent� and named the successor H
� However� the H
 ve	
hicle was not much better than the N� vehicle� and it was still commercially restricted
due to the license contract� The solution to this problem was the development of a
completely new launcher based on the self	developed cryogenic propulsion technology�
The H
 was not used anymore after the start of the testing programme for the H��

Japan�s H� launch vehicle� The �rst and successful test �ight of Japan�s indige	
nous large space launcher took place in 
���� The H� vehicle is apparently a launcher
concept similar to the European Ariane	� launcher� it is a two stage vehicle that uses
LOX LH� propellent� supported by two solid strap	on booster motors� and� following
the example Ariane	�� the transportation of manned space glider �the later dropped
project �Hope�� was initially a motive for its development� However� in contrast to
the Ariane	� launcher� the H� vehicle is not �too large� for the commercial market
of satellite transportation� The two solid strap	on booster motors are considerably
smaller than the solid booster motors of the Ariane	� launcher� and the liquid engine
of the �rst core stage is su�ciently strong to push the smaller vehicle� The upper
stage has the appropriate size in comparison with the payload mass� The H� launcher
is a much better vehicle than Europe�s Ariane	�� and it is optimized for the commer	
cial market� It is comparatively easy to upgrade the performance with more boosters�
the use of up to six boosters can bring the launcher into the payload class of Ariane	��
It is also easy to downgrade the performance with the use of smaller boosters� How	
ever� the launch site inside Japan �Kagoshima �
��� North� is bad for the launch of
geostationary satellites �in comparison with an equatorial launch site it reduces the
capacity by about ��� and makes it necessary that the second stage is re	ignitable��

Japan�s M�V launch vehicle� In parallel with the development of liquid propulsion
technology from the licensed American Delta launcher� Japan started the develop	
ment of small solid launchers for scienti�c applications �the launchers of the so	called
Mu	series are not derivatives of a missile programme�� The �rst successful orbital
�ight took place in 
��� The all solid M	V launcher is the newest version of the
Mu	series� operational since 
��� and� with about the double performance than its
predecessor� the M�	SII vehicle� the M	V is the biggest all	solid launcher of the world�
Three stages are necessary to bring a payload to low earth orbit� an optional fourth
stage can be utilized for the injection of small probes into interplanetary space�
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M�V stage � stage � stage 
 �stage �

propellent solid solid solid solid
stage mass �t� 	
�� 
�� ���� ��
�
propellent mass �t� ���� 
��� ���� ��
��
thrust �sl�v� �kN� �
�	� ���� ���� ���
sp�impulse �sl�v��s� ���� ��		 �
�� ���	
diameter �m� ��� ��� ��� ���
height �m� �
�	 ��	 
�� ���

H� boosters stage � stage � stage 

Castor II Thor

propellent solid LOX�Ker� LOX�LH� solid
stage mass �t� � # �	 	��	 ���� ���
propellent mass �t� � # 
��
 	�� 	�	 ��	
thrust �sl�v� �kN� �#���� ���� ���
 ���
sp�impulse �sl�v��s� �
���	� ��
��	 ���	 ����
diameter �m� ���� �� ��� ��

height �m� ���� ���� ���
� ��


H� boosters core�stage � core�stage �

propellent solid LOX�LH� LOX�LH�
stage mass �t� � # ����� �	�� ����
propellent mass �t� � # ���� 	��
 ����
thrust �sl�v� �kN� � # ����� 	
���	� ������
sp�impulse �sl�v��s� ���
 �� ���
diameter �m� ��	� �� ��
height �m� �
� ���� ����

launcher M�V H� H�
stages 
� ��
 core � core

� � boosters � boosters
lift�o� mass �t� �
	 �� ��
LEO payload �t� ��	 
�� ����
GTO payload �t� ��� ��� ��
height �m� 
��	 ��
 ����
price �millUS"���	� ����� � �������

Example 
�� Japan�s
high�tech space launchers�
the large high energetic
H� vehicle and the smaller
all�solid M�V vehicle� are
examples for launcher de�
velopments mainly stimu�
lated by commercial in�
terest� The H� vehicle
has now replaced the H�
vehicle� which had been
restricted on the com�
mercial market because it
was actually a derivative
of the American Delta�II
launcher� The M�V vehi�
cle is the newest version of
the Mu�series� it serves for
launching low earth orbit
satellites and smaller sci�
enti�c deep space probes�



��� ASTRONAUTICAL ENGINEERING

China�s Long March launcher family� The people�s republic of China started
space transport activities in 
�� with a small two stage liquid launcher CZ	
� de	
rived from a military missile programme� The bigger vehicle CZ	� appeared in 
���
CZ	�� a three stage version of the launcher� was used in 
��� for the launch of China�s
�rst GTO satellite� Later the vehicles were equipped with liquid strap	on boost	
ers �CZ	�E HO� and enlarged in all stages to meet the competition from Europe�
China has now increased its launch rate from initially once per year to about six
per year� experimenting frequently with new variants of the �Long March� launcher�
In ���� a Long March �F vehicle was used to bring China�s �rst taikonaut to orbit�

Long March boosters ��L���L�	� ��L
� upper stage

propellent N�O�UDMH LOX�LH� N�O�UDMH
stage mass �t� � ������� 
� ���� �����
propellent mass �t� 
	 ����	� 
� 	�� ����
thrust �sl�v� �kN� ��� ��		����� ��� ��� ����
sp�impulse �sl�v��s� ��	� ������� ���� ��� ����
diameter �m� ���� 
�
� 
�
� ���� ���
height �m� �� ������
�� ��� ��	 ����

launcher CZ��C CZ��E CZ�
A CZ� CZ��E�HO
boosters �  � � 
upper stage � �solid� LOX�LH� storable LOX�LH�
lift�o� mass �t� ��� � �� �� �
LEO payload �t� 
�� ��� � �� �
��
GTO payload �t� � �
�� ��� ��� ��
height �m� 
��� ���� ���
 ��� ���	
price �millUS"���	� ����� ��� ���� ���
� ��

Example 
��� The Chinese launcher family �Long March� is an example for the try of
an under�developed country to get a commercial success in a �high�technology� sector�
The launcher �eet is similar to the Ariane� family� regarding the size of the stages� the
propellent and the composition of the vehicles� However� the launch site in Xichang�
�	� North� is worse than Europe�s Kourou� and missing trust in the political and
economical stability of the country can be an obstacle for the market success�
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Commercial LEO launch vehicles� Many payloads for a low earth orbit are big
military observation satellites in the class between 
� to �� tons� their transportation
requires comparatively large launch vehicles� However� for a space launcher it is much
easier to access a low earth orbit than the geostationary transfer orbit� and therefore
it cannot surprise us that lot of smaller launchers exist which can only �y to low
earth orbit� Even though this space destination is actually of smaller commercial in	
terest� the expectation of future satellite	based� private telecommunication networks
has stimulated the hope for a commercial applicability of LEO launchers� After the
turn to democracy Russia continued to use its approved Cosmos launcher� a two stage
liquid propellent vehicle� operational since 
���� The US company Lockheed	Martin
had been o�ering the Titan	II vehicle without solid strap	on boosters until the pro	
duction of the Titan	IV stopped� In China a re	development of the CZ	
 launch ve	
hicle was seriously considered at a time when the CZ	
 had already been phased	out�
The American Taurus vehicle of the company Orbital Sciences Corporation is a sur	
face launched version of the airborne Pegasus vehicle that uses a �rst stage of �� tons
instead of an aircraft� The M	V vehicle is Japan�s newest all	solid satellite launcher�
Besides the �great space nations� �America� Russia� Europe� Japan and China��
particularly India has a reasonable launcher development programme� India�s PSLV
vehicle is a development for the satellite transportation market� however� the heavy
structures of the solid stages� the bad launch history� and the liquid propulsion pur	
chased from France do not make the marketability of the Indian launcher probable�

launcher Taurus M�V PSLV Titan�II Kosmos CZ��D
USA Japan India USA Russia China

stages  
 �� boosters � � �C�� 


lift�o� mass �t� 	���� �
� ��� ��� ��� ���
LEO payload �t� ��� ���� 
�� ��� ��	 ���
height �m� ���� 
� �� ��� 
��� �	��
price �millUS"���	� �	��� ����� ����� 
��� �� �

Example 
��a� Space launchers for smaller LEO payloads �from � ton to about 
 tons�
are either old�fashioned liquid two stage launchers �derivatives of old missiles like
America�s Titan II� Russia�s Kosmos C� or China�s CZ��D� or new developed all�solid
launchers �like America�s Taurus or Japan�s M�V�� India�s space launcher PSLV is
composed of some self�developed solid stages and a liquid stage purchased from Europe
�Ariane� technology�� However� it can be expected that some of these launch vehicles
will not survive when the economical situation for space launches gets more di!cult�
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Small LEO launchers� There is also a commercial market for the launch of small
payloads from 
�� kg up to 
 ton to low earth orbit �so	called LightSats or MicroSats��
Some typical all	solid small LEO launch vehicles are listed in the following table�

US Pegasus �Taurus� ���stage ���stage 
��stage

stage mass �t� ������� ����� 
��� ���	
propellent mass �t� ����� ������ 
���� ���	�
thrust �sl�v� �kN� ������ �	��� �����	 �
���
sp�impulse �sl�v��s� ������ �����
 ������ ������
diameter�length �m� ���
�	���� �������� �������
� ��������

US Scout G�� ��Algol III ��Castor II 
�Antares II �Altair III

stage mass �t� ���
� �	�� ���
� ��
��
propellent mass �t� ������ 
���	 ���	� ����

thrust �sl�v� �kN� ��	� ����� �	��	 ����	
sp�impulse �sl�v��s� ������� ��	� ���� ��		
diameter�height �m� ������� �������
� �����
��� �������	

India�s ASLV ��AS� ��AS� 
�AS� �AS
 ��AS

stage mass �t� �#���� ca����	 ca�
�� ca��� ���	
propellent mass �t� �#	��
� 	�� 
�� ����� ��
��
thrust �sl�v� �kN� �#��� ���� �
� ����� �
�
sp�impulse �sl�v� �s� ���
 ���� ������ ���� ��	�
diameter�height �m� �������� �������� ��	��� ��	���� �������

Brazil�s VLS ��#S�
 ��S�
TM 
�Stage �Stage

stage mass �t� 
���� 	�	� ���� ����
propellent mass �t� �	��� ��� �
� ��	�
thrust �sl�v� �kN� ���� �
�� �	� 
��
sp�impulse �sl�v� �s� �
����
 ���� ��� �	�
diameter�height �m� #������� ������� ������� �������

Japan�s M��SII B�SB��
� ��M��
 ��M��
 
�M�
B

stage mass �t� �#��� 
�� �
�� 
����
propellent mass �t� �#�� ���� ��� 
��	�
thrust �sl�v� �kN� �#�	�
�� ���������� 
����� ��
�
sp�impulse �sl�v� �s� ���� ���� ��	� ���
diameter�height �m� ����	��� �������� �������� �������	

However� the market for the transportation of small payloads to low earth orbit is not
at all stable� and thus the available launcher models are changing continuously �for
example� the table above lists the most representative models for the year 
���� but
the Pegasus vehicle is the only vehicle that was still operational in the year 
�����
Today several other vehicles are in the state of proposal� development or operation�
Russia is o�ering some of its inter	continental ballistic missiles for satellite launches�
Israel�s space launcher Shavit is a non	commercial all solid launcher� developed as
derivative of the Jericho	� ballistic missile for small payloads of about 
�� kg into
circular LEO with retrograde orbit inclination� Europe developed its own launch
capacity in this class of carriers already in the middle of the sixties� the French
Diamant� but this launcher hasn�t been used any more since 
�� �the development
of a small Ariane	� derived launch vehicle was rejected because of high speci�c costs��
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solid launcher Pegasus Scout ASLV VLS M��SII
USA USA India Brazil Japan

stages 
  �  
�� boosters

lift�o� mass �t� ���� ����� 
��� ���	 ����
payload mass �kg� �� ��� ��
 �
� �	�
height �m� ���� ���� �
�� ���� ���	
price �millUS"����� ���� ����� ��� ��� ��

Example 
��b� Probably� there remains a small market for the launch of Microsats in
the �� century� �Airborne launching� is better concerning operational �exibility and
costs� and probably the future market for the transportation of small satellites will be
served by airborne launchers like the US Pegasus vehicle �its payload capacity is about
twice as good as payload capacity of surfaced launched rivals with the same size��
Some new space countries o�er launch services with small solid launchers derived
from military missile programmes� but the performance of the vehicles is usually bad�
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����� Launcher Costs

Cost models in space transportation� In the preceding section of this chapter we
came to know a selection of space launchers� Some of the vehicles are still in use� the
others have been o�ered at least for some time for commercial satellite transportation�
Due to historical and political reasons the space launchers are quite di�erent construc	
tions regarding size� number of stages� type of propellent and so on� and� naturally�
these technical di�erences have an in�uence on the marketability of the vehicles�
A cost performance analysis makes the quality of a space launcher more transparent�

The costs are certainly one of the most important design factors for a space launcher�
Here the term �costs� is considered as a technical parameter of a launch vehicle�
the �price� of a launch service is not the same thing� The reason for making a cost
model is to make the quality of launch vehicle constructions comparable �for example
for the optimization of a new development or for the evaluation of an existing vehicle��
The launch prices which are quoted in the documents of the launch service providers
describe the amount of money that the provider wants to get for the service �this can
include� for example� dumping prices below the real costs or intentional high prices
when the service is actually not available yet�� We have to pay attention to the fact
that the quoted launch prices do not always describe the real costs of the vehicles�

Good and simple cost models for astronautical engineering take just the important
technical aspects under consideration which have a noticeable in�uence on the costs�
It follows from experience that complicated models are not more accurate or more
reliable� The idea to add up the costs of every small part of a vehicle �every screw�
metal sheet� wire and so on� will fail to work for obvious reasons� We also do not use
this type of cost model in every day life� when a salesman� for example� plans a busi	
ness trip� he thinks in advance how much money he will need for the travel� However�
he does not consider in advance the price of every telephone call� taxi drive� business
diner and so on� The salesman simply counts the days� considers to which country he
travels and what he has to do there �maybe he assumes a luxury factor depending on
the standards�� Then he considers how much money he usually spends for a day in
this country �or what other salesmen spend there� and calculates the costs for the trip�
A model that considers only important in�uence factors brings quite realistic results�

Thus� our space launcher cost model will just take important in�uence factors under
consideration� the number and the size of the rocket stages� the thrust of the liquid
engines� and the type of propellent that is used� On the easiest way we evaluate the
costs for every stage individually and then add up the costs for all the stages� The
result in terms of million US dollars should match the quoted launch prices of the
often used European and American vehicles �we assume that the quoted prices of the
newcomers Russia� China and Japan do not always represent the real production costs
for the vehicles�� These quoted prices change also with the year of the production�
the dollar is subjected to a small in�ation �a few percent per annum�� but it is also
a characteristic aspect for the business that the real launch prices drop every year�
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Costs of liquid rocket stages� A square root function of the mass describes ap	
proximately the costs of liquid rocket engines �and other equipment in astronautics��
an engine with the double mass is about

p
� times more expensive� The mass of the

engine is an exponential function of the thrust� the exponent is approximately ����

liquid engine production costs �millUS'����� � ���� �
p
mass �kg�

liquid engine mass �kg� � ��� � �thrust �t����
� ��� 
�

The constant in the equation above depends on the year of production� for example
the constant ���� describes the production costs in million US' for the year �����
The production costs for the structures can be estimated in a similar manner� Thus�

structure production costs �millUS'����� � ��
�� �
p
mass �kg�

structure mass �kg� � constant � �propellent volume �m
�
��
�����

��� ��

for cryogenic propellent� constant � ���� density � ��� �kg m���

for storable propellent� constant � ���� density � 
��� �kg m���

Thus� it is assumed that the structure mass is approximately proportional to the
surface of the tanks �the constants in the equation above consider statistical data��
Finally� the control equipment of the stages has to be taken into account� strap	on
boosters without thrust vector control are certainly cheaper than stages with gim	
balled engines� it is assumed that they cost approximately �� of a steerable stage�
We get the following simple equation for the cost estimation of a liquid rocket stage�

costs �millUS'����� � factor � �
��� � �stage thrust �t�����
�

! constant � �propellent mass �t�������� ��� ��

with� constant � ��� for cryogenic propellent

constant � ��� for storable propellent

factor � 
�� for stages with thrust vector control

factor � �� for stages without thrust vector control

Equation ��	�� refers to the entire vacuum thrust� also in the case when several
engines propel the stage �then it is not appropriate to give the stage a cost penalty�
several smaller engines instead of a single big engine are certainly used to save costs��
A cost calculation for liquid stages of the retired European Ariane	� launcher shows
the application of this simple cost model� We get the estimated production costs as�

L���� Costs� 
��� � �������
� ! ��� � ��������� � �
�� �millUS'�����
L��� Costs� 
��� � ������
� ! ��� � ��������� � 
�� �millUS'�����
H
�� Costs� 
��� � ������
� ! ��� � 
�������� � 
��
 �millUS'�����
PAL� Costs� �� � �
��� � ����
� ! ��� � ���������� � 
��� �millUS'�����

The cost model considers only thrust� propellent mass and controllability of a rocket
stage� and it makes a distinction between high energetic and storable propellent�
The cost model estimates the production costs of liquid rocket stages for commercial
space launcher applications �the development costs are about 
� to �� times higher��



�� ASTRONAUTICAL ENGINEERING

Costs of solid rocket stages� The equation ��	�� for the estimation of the costs of
liquid rocket stages cannot be used to estimate the production costs of solid motors�
with solid propulsion it is comparatively easy to generate high thrust� but on the other
hand the solid propellent is quite expensive� The control of a solid stage is not easy�
a solid rocket stage consists sometimes of many small strap	on motors with �x	canted
nozzles� sometimes the stage is a big motor with a gimballed nozzle and sometimes
it is a small spin	stabilized upper stage� For the cost estimation it is appropriate
to consider just the total amount of propellent and the controlability of the stage
�considering strap	on boosters as a single stage�� Let us try the following approach�

solid stage production costs � constant � �propellent mass �t��
exponent

��� ��

A price of 
� to 
� million dollars was quoted in 
��
 for the experienced American
Scout G
 launcher� a price of  to 
� million dollars was quoted at the same time for
the smaller airborne launcher Pegasus �but in 
���� after the retirement of Scout� a
price of 
� to 
� million dollars was quoted for the vehicle�� The retired American
Titan launcher is actually the only vehicle that has commercial experience with big
solid boosters� a comparison of the prices of Titan	II �without boosters� and Titan	IV
�with boosters� indicates that big gimballed solid rocket motors are very expensive�
Let us try the model for some solid stages with constant � 
 and exponent � �����

costs �millUS'����� � factor � �propellent mass �t����
�� ��� ��

with� factor � 
�� for stages with thrust vector control

factor � �� for stages without thrust vector control

Scout G
� Costs� 
����
� ! ����
� ! 
����
� ! �����
� � 

�� �millUS'�����
Pegasus� Costs� 
��
��
� ! �����
� ! �����
� � ��� �millUS'�����
Taurus� Costs� ������
� ! ��� � ���� �millUS'�����
� Delta	���� boosters� Costs� �� � �� � 
��
���
� � ���� �millUS'�����
� Titan	IV boosters� Costs� �� � �
����
� � 
���
 �millUS'�����
� US	Shuttle boosters� Costs� �� � ������
� � 
��� �millUS'�����
� Ariane	� boosters� Costs� �� � ������
� � ���� �millUS'�����

We have to pay attention to the exponent in the equation above� the value ���
would also �t for small solid launchers� but the value ��� as exponent would deter	
mine much lower costs for big solid strap	on boosters� However� the production costs
of big solid rocket motors are a critical point in the cost assessment of space launchers�
shortly before the termination of the Titan programme the company Lockheed	
Martin speci�ed the costs for the Titan	IV vehicle as ��� to ��� million US	dollars�
but only as �� to �� million dollars for the vehicle Titan	II without big solid boosters�
The company Arianespace stated in the year ���� a purchase price of 
�� million eu	
ros for the Ariane	� vehicle� where �� million euros were on the account of the two big
booster motors� There is obviously a considerable discrepancy between these quoted
�gures� However� we also know that the space shuttle is now in its operational
phase much more expensive than it was promised at the time of its development�
Our cost model states that small solid stages are cheaper than liquid stages of the
same size� but it states also that big gimballed solid boosters are quite expensive�
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Costs of a space launcher� Now we can make use of our cost model and calculate
the estimated costs of a launcher� therefore we have simply to add up the costs of all
stages as they are determined by the equations ��	�� and ��	��� We can compare the
results with the quoted launch prices which we can �nd in the literature� For example�
launch prices are quoted in S�J�Isakowitz ��International Reference Guide to Space
Launch Systems�� AIAA� Washington D�C�� 
��
 and 
����� Interavia�s �space direc	
tory�� A�Wilson ��Jane�s Space Directory�� Jane�s Information Group� London� 
�����

Price in million US' cost model Isakowitz�
��
� �
���� Jane�s �
����

Europe�s launcher family�
Ariane ��� �
� ��	� ��	�� ��	��
Ariane ��P� ���
 ��	� �	�� ��	��
Ariane ��P� ��� ��	� ��	
�� ��	��
Ariane ��L� ���� ��	�� ��	
�� ��	���
Ariane ��P�L� ���� ��	
�� ��	

� ���
Ariane ��L� 

��
 

�	
�� 
��	
�� ���
Ariane �� 
���
 

� 
��	
�� ���	

�

US launchers�
Scout� 

�� 
�	
� 	 
�	
�
Pegasus� ��� 	
� 
�	
� ��
Taurus� ���� 	 
�	�� 	
Delta ����� �
�� ��	�� 	
Delta ���� ���� ��	�� ��	��
Atlas IIA� ���� ��	�� �	�� �� �Atlas	
�
Atlas IIAS� ��� 

�	
�� ��	
��
Titan II� ���� �� ��	��
Titan IV	Centaur� 
���� �� ���	��� 

� �Titan III�
Space	Shuttle� ����
 ��� ��� �� �STS	��

New competitors�
Proton D
	e� 
���� ��	� ��	�� ��
Zenit� ���� ��	� �	�� �SL�
M�	SII� ���� �� 	 �

M	V� ���� �� ��	�� 	
H
� ���� �� 	 ��
H�� �
 
��	
�� 
��	
�
CZ	�� ��� �� ��	�� �� �CZ	�E�
CZ	�� ���� �� ��	�� ��	��

We can see that the cost model represents approximately the quoted launch prices�
even though it considers just the number of the stages� their size and performance�
The cost model ignores other items like reusability of components� use of several
engines in the same stage� type of control system� interstages and adapters� experience
of the manufacturers� number of manufacturers� di�erent nationalities and so on�
However� also the quoted prices do not always represent the real costs of the vehicles�
when a newcomer o�ers a launch service for �half the price� this does not mean
that the vehicle is �twice as good� �for example China�s launcher CZ	��� and when a
newcomer quotes high costs for a launch service that is actually not available on the
market this does not mean that the vehicle is bad �for example Japan�s launcher H
��
Then the model is actually better because it considers costs as a technical parameter�
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����� Launcher Payload

The performance as a quality factor of a launcher� Our intention is to make the
quality of di�erent launch vehicles comparable� therefore we have introduced a cost
model in the preceding pages of this chapter� Our cost model is not at all accurate� but
cost models are usually not accurate� the costs of a space project depend sensitively
on many parameters which are never well	de�ned �capacity of the industry� number
of parallel projects� experience of the manufacturers� cost of manpower and so on��
However� the performance of a space launcher �its payload capacity for a certain orbit�
is a parameter which can be calculated accurately by the appropriate trajectory op	
timization software� Launch service providers present the capacities of their vehicles
usually in the form of diagrams or tables� where the payload mass is a function of the
altitude and the inclination of the destination orbit� When we want to make the per	
formances of di�erent space launchers comparable� we have to calibrate the quoted
performances and transform the payload capacity to representative reference orbits�

LEO capacity� The low earth orbit LEO is the easiest space destination� a space
launcher has the highest payload capacity when it departs from the launch pad in
easterly direction to attain a circular low earth orbit� We will take the altitude of
��� km above sea	level as the reference altitude and the geographical latitude of the
individual launch site as the reference inclination �eastbound launches�� When the ca	
pacity of a launcher is speci�ed for an equatorial low earth orbit with another altitude�
we can use the following simple model for the transformation of the payload capacity�

%v � ���� � �orbit altitude�km� 	 ����

model payload mass	quoted payload mass � e�%v	
��� ��� ��

The velocity requirement %v that is necessary to transfer from one circular low earth
orbit to another one is nearly a linear function of the vertical deviation �provided that
the di�erence in the altitude is small� for example less than ��� km�� and this velocity
requirement can be used to calculate the modeled capacity for the ��� km orbit�
Trajectory simulations show that a hypothetical exhaust velocity of 
��� m s� used
in the Ciolcovskij equation ��	��� is an appropriate value that �ts for many launchers�

GEO capacity� The geostationary transfer orbit GTO is the terminal for many
launch services� but then the destination for the satellite payload is always the geo	
stationary earth orbit GEO� The quality of a launch service is rather a function of the
GEO capacity than a function of the GTO capacity� because the inclination of the
launch site has a strong in�uence on the velocity requirement %v for the maneuver
that brings the payload from GTO to GEO� The transfer from GTO to GEO is either
performed by the satellite itself� or by a separate kick stage� or by the upper stage
of the launcher �the last option requires that the upper stage is re	ignitable�� When
we want to compare the quality of di�erent launch services we have to decide for one
of the three options� For our model we will assume satellite integrated propulsion�
then the launcher has the best capacity� and this option is more in common practice�
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Then we can use a simple model to �nd the GEO capacity from the GTO capacity�

%v � 
� ! ���� � �launch site latitude �deg���

GEO payload mass	GTO payload mass � e�%v	���� ��� �

Within the limited accuracy of the model� the %v requirement that is necessary to
transfer from GTO to GEO is just a function of the inclination of the transfer orbit�
The constant 
� m s in the equation ��	� represents the velocity requirement for
a coplanar transfer from an elliptical orbit ���� km � ��� km� to the geostationary
position� the constant ���� takes under consideration that the �nal velocity in GEO
amounts ��� m s� The inclination of the transfer orbit is the same as the latitude
of the launch site �or slightly greater�� We assume that the value ���� m s in general
is appropriate to characterize the exhaust velocity of satellite integrated propulsion�

Launch location loss factor� Finally we have to consider the in�uence of the
geographical latitude of the launch site� a good quality launcher can have a bad
performance when it departs from a launch site far away from the equator� We have
already seen that the in�uence is particularly interesting for GTO launch services� but
let us �rst consider LEO services� the earth rotation has for space transportation the
positive e�ect that the launch site has already a velocity with respect to inertial space
when the launcher departs from the launch pad� The payload capacity of a space
launcher increases when we assume that the vehicle is launched exactly on the equator
into an equatorial low earth orbit� Then the following model is approximately valid�

%v � ��� � �launch site latitude �deg���

equatorial LEO payload mass	LEO payload mass � e%v	
��� ��� ��

For the launch of geostationary satellites we have to consider the smaller e�ect of the
earth rotation and the larger e�ect of the inclination change in geostationary position�
We have seen that the %v improvement for a launch exactly on the equator is for
both e�ects approximately a quadratic function of the latitude of the launch site� the
factors ��� �equation �	� and ���� �equation �	�� have to be added�

%v � ���� � �launch site latitude �deg���

equatorial GEO payload mass	GEO payload mass � e%v	���� ��� ��

Again� the exhaust velocity is characterized by the value 
��� m s for LEO launches
and ���� m s for GEO launches� The following table shows the results of the model�

equatorial	launch payload improvement for GEO	launches LEO	launches

Europe�s Kourou ����� N� ����� W !���� !��
�
America�s Cape Canaveral ����� N� ����� W !
���� !����
Russia�s Tjuratam ����� N� ����� E !���
� !
����
Japan�s Kagoshima �
���� N� 
�
���� E !����� !���
China�s XiChang ����� N� 
����� E !
��� !���
India�s Sriharikota 
���� N� ������ E !���� !����
Brazil�s Alc(antara ����� S� ������ W !��
� !����
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����	 Launcher Quality Comparison

Speci�c costs� Let us start the launcher quality comparison with the analysis of the
speci�c costs� the aspect that is most important for the customers of launch services�
The table below lists the modeled speci�c costs for some commercial launch services
�the absolute launch costs divided by the payload capacity for LEO and for GEO��
but it must be emphasized that neither the cost model �equations �	� and �	�� nor
the performance model ��	� and �	� is really accurate� However� the �gures for the
di�erent vehicles deviate so much that we are at least able to recognize some trends�

Launch vehicle� payload capacity modeled costs �millUS"�����ton�
LEO GTO GEO absolute LEO GEO

Europe�
Ariane� ���� ��� ���� �� ������ ��
Ariane�P ����� ��� ��
 �	 ������ �
ArianeP ����� 
�� ���� �� ����� 
Ariane�L ���� 
�� ���� 	� ����	� �
Ariane�L�P �	�
� 
�� ��� �
 ������ �
ArianeL ����� �� ��
� ��� ������ ��
Ariane�� �without L�� ��� �
� ��	
Ariane�� �with L�� ��� 
�� �
	 �

USA�
Scout ����� �� ���
Pegasus ���� �� ����
Taurus ��� �� �	��
Delta ���� ����� �� ����
Delta ���� ��	� ��	� � �
��
Atlas IIA ��� ��	� ��
 � ��� ��	
Atlas IIAS 	� 
�� ���� �� 	�� ��
Titan II ��� 
 ����
Titan IV ���� ��� ���
Titan IV Centaur 	�� ��� �	� ���

new competitors�
Proton D�e ���� ��� ���� ��
 ��� ���
Zenit �Baikonur� �
�� �
 ��� 	� ��
 ���
Zenit �sea�launch� ���� �� ���
 	� ��� 
��
M�V ���� � �
��
H� ���� �� ��	� �� ��
 ��
CZ�� 
�� � ���
CZ�
 ��� ���� �	 	�


We can see that the speci�c costs decrease substantially with the size of the vehicle�
a bigger launcher has lower speci�c costs� Europe�s Ariane	� and Russia�s Proton are
optimized for the transportation of heavy LEO satellites� We can also see that the
market accepts a much higher speci�c price when a large vehicle is not required for the
launch of a small satellite� Europe�s Ariane	� family o�ered moderate speci�c launch
costs for GEO satellites with a weight between one and two tons� The modeled launch
costs indicate that the vehicles of the new competitors from Japan� China and Russia
are serious rivals for the established launch services from US	America and Europe�
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Flight safety� The reliability is the next very important aspect that decides the
quality of a space launcher� Typical reasons for failures are malfunctions of the guid	
ance system� engines that fail to ignite or to restart� and stage separation problems�
Consequently� a space launcher should not be composed of too many stages� and
in	�ight engine ignition should be avoided� A new developed vehicle requires a test
phase before the operational phase� and some of the test �ights are usually failures�
Later the success rate increases because the management learns from the mistakes�
The �launch history� characterizes the experience of the launch service providers�
for example� the following table lists the launch history for the year 
����

launch record ���� �rst �ight total number failures failure rate

Europe�s Ariane���� ���� � � ���� 

America�s Scout ���� ��
 � ��� 

America�s Pegasus ���� � � ��� 

America�s Thor�Delta ���� ��� �� ��� 

America�s Atlas ���	 �� 
� �
�� 

America�s Titan ��� ��� �� ��� 

US Space Shuttle ��	� 
	 � ��� 

Russia�s Kosmos ��� 
�� �� ��� 

Russia�s Tsyklon ���� ��� �� ��� 

Russia�s A�system ���� ��� 
� 
�� 

Russia�s Proton ���� �	� �
 ���
 

Russia�s Zenit ��	� �
 � ��� 

Russia�s Energia ��	� � � ��� 

Japan�s M series ���� �� � ���� 

Japan�s �Delta� N��N��H� ���� �� � ��� 

China�s CZ ���� �� � 	�� 

India�s SLV Series ���� �  ���� 

Flight precision� The satellite saves time and propellent when the launcher brings
it accurately into the destination orbit� and therefore the �ight precision is another
important quality factor of a space launcher� The following table lists the data
speci�ed by some GTO launch service providers for their launch vehicles�

GTO accuracy �
�� upper stage pericenter apocenter inclination

Ariane� �H��� LOX�LH� ������� km 
��	���� km ��������	�
Delta ���� solid ������� km 
��������� km �	�������
Atlas�Centaur LOX�LH� ������� km 
������� km ����������
Proton LOX�ker� ������� km 
��	���� km ���������
Zenit �Baikonur� LOX�ker� ��� km 
�����
�� km ���������
Zenit �Sea�Launch� LOX�ker� ��� km��� km 
�����	� km ������
H� LOX�LH� ��� km��� km 
�������� km �	������	�
CZ�
 LOX�LH� ������� km 
��	��� km 
���������

The �nal stage that delivers the satellite into the target orbit should be a high preci	
sion liquid propulsion upper stage� a spin stabilized solid kick stage is not accurate�
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Environment for the payload� Noise� shock loads� vibrations� axial and lateral ac	
celerations during the launch phase mean stress to the satellite� and therefore a mod	
erate payload environment is another important quality factor for a space launcher�
The following table lists some data provided by the launch service providers�

payload load factors axial�lateral shock loads �g� sound level �dB�

Europe�s Ariane���� �� g ���� g ���� g ��������� Hz� ��

America�s Pegasus 	�� g �
�� g 
�� g ��������� Hz� �

��

America�s Delta ���� ��� g ���� g ��� g ����� Hz� �
���

America�s Atlas ��� g ���� g ���� g ����� Hz� �
���
	

America�s Titan IV ��� g ���� g ���� g ����� Hz� �
��


US Space Shuttle 
�� g ���� g ���� g ���� Hz� ��

Russia�s Proton ��� g �
�� g ���� g ���������� Hz� �

Russia�s Zenit ��� g ���� g ��� g ���������� Hz� ��

Japan�s H� �
 stages� ��� g ���� g ���� g ��������� Hz� ��

Japan�s H� ��� g ���� g ���� g �	������� Hz� ��

China�s Long March ��	 g ���	 g ���� g ���������� Hz� �
����

The launch contract� When an operator of commercial satellites is going to install
a new transponder he is faced with the problem to select a launch service provider�
The technical aspects �costs� �ight safety� accuracy and payload environment� are
certainly very important� however� also �non	technical� points have to be considered�
Some parts of the contract are negotiable between the provider of a launch service
and the customer� depending on the actual political and economical situation�

A very important aspect is the time interval between the signing of the contract and
the actual launch date� Satellites are extraordinarily expensive� and the capital costs
�interest rates� are so high that even hours count� It is an important question how
many days before the actual launch date the satellite must be delivered to the launch
service provider� and whether it is possible to access the satellite after the delivery�
Established providers o�er usually short time intervals between contract and launch�
but sometimes the launcher is �booked	out� or the annual launch rate is limited�
However� over	capabilities can also lead to �last minute� �ight opportunities�

It is also important how �exible a launch contract is� regarding changes according
to the wishes of the customer� It can be the case that the satellite is not ready at
the right time� or that it is at the launch date bigger than it was originally planned
�therefore a launcher family with a variety of payload shrouds should be available��

Finally� it should also be negotiated what happens in case of unexpected problems�
Another �ight free of charge can be o�ered in case of a fatal �ight failure� A �money
return guarantee� can be negotiated for case that� due to political reasons� the
launch vehicle is suddenly not available anymore �a revolution can happen in an
under	developed country� an environmental protection group can create problems
and prohibit launches� a strong national lobby can consider the foreign satellite as
an unwanted competition� military can provide obstacles for the launch and so on��
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���� Optimization of Space Launchers

The development of a new space launcher is extremely expensive� and therefore a new
space launcher is very often not a completely new development� but it has to utilize
existing components� The optimization of a launch vehicle in a preliminary design
phase has to take available engines and rocket stages under consideration� even when
these components do not �t perfectly for the new application� This section demon	
strates the technique of space launcher optimization� the situation that was present
for the European Ariane launcher family in the year 
��� is used as an example�

��	�� The Concept Ariane�
 Commercial

The Ariane�
 design concept� Let us go back to Europe in the beginning nineties
when the Ariane	� was the most successful launcher on the commercial market�
That time it was expected that in the future a scenario of stronger market competi	
tion would prevail in the business of commercial satellite launch services� However�
the decision to replace the Ariane	� vehicle by the new development Ariane	� had
been based on the expectation that the new launcher would be cheaper and better�
and Ariane	� was phased out before the operational Ariane	� had proved superiority�

It was planned to terminate the production of the Ariane	� stages early in order to
liberate the capacity for the production of Ariane	�� However� Ariane	� is a typi	
cal LEO launcher� it is ill	conditioned for the commercial market of launching GTO
satellites� the nominal mission in the preliminary design phase was the transporta	
tion of a big manned space glider to low earth orbit ��� tons Hermes�� therefore a
high energetic single stage system was selected� equipped with only one liquid engine
but supported by two big solid booster motors� All engines ignite before lift	o�� �rst
the engine of the core stage and then� when the core stage engine works normally� the
solid boosters� Since the solid boosters are strong and liquid engines are expensive�
the core stage was equipped with a comparatively weak engine �named �Vulcain���
Quite good as far as it goes� but then the project Hermes was dropped and Ariane	�
got a new nominal mission� the transportation of commercial GTO satellites�
Therefore the vehicle required an upper stage� Since it was anyway �too big� for
the new nominal mission� the capacity was downgraded with an upper stage ��L��
that was too small in comparison with the rest of the vehicle �storable propellent was
selected for the upper stage in order to avoid that the stage has to be tanked shortly
before lift	o��� To avoid that the large core stage reaches an orbit during the mis	
sion� an unusual �ight maneuver became necessary to bring the stage to a controlled
re	entry in front of the coast of Peru� However� the most serious disadvantage in the
launcher concept was the use of two big solid strap on boosters� Even when these
motors are cheaper and more reliable than liquid rocket stages of the same size� they
prevent the composition of an Ariane	� launcher family ��exible in payload capacity��
but probably it is not true that big gimballed solid motors are cheap and reliable�
the experience is not at all promising �America�s Titan	IV and the Space Shuttle��
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Improvement of the Ariane�
� Let us now think about how we can improve the
ill	conditioned Ariane	� launcher concept using components of the Ariane	� vehicle�
A replacement of the L upper stage by the H
� upper stage is comparatively easy� it
requires small structural modi�cations �essentially a thickening of the hydrogen tank�
let us assume 
�� more structure weight�� Trajectory simulations show that the core
stage is now sub	orbital and performs a re	entry over the Indian Ocean without special
trajectory restrictions� and the GTO capacity increases from ��� tons to 
��� tons�

However� with a capacity of � tons the Ariane	� launcher was already too big� and
a capacity of more than 
� tons would make simultaneous launches of two or even
three satellites necessary all the time� In order to reduce the capacity for the launch
of a single satellite we have to remove the big solid strap	on booster motors ��P������
For example� we can try to replace the P��� motors by two L��� stages� The �L����
stage is the �rst stage of Ariane	�� it has about the same size as the solid boost	
ers P���� Our cost model states that a L��� stage is cheaper than a P��� motor
��� million US' instead of �� million US'�� Since the L��� stage is weaker than a
P��� solid motor� we have to remove propellent from the core stage �so	called propel	
lent �o�	loading��� When we remove �� tons propellent from the H
�� core stage and
simulate the trajectory of the vehicle� we �nd a GTO payload capacity of �� tons�
The vehicle with liquid strap	ons has approximately the same speci�c costs as the
vehicle with solid strap	ons �� 
� million US' ton GTO�� and� assuming that the
cost model is correct� the vehicle is better because it has a smaller payload capacity�

However� the capacity of the vehicle is with �� tons still too high for the launch of
a single GTO satellite� and the use of two big strap	on booster motors prevents the
composition of a launcher family� The solution to the problem is to replace the two
big boosters by a selection of many smaller solid or liquid strap	on booster motors
�the solid boosters PAP or the liquid boosters PAL of Ariane	��� The new vehicle
is then actually an Ariane	� vehicle� where the single high energetic stage H
�� of
Ariane	� replaces the �rst stage L��� and the second stage L��� The larger diam	
eter of the H
�� stage allows the use of upto eight solid or liquid strap	on motors�
however� the use of the small boosters confronts us with three technical problems�
�rst� we have to introduce structural modi�cations to mount the smaller boosters
to the stage H
��� Second� the small boosters are not equipped with thrust vec	
tor control� either the core stage has to take over attitude stabilization and �ight
control alone� or the booster have to be equipped with thrust vectoring capability
�a comparison with America�s Delta	II launcher� where the core stage with �� tons
thrust is able to control six �xed canted boosters with all together ��� tons thrust�
indicates that upto four boosters can be used without thrust vectoring capability��
The third problem is that the fully tanked vehicle is �too heavy� to depart from the
launch pad� we have to remove a certain amount of propellent from the core stage�
depending on the number of booster motors� The low lift	o� thrust leads to lucrative
conditions for the �ight control subsystem� which are also necessary when the thrust
vector control system of the core stage alone takes over guidance and stabilization�
We can calculate the capacity of the vehicle with a trajectory optimization program�
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Example 
��� The new European space launcher Ariane�� is ill�conditioned for the
launch of commercial GTO satellites� however� it can be improved� The example
design for the vehicle �Ariane�� commercial� assumes the scenario in the beginning
nineties when the approved stages of the Ariane� launcher family were still available�
The use of a strengthened upper stage H�� instead of the stage L� increases the GTO
payload from ��� tons to about �� tons� A replacement of the big solid strap�on
boosters P�
� by two stages L��� reduces the GTO payload again to about � tons� but
the vehicle that is equipped with liquid boosters is probably cheaper than the vehicle
that is equipped with big solid rocket motors� However� the solid motors P�
� can
also be omitted when the vehicle is supported by a selection of the smaller liquid PAL
or solid PAP boosters �therefore these Ariane� boosters have to be equipped with
thrust vectoring capability�� The modi�cations will lead to an optimized launcher
family �Ariane�� commercial� that is capable to replace the whole Ariane� family�
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The following table compares the performance of our hypothetical Ariane	� version
��Ariane	� commercial�� that uses a variable number of solid PAP or liquid PAL
strap	on boosters with the original Ariane	� vehicle that uses two big boosters P���
�the cost model was used to estimate the speci�c launch costs��

Launch vehicle� payload capacity modeled costs �millUS"�����ton�
LEO GTO GEO absolute LEO GEO

Ariane���

�P�
��H��� ��� �
� ��	
�P�
��H����L� ��� 
�� �
	 �
�P�
��H����H�� ���� ��	 �� ��
��L����
���H����H�� ���� �� �� ��� ��� ��

�Ariane � commercial��

�PAP��H����	���H�� ��	� ��� ��� ����


PAP��H�����	��H�� ��
� ��� ���
 ���

PAP��H��������H�� ���� ��� �
� ���	
�PAP��H��������H�� ���� ���� ��� ���
�PAP��H������H�� ���� ���� ���� ��
�PAP��H�������H�� ���� ��
	 ���� ���
	PAP��H����
���H�� ���� ���� ���� 
���

�PAL��H�������H�� �� ���� ���
 �	�� ��� ���


PAL��H����
���H�� ��� 
��� ���� 	��	 ���� 	��
PAL��H��������H�� 	�� 
�	 ���� �
�� ���� �

�PAL��H��������H�� ��	 ��	 ���� ����� ���� ��

�PAL��H�������H�� ��� ��� 
��� ��	�� ���� 
���
�PAL��H����	��H�� ���� ��� 
�
 �
��� ���� 
	�
	PAL��H�������H�� �� ���� 
�	
 ��
 ���� 
���

Ariane�

Ariane� ���� ��� ���� �� ������ ��
Ariane�P ����� ��� ��
 �	 ������ �
ArianeP ����� 
�� ���� �� ����� 
Ariane�L ���� 
�� ���� 	� ����	� �
Ariane�L�P �	�
� 
�� ��� �
 ������ �
ArianeL ����� �� ��
� ��� ������ ��

We can see that the new vehicle �Ariane	� commercial� supported by a selection of
PAP or PAL boosters has enough capacity to replace the old Ariane	� launcher family�
it covers the entire range of payloads and o�ers comparable or even better costs�
Assuming that the cost model is correct� the H
�� stage equipped with a single
Vulcain engine is cheaper than the L��� stage and the L�� stage with all	together �ve
Viking engines� The strongest version of the �Ariane	� commercial� is supported by �
liquid PAL boosters� this vehicle has a GTO capacity of approximately  tons� o�ers
moderate launch costs and is capable to replace Ariane	�� However� also with these
modi�cations the vehicle is still not the best vehicle for launching GTO satellites�
because the core stage H
�� is �too heavy�� or the Vulcain engine is �too weak�
�propellent o�	loading is always necessary�� To construct the best GTO launcher�
Europe�s space industry will have to develop a stronger version of the Vulcain engine�
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��	�� The Airborne Ariane�	 Launcher

The bene�ts of airborne launching� The �rst �ight of the American Pegasus
launcher in 
��� proved the feasibility of airborne launching �the small winged
Pegasus vehicle used a B	�� bomber as launch platform�� The great advantage is
that the airborne launcher is independent of a launch infrastructure in an equato	

rial region of the earth� and another
great advantage is that the airborne
launched vehicle has about the dou	
ble payload capacity than a surface
launched vehicle of the same size�
These two advantages override ob	
viously the only disadvantage that
a big �and expensive� jet aeroplane
is necessary for airborne launching�

An airborne launcher composed of Ariane�	 stages� Let us go back again
to Europe in the year 
��� when the stages of the commercially successful Ariane	�
launch vehicle were still in production� At that time a LEO launch capacity was more
or less not available in Europe� and the smallest launcher of this family� Ariane	���
had already a GTO capacity of 
�� tons� The launch of smaller GTO satellites was just
possible with the method of �double launching�� a technique which is sometimes not
appropriate for a launch service customer� Let us now consider how we can compose
a small airborne Ariane launcher from components of the approved Ariane	� stages�

Four components of the Ariane	� launcher are usable for airborne launching� PAP�
PAL� L�� and H
�� The �rst stage L��� can be ignored� since it is simply too heavy�
The boosters PAP and PAL are constructed for ground level ignition� we can extend
the nozzles for the ignition at a higher altitude to give them a better speci�c impulse�
The stage L�� cannot be ignited at 

 km altitude �at the cruising altitude of jet air	
planes�� but the ignition should not present a problem at an altitude of about 
� km
when the stage is used as a second stage of an airborne launcher� Both boosters PAP
and PAL are not equipped with thrust vector control� wings are necessary for the
aerodynamic stabilization and for the initial pull	up maneuver� It is the best that we
integrate the wings in the �rst stage and jettison them together with the empty stage�
The stages cannot stand high lateral accelerations� therefore we have to limit the the
lift force during the initial �pull	up� maneuver� The carrier aircraft must be a big
�civil or military� jet aeroplane� it must have su�cient capacity to carry the external
load and it must have some capacity left over for cruising and for mission control�
The airplane carries the space launcher on its back� the separation of the launcher
from the airplane is performed when the airplane �ies with normal cruising condi	
tions �for example Mach ��� at 

 km altitude�� When the airplane arrives at the
appropriate launch location above the equator� it separates the launcher and dives
away from it� then� after some seconds� the launcher ignites its rocket motor�
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Four di�erent airborne launcher concepts� Let us now consider how we can
construct an airborne launcher from stages of the Ariane	� launcher� Four di�erent
assemblies seem to be sensible� the �rst concept� denoted as �L��!H
��� is a two
stage launcher composed of the stages L�� and H
�� The other concepts are three
stage launchers� because the ignition of the L�� stage takes place after burnout of the
booster motors� The second concept ��PAP!L��!H
�� uses two solid boosters as
a �rst stage� the third concept ��PAP!L��!H
�� uses four solid boosters� and the
fourth concept ��PAL!L��!H
�� replaces the solid boosters by two liquid boosters�

To calculate the ascent trajectories of the four launcher concepts we assume the fol	
lowing conditions� the separation from the aircraft is performed when the con�gura	
tion is �ying above the equator exactly into easterly direction at an altitude of 

 km
and with a speed of �� m s �Mach ����� the climb angle is ��� Immediately after the
separation the launcher is �ying with a constant angle of attack of 
��� a short time
interval later the lift limitation becomes e�ective to limit the lift force for the pull	
up maneuver� We assume that the maximum lift force is proportional to the initial
weight of the launcher concept� a launcher that is heavier needs also heavier wings�
These wings weigh 
�� of the initial mass of a launcher concept� they generate a lift
force that may not exceed the value of the initial weight multiplied by the factor 
���
The wings are dropped together with the �rst stage� their construction includes also
some additional structure to protect the stages L�� and H
� against aerodynamic
pressure and heating� We have to bear in mind that the stages of the Ariane	�
launcher are not constructed to stand high lateral forces� It is necessary that the
wings introduce the lift force carefully into the structures of the stages� otherwise
the lift force would break the stages� Thus� the wings are not only �ns� they carry
and protect the whole launcher� Nearly no lateral acceleration is allowed anymore
after the separation of wings� therefore we restrict the product of the aerodynamic
pressure and the angle of attack to the small value of ��� N m� �the angle of attack
is very small during the �ight phase of the second stage�� Finally� we assume a fairing
of 
 ton to protect the payload against the aerodynamic loads� the fairing is dropped
at L�� burnout� When we simulate the ascent trajectories of the four di�erent as	
semblies with a trajectory optimization program we �nd the payload capacities for
LEO services and for GTO services� The following table lists the computed results�

third stage H�� H�� H��
second stage H�� L

 L

 L


�rst stage L

 �PAP PAP �PAL

total stage mass �t� ����� ����� ����
� �
���
wing mass �t� ���� ��		 �
��� �	���
fairing mass �t� ���� ���� ���� ����
payload GTO ��
� km # 
���� km� �t� � ����� ����� �����
payload LEO ���� km circular� �t� ��	�� ���� � �
total launcher mass �t� �	��� 	���� ������ ��	��
GEO�payload �t� � ��� ���� ��	
modeled costs �millUS"����� 
��� 
�� ��� ���
GEO speci�c costs �millUS"�����ton� � �
�� ���� ���
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The GTO payload vanishes for the concept that we called L��!H
�� this means that
the two stage vehicle can only be used for the transportation to low earth orbit�
This concept is anyway not very promising because it is not possible to ignite the
engine of the stage L�� at a �ight altitude of 

 km �or we would have to shorten the
nozzle of the Viking engine�� The concept �PAP!L��!H
�� with two solid booster
motors integrated into the wings� is much better� The booster motors propel the
vehicle during the phase of the initial pull	up maneuver� the �rst winged stage is
separated at an altitude of 
� km where an ignition of the engine of the L�� stage is
possible without a modi�cation of the nozzle� Naturally� it is also possible to equip
the �rst winged stage with remote control and design it as a reusable part of the space
transport system� The initial weight of the con�guration �PAP!L��!H
� is with �
tons certainly within the limits of the lift capacity of big aeroplanes� and its payload
capacity �ts in the interesting segment of the commercial market of launch services�
A small airborne launched Ariane vehicle can serve for launching satellites which are
too small for the other members of the Ariane	� family� Launched exactly above the
equator on a position with the appropriate degree of longitude� the small airborne
launcher has the remarkable GTO capacity of ��� kg� The payload increases to 
���
tons when we double the size of the solid boosters �or when we use four solid boosters�
the concept �PAP!L��!H
��� However� we get an ill	conditioned launcher when we
replace the two solid boosters by just one liquid booster� the assembly becomes longer
and more fragile� and one Viking engine alone is too weak to push the heavy vehicle�
When we use liquid boosters the right number is two� concept �PAL!L��!H
� gets
the considerable GTO payload of 
�� tons� however� now the initial weight is with
about 
�� tons already at critical limits�

Example 
�	� It is possible to launch a smaller satellite carrier from the back of a big
jet aeroplane� for example from the back of the Russian transporter Antonov ����
The example considers an airborne launcher composed of Ariane� stages� the vehicle
is essentially a smaller� winged Ariane��P launcher without the �rst stage L����
The vehicle has an initial mass of 	� tons �including �� tons for the wings�� a LEO
payload capacity of ��� tons ���� km circular LEO� and a GTO capacity of ��� kg�
The advantages of airborne launching are a better operational �exibility� the
independence of a launch site in a southern country� and an improved growth factor�
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��
� The Promise of Modern Technology

US	America developed the reusable space	shuttle launch system in succession to the
expensive Apollo project� That time people thought that the concept of reusability
would make space transport cheaper and safer likewise� but today the experience with
the American space shuttle spoils that view� Now people search for new ways to make
space transport cheaper and safer� novel technology �aerospace planes� and ballistic
�single stage to orbit� vehicles are proposed� It is expected that �air	breathing�
engines make such a fantastic performance possible� Apparently� the concepts seem
to have their origin rather in science	�ction novels than in engineering handbooks�

��
�� The Concept of Reusability

Reusable space launchers� When we think it over� we realize that there are serious
arguments against reusability in space transportation� The reusable system has the
following disadvantages in comparison with an expendable system of the same size�

	 it has a considerably smaller payload capacity�
	 the costs for its development are much higher�
	 there are maintenance and repair costs�
	 it is much more complex due to the necessity of a return �ight�
	 and a catastrophic �ight failure means a much larger loss�

To override all these disadvantages� reusability o�ers actually just one advantage�

	 the reusable system is produced only once for many �ights�

At least when we consider the transportation of satellites� the concept of reusability
is a false doctrine� It involves high risks and o�ers just a small cost saving potential�
Every �ight of the less e�cient reusable system is charged with new �nancial burdens�
We save the production costs� but now we have depreciation costs� costs for returning
the high investment of the expensive development� costs for recovery� repair� and
check	out� and sometimes also costs for the astronauts in case the vehicle needs a crew�
A reusable space shuttle system is just sensible for a huge national space programme
�for example� when the logistics of a space station needs a manned return vehicle��
The reusable shuttle with its special performance and �exibility is an ideal tool for
manned space activities� but it makes no sense to develop an expensive space shuttle
and use it just a few times every year for the transport of some conventional satellites�

Reusable components of the American space transportation system STS are the
winged cabin �the shuttle orbiter itself�� the three liquid main engines �they are
recovered with the orbiter�� and the two big solid booster motors �they are captured
by a special ship after parachute watering�� The only expendable component of the
American shuttle system is the huge external LH� LOX tank� The retired Russian
space shuttle looks similar but is a quite di�erent system� Strictly speaking� Russia�s
shuttle is not a reusable space transportation system� it is composed of the expend	
able launcher Energia and its payload� the non	powered reusable orbiter Buran�
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US Space Transportation System STS

boosters core stage

propellent Solid LH��LOX
ignition mass �t� ����� ���
propellent mass �t� ����� ���
thrust �t� �������sl� ���v�
c �vacuum� �m�s� ���� ��
c �sea level� �m�s� �� 
���
diameter �m� 
�� 	�
height �m� ��� ���

launch mass � ��� tons�
LEO payload mass � �� tons�
orbiter mass � 	� tons�
�rst �ight in ��	��

Russia�s Energia K���Buran System

boosters core stage

propellent ker��LOX LH��LOX
ignition mass �t� �
�� ���
propellent mass �t� �
�� 	��
thrust �t� ����sl� 	���v�
c �vacuum� �m�s� 

�� 
�
c �sea level� �m�s� 
�
� 
�

diameter �m� 
�� 	��
height �m� ��� ����

launch mass � ��� tons�
LEO payload mass � 
� tons�
orbiter mass � �� tons�
Energia LEO payload � �� tons�
just two test �ights� ��	�� ��		�

Example 
��� Apparently� the retired Russian space shuttle Energia�Buran is a copy
of the American space shuttle STS� but actually it is a quite di�erent and much
better concept� First� the Russian shuttle uses liquid boosters instead of solids� and
the same motor type is also used as the �rst stage of the Zenit satellite launcher�
Second� the LH��LOX core stage is equipped with its own engines� automatically�
there is the option of using the launcher Energia without Buran as a heavy cargo lifter
�with considerably increased payload capacity when simply more boosters are added��
The orbiter Buran can be used for manned missions and unmanned missions as well�
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Reusability of space launcher components� Now let us consider that the space
transportation system is not completely reusable� but just some of its components�

It is easy to recover strap	on boosters �or �rst stages�� because they are separated
when the launcher is still comparatively slow� For a return with soft splash	down in
the ocean they need some heat protection� aerodynamic stabilization and parachutes�
Such a procedure is carried out for the solid boosters of the American space shuttle�
but the saving of costs is questionable� the reusable boosters need parachutes� a ship
has to �nd them� �sh them and transport them back� It also costs money to repair
the boosters and re�ll them with new solid propellent� We may consider the option of
booster recovery also for new commercial launchers� but we should not expect great
cost reductions� The American Atlas	II launcher discharged its two strong liquid en	
gines after about three �ight minutes �just the engines were separated� not the tank��
Recovery of the engines was not done although it would have been comparatively easy�

�Winged recovery� of the �rst stage with horizontal landing is another possibility�
Certainly the winged recovery is a feasible option� but it is also a more complex
procedure than the �ballistic watering�� The rocket departs rapidly from its launch
location� and a non	powered coast �ight back to the launch site is impossible� even
with wings� The stage requires propulsion for the return �ight� or the stage has to
land on a distant airport� We should just consider the construction of a winged �rst
stage when we are convinced that it saves costs �or we construct it for its own sake��
Despite many proposals� up to now no serious attempt for realization has been made�

A recovery of the faster �orbital� second stage is also feasible� Particularly� this is sen	
sible for a manned system which needs a return cabin anyway� The vehicle needs heat
protection because it is exposed to high aerodynamic loads on its reentry trajectory�
The American space shuttle serves as an example� but when we look at it closely�
we see that actually just a small part of the orbital stage is recovered with the orbiter�
The big external tank is expendable� just the expensive main engines are reusable�

We can also consider the concept of reusability for upper stages� An upper stage
could work as a reusable �space tug�� It could be operated from a space station in
low earth orbit� with propellent tanked from a huge cargo lifter �the �gas station�
in space�� The tug would transport the satellite to the destination orbit and then
return back to the space station for maintenance and refuelling �or for the transport
back to earth in the cargo bay of a space shuttle�� but the tug needs propellent for
the return �ight� and this deteriorates its satellite payload capacity considerably�
Detailed calculations show that the reusable operation of an upper stage is just
cheaper for near	distance transportation �for far	distance transportation the payload
is simply too small�� The target orbit has to be lower than 
���� km altitude� or
the tug has to deliver the satellite into a geostationary transfer orbit� but also then
the cost saving potential is very small �below 
���� These results will only change
in favor of reusable space tugs if� in the future� space shuttles are much cheaper and
satellites much more numerous� Since also then the cost advantages are just small�
reusable space tugs are disapproved of satellite transportation in the forseeable future�
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�space tug� missions�
Considered are transfer orbits between a

circular low earth orbit at ��� km altitude

and a coplanar� circular satellite orbit�

The 
� tons initial mass includes

the tug� propellent� the satellite

and the kick stage �if there is one��

�space tug� spacecraft�
initial thrust acceleration � ��� m�s��

engine mass�kg� � ������thrust�kp����
���
tank mass�kg� � �����volume�m���������

propellent density� �	� kg�m��

exhaust velocity � 
�� m�s�

Example 
���� The reusable upper stage or �space tug� makes the most serious
disadvantage of the concept of reusability in astronautics evident� compared with an
expendable system of the same size� the payload is considerably smaller now� The tug�
operated from a space station or shuttle orbit at ��� km altitude� needs propellent for
its return �ight� Detailed calculations verify that the reusable space tug is just sensible
for �short distance tra!c�� for �long distance tra!c� it has an insu!cient payload
capacity� The plot compares a reusable space tug with an expendable upper stage�
both systems have the total mass of 
� tons� The circularization of the satellite orbit is
either performed by the transfer system itself or by a separate �expendable� kick stage�
For the geostationary orbit the reusable tug has a capacity of ���� tons only� while
the expendable stage has still a capacity of 	�� tons� With a kick stage� the capacity
increases to ���
 tons for the reusable tug and to 	��� tons for the expendable stage�
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��
�� Single Stage to Orbit Vehicles

SSTO vehicles based on conventional technology� As we have seen� the staging
principle for space launchers is applied to discharge empty tanks during the mission�
but every stage is a complicated sub	system� The integration of the stages before
the �ight is expensive� and the separation during the �ight involves safety risks�
No wonder that it is often considered to construct so	called single stage to orbit
��SSTO�� vehicles� With modern technology it is possible to build extremely light
weight structures and highly e�cient engines� The SSTO principle for a launcher
would greatly reduce the complexity� and consequently improve reliability and costs�

When we have a closer look at the SSTO principle� we realize that such a vehicle would
transport mainly empty stage mass to orbit� A mass fraction of 
�� �burnout mass  
ignition mass� is a typical value which represents today the state of the art for big
high performance rocket stages� The burnout mass includes the empty tanks �����
residual propellent ����� engines strong enough for the lift	o� ����� and structure to
introduce the thrust force into the vehicle ����� We can compare these values with the
core stage of Russia�s Energia launcher �
��
��� with the second stage of America�s
Saturn	� �

����� and with the external tank of the space shuttle system �������
For the construction of an SSTO vehicle the mass fraction must be better than 
���
otherwise the vehicle would have no payload capacity� even for a low earth orbit�

A reduction of the structure weight improves the payload capacity of a single stage
launcher much more than the payload capacity of a two	stage launcher �but also the
two	stage vehicle gets better when the structure weight is reduced�� If we are able to
reduce the burnout mass fraction from 
�� to 

�� for example� this would give the
SSTO vehicle already a reasonable payload capacity for the �ight to a low earth orbit�
but still serious arguments remain against the single stage launcher concept�

	 it does not allow the composition of a launcher family with variable capacity�
	 the performance is bad for polar orbits �or an upper stage is necessary��
	 the performance is also bad for �high� low earth orbits �above ��� km��
	 other target orbits require an upper stage anyway�
	 weight reduction is probably not cost	neutral but cost	driving�
	 the reliability is deteriorated when lower safety factors are assumed�
	 the lift	o� �ight requires strong liquid engines� they are expensive�

We can avoid all these disadvantages when we simply support the lift	o� �ight of the
single	stage	to	orbit vehicle by using a selection of small strap	on booster motors�
The launcher supported by a variable number of small ��x	canted� boosters is always
the better concept� also when great improvements in structure mass and engine per	
formance are feasible� It is more �exible concerning payload capacity and target orbit�
and a reduction of the structure weight is just helpful but not desperately required�
The single stage concept is just sensible when the %v requirement of the mission is
signi�cantly below � km s �for example for short range ballistic missiles or sub	orbital
sounding rockets�� An SSTO launcher should not be constructed for its own sake�
space activities far behind low earth orbit will always require multi stage rockets�
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Example 
���� The calculations con�rm that the construction of an
SSTO vehicle is a practical possibility� but also that the payload
capacity of the SSTO vehicle would be extremely small� The example
rocket is launched from Kourou in easterly direction to reach a ���
km circular low earth orbit� Initially� the vehicle weighs ��� tons�
It consumes �� tons LH��LOX propellent for the ascent �ight�
its burnout mass is �� tons including ��� kg payload�
The example vehicle is supposed to make use of three space�shuttle
main engines SSME �each engine 
 tons dry mass�� One engine is
switched�o� after �	� �ight seconds� another one after ��� seconds�

The trajectory calculations assume the following data�

� lift�o� thrust acceleration � �� m�s��

� maximum thrust acceleration � 
� m�s�

� maximum aerodynamic pressure � �� kN�m�

� average sectional drag coe!cient � �� m�
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The reusable ballistic SSTO vehicle� In 
��
� the American aerospace com	
pany McDonnell Douglas proposed the realization of a single	stage reusable vertical
ascent and landing vehicle� named �Delta Clipper� or �DC	X�� A model of the con	
cept �scaled 
 �� �ew in summer 
��� as a technology demonstrator� The model
demonstrated its lift	o� and landing capability� It did not at all prove that it can
also attain orbit� but the only problem in the concept is the ability to reach the orbit�

We know that throtteable rocket engines can give a space vehicle �hovering capabil	
ity�� We have known this since 
���� when the Lunar Module of the American Apollo
project demonstrated this capability by landing on the surface of the moon� Thus� the
test �ights of the �Delta Clipper� vehicle proved nothing actually� The managers of
an aerospace company must know that it is impossible to build a completely reusable
single	stage	to	orbit vehicle on the basis of conventional technology� We may believe
that promoters of new aerospace projects are usually convinced that their favorite
concept is feasible� but the managers of �Delta Clipper� took advantage of the show
e�ect when they demonstrated these meaningless hover tests� Their intention was
simply to betray the general public to get more funding for an infeasible project� Fi	
nally� after years of consuming public money� they will simply have to say that they
did not get enough support to complete the nice �Delta Clipper� project successfully�

��
�� Aerospace Planes

Using an aircraft as a �rst stage� It is possible to use a conventional jet aircraft
as a �launch platform� for small satellite launchers� This was proved by the �rst
successful �ight of the Pegasus vehicle in April 
���� The three	stage Pegasus was
dropped from a pylon under the right wing of a B	�� bomber at 
� km altitude�
With a mass of just 
��� tons the airborne launcher was able to transport a payload
of ��� kg into ��� km circular low earth orbit� When we want to launch the same
payload as usual from the surface� we need a launcher of approximately double size�

An airborne launcher has a much better growth factor than a surface launcher�
furthermore the airborne launcher needs no launch site in a region near the equator�
Both advantages promise a considerable cost saving potential� However� now the
mission is a little more complicated because of the separation of the rocket from the
aircraft� The airborne launcher requires some lift for the initial pull	up maneuver�
a winged �rst stage or jettisonable wings are necessary� An aircraft is quite expensive�
particularly when it cannot be used for any other purpose than for airborne launching�

The capacity of Pegasus is still too small for the interesting commercial market�
Pegasus is unable to reach the important geostationary transfer orbit GTO� However�
the charge capacity of a big �civil or military� jet aircraft is by far not fully occupied
when the aircraft carries a rocket of the size of Pegasus� Airplanes like Boeing�s �
or Lockheed�s Galaxy can carry a payload of more than 
�� tons� Russia�s transport
aircraft Antonov ��� is speci�ed for even ��� tons external payload capacity�
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In ��	� Germany�s aerospace industry proposed
the �Saenger� launch vehicle� a two stage aero�
space plane with a lift�o� weight of about 
��
tons and a LEO payload capacity of about 	 tons�
The �rst winged stage should use air�breathing
engines� the second �also winged� stage should
use conventional rocket engines� The �rst stage
was predicted to have a cruising capacity of
about ���� km� on its back the second stage as
an external payload of approximately ��� tons�
The separation of the second stage should take
place at an altitude of 
� km� speed Mach ��
The second stage was planned as a cargo version
or as a manned shuttle version� alternatively�

The HOTOL ��Horizontal Take�o� and Landing��
proposal of the British aerospace industry was
originated in ��	� at about the same time as the
German Saenger proposal� HOTOL was supposed
to be a single stage� fully reusable unmanned
vehicle with just ��� tons lift�o� weight� It was
expected to get the performance of � to �� tons
payload �and ��� km cross range capability�
from novel inter�cooled air�breathing engines�
Later a so�called �Interim HOTOL� con�guration
was proposed� where then the vehicle was
supposed to be launched from the back of the
Russian transport aeroplane Antonov ����

The objective of the American proposal X�
�
�National Aero�Space Plane NASP� was to build
a horizontal take�o� and landing vehicle� as initial
step for velocities of Mach � to Mach ��� as second
step for orbital �ight� In ��	� the companies
McDonnell Douglas� General Dynamics and
Rockwell were interested in the body of the vehicle�
the companies Rocketdyne and Pratt�Whittney
were interested in the propulsion of the vehicle
�a ramjet�scramjet�rocket compound motor� with
liquid hydrogen as propellent�� As in ���� the
trust in the feasibility of the NASP project
started to drop o�� the company Boeing proposed
the construction of a huge hypersonic carrier
aircraft as a �rst stage for the NASP vehicle�

Example 
���� At the end of the ��th century a large number of space plane concepts
appeared at aerospace congresses all over the world� The most famous names are
Saenger� HOTOL and NASP� but also students presented papers with proposals for new
aerospace�planes as diploma works� The performance and cost data of the proposed
vehicles improved in�ationary in time� The Japanese laboratory NAL analyzed
several concepts similar to Saenger and HOTOL� The Russian proposal TU�����
RASP �Russian Aerospace Plane� was nearly an identical copy of the NASP concept�
Many publications did not give the feeling that the projects were seriously considered�
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Air�breathing engines for space transportation� Usually� the proposals for
new	technology aerospace planes involve the use of airbreathing engines� The oper	
ation principle of these engines is called �duct engine principle�� it is di�erent from
the operation principle of rocket engines� now the vehicle has to carry just the fuel�
oxidizer and working �uid are taken from the ambient atmosphere� Conventional jet
engines work in accordance to this principle� Duct engines are used in jet aircraft be	
cause they have a much higher propellent consumption e�ciency than rocket engines�

In comparison with rocket engines� air	breathing engines have also disadvantages for
space transportation� The working �uid �the air� must leave the nozzle faster than
it enters the inlet� otherwise there is no thrust� In contrast to a rocket propulsion
vehicle� a duct propulsion vehicle cannot �y faster than the relative velocity of its
exhaust gases� The available propulsion energy limits the operation velocity for duct
engines� and because there is no air available in the vacuum of space� an aerospace
plane needs a rocket engine for the orbital �ight anyway� Preferably� the spaceplane
engine is a rocket	airbreathing compound motor� The stagnation point temperature
increases considerably with the velocity� when the vehicle �ies with hypersonic speed�
the gas is already extremely hot at the entrance of the combustion chamber� Then the
engine needs a heat exchanger for inter	cooling the gas� or� even better� it operates as
a ramjet� �rst with subsonic and later with supersonic combustion� We have to face
di�cult technical problems when we want to build an engine for a wide velocity range�
but such an engine could translate the reusable winged aerospace	plane into reality�

Spaceplane technology� The technology for spaceplanes is not available today�
It is not even sure if it is possible to realize spaceplanes at all� Many proposals exist�
but when we look closer at a particular proposal� we see often that the speci�cations
are high above the best data which have ever been reached by airplanes or rockets�
Often very optimistic assumptions are made for the masses of fuselage� wings and
tanks �but these spaceplanes have to stand the high stresses of the re	entry �ight��
Everything depends sensitively on the realization of the new air	breathing engines�
As long as the feasibility of the engines is not proved� we cannot seriously evaluate
the performance of the vehicles and make a detailed cost propagation� The task is
very di�cult� and solving a detail problem does not prove that a concept is feasible�
and even if an aerospace	plane project is feasible� it is still not sure whether it makes
space transportation really cheaper than it is today� Considering these facts we
shall study future spaceplanes in form of scienti�c research programmes �it is too
early for an industrial development�� We will learn a lot about hypersonic �ight�
but maybe the projects will not lead to new �and cheaper� space transport systems�
The commercial disaster of the American space shuttle shows that it is irresponsible
to expect great changes or even a �cost	breakthrough� from non	existing technology�

Initially� the public interest in new spaceplane projects was high� but the success
failed to appear� Since nothing was shown after years of spending public money
�except for some illustrations� models and �ight simulations�� the public acceptance
to spend money for spaceplanes declined in time� and there is still the controversial
discussion on spaceplane projects� it is just clear that spaceplanes are very expensive�
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��
�	 The Future of Space Transportation

Future aerospace planes� The prediction of the future is quite a delicate under	
taking because life is 	 from the mathematical point of view 	 a �chaotic process��
the future depends sensitively on some events which we simply cannot foresee �what
will happen to astronautics� for example� when some day �little green men� show up��
However� it is shortsighted when we do not to consider the e�ect of fatal shuttle acci	
dents on the manned American space programme� It is possible that the international
space station project ISS is terminated when the NASA looses another space shuttle
after the Columbia accident in January ����� However� also when the technological
and economical environment develops positively in the next decades we cannot expect
the realization of aerospace planes similar to Saenger� Hotol or NASP� Today it is not
clear whether such projects are feasible at all� and from �feasible� to �cost e�cient
operation� there is still a long way� The new propulsion technology is too di�cult
to be solved within the next �� years� Thus� the manned space programme will be
served basically by the American shuttle and by conventional rockets like the Russian
Soyuz launcher� Even when US	America develops a new shuttle� conventional satellite
launchers are probably the best way to transport satellites in the foreseeable future�

The future of the public interest in spaceplanes� Space planners consider it
as very important to in�uence the public opinion in favor of astronautical activities�
Many articles are written for space magazines and many presentations are given at
space congresses to propagate how important astronautics is to mankind� Audience
of this �space advertisement� are usually astronautical engineers or space planners
which are in favor of astronautics anyway� However� the propaganda gives a more
detached audience the feeling that there is a huge space industry which simply wants
to make money� Someone who uses in his house a satellite dish for watching video
programmes on TV has probably little doubt that it is sensible to bring a satellite into
orbit �nothing succeeds like success�� However� it is not sure that he will also accept
an ine�cient space launcher as a national prestige project� After years of spend	
ing money for aerospace	planes� practically nothing else than illustrations came out
��space art��� The German Saenger concept was proposed in 
���� A decade later
the project was still controversially discussed at astronautical congresses by space
engineers� and all �hardware� which �Mr�Taxpayer� could see was a model of the
vehicle �with a size of about two meters�� Then the project was terminated because
it was obvious for everybody that the public money was incorrectly investigated�

Considering this point of view� the most serious problem that astronautics su�ers
today is not the absence of realistic and sensible projects� it is the profusion of
super�uous or unrealistic proposals� Sensible and realistic proposals have to �ght
with absurd proposals� the battles are carried out not in the public but in the space
industry with the public as audience� It is easy to make proposals� but it seems
to be extremely di�cult to push these projects through against the resistance of
space planners who are naturally in favor of their own projects� which are sometimes
unrealistic and driven by hubris and science �ction� Since in such a scenario nothing
will be shown over periods of years� �Mr�Taxpayer� is going to lose his interest�
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�
 Infeasible Ways to Access Space

In engineering it is allowed to analyze �nearly� everything� also impossible projects�
In astronautics many ideas are in discussion how to access space easier than today�
The intention is to translate today�s science	�ction into reality in the future� The
following list discusses some of these ideas just as �mental exercises�� In every case
it is evident that the way will not soon lead to a new space access opportunity�

Orbital tower satellite� This idea is to stretch a geostationary satellite� one side
towards the earth and the other side away from the earth� Finally� the satellite
touches the earth with its inner side� Now it represents a 
����� km high building�
The tower satellite is pretty thick in the middle to stand the high centrifugal forces
�even when the best material is used�� An elevator can transport payloads into space�

Space railroad� The intention is to accelerate space payloads on an electrically
propelled carriage� avoiding the use of chemical propellent� Wheels cannot be used
any more for speeds above Mach 
� so the idea is to build a huge inclined catapult for a
magnetic	�eld monorail� The space railroad needs an enormous amount of electrical
power when it gets very fast �power is the product of velocity and thrust force��
Space payloads are simply discharged when the carriage attains orbital velocity�

Space cannon� Space cannons have been tested unsuccessfully� Obviously� they
o�er no advantages in comparison with conventional rockets� The idea is to shoot
very robust payloads into space� using a long gun� The projectile has to stand high
accelerations inside the barrel and high aerodynamic stresses when it exits the muzzle�
At the moment the projectile runs through the culmination point of its trajectory�
a rocket motor is ignited for the circularization of the orbit of the payload�

Nuclear propulsion� Also nuclear rocket motors were tested seriously �but not
successfully� at the beginning of the age of astronautics� but unsolvable safety con	
cerns were always involved� and today� in default of political acceptance� nuclear
propulsion is not an option any more� The nuclear rocket motor works with much
higher speci�c impulse� but it is also much heavier and requires radiation protection�
The idea is to use a nuclear reactor to heat up the exhaust gases �energy is needed
to accelerate the exhaust gases in the thrust chamber�� Conventionally� this propul	
sion energy is stored in a chemical form in the propellent� but a nuclear process can
liberate much more energy per unit of mass than a chemical process�

Metallic hydrogen� It is expected that hydrogen changes to a metallic phase when
it is exposed to pressures above � million bar �today� pressures of about � million bar
can be realized in laboratories�� It is not known whether this �metallic hydrogen�
can be produced at all� and whether the costs of the production are acceptable�
Either it is clear whether the metallic hydrogen is stable �probably it is not stable��
but when metallic hydrogen is �storable� and its production is �cheap�� it is maybe
the ideal propellent for novel	technology single	stage	to	orbit aerospace planes�
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�� Spacecraft Trajectories

The accurate observation of the orbital motion of planets in the seventeenth century
was the reason that the medieval geocentric cosmic system was �nally displaced�
Therefore we can say that trajectory dynamics is the �rst modern natural science�
Sir Isaac Newton �
���	
�� formulated his three laws for the behaviour of a mass
particle� The subject of celestial mechanics was ideal for studying the motion of a
restless mass� and there was also a practical importance for the navigation of ships�
The movement of planets is not subjected to energy dissipation� and even with its
huge size a planet can be considered as a particle when the trajectory is what matters�

Thus� trajectory analysis belongs to particle dynamics� the oldest �eld of mechanics
�the subject of dynamics is the study of forces� kinematics is the science of motion��
Particle dynamics treats exclusively the translational part of the motion and ignores
completely the rotational part� Any moving mass is considered as a material body
with in�nitely small dimensions� The objective of trajectory dynamics in astronautics
is the determination of the translational motion of a satellite or space launcher�
In the �eld of astronautics it is possible to separate the translational motion from
the rotational motion with a high degree of accuracy �an exception is the problem of
attitude stabilization for large space stations�� A �ying object is subjected to gravity�
thrust and aerodynamic forces� the �equations of motion� consider all these forces
and determine the locomotion of the �ying object as a function of time�

Comprehensive introductions to the mechanics of space�ight you can �nd in the books
of W�T�Thomsom ��Introduction to Space Dynamics�� Dover Publications Inc�� New
York� 
����� W�E�Wiesel ��Space�ight Dynamics�� McGraw	Hill� New York� 
����
and M�H�Kaplan ��Modern Spacecraft Dynamics and Control�� John Wiley and Sons�
New York� 
��� �lot of other literature exists which can be recommended as well��

���� Vectors and Coordinate Systems

Conveniently� vectors are used to describe the motion of a vehicle that �ies in three	
dimensional space� Vectors are ideal for the determination of physical quantities
which have beside their scalar value �magnitude or amount� also a certain direction�
The actual position of a �ying vehicle can be de�ned using its location vector �r�
It is the arrow that points from a well	known ��xed� location to the moving vehicle�
Since the vehicle is moving its location changes in time� The time derivative of the
location vector d�r	dt is called velocity �v� again a vector� It must be emphasized that
vectors are independent of coordinate systems� For the de�nition of vector operations
it is not necessary to designate a certain coordinate system� Addition of vectors can
be declared as composition� putting one vector behind the other� Multiplication of
a vector with a scalar value is nothing else than scaling the length of the vector�
Consequently� vector subtraction is nothing else than the addition of two vectors�
where the second vector is turned into the opposite direction �multiplied by 	
��
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	���� Moving Coordinate Systems

Vector resolution� Thus� vectors are arrows in space with a length and a direction�
but they are independent of the coordinate system that we take as a basis� However�
we need a coordinate system to resolve �decompose� a vector to get its component no	
tation �for example �x � �x�� x�� x���� Just the component notation of a vector refers
to a certain coordinate system� the same vector has a di�erent component notation
when we use another coordinate system with axes that point into other directions�

It is important to mention that we cannot treat all physical quantities as vectors
just because they possess magnitude and direction� necessary is that vector compo	
sition �and decomposition� is possible� and that vector summation is commutative
�independent of the order� and associative �independent of grouping in any order��
An example for a quantity which cannot be treated as a vector is the angular rota	
tion of a rigid body� the rotation has a value �the angle� and it has a direction �the
rotation axis�� but two rotations around di�erent axes are usually not commutative�
Rotations are not vectors� because the body assumes a di�erent attitude when we
exchange the order of the rotations�

Point of application� A force� for example� is a physical quantity which has a mag	
nitude and a direction� and we are allowed to use a vector to describe these properties�
However� we cannot simply ignore that the force has also a �point of application��
the location where it is e�ective� Obviously� it makes a di�erence whether a body
is pushed on the left or on the right side� Thus� actually two vectors are necessary
to describe this physical quantity called �force�� a vector for its magnitude and its
direction� and a location vector� The location vector is the vector which points from a
known location �usually a location �xed in inertial space� to the point of application�

Cartesian coordinate systems� Nearly always so	called Cartesian coordinate
systems are used in technical mechanics� named after Ren)e Descartes �
���"
�����
all three axes are scaled in the same way� these axes are mutually perpendicular� and
the �right hand� rule is valid �spread your right hand in a way that the thumb� the
fore�nger and the middle �nger form a frame system� the orientation of the 
	axis
corresponds to your thumb� the orientation of the �	axis to your fore�nger and the
orientation of the �	axis to your middle �nger�� Two vector operations are de�ned in
a Cartesian coordinate system� applicable to the component notation of two vectors�
the scalar �dot� product is useful for the calculation of the angle between the vectors�
and the �cross� product is useful for the determination of the vector perpendicular to
the other two vectors� Incorrectly both schemes are called �multiplication� of vectors�

Orientation angles� A Cartesian coordinate system is not necessarily an inertially
�xed system� many problems are better solved when we use a moving Cartesian
coordinate system� The reason is that vector equations themselves are independent
of a coordinate system� but their component notation is a function of the attitude of
the coordinate system� We can simplify the component notation of a vector equation
considerably when we use a coordinate system with a suitable orientation in space�
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Generally� the attitude of a moving system with respect to an inertial system is en	
tirely determined by a set of three angles� For this are widely used the so	called Euler
angles ��� �� ��� named after the great mathematician Leonhard Euler �
�"
����
or alternatively so	called Cardan angles ��� � � ��� referring to the construction of
Cardanic gyro bearings� named after Girolamo Cardano �
��
"
��� even though
he has actually not invented them�� Notations with other angles are also possible�
but other angles are not in common use in particle dynamics or in gyro dynamics�

Location and velocity of a �ying spacecraft� Now we will make use of a moving
Cartesian coordinate system� We place the origin of the system at the center of
gravitation �the center of the celestial body� and determine the attitude of the system
using the location vector �r and the velocity vector �v of the spacecraft� the location
vector lies always on the 
	axis and the velocity vector lies always in the 
	� plane�
The coordinate system changes its orientation with the displacement of the vehicle�

location vector �r and
velocity vector �v
in the moving
coordinate system

Euler angles �� �� �
Cardan angles �� � � �

�

�

�
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o

o
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gravitational
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actual flight
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When we designate the length of the location vector �r by the letter r and term the
resolution of the velocity vector �v vertically u and horizontally v� then we have�

�r �

�
 r

�
�

�
A � �v �

�
u
v
�

�
A ��� 
�

The notation of both vectors would be much more complex if we used components
of an inertial system� Obviously� the moving system allows us a simple formulation�
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	���� Coordinate Transformation

Transformation of vector notations� Sometimes it is the case that we know a
vector in the moving system �for example the location vector �r� equation �	
�� and
we want to �nd the component notation of the same vector in the inertial system
�termed �r��� Then we can �nd the inertial system notation of the vector when
we �multiply� the vector with an appropriate transformation matrix �in this case a
�rotation matrix��� However� note that the vector is not rotated� we simply transform
the �moving	system	notation� of a vector �x to its �inertial system notation� �x��
Using Euler or Cardan angles alternatively� the transformation matrix becomes�

Euler angles�
��� �� ��

�

�

�

Cardan angles�
��� � � ��

�

� �

3

3

1

2

3

1

�x��

�
cos� �sin� �
sin� cos� �
� � 


�
A
�

 � �
� cos� �sin�
� sin� cos�

�
A
�
cos� �sin� �
sin� cos� �
� � 


�
A��x

�

�
cos�cos��sin�cos�sin� �cos�sin��sin�cos�cos� sin�sin�
sin�cos�!cos�cos�sin� �sin�cos�!cos�cos�cos� �cos�sin�

sin�sin� sin�cos� cos�

�
A��x
�����

�x��

�
cos� �sin� �
sin� cos� �
� � 


�
A
�
cos� � �sin�

� 
 �
sin� � cos�

�
A
�

 � �
� cos� �sin�
� sin� cos�

�
A��x

�

�
cos�cos� �sin�cos��cos�sin�sin� sin�sin��cos�sin�cos�
sin�cos� cos�cos��sin�sin�sin� �cos�sin��sin�sin�cos�

sin� cos�sin� cos�cos�

�
A��x
�����

Each one of the two complex rotation matrices above is the result of three individual
coordinate transformations� a coordinate system that has initially the same attitude
as the inertial system must be rotated consecutively three times to coincide with the
moving system� The system represents an �intermediate system� after every rotation�
the last intermediate system is �nally coincident with the moving system�
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Thus� three times we rotate the coordinate system around one of its axes� which is
�xed with respect to inertial space at the moment when we rotate ��intermediate
systems� of the Euler angles and �intermediate systems� of the Cardan angles are
not the same�� The orientation of the moving system is reached after three rotations�

rotation 
� angle � ��	axis�� or angle � ��	axis��

rotation �� angle � �
	axis�� or angle � ��	axis��

rotation �� angle � ��	axis�� or angle � �
	axis��

The next step is that we establish the three individual transformation matrices�
When a vector is resolved into its component notation and transformed from one co	
ordinate system into the other one� then the transformation does not alter the compo	
nent that aims into direction of the rotation axis� The other two components change�
we can compose the new values using the sine function and cosine function of the
rotation angle� Finally� we can �nd the complete transformation matrix by a multipli	
cation of three individual matrices �according to the rules of matrix multiplication��

Vector transformation into a notation of the moving system� The inverse
procedure is the transformation of the �inertial system notation� of a vector into its
�moving system notation�� for example to calculate the vector �x when �x� is known�
We can �nd these inverse rotation matrices with the same geometrical consideration�

�x�

�
 cos� sin� �
�sin� cos� �

� � 


�
A
�

 � �
� cos� sin�
� �sin� cos�

�
A
�
 cos� sin� �
�sin� cos� �

� � 


�
A��x�

�

�
 cos�cos��sin�cos�sin� sin�cos�!cos�cos�sin� sin�sin�
�cos�sin��sin�cos�cos� �sin�sin�!cos�cos�cos� sin�cos�

sin�sin� �cos�sin� cos�

�
A��x�

�

�

 � �
� cos� sin�
� �sin� cos�

�
A
�
 cos� � sin�

� 
 �
�sin� � cos�

�
A
�
 cos� sin� �
�sin� cos� �

� � 


�
A��x�

�

�
 cos�cos� sin�cos� sin�
�sin�cos��cos�sin�sin� cos�cos��sin�sin�sin� cos�sin�
sin�sin��cos�sin�cos� �cos�sin��sin�sin�cos� cos�cos�

�
A��x�
�����

A rotation matrix consists of nine elements� we can see it as a composition of three
�row vectors� or three �column vectors�� The matrix is called �orthogonal matrix�
when these row vectors and column vectors are unit vectors �length 
� which form a
perpendicular frame system� It is easy to verify that all the rotation matrices which
we consider here are �orthogonal matrices�� Just in this special case we can �nd the
inverse matrix simply by transposing the matrix �by exchanging column vectors for
row vectors� or row vectors for column vectors�� Generally� �nding the inverse matrix
is a much more complicated procedure than simply forming the transposed matrix�
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Transformation of Euler angles to Cardan angles� Let us consider now that
the attitude of the moving coordinate system is determined because the Euler angles
��� �� �� are well	known� and that it is the task to �nd the corresponding set of
Cardan angles ��� � � ��� The equation ��	�� contains implicitly a set of nine equa	
tions to perform the transformation� every element of the �Cardan angle matrix�
corresponds to an element of the �Euler angle matrix�� However� two problems are
involved� both� Cardan angles and Euler angles� determine uniquely a certain attitude
of the coordinate system� but neither Cardan angles nor Euler angles are uniquely
determined when the attitude of the coordinate system is given �for example� change
the angle � by �
��� and you will �nd di�erent angles � and � which belong to
the same orientation�� Then� both Euler angles and Cardan angles are singular for
some certain orientations of the moving system� Euler angles have their singularity
at the �equator� �� � �� or � � 
����� Cardan angles have their singularity at the
�poles� �� � ������ For a unique determination of the Cardan angles we have to
impose a limitation on the angle � � for example ���� � � � !���� Then we get�

sin� � sin� � sin�
cos� � !

p

� sin��

sin� � sin� � cos�	 cos�
cos� � cos�	 cos� ��� ��

sin� � �sin� cos�! cos� cos� sin��	 cos�

cos� � �cos� cos�� sin� cos� sin��	 cos�

Transformation of Cardan angles to Euler angles� The inverse transformation
involves similar problems� In orbital mechanics the inclination angle � is restricted for
a unique determination of the Euler angles� conventionally we de�ne �� � � � 
����
The set of equations for transforming Cardan angles into Euler angles becomes �nally�

cos� � cos� � cos�
sin� � !

p

� cos� �

sin� � sin�	 sin�

cos� � cos� � sin�	 sin� ��� ��

sin� � �sin� sin� � cos� sin� cos��	 sin�

cos� � �cos� sin� ! sin� sin� cos��	 sin�

Euler and Cardan angles in the spherical triangle� When three planes intersect
a sphere with the unit radius �
� right through the center� the intersection curves
are circles �also with the radius �
��� Segments of these circles form a �spherical
triangle� on the surface of the sphere� A spherical triangle is formed by the Euler
angles and the Cardan angles � � �� � and �� with an angle of ��� between side �
and side � �the side lines of a spherical triangle can be considered as angles� because
the sphere has the unit radius�� We can use the laws of spherical geometry to verify
the relationships ��	�� and ��	�� when we observe the rectangular spherical triangle
which is formed by the Euler angles and the Cardan angles on the surface of a sphere�
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	���� Rotation Velocity

Vector representation of the rotation velocity� We have seen that we can	
not treat rotations as vectors� because their chronological order is not commutative�
However� we can treat the time derivatives of rotation angles as vectors� The rota	
tion velocity �or angular velocity� of a rigid body �or a moving coordinate system�
is de�ned as a vector� conventionally termed ��� Its length �magnitude� is the time
derivative of the rotation angle� its direction is the orientation of the actual spin axis�
The spin axis is de�ned as the line of all locations which are at the moment in rest�
Every location which is not on the spin axis is in motion� the velocity is proportional
to rotation velocity and proportional to the distance from the spin axis� The vector
triple �
 rotation velocity� � orthogonal distance� � velocity� forms a �right	hand�
frame system� Let us now consider the special case of our moving coordinate system�

rotation velocity ��

��� inclination change
��� disappearing ����
��� motion in �ight plane
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��
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The attitude of the moving system is determined by the location vector �r � �r� �� ��
�on the 
	axis� and velocity vector �v � �u� v� �� �in the 
	� plane�� We can conclude
that the rotation velocity vector �� has no component in the direction of the �	axis�
The horizontal velocity component v generates a rotation of the coordinate system v	r
on the �	axis� an inclination change maneuvers rotates the system on the 
	axis� Thus�

�� �

�
��
��
��

�
A �

�
 ��

�
v	r

�
A ��� �

Note that the vector �� is written in a component notation of the moving system�
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Time derivatives of Euler and Cardan angles� Our next problem is to �nd
the orientation of the moving coordinate system as a function of time� The time
derivatives of the Euler angles �or the Cardan angles� are components of the angular
velocity vector �� of the moving system� We can resolve �� into three oblique	angled
individual rotation velocity vectors� therefore we can take either the derivatives of the
Euler angles *�� *�� *�� or alternatively the derivatives of the Cardan angles *�� *� � *� �
These vectors have the same orientation as the rotation axes to which they belong�

time derivatives of
Euler Cardan angles
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*�
*�

*�
*�
*�
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�

�
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�

�r �v
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Euler angles:

Cardan angles:

components of

angular velocity

components of

angular velocity

Correctly composed� the angular velocity of the moving system can be expressed as�

�� �

�
 ��

�
v	r

�
A �

�
 *� sin� sin�! *� cos�

*� sin� cos�� *� sin�
*�! *� cos�

�
A �

�
 *� sin� ! *�

*� cos� sin� � *� cos�
*� cos� cos� ! *� sin�

�
A ��� ��

A transformation brings us two equivalent sets of �rst order di�erential equations�

*� � ��
sin�

sin�

*� � �� cos�

*� �
v

r
� �� sin� cot�

*� �
v

r

cos�

cos�

*� �
v

r
sin�

*� � �� � v

r
cos� tan�

��� ��

We can �nd the attitude of the coordinate system by the integration of nonlinear
di�erential equations� provided that the vector �� is a determined function of time�
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	���	 Vector Di�erentiation in a Rotating Coordinate System

Relative changes� The geometrical interpretation of a vector equation is nothing
else than a closed polygonal line� when we put always one vector behind another one�
This vector polygon is independent of a coordinate system� we are free to select every
coordinate system for resolving the vector equation into the component notation�
The resolution of a vector equation into components brings us three scalar equations�

Often� motion is treated in dynamics� and the use of a rotating system as alterna	
tive to an inertial system can reduce the complexity of a vector component notation
considerably� All �Cartesian� coordinate systems are legal to resolve the vectors� and
this includes moving coordinate systems� However� resolving a vector equation into
components of a rotating system involves one problem� the total time derivative of a
vector cannot be formed any more by a simple di�erentiation of its three components�
We have to take into account that� in a rotating system� vectors change in relation to
the system� and vectors change because the system is moving� For example� consider
the location vector of an object that is in rest with respect to the inertial space�
The total time derivative of the location vector is the vector of the inertial velocity�
in the example it must be a null	vector indicating that the object has no velocity�
The inertial velocity must be a null	vector in every coordinate system� In a rotating
coordinate system� the component notation of a constant vector �not moving with re	
spect to inertial space� is a function of time� not constant considering a change in time�
We never get a null	vector when we simply di�erentiate the components of this vector�
Di�erentiation of the components of the location vector yields the vector of the ve	
locity relative to the rotating system� More important is the vector of the inertial
velocity� To get it� we have to consider not only changes of the vector relative to the
system but also changes which come from the fact that the system itself is changing�

Absolute changes� Fortunately� the calculation of the total time derivative of a
vector in a rotating system is not a complicated procedure when we know the rotation
velocity vector �� of the system� The total time derivative �with respect to inertial
space� consists of the relative time derivative �with respect to the moving system�
di�erentiation of the three components� and the cross product of the angular veloc	
ity vector and the vector itself� For example� applied to the vectors �r and �v the rule is�

�r

��

�� � �r

rotating

coordinate system

�
d�r

dt

	
inertial

�

�
d�r

dt

�
relative

! �� � �r

�
d�v

dt
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�

�
d�v

dt

�
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! �� � �v

��� 
��
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Relative velocity and inertial velocity� The scheme of equation ��	
�� is of
fundamental importance to dynamics� since it applies to all other vector quantities
too �not only to the location vector �r and the velocity vector �v�� The relation is
a geometrical formula� The time derivative of a vector signi�es the change of this
vector with respect to time� but two di�erent changes can be meant� the change of the
vector in relation to the coordinate system� or the change of the vector in relation to
inertial space� Di�erentiation of the three components of the vector yields the change
in relation to the coordinate system� The change of the vector caused by the rotation
of the coordinate system equals the cross product of rotation vector and vector itself�
Addition of both changes yields the absolute change� the change of the vector with
respect to inertial space� It must be emphasized that equation ��	
�� is a vector
equation �theoretically it can be written in components of any coordinate system��
Since the relative change is formed by the di�erentiation of the three components
of the vector� just a component notation of the moving system makes any sense�
In scheme ��	
�� all vectors must be resolved into components of the moving system�

The total di�erentiation of the location vector �r with respect to time must bring us
components of the inertial velocity vector �v � �u� v� ��� Therefore we can conclude��

u
v
�

�
A �

�
 *r

�
�

�
A!

�
��
��
��

�
A�

�
 r

�
�

�
A �

�
 *r

r��
�r��

�
A ��� 

�

The velocity vector �v consists of the components u and v� component u is the
relative velocity of the vehicle� and component v is introduced by the rotation of
the coordinate system� Equation ��	

� con�rms that the vector �� has no compo	
nent in �	direction� and that term v	r is the third component of the rotation vector�

u � *r ��� 
��

v � r �� ��� 
��

� � �� ��� 
��

Acceleration with respect to inertial space� We have to apply scheme ��	
�� a

second time to calculate the absolute acceleration ��r of the spacecraft� This time we
di�erentiate the inertial velocity vector �v � �u� v� ��� the acceleration vector becomes�

��r �

�
 *u

*v
�

�
A!

�
 ��

�
v	r

�
A�

�
u
v
�

�
A �

�
 *u� v�	r

*v ! uv	r
v ��

�
A ��� 
��

The acceleration with respect to a moving system is quite unimportant in dynamics�
because the only acceleration which we actually notice inside a moving vehicle is the
acceleration with respect to inertial space� Sir Isaac Newton formulated his laws for
the acceleration of a particle that moves in inertial space� It may sound confusing�
the equation ��	
�� represents the acceleration with respect to inertial space� but the

vector ��r is written using a component notation of the moving coordinate system�
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���� Mechanics of Rocket�Powered Flight

The equations of motion of a mechanical system are a set of di�erential equations�
derivable by the application of Newton�s laws� for example� These equations describe
the behaviour of the system under the in�uence of external forces and restrictions�
There are four forces which act on a �ying vehicle� gravity� drag and lift� and thrust�

	���� The Gravitational Force

Attraction by the gravity of a celestial body� Every vehicle that moves in the
central gravitational �eld of a celestial body experiences a gravitational attraction�
The attractive force is inversely proportional to the square of the distance of the
attracted vehicle from the center of the celestial body� At any location in the central
gravitational �eld� the gravitational force points towards the center of gravitation�
The vector of the gravitational acceleration �g is the gravitational force divided by the
mass of the vehicle� the component notation of �g is quite simple when we make use
of our moving coordinate system� The vehicle moves always on the 
	axis� located by
the vector �r � �r� �� ��� The origin of the coordinate system is assigned to the center
of gravitation� Conventionally� symbol � is used to characterize the gravitational
constant� � is proportional to the mass of the celestial body� We denote vector �g as�
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�g �
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��� �m� s��
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The gravitational �eld of an oblate celestial body with irregular mass distribution is
not exactly symmetrical �for example the planet earth has continents and oceans��
Thus� long	term orbit prediction and some other problems of orbital mechanics have
to consider the perturbations which come from irregularities in the gravitational �eld�
However� a representation of the vector of the gravitational acceleration in the form
of equation ��	
�� is su�ciently accurate for many trajectory computation problems�
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Potential energy� Energy is the ability to work� Work is produced when a force
acts upon a particle that moves through a distance in the direction of this force �the
force is multiplied with the in�nitesimal distance and integrated�� Consider a space	
craft �massM� that moves inside a central gravitational �eld� at the distance r� from
the center of the celestial body� The celestial body attracts the vehicle �gravitational
acceleration g � �	r�� gravitational force M � g�� Potential energy is stored in the
mass M when the spacecraft moves against the gravitational force �on any way� from
the distance r� to the higher distance r�� The equivalent work W is a negative value�
it indicates that energy is consumed to transport the mass to a higher altitude� Thus�

W �

Z r�

r�

��M � �
r�

� dr � M�
�

r�
� �

r�
� ��� 
�

The maximum potential energy which can be stored is the potential energy at in�	
nite distance �r� ���� We can de�ne the �eld of �mass speci�c� potential energy as�

epotential � ��	r ��� 
��

The potential energy has a negative sign everywhere inside the �eld of gravitation�
When the vehicle moves away from the center of gravity� its potential energy grows�
but the absolute value diminishes since the potential energy is negative everywhere�
It is unimportant which way the spacecraft takes to get from the lower altitude to
the higher altitude when we consider just the change in the potential energy� and it
is also not necessary that the lower and the higher altitude are located on the same
radial in the central gravitational �eld� The potential energy assumes its highest
value at an in�nite distance from the gravitational center �epotential � � for r����

Assume that the vector �x � �x�� x�� x�� de�nes a location� and r �
p
x�� ! x�� ! x���

We �nd the vector of the gravitational acceleration �g when we di�erentiate the
potential �eld of gravity epotential with respect to the coordinates �x� We can write�

�g � �
�
 ����	r�	�x�
����	r�	�x�
����	r�	�x�

�
A ��� 
��

The gravitational acceleration vector is the gradient of the potential energy �eld�
because of this� the gravitational force is called a �conservative force�� This means
that the energy which is necessary for the transportation of the mass from a lower
altitude to a higher altitude is not lost �at least in the sense of mechanics�� When the
mass falls back from the higher location to the lower location� all energy comes back
�for example in form of kinetic energy when the mass is accelerated� or in form of heat
when the energy is dissipated�� The other forces which act on the �ying vehicle are
drag� lift and thrust� Compare that these forces are not conservative forces� because
we cannot formulate them as gradient vectors of potential �elds� For example� when
the drag force converts mechanical energy into heat� mechanical energy gets lost
�heat is an energy form which cannot be converted into kinetic energy without losses��
The reason is that there is no potential drag �eld with a drag force as gradient vector�
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	���� Aerodynamic Forces

Velocity of the atmosphere� Ascending space launchers and returning space
gliders experience quite strong aerodynamic forces� What we call �wind� is usually
the motion of the atmosphere in relation to the surface of the earth� Space vehicles are
much faster than the velocity of the wind� usually� and for the calculation of nominal
�reference� trajectories we are allowed to consider a calm atmosphere with no wind�
However� even when we consider no wind� the atmosphere has a velocity with respect
to inertial space� the atmosphere is carried around with the rotation of the earth�

��earth
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We consider the earth as a
gyro with a stabilized rotation
axis� The vector of the earth
rotation velocity ��earth points
from the middle of the earth
to the geographical north pole
��earth � ���� day�� An iner	
tial coordinate system� not car	
ried around with the daily ro	
tation of the earth� is centered
in the middle of the earth� Its
��"axis points always towards
the north pole� and the earth�s
equator lies in the 
���� plane�
The system is an inertial refer	
ence for the moving system�

Our problem is to resolve the rotation vector of the earth ��earth in a component
notation of the moving system� using Euler angles or Cardan angles alternatively�
With help of the transformation matrix ��	�� we may write down�

��earth��earth

�
sin�sin�
cos�sin�
cos�

�
A��earth �

�
 sin�
sin� cos�
cos� cos�

�
A ������

The velocity of the atmosphere �vatmosphere �carried around with the earth rotation�
is a function of the geographical latitude� We can �nd it when we form the vector
�cross� product of the earth rotation vector ��earth and the location vector �r� Thus�

�vatmosphere� ��earth��r

� r ��earth
�
 �

cos�
�cos�sin�

�
A� r ��earth

�
 �

cos� cos�
�sin� cos�

�
A ����
�

Equation ��	�
� de�nes the velocity of the atmosphere with respect to inertial space�
The vector is written using a component notation of the moving coordinate system�
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Relative velocity of the atmosphere� Now we have to �nd the velocity of the
atmosphere with respect to the �ying vehicle� in order to calculate the atmospheric
forces� The di�erence between the velocity of the atmosphere and the velocity of the
vehicle is called �incident wind�� We use the term �w to describe this vector quantity�

�w �

�
w�

w�

w�

�
A�

�
 �u

r �earthcos��v
�r �earthsin�cos�

�
A�

�
 �u
r �earthcos� cos��v
�r �earthsin� cos�

�
A

w �
q
w�
� !w�

� !w�
� ������

Atmospheric density� Aerodynamic forces are well	known to be approximately
proportional to the aerodynamic pressure Q� de�ned by the equation Q � �

� �  w��
Consequently� the aerodynamic forces are also functions of the local air density �r��
Sometimes we can approximate �r� using an exponentially declining function of r�

�r� � � e��r � Rearth�	hscale ��� ���

with� � � 
���� kg	m�� Rearth � ���� km� hscale � ����� km

Assumed is a spherical earth with the radius Rearth� The term � de�nes the air den	
sity at �sea	level�� and hscale is the atmospheric �scale	height�� In reality� the earth
is oblate and the atmospheric density depends on the latitude of the geographical
region and its climate� In fact it can deviate from the reference given by the exponen	
tial approximation ��	��� considerably� particularly when the �ight altitude is high�
Experience in ascent trajectory computation shows us that inaccuracies in the air den	
sity have just a small in�uence on the calculated payload capacity of a space launcher�
Accurate aerodynamics is more important in reentry trajectory calculations� where
inaccurately de�ned air density causes uncertainties in the time functions of the aero	
dynamic drag and aerodynamic heat �ux� When a highly accurate course of these
functions is needed� it is better to use a more accurate determination of the atmo	
spheric density �for example� we can consider the scale	height hscale as a function
of the altitude and take the actual values from a �local atmospheric density� table��

Deceleration by the drag force� We introduce the angle of attack � to resolve the
atmospheric force into two rectangular components� The component that is aligned
with the incident air �ow �w is called �drag� �the other component is called �lift���
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The drag deceleration d is approximately proportional to the aerodynamic pressure�
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Acceleration by the lift force� Two angles de�ne the attitude of the �ying vehicle
with respect to the incident air �ow� the angle of attack � and the banking angle ��
The �nose� of the vehicle is �up� for � � �� full banking to one side means � � �����
Also the lift acceleration is approximately proportional to the aerodynamic pressure�
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You can readily verify the equations above� form the scalar vector product of drag
and lift� it vanishes for any angle �� because the lift is always rectangular to the drag�

Aerodynamic coe�cients� Term CD in equation ��	��� is the drag coe�cient�
term CL in equation ��	��� is the lift coe�cient� In the equations the aerodynamic
coe�cients are multiplied by the reference area A and divided by the mass of the ve	
hicle M � This reference area A is just used to get the coe�cients without dimension�
a widely used convention in aerodynamics� Usually� drag coe�cients take a cross
sectional area as reference� and lift coe�cients take the wing area� However� often
aerodynamic coe�cients are speci�ed where it is not clear to which area they refer
�space launchers may have many sectional areas� usually launchers have no wings��
When the aerodynamic coe�cients are speci�ed without dimensions it is also neces	
sary to specify the reference area A to which they refer �but it is not necessary to
specify a reference area when the coe�cients have the dimension of square meters��

The aerodynamic coe�cients CD and CL are functions of the angle of attack ��
The lift is nearly a linear function of �� and the drag is a quadratic function of �
�provided that � is small�� The lift vanishes for � � �� but the drag does not� Hence�

CD � CD� ! CD	 � �� ��� ���

CL � CL	 � � ��� ��

The values of CD�� CD	 and CL	 are in�uenced by the shape and size of the vehicle�
The coe�cient CD� describes the drag for a �ight with a zero angle of attack� the co	
e�cient CD	 describes the drag introduced by the angle of attack� and the coe�cient
CL	 describes the lifting capability of the �ying vehicle�

Also the so	called Mach	number �the ratio of air speed and velocity of sound in the
ambient atmosphere� has a major in�uence on the drag and the lift of the vehicle�
Usually� this in�uence on the aerodynamic coe�cients CD�� CD	 and CL	 is provided
in the form of drawings and tables �sometimes also in form of inaccurate equations��
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Inaccuracy of aerodynamic coe�cients� The equations for the determination
of the aerodynamic forces are quite inaccurate� Sometimes� the knowledge about
the aerodynamic behaviour of a space vehicle is hardly more than a rough estimate�
The density  of the ambient air as function of the �ight altitude is inaccurately
described by equation ��	���� Also equations ��	��� and ��	�� are approximations�
they require that the angle of attack is small �for example � � ����� In case of
convenience� it is allowed to replace terms � and �� by expressions using trigonometric
functions �for small angles � we have approximately � � sin� and �� � ��
�cos����

Fortunately� for the computation of ascent trajectories it is not always required that
we know the aerodynamic behaviour of a space launcher accurately� The drag force
has usually a small in�uence on the nominal payload of a space launcher� because the
essential acceleration phase begins when the launcher has already left the atmosphere�
The lift force which appears during the aerodynamic �ight phase of space launch	
ers� however� is quite harmful to the stabilized attitude and the structural integrity�
Therefore� space launchers follow ascent trajectories which require nearly no lift
�for example� with an angle of attack smaller than 
��� and the lift force can be ignored
when it may not exceed a certain very small value� The lift force cannot be neglected
for airborne launchers or winged space gliders which use lift to neutralize weight�

	���� Thrust Acceleration

Thrust magnitude� A rocket motor expels exhaust fumes to generate the thrust
force� This thrust force is proportional to the rate of expenditure of propellent m�
it is also proportional to the e�ective exhaust velocity c �in relation to the vehicle��
The thrust c �m divided by the rocket mass M constitutes the thrust acceleration�
termed s� Even when the thrust force remains constant� the thrust acceleration s
increases in time t� because the rocket loses propellent mass� Therefore we can denote�

dM
c M

rocket thrust m � �dM
dt

��� ���

s �
c m

M
��� ���

Rocket engines are usually not throtteable� and the mass �ow rate m is constant�
For space launcher engines the e�ective exhaust velocity c is a function of the ambient
aerostatic pressure� The �vacuum� value cvacuum is better than the �sea	level� value
csealevel �up to ����� Both values depend on the construction of the rocket motor�
The exhaust velocity c is approximately a linear function of the air density �r��

c � cvacuum � �cvacuum � csealevel�
�r�

o
��� ���

Usually� chemical rocket engines which are designed for the application in the vacuum
of space operate with constant exhaust velocity c and constant mass �ow rate m�
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Thrust of parallel operating rocket engines� We may consider several engines in
parallel operation as a single engine when we compute the trajectory of a spacecraft�
For example� when two motors �I and II� are operative� we can devise a representa	
tive thrust and replace the equations ��	��� and ��	��� by the following relationships�

mI !mII � �dM
dt

s �
cImI ! cIImII

M
��� �
�

The representative mass �ow rate m and representative exhaust velocity c follow as�

m � mI ! mII

c � �cImI ! cIImII �	�mI !mII � ��� ���

However� when we throttle one engine by a reduction of the mass �ow rate� this can
change the representative exhaust velocity c �assuming c is di�erent for the engines��
Switching	o� one engine will change instantaneously the representatives m and c�

Thrust direction� Two thrust angles are necessary to de�ne the thrust direction�
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We use the thrust angles � �in �ight plane� and � �out of �ight plane� to resolve
the thrust vector �s into a component notation of the moving coordinate system�
To get a uniquely determined thrust direction we limit � to �
��� and � to �����

�s � s

�
 sin� cos �

cos� cos �
sin �

�
A ��� ���

The thrust direction is usually restricted during the atmospheric phase of the ascent
trajectory of a space launcher �the thrust direction is usually not restricted on orbit��
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Thrust direction aligned with the attitude of the vehicle� The steering sys	
tem of a space launcher has to stabilize every time the appropriate attitude of the
vehicle while it ascends through the atmosphere� For example� the vehicle could
use aerodynamic �ns for attitude stabilization� However� in practice another control
method is always preferred for space launchers� so	called �thrust vector control��
The launcher balances its attitude by control torques which come from an appro	
priately de�ected thrust direction� The thrust vector deviates at the right moment
just for a few seconds from its nominal line of action �the centerline of the vehicle��
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Space launchers cannot control
the thrust direction independent
from their attitude� For the
atmospheric phase of the �ight
it is better to replace the thrust
angles � and � by expressions
which use the attitude angles
� and � �with respect to the
incident air �ow�� The launcher
has to follow a trajectory where
the lift force is strictly limited�

When we use � �the angle of attack� and � �the banking angle�� we can limit the
lateral acceleration by constraining �� Therefore we resolve the thrust direction into
two rectangular components �in the opposite drag direction and in the lift direction���
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When we want to �nd the attitude angles � and � from given values of � and ��
we can transform the equation above� cos� follows when we form the dot vector
product of thrust direction and wind direction� Finally we get the following equations�

cos� � �w� sin�cos�!w� cos�cos�!w� sin��	w

sin� �
p


� cos�� ��� ���

cos� � �w� sin��w� cos��cos�	�
q
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� !w�

� sin��

sin� � �w� cos�!w sin��	�
q
w�
� !w�

� sin�� ��� ���

However� the use of the thrust angles � and � is preferable for the �nal �ight phase
�when the launcher has left the atmosphere and moves in vacuum of space�� The
angles � and � refer to the rotating coordinate system� the attitude angles � and �
refer to the direction of the air �ow� This �incident wind� does not exist on orbit�
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	���	 Equations of Motion

Application of Newton�s law� When a particle is in motion� the product of mass
and velocity vector is called �linear momentum� vector� and the time derivative of
the linear momentum vector is equivalent to all the external forces �Newton�s law��
The mass of the vehicle is not constant because the motor expels propellent mass�
and the time derivative of the mass of the vehicle� multiplied by the velocity of the
exhaust fumes relative to the vehicle� constitutes the thrust force� We can follow that
the change of the velocity in time �the acceleration of the location �r� equation �	
��
is equivalent to the sum of four accelerations� gravitational acceleration �g ��	
���

thrust acceleration �s ��	���� drag deceleration �d ��	��� and lift acceleration �l ��	����
The equations of motion of a �ying vehicle are de�ned by the di�erential equation�

��r � �g ! �s! �d!�l ��� ��

Resolved into components of the moving system� the equation ��	�� takes the form of��
 *u� v�	r

*v ! uv	r
v ��

�
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�
� �	r�
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�
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�
A ��� ���

The motion of the vehicle �in the actual �ight plane� is determined by the integration
of the �rst two components of the vector equation above� We have to consider
the relationship *r � u �equation �	
��� The �motion of the actual �ight plane�
is determined by the integration of the kinematical Euler equations �system �	���
where we can alternatively use Euler angles ��� �� �� or Cardan angles ��� � � ���
The third component of the vector equation ��	��� determines the �rst component of
the rotation vector �� of the moving coordinate system �as de�ned by equation �	���

�� �
s sin � ! d� ! l�

v
��� ���

Finally we get�
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v�

r
� �

r�
! s sin� cos � ! d� ! l�

*v � � u v

r
! s cos� cos � ! d� ! l�
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� �� sin� cot�
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*� �
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r
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*� � �� � v

r
cos� tan�

Equation system ��	��� provides two sets of six �rst	order di�erential equations to
�nd the acceleration of a vehicle that �ies in three	dimensional space� substituting
the three second order di�erential equations of the vector equation ��	���
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Trajectory integration� The system of the equations of motion ��	��� is valid for
many di�erent types of space	�ight trajectories� With a few exceptions� analytical
solutions are not available� Trajectory integration has to be performed numerically
on a computer� employing an integration scheme for a system of di�erential equations�
We start from a well	known initial state and simulate the motion of the vehicle by
�nding step	wise always the next state� considering the in�uence of forces which act
on the vehicle� The thrust is not zero in case of powered �ight �s � ��� and we can
just integrate the trajectory when we know the behaviour of the thrust vector �when
s� � and � are determined functions of the time or the location�� Usually� this is
not the case� but the thrust vector is �at least in some limits� free for optimization�
Trajectory optimization is an important but also quite complicated mathematical
problem� the solution depends much on the particular conditions for an individual
problem� Trajectory optimization problems are treated in other chapters of this book�

	���
 Mechanical Energy of a Trajectory

Kinetic energy� The kinetic energy of a particle �mass M� is the energy which is
stored in its motion� To calculate it� we have to substitute the force by the time
derivative of the linear momentum M � dv	dt� consider v � dt as coordinate and
integrate� The kinetic energy becomes E � 
	� �Mv�� where v is the length of the
velocity vector �v � �u� v� ��� We relate the kinetic energy to the mass of the vehicleM
and use the smaller symbol e to denote the speci�c kinetic energy �pay attention not
to confuse e with the symbol e reserved for the Euler number e � ��
�������� Thus�

ekinetic �



�
�u� ! v�� ��� �
�

Speci�c energy of the trajectory� The total mechanical energy of the trajectory
consists of kinetic energy ��	�
� and potential energy ��	
��� therefore we can write�

e � ekinetic ! epotential �



�
�u� ! v��� �

r
��� ���

When we form the time derivative *e of the total speci�c energy and consider the
equations of motion ��	���� we �nd the following relationship�

*e � u *u! v *v ! u�	r�

� u � �s sin� cos � ! d� ! l�� ! v � �s cos� cos � ! d� ! l��

� �v � �s! �v � �d! �v ��l ��� ���

Thus� the change of the energy in time equals the sum of three scalar vector products�
velocity times thrust acceleration� velocity times drag deceleration and velocity times
lift acceleration� Since the gravity is a conservative force it does not change the energy
of the �ying vehicle �application of gravity transforms just kinetic energy into poten	
tial energy� or vice versa�� However� thrust� drag and lift are not conservative forces�
When they are e�ective� they change the mechanical energy e of the �ying vehicle�
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	���� The Angular Momentum Vector

Angular momentum with respect to the gravitational center� The vector
cross product of the location vector �r and the linear momentum vectorM�v of a �ying
vehicle �mass M� is termed �angular momentum� �H of the trajectory� �H � �r�M�v�

The angular momentum �H is a vector� like the linear momentum M�v� However� the
angular momentum refers to a reference point� in contrast to the linear momentum�
it is always the point where the location vector �r starts� When we take the center of
gravity as reference point� the speci�c �mass related� angular momentum �h becomes�

�h � �r � �v �

�
 r

�
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�
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�
u
v
�

�
A �

�
 �

�
r � v

�
A

h � r � v ��� ���

Like all vectors� the angular momentum �h is independent of a coordinate system
�the length h of the angular momentum vector depends just on the reference point��

Equation ��	��� denotes the component form of �h in the moving coordinate system�

Time derivative of the angular momentum vector� According to the �angu	
lar momentum law�� another fundamental law of mechanics� the torques of all the
external forces must be equivalent to the total time derivative of the angular momen	
tum vector �provided that the reference point is not accelerated�� The forces thrust�
drag and lift generate torque vectors in the center of the coordinate system� just the
gravitational force does not� Therefore� the following relationship must be valid��
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When we resolve the vector equation ��	��� into a component notation of the moving
coordinate system� we have to observe the rule of vector di�erentiation ��	
��� Thus�
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We learn nothing from the �rst component of this vector equation� The second
component con�rms equation ��	���� The third component brings us the relationship�

*h � *rv ! r *v � r�s cos� cos � ! d� ! l�� ��� ��

The result ��	�� can be veri�ed using the equations of the motion �system �	����
The angular momentum law is another way to establish the equations of the motion�
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���� Orbital Flight

The density of the ambient air �ow diminishes rapidly while the rocket climbs through
the atmosphere� Finally the vehicle moves in the vacuum of space� We talk about
�coast arcs� �sections of conic orbits� when we consider �ight intervals with switched	
o� engine� When the thrust is switched	o�� the three	dimensional trajectory of a
spacecraft that moves in space near a celestial body becomes a plane orbit �the motion
takes place in the �actual �ight plane��� A spacecraft that coasts in the gravitational
�eld of a celestial body moves on a circular� elliptic� parabolic or hyperbolic orbit�

	���� Conic Orbits

Equations of motion for orbital �ight� Consider a spacecraft which moves in
the vacuum of space near a celestial body� The motion is exclusively in�uenced by
the gravitational acceleration �g of the celestial body and the thrust acceleration �s
of the rocket motor� Without drag and lift� the equation system ��	��� simpli�es to�
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System ��	��� describes the �plane motion� in a �moving plane�� The time deriva	
tives of the Euler angles � and � vanish when the motor is switched	o� �s � ���
this indicates that node angle and inclination angle remain constant on coast arcs�
The orientation of the actual �ight plane is stabilized with respect to inertial space�
We can use polar coordinates to describe the plane motion by a system of �rst	order
di�erential equations �r� �� vertical velocity u � *r and horizontal velocity v � r *���
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Coast arcs� The solution to the system of di�erential equations for coast arcs �s � ��
is well	known� the spacecraft moves on a conic orbit� We can readily express the com	
ponents of the velocity u and v and the distance r as functions of the path angle ��

u �
� �

h
sin��� �p�

v �
�

h
�
 ! � cos��� �p�� ��� ���

r �
h�

��
 ! � cos��� �p��

Terms h� � and �p are the integration constants� term h ��	��� is the value of the
angular momentum of the orbit with respect to the center of gravity� Term � is called
�numerical eccentricity� of the orbit� The angle � � �p is named �true anomaly�
of the orbital position� where �p is the path angle of the pericenter �radius rp� and
�p ! 
��� is the path angle of the apocenter �radius ra�� The position on the orbit
where the vehicle passes its nearest distance to the celestial body is called pericenter�

Energy and angular momentum of conic orbits� Trajectories in the central
gravitational �eld of a celestial body obey some �conservation laws�� We can write�

e � constant �



�
�u� ! v��� �

r
��� ���

h � constant � r v ��� �
�

Gravity is the only force that acts on the vehicle� Since the gravity is a �conservative�
force it does not dissipate mechanical energy� and the speci�c mechanical energy e
of the orbit must be a constant quantity �compare equation �	���� Since the gravity
force aims everywhere inside the gravitational �eld exactly at the gravitational center
it never causes a torque there� and the angular momentum h of the orbit with respect
to the gravitational center must also be a constant quantity �compare equation �	����

Numerical eccentricity of conic orbits� When the speci�c energy e and angular
momentum h of the conic orbit are well	known� we can calculate another quantity�
it is the important numerical eccentricity � of the orbit�

� �

s
�e

�
h

�

	�

! 
 �
ra � rp
ra ! rp

��� ���

circular orbits �

elliptic orbits �

parabolic orbits �

hyperbolic orbits �

� � ��

� � 
�

� � 
�

� � 
�

e � �

e � �

e � �

e � �

The eccentricity � is by de�nition always positive� the value of � de�nes which type
of orbit is under consideration �a circular� elliptic� parabolic or hyperbolic orbit��
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Pericenter and apocenter� The orbit is characterized by the pericenter distance rp
and the apocenter distance ra �for earth orbits� perigee and apogee� for solar orbits�
perihelion and aphelion�� Radius rp is the nearest distance from the center of gravity�
it is reached for �� �p � � �equation �	���� At this location the horizontal velocity
vp assumes its maximum value� while the vertical velocity vanishes� up � �� On the
opposite side of the celestial body there is apocenter position� for � � �p � 
����
The apocenter can just be reached on elliptic orbits �� � 
�� the horizontal velocity
va assumes its minimum value there� and the vertical velocity vanishes again� ua � ��
The apocenter is a hypothetical position for hyperbolic or parabolic orbits� it is im	
possible to reach this position when � � 
 � For circular orbits �� � �� we have
rp � ra � h	

p��e� for parabolic orbits �� � 
� we have rp � h�	���� and ra ���

Geometry of conic orbits� Strictly speaking� circular or parabolic orbits do not
exist in reality� because � is never exactly zero or exactly one� The cases which
are important in practice are elliptic orbits and hyperbolic orbits� The equations
��	��� show that the quantities a and b �semimajor axis and semiminor axis� are
di�erently de�ned for elliptic or hyperbolic orbits� We may consider circular orbits
as degenerated ellipses� the equations simplify to a � b � rp � ra when � � ��
We can see a parabolic orbit as a degenerated hyperbole� but a de�nition of the
semiaxes a and b makes no sense when � � 
� The following set of equations is valid�
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	���� Flight Time on Conic Orbits

Kepler�s laws� Modern sciences started at the beginning of the seventeenth century�
The medieval geocentric cosmic system was displaced by the recognition that the
earth is not the center of the universe� The astronomer Johannes Kepler �
�
	
����
contributed essentially to the beginning of natural sciences with his studies on planets�
Kepler formulated his famous three statements about the motion of planets�


� Planets move on elliptic orbits� where the sun is in one of the focal points�

�� In a time interval %t the connection line sun	planet �location vector �r� sweeps out
the area %A� for all planets %A is a linear function of the time interval %t�

�� There exists a relationship between the orbital period T of the orbit of a planet
and the semimajor axis a� the ratio T �	a� is the same for all planets�

Kepler�s �rst law follows from the analytical integration of the equations of motion�
the equation system ��	��� de�nes an elliptic orbit for � � 
� Kepler�s second law is
nothing else than a geometrical interpretation of the conservation law for the angu	
lar momentum of the orbit �equation �	�
�� remember that the expression h � rv is
constant on a conic orbit� r is the length of location vector �r� and v is the velocity com	
ponent perpendicular to �r� The area dA of the in�nitesimally small triangle formed
in the time interval dt by a change of the location vector �r is a linear function of dt�

v � dt r

dA

dA �



�
� r � v dt � h

�
dt ��� ���

It follows that dA	dt is a constant quantity�

To verify Kepler�s third law we form the time integral of equation ��	��� for a com	
plete orbital period T � The result of the integration of the left hand side is the area A�
integration of the right side yields the expression h � T	�� The area A of the ellipse
is also given by the equation A � �ab� when a and b are the semiaxes �the area of
an ellipse is the area of a circle �a�� scaled by the ratio b	a of the semiaxes a and b��

T �
�

h
� � � ab � ��

p
a�	�

�
� ��	

p
j�e�j

	
��� ���

The semiminor axis b can be replaced by the expression h
p
a	�� �equation �	����

It is the essential statement of Kepler�s third law� that the orbital period T of a conic
orbit is exclusively a function of the value of the major semiaxis a �or the energy e��

Modern celestial mechanics can easily verify Kepler�s laws� However� it is remarkable
that even today we cannot formulate more �simple relationships� in planetary motion�
and Kepler found his three laws by the accurate comparative analysis of observations�
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Kepler�s �ight time equation� The equation system ��	��� determines u���� v���
and r���� however� velocity and distance are given as functions of the coordinate ��
and not as functions of the time t� The time interval %t � t� � t� elapses when the
spacecraft coasts on a conic orbit from position �� to position ��� Therefore we have�

*� �
v

r
�

��

h�
� �
 ! � cos��� �p��

� ��� ���

To compute the �ight time %t� we have to transform the equation above and integrate�

%t �
h�

��

Z �

�

d�

�
 ! � cos��� �p���
��� ��

Unfortunately� this involves two problems� First� the integral takes quite di�erent
forms for � � 
� � � 
 or � � 
 �for elliptic� parabolic� or hyperbolic orbits�� Second�
the results are transcendental equations �to solve them� numerical iteration processes
have to be applied�� We can compute directly the time interval %t between two
orbital positions with prede�ned true anomaly � � �p� but we cannot transform
the relationship into a reverse representation� the true anomaly �� �p for a prede	
�ned time interval %t has to be computed iteratively by a numerical iteration scheme�

The problem has been known for some centuries already� for nautical navigation pur	
poses it was of high practical importance to know the relationship between time and
position of the planets� Many accurate and e�cient numerical computation schemes
have been developed to solve this problem� Today� position �nding is done via navi	
gation satellites� but actually this involves the same equations� With a computer it
is not a problem anymore to �nd the accurate solution to a transcendental equation�
however� a transparent representation of the �ight time equation is helpful anyway�

Kepler has introduced the �eccentric anomaly� �� besides the �true anomaly� ���p
another angle to describe the position on the orbit� In order to �nd this angle �� the
actual position has to be projected to a corresponding position on a reference orbit�
The reference orbit is a circle for elliptic orbits around the same center point �b � a��
in case of hyperbolic orbits it is a hyperbole with rectangular asymptotic lines �b � a��
The �eccentric anomaly� � is the angle between the line that connects the center
of the reference �gure with the orthogonal projection of the actual position to the
reference �gure �circle or hyperbole�� and the major axis of the orbit� The �ight
time is the ratio of �mean anomaly� �for elliptic orbits the expression � � � sin ��
for hyperbolic orbits the expression � sinh � � �� and �mean motion� �the expres	
sion ��	T or

p
�	a�� it is the angular velocity on a circular orbit with exactly the

same period T �� Thus� to compute the �ight time %t between the two positions
�� and ��� we exclusively have to know eccentricity � and period T of the orbit�
In case of an elliptic or circular orbit we must pay attention� there is the possibility of
several orbital revolutions �number n� before the spacecraft reaches the �nal position
�the eccentric anomaly � is greater than � when the true anomaly �� �p is greater
than ��� A circular orbit is present for � � �� and the eccentric anomaly � is identical
with the true anomaly ���p� A parabolic orbit is present for � � 
� with unde�ned
period T a completely di�erent equation has to be used for the �ight time calculation�



SPACECRAFT TRAJECTORIES ��

elliptic orbit
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b

�

a � cos �
a � �

a

�� �p

a � sin �
hyperbolic orbit
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sinh� �
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 sin��� �p�
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cosh� �
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T
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�
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�

� !



�
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�

�
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�

��� ���

For hyperbolic orbits the �ight time calculation involves �hyperbolic functions��

sinh�x� �
ex � e�x

�
� cosh�x� �

ex ! e�x

�
� arctanh�x� �




�
ln


 ! x


� x

The �ight time equations ��	��� can be brought to a unique representation for elliptic
and hyperbolic orbits when we use mathematics of complex numbers �i �

p�
��
but the interesting theory is for practical applications more confusing than helpful�
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Lambert�s theorem� Sometimes it is the problem to �nd a conic orbit which �ts
between two locations in space and satis�es a prede�ned transfer time� This problem
is called �Lambert problem�� named after the astronomer J�H�Lambert �
��	
��
It is a standard problem of celestial mechanics to compute the orbit of an object from
observation data� Measured are usually at two moments the distances r� and r�� and
the angle %� � �� � �� between the radial r� and the radial r�� The distance 

between these two locations can be calculated using the theorem of the cosine� Thus�


 �
q
r�� ! r�� � �r�r� cos��� � ��� ��� �
�

�a

%�

r�

r�




first

observation

second

observation
unknown

orbit

The �Lambert theorem� serves
now to calculate the elements
of the conic orbit between the
two locations� The theorem
is nothing else than an el	
egant transformation of Ke	
pler�s �ight time equation� it
demonstrates that we can com	
pute the �ight time %t � t��t�
on the conic section directly
when we know just three val	
ues� the semimajor axis a� the
sum r�!r� and the distance 
�

elliptic orbit� %t �
p
a�	� � ���� � ���� �sin �� � sin ���

�
��� ���

sin �� �



�

r
r� ! r� ! 


a
� sin �� �




�

r
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a

parabolic orbit� %t �



�
p
�
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�� �

p
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�
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hyperbolic orbit� %t �
p
a�	� � ����� � ��� ! �sinh �� � sinh ���

�
��� ���

sinh �� �



�

r
r� ! r� ! 


a
� sinh �� �




�

r
r� ! r� � 


a

Lambert�s theorem is a transcendental equation� exactly like Kepler�s equation�
An iterative computation process has to be applied anyway when it is the task to
calculate the semimajor axis a of an orbit from observation data �r�� r�� %� and %t��
Once a has been iterated� the orbital period T and the speci�c energy e of the orbit
follow directly �equation �	���� but the calculation of the other orbital elements re	
mains cumbersome� To �nd the eccentricity �� we have to substitute the expression
h�	� � a�
� ��� in the equation system ��	���� then insert the distances r���� and
r����� and �nally eliminate the pericenter angle �p from the two nonlinear equations�
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	���� Orbital Elements

De�nition of conic orbits� A material body which coasts in the gravitational
�eld of a celestial body moves on a conic orbit �usually an ellipse or hyperbole�
exceptionally a circle or parabole�� The orbit is de�ned when the location vector �r
and the velocity vector �v are known at any instant t� The location vector �r and the
velocity vector �v change in time t �obeying six �rst	order di�erential equations �	����
Therefore exactly six terms are necessary to de�ne the orbit� The �time coordinate�
is the seventh element� it determines the exact position of the moving object on
the orbit� It is possible to specify the orbit by a set of six time	invariant elements�
These data are called �orbital elements� of the object�

�p
a�

a

�

�

tp

ascending node

pericenter

passage
point of

vernal equinox

equatorial

(or ecliptic) plane

Semimajor axis and eccentricity� The size of the orbit is de�ned by its me	
chanical energy e and its angular momentum h �equations �	��� �	�
�� Remember
that these two quantities are �conservation laws� for conic orbits� Once we know the
values of e and h� we can readily compute the semiaxes a and b� or alternatively the
pericenter radius rp and the apocenter radius ra �equations �	���� It is a convention
to use the major semi	axis a together with the eccentricity � for the de�nition of the
size of a conic orbit� The important orbital period T is a direct function of a �when

the dimension of a is �astronomical units�� the orbital period T follows as
p
a� in the

dimension of years�� The eccentricity � is a dimensionless quantity �equation �	����
it gives directly information about which type of conic orbit is under consideration�

Node angle� inclination angle and pericenter angle� The attitude of the orbit is
de�ned by three Euler angles� Strictly speaking� these angles determine the location
of the pericenter with respect to inertial space� The angle � �called �ascending
node�� is the angle between the �node axis� and a certain �xed direction in space
�the line from the earth to the sun on March� �
st� called �point of vernal equinox���
The inclination angle � is measured against the equator in case of earth orbits�
or against the ecliptic in case of solar orbits� The pericenter angle �p is the angle
between the direction of the �ascending node� and the radial of the pericenter�
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Time of pericenter passage� We divide the angle of mean anomaly �in case of
elliptic orbits ��� sin �� in case of hyperbolic orbits � sinh ���� by the mean motion
���	T �

p
�	a�� to get the time interval that elapsed since the last pericenter passage

�equation �	���� Then we subtract this time interval from the time coordinate to get
the �time of pericenter passage� tp� The quantity tp is constant on a conic orbit�

tp � t� T

��
��� � sin ��

�
hyperbolic orbits � tp � t� T

��
�� sinh �� ��

�
��� ���

The orbit is entirely determined by a speci�cation of semimajor axis a� eccentricity ��
node angle �� inclination angle �� pericenter angle �p and pericenter passage time tp�
The problem is to �nd the actual position of the orbiting object at a given time t�
it requires the numerical solution to Kepler�s equation� The �eccentric anomaly� �
of the orbital position has to be computed iteratively �knowing t� tp� T � ��

p
a�	�

and ��� Once the true anomaly ���p has been obtained �equation �	���� the velocity
components u and v� and the distance r follow immediately �equation system �	����

	���	 Perturbation of Low Earth Orbits

Lagrange�s equations for the perturbation of orbital elements� A satellite
orbiting on a low altitude earth orbit experiences a remainder of atmospheric drag�
Another major perturbation comes from the fact that the gravitational �eld of the
earth is not perfectly spherical� Orbits are determined by a set of six data� the
�orbital elements� �semimajor axis a� eccentricity �� node angle �� inclination angle ��
pericenter angle �p and time of pericenter passage tp�� Strictly speaking� the orbital
elements are not exactly time	invariant constants� since perturbations cause them to
change slowly� To quantify these e�ects� we consider the thrust acceleration vector
�s � �s�� s�� s�� as a �perturbation�� The �powered motion� of the spacecraft obeys
the equation system ��	���� Now thrust is applied� and the orbital elements become
functions of the time t� Di�erentiation leads us to a system of di�erential equations�

*a � �a
e
�us� ! vs��

�
corresponding to� *e � us� ! vs�

�
*� �

h

���
�uhs� ! ��er ! vh�s��

�
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�
*� �

s�
v

sin�

sin�

*� �
s�
v

cos�

*�p �
h

�����
�
�� � vh�s� ! u�h!

�

v
�s�
�� s�

v
sin� cot� ��� ���

*tp �



�e

�
�rs� � ��t! tp��us� ! vs��

�
!
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�e�����
�
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�

v
�s�
�

The equation system above is called �Lagrange equations� for orbital perturbations�
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The equations ��	��� can be seen as replacement for the equations of motion ��	����
with the velocity components u� v and the radius r according to the equations ��	����
The energy e � �	��a� and the angular momentum h � rv �

p
a�j
� ��j are now

functions of the time t� like all the orbital elements� For numerical integration it
is probably not advisable to replace the equations of the motion �they are better
conditioned for an application on a computer�� but the e�ect of perturbations on the
orbit can better be examined using the transformed system of �Lagrange equations�
�named after the great mathematician Joseph de Lagrange� 
��	
�
���

We can observe that the change of the orbital elements is a linear function of the
magnitude s of the perturbation� but it is a nonlinear function of the direction of �s�
Perturbations in 
	direction ��s � �s�� �� ��� have obviously no e�ect on the inclination
angle � and the node angle �� Constant perturbations in 
	direction have also no im	
mediate e�ect on the semimajor axis a and on the eccentricity �� the energy e changes
periodically � *e � us��� and the angular momentum h is not a�ected at all � *h � ���
A shift of the pericenter *�p is the only long	term e�ect of perturbations which act
predominantly in radial direction� In contrast� perturbations which act in �	direction
��s � ��� s�� ��� do change the energy and the angular momentum of the orbit� but
as expected� they have no in�uence on the inclination angle and on the node angle�
The only perturbation which can change the inclination angle and the node angle
is a perturbation that acts in �	direction ��s � ��� �� s���� but on the other hand� a
perturbation in �	directions does not change the energy and the angular momentum�

E�ect of rest atmosphere� We can use the method of orbital perturbations to com	
pute the approximate life time of a satellite� When the satellite �ies at a low altitude�
the remainder of the atmosphere will slow down the satellite and bring it to a reentry�
The vertical velocity u of the satellite is negligibly small until the �nal reentry phase�
and the horizontal velocity v is just a function of the actual �ight altitude� v �

p
�	r�

The drag deceleration d� �equation �	��� acts as perturbation in �	direction� We can
approximate the atmospheric density  by an exponentially declining function of the
altitude �with the ground level density � and the scale height hscale� equation �	����
On orbit the drag deceleration d� is proportional to the square of satellite velocity v�
Since the orbit remains more or less circular� we may take the �rst equation of the
system ��	��� and replace the semimajor axis a of the orbit by the expression r� When
we consider that e � �����	r �equation �	��� we can �nd the following relationship�

*r � �p�r � �CD A	M� � e��r �Rearth�	hscale ��� ��

or� %t �
�
p

� �CD A	M� �
�
Z r�

r�

e�r �Rearth�	hscalep
r

dr ��� ���

Term �CD A	M� is the �ballistic factor� of the satellite �the drag coe�cient CD multi	
plied with the reference area A and divided by the satellite massM�� Equation ��	���
de�nes the time interval %t � t� � t� that elapses while the satellite descends from
the higher altitude �radius r�� to the lower altitude �radius r��� The satellite is faster
at the lower altitude� paradoxically� the drag deceleration speeds	up the satellite�
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Let %r � r � Rearth be the altitude of the circular satellite orbit� The expression

	
p
%r !Rearth in the integral ��	��� can be expanded in series� the result is�

�%r ! Rearth�
���� � R

����
earth �




�
�%r �R����earth !

�

�
�%r� �R����earth � � �

When a satellite moves on a very low orbit� the scale height hscale and the altitude %r
of the orbit are both much smaller than the radius of the earth �Rearth � ��� km��
We can integrate equation ��	��� using the approximation

p
%r ! Rearth �

p
Rearth�

Then the descent time interval %t � t� � t� follows as�

%t � hscale �e�r� � Rearth�	hscale � e�r� �Rearth�	hscale�p
�Rearth�CDA	M��

��� ���

The scale height hscale is not exactly constant but a function of the �ight altitude
�between 
�� and 
�� km we have approximately a scale height of � to 
� km��
Equation ��	��� shows that the life time of a satellite grows exponentially with the
initial altitude r��Rearth of the low earth orbit� When this initial altitude is increased
just by one scale height� the life time of the satellite will be extended by the factor e
�Euler�s number e���
���
����� and this means that a satellite will live about three
times longer when we put it on an orbit which is just about � km higher�

Unfortunately� the equation ��	��� provides just limited help to predict the lifetime %t
of a satellite that orbits at a low altitude� In practice� the actual life time %t can devi	
ate by a factor ��� to ��� from the estimate at the beginning of the operation phase�
Such long	term life	time predictions are di�cult because of our insu�cient knowl	
edge about future solar activity� The solar activity in�uences the actual value of
scale height hscale considerably� Since the scale height hscale is an argument of the
exponential function in the equation ��	���� a small error in hscale will have a strong
impact on the life time of the satellite� Even with re�ned methods� in practice the
actual day of a satellite decay is not predictable until about a week in advance�

Regression of the node� Rotating celestial bodies are not perfectly spherical�
The diameter of earth at the equator exceeds its diameter at the poles by almost
�� km� the shape of earth is more an ellipsoid than a sphere� Consequently� the
potential �eld of earth gravity epotential is not just a function of the distance r from
the gravitational center� it depends also slightly on the latitude �the spherical angle
between actual position and equator� Cardan angle � � where sin� � sin� sin���
More accurate than equation ��	
�� is the following relationship�

epotential � ��
r
�
�

� J� � �Rearth

r
�� � ��

�
sin� � sin� �� 


�
�

�
��� ��

The dimensionless term J� � ����
��� characterizes the oblateness of the earth�
In order to �nd the gravitational perturbation vector ��s � �s�� s�� s���� we have
to form the gradient vector of the potential of gravity �compare equation �	
���
The three direction coordinates are characterized by the vector �x � �r� r�� r� sin���
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Coordinate di�erentiation yields the three components of gravitational perturbation�

s� � ��epotential
�r

!
�

r�
�

�J��R
�
earth

�r�
�� sin� � sin� �� 
�

s� � ��epotential
r��

� �J��R
�
earth

r�
�� sin� � sin� cos��

s� � ��epotential
r sin���

� �J��R
�
earth

r�
�� sin� cos� sin�� ��� 
�

Term ��	r� is the main gravitational acceleration� To consider just perturbations�
we have to disregard this term and subtract it from the �rst equation of system ��	
��

The oblateness of the earth is responsible for the �regression of the node�� a constant
slow motion of the node angle �� When the orbit is inclined against the equator� the
attraction by the extra mass on the equator causes this gyroscopic e�ect on the orbit
�the moment of the additional force lets the angular momentum vector �h �precess���

To calculate the magnitude of this precessional move	
ment� we insert the gravitational perturbation s� into
the third equation of the system ��	���� Then we get�

�h

*� �
s� sin�

v sin�
� ��J�� R�

earth cos�

h�
� sin

� �

r���
� *�

��� ��

The angular momentum h� the eccentricity � and the pericenter angle �p are con	
stant during the short time interval of one orbital revolution� at least approximately�
As the next step we insert r��� �equation �	��� and integrate one complete revolution�

%� � ��J�� R�
earth cos�

h�
� �
h�
�
Z �


�

�
 ! � cos��� �p�� sin
� � d�

� ���J��
� R�

earth cos�

h�
��� ��

The orbital period T is the time interval of one revolution� We use the expression
a��
� ��� instead of h� and �nd the velocity of the regression of the node as�

*��regression of the node �
%�

T
� ���J� R

�
earth cos�

T a� �
� ����
��� ��

For satellites on circular low earth orbit� we have � � � and a � Rearth� One complete
revolution of the node axis � is performed after n orbital revolutions of the satellite�

��� � n �%� � �n � ��J� cos� ��� ��

So	called �sun	synchronous� orbits use the e�ect of this gravitational perturbation�
When the satellite revolves in � hours� the node angle � revolves approximately in
�	��J� cos�� hours or �
��	 cos� days� For � � ��� �high inclined polar orbits��
the �regression of the node� needs exactly one year to complete one revolution�
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Advance of the perigee� The oblateness of the earth is responsible for another
signi�cant long	term e�ect on orbital elements of earth satellites� the perigee of an
eccentric orbit moves slowly� In contrast to the motion called �regression of the node�
which is caused just by a perturbation in �	direction� the �advance of the perigee� is
e�ected by all the three perturbation components �s�� s� and s��� The calculation
of this e�ect is similar but requires more complicated transformations� We have to
insert the perturbations ��	
� into the �fth equation of system ��	��� and integrate
a complete orbital revolution �� 
 � 
 ���� considering the orbital elements a� ��
�p as constant� During the comparatively short time interval of one orbital period�
the oblateness of the earth causes the perigee of an inclined orbit to change by %�p�

%�p � ���J��
� R�

earth

h�
� ��

�
sin� �� �

�
��� ��

The angular velocity of the �advance of the perigee� becomes�

*�p �advance of the perigee �
%�p
T

� ���J� R
�
earth ���� sin� �� ��

T a� �
� ����
��� �

It depends on the inclination � of the orbit� whether the perigee moves in positive
or in negative direction� Of practical importance are orbital inclinations where the
�advance of the perigee� vanishes� the perigee will not advance for ���� sin� ���� � �
or � � �������� This inclination is interesting for orbits with a high eccentricity�

	���
 Destination Orbits

Circular low earth orbit LEO� Many space missions go to low earth orbit�
abbreviated �LEO�� Sometimes LEO is the �nal destination orbit� sometimes LEO
is just used as �parking orbit�� to continue the mission later to a more distant orbit�
When we disregard suborbital �ights� LEO is the easiest accessible space destination�
A launcher that departs int easterly direction has a particularly high payload capac	
ity when it attains a circular equatorial LEO� LEOs are more or less circular orbits�
because the altitudes of perigee and apogee are just slightly higher than the upper
limits of the atmosphere� Typically� altitudes for the perigee or the apogee of a LEO
are between ��� km to ��� km above the surface of the earth �Rearth � ��� km��

The velocity of a satellite on a circular LEO depends on the altitude of the orbit�
The lower the orbit� the faster the satellite moves on it� We can readily �nd the
orbital velocity on a circular LEO when we equate the centrifugal acceleration �	r�

and the gravitational acceleration v�	r� The result is the following condition�

vcircular �
p
�	r ��� ��

The value of the gravitational constant � of the earth is �������
���m�	s�� A satellite
that orbits at an altitude of ��� km �r���� km� has a velocity of ��� km s�
the satellite moves a little slower at ��� km altitude ���� km s for r���� km��
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The orbital period T �time interval required for one revolution� on a circular LEO is�

T � �� �
p
r�	� ��� ��

The period of a ��� km circular LEO is with ���� seconds roughly one and a half
hours� The orbital period of a satellite that �ies on a hypothetical orbit at zero
altitude is called �Schuler period�� T � �� minutes when r � Rearth � ��� km�
The Schuler period takes similar values for celestial bodies with similar composition
�the quotient r�	� accepts the same value for spherical bodies with the same density��

Sun synchronous orbit SSO� Highly inclined �polar� low earth orbits can take
advantage of the gravitational perturbation e�ect that is called �regression of the
node�� We have seen that it is possible to select the inclination � and the altitude r
of a polar orbit in a way that the node angle � performs one �retro	grade� revolution
exactly in one year �equation �	��� The consequence is that now the orbital plane
is stabilized with respect to the direction of the sunlight� While the earth rotates�
the satellite �ies over every region on earth surface always at the same local daytime
�for example� a satellite launched at 
���� local time into a sun	synchronous polar
orbit will pass all regions around midday at the sun illuminated side of the earth��
The great advantage is that observation satellites can scan the surface of the earth at
a constant solar illumination angle� Often the �ground	track� of polar orbit satellites
is the same for every day� because it is possible to adjust the altitude of the orbit in a
way that the satellite returns in exactly �� hours to the same point above the earth�

Geostationary earth orbit GEO and geostationary transfer orbit GTO�
Particularly interesting for some commercial applications like telecommunication and
broadcasting is the geostationary or geosynchronous earth orbit GEO� At an altitude
of r � ����� km �or ���� km above the surface of the earth�� the circular velocity of
a satellite relative to a non	rotating earth is v � ���� km s� the satellite performs
one orbital revolution exactly in T � �� hours� For an observer on the surface of the
earth� the satellite appears to be always in the same position above the equator� It
is the great advantage of GEO satellites that ground stations can use �xed antennae�
Usually� space launchers do not deliver their payload directly into GEO position� but
into a geostationary transfer orbit GTO �circularization is performed by the satellite
itself�� Perigee and apogee of the transfer orbit are located above the equator �with an
apogee altitude at GEO position and a perigee altitude just on top of the atmosphere��
The following table lists some representative data for a typical GTO�

��� ���

ra � ����� km

rp � ��� km

� � �ra � rp�	�ra ! rp� � �������

a � �ra ! rp�	� � ���
� km

b �
p
rarp � 
��
 km

e � ��	��a� � ���
� km�	s�

h � b �
p
�	a � �� km�	s

T � �
p
a�	� � 
���� seconds

vp � h	rp � 
���
 m	s

va � h	ra � 
��� m	s

The satellite needs T	� � ��� hours to coast from the perigee to the apogee position�



�� ASTRONAUTICAL ENGINEERING

Molniya orbits� Obviously� the geostationary orbit is not visible for ground sta	
tions in polar regions� Substantial parts of Russia are located far north� to ensure
communication link to ground stations near the north pole� Russia uses so	called
Molniya communication satellites� These Molniya satellites �y on high	eccentric or	
bits �rp � ���� km� ra � ����� km�� with an orbital period of T � 
� hours the
satellites are actually not �geostationary satellites�� but at least they remain during
their apogee passage �twice every day� for an extended time interval approximately
over the same �north� region on earth� To avoid that the apogee position of a Mol	
niya satellite migrates slowly� the orbit has to use the critical inclination where the
�advance of perigee� vanishes� Remember that this gravitational perturbation e�ect
vanishes exactly for the inclination � � ������

Parabolic earth escape trajectories� When a spacecraft accelerates until it
reaches the escape velocity it will leave the gravitational �eld of the earth� A parabolic
escape orbit requires the minimummechanical energy for the escape maneuver� Thus�

eparabolic �
u� ! v�

�
� �

r
� � ��� �
�

After an in�nite �ight time the spacecraft reaches an in�nite distance where it has no
velocity anymore� The parabolic escape velocity depends on the actual �ight altitude�

vparabolic �
p
u� ! v� �

p
��	r ��� ���

The parabolic escape velocity vparabolic is exactly by the factor
p
� higher than the

circular velocity �equation �	��� independent of the actual �ight altitude �radius r��
For example� at an altitude of ��� km the circular velocity amounts ��� km s�
and we can immediately calculate the minimum escape velocity at this altitude as
vparabolic �

p
�� ��� km s � 

��
� km s�

Hyperbolic earth escape trajectories� From the practical point of view� hyper	
bolic escape orbits are more important than parabolic escape orbits� The spacecraft
escapes faster� and the spacecraft has still a velocity with respect to the earth in in	
terplanetary space� The mechanical energy of the hyperbolic escape orbit is positive�

ehyperbolic �
u� ! v�

�
� �

r
�

v��
�

�
� �

�
��� ���

In interplanetary space� far away from the earth� the spacecraft has the velocity v��

v� �
p
u� ! v� � ��	r �

q
v�hyperbolic � v�parabolic ��� ���

v� � vhyperbolic � vparabolic

It is important to realize that the relative velocity v� is much higher than the
di�erence of the hyperbolic velocity and the parabolic velocity� For example� when
the spacecraft is injected from a ��� km parking orbit with a velocity of 

�
� m s
�just ��� m s faster than the parabolic escape velocity�� it will �nally depart from
the earth with the remarkable relative velocity of ���� km s�
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���� Impulsive Transfers

The spacecraft uses a transfer trajectory to travel from one orbit to another one�
These transfer trajectories are composed of propulsive maneuvers ��thrust arcs��
separated by sections of conic orbits ��coast arcs� with switched	o� engine��
Often it is the case that we consider a transfer trajectory where the duration of the
thrust arcs is much shorter than the duration of the coast arcs� When the thrust arcs
are very short in comparison with the entire transfer time� we are allowed to approx	
imate �nite thrust maneuvers by impulsive maneuvers� and consider the transfer tra	
jectory as an �impulsive transfer orbit�� Impulsive thrust maneuvers with in�nitely
short duration change the velocity of the spacecraft� but they do not change its loca	
tion in space� We assume that only coast arcs change the location of the spacecraft�
and that only coast arcs consume the �ight time of the impulsive transfer trajectory�

	�	�� Impulsive Thrusts

Changing of the velocity� Consider that the spacecraft moves on a conic orbit�
Its position is de�ned by the location vector �r �length r� Cardan angles � and ���
When an impulsive thrust maneuver %v is applied� the velocity vector �v changes
its direction and its magnitude instantaneously� but the vector �r remains constant
during the whole impulsive maneuver� The actual �ight plane can assume a di�erent
orientation after the maneuver� because the Cardan angle � can change its value�

change of the �ight plane
and the corresponding
velocity vector triangle

%�v � �v� � �v�

�

�

�v�

�v�

%�v

�r
��

��

1

3

2

o

o

o

1

3

2
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The velocity vector �v changes its length and its direction during the in�nitely short
time interval of the impulsive maneuver� The index ��� means �immediately before
the impulse� and the index �
� means �immediately after the impulse�� Therefore�

%�v � �v� � �v� ��� ���

As the next step we have to resolve this vector equation into its component notation�
Therefore it is necessary that all vectors refer to the same coordinate system� however�
the moving system changes its attitude while the impulse is applied� We take the
attitude of the system immediately before the impulse as a basis� because the angles
�� and �� of the impulsive thrust maneuver refer to the actual position of the moving
system before the maneuver� The vector of the impulse %�v can be expressed using
its magnitude %v and the de�nition of the thrust direction with the angles �� and ��
�equation �	���� The velocity vector �v� takes the simple form of �v� � �u�� v�� ���
Note that velocity vector �v� does not take the form of �v� � �u�� v�� ��� this notation
would refer to the attitude of the coordinate system immediately after the impulse�
We have to apply matrix multiplication in order to transform the vector �v� in a way
that its component notation refers to the attitude of the system before the impulse��
 
 � �

� cos��� � ��� � sin��� � ���
� sin��� � ��� cos��� � ���

�
A �

�
u�
v�
�

�
A �

�
 u�
v� cos��� � ���
v� sin��� � ���

�
A ��� ���

The rotation angle is %� � �� � ��� Now we resolve the vector equation ��	��� as�

%v �
�
 sin�� cos ��

cos�� cos ��
sin ��

�
A �

�
 u�
v� cos��� � ���
v� sin��� � ���

�
A�

�
u�
v�
�

�
A ��� ��

Finally� the equation ��	�� provides su�cient information to calculate the velocity of
the spacecraft and the attitude of the coordinate system after the impulsive maneuver�

u� � u� !%v sin�� cos ��

v� �
p
�%v cos�� cos �� ! v��� ! �%v sin ����

sin��� � ��� � �%v sin ���	v�

cos��� � ��� � �%v cos�� cos �� ! v��	v� ��� ���

Plane impulsive maneuvers� The equation system ��	��� simpli�es when the im	
pulsive thrust vector %�v is located completely inside the actual �ight plane ��� � ���

u� � u� !%v sin��

v� � v� !%v cos��

�� � �� ��� ���

Such plane impulsive maneuvers are important special cases in practice� because
very often the �nal orbit is located exactly inside the same plane as the initial orbit�
Then the transfer orbit is a plane trajectory� called �coplanar transfer orbit��
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Impulsive inclination change maneuvers� Another important special case is the
case of �horizontal thrusting�� when a horizontal impulse is applied in the apse of a
transfer trajectory� The inclination of the �ight plane changes when �� � �� �� � ��
When we look down at the maneuver from the top we see a velocity vector triangle�

�v�

��

�v�
%�v

�� � ��

u� � u�

%v cos �� � v� cos��� � ���� v�

%v sin �� � v� sin��� � ��� ��� ���

We can eliminate the thrust angle �� to get�

%v� � v�� ! v�� � �v�v� cos��� � ���
��� �
�

The theorem of the cosine brings us to the same conclusion� When the change of the
inclination is small� we have with cos��� � ��� � 
 approximately %v � v� � v��
This means that changing the inclination is �cheap� �requires just a little propulsion�
when the maneuver changes the inclination just slightly but the velocity considerably
�the case� �� � �� �� 
� v� �� v��� However� when the velocity is just changed
slightly �the case� v� � v�� cos��� � ��� � 
� ��� � ���

�	��� we can approximate
the equation ��	�
� by the expression %v � v� � ��� ����� and this means that also
a small inclination change maneuver is very expensive when the velocity v� is high�

Thrust direction before and after the impulse� During an impulsive maneuver
the thrust direction remains constant with respect to inertial space� but not with re	
spect to the moving coordinate system� The coordinate system turns instantaneously
at the moment when the impulse is applied� and the thrust angles � and � assume
di�erent values before and after the impulse� The following relationship is valid��

 sin�� cos ��
cos�� cos ��

sin ��

�
A �

�
 
 � �

� cos��� � ��� sin��� � ���
� � sin��� � ��� cos��� � ���

�
A �

�
 sin�� cos ��

cos�� cos ��
sin ��

�
A

��� ���

The thrust direction immediately before the impulse �de�ned by thrust angles ��
and ��� has to be transformed to the component notation of the coordinate system
immediately after the impulse� Again a rotation matrix serves for the transforma	
tion �compare equation �	��� but this time it is the inverse matrix�� We may conclude�

sin�� cos �� � sin�� cos ��

v� cos�� cos �� � %v�
� sin� �� cos
� ��� ! v� cos�� cos ��

v� sin �� � v� sin �� ��� ���

Using the equation ��	��� we can replace the terms sin��� � ��� and cos��� � ����
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	�	�� The Hohmann Transfer

Plane transfer between two circular orbits� In the year 
���� Walter Hohmann
�
���	
���� wrote his famous book about the �attainability of celestial bodies�
�Die Erreichbarkeit der Himmelsk�orper�� In this book he described a way to transfer
a spacecraft from one orbit to another coplaner orbit� the trajectory which was later
named after him� Hohmann trajectories are the most important type of rocket pow	
ered transfer orbits� However� it must be mentioned that these Hohmann transfer
trajectories do not de�ne the limits for reaching celestial bodies �Hohmann was not
aware that planetary �ybys can be utilized�� Even though most transfer trajectories
are not exactly Hohmann trajectories �often the initial and the �nal orbit are not
circular and not coplanar�� many two	impulse transfer orbits can be treated in a
similar manner and are therefore also called �Hohmann transfer trajectories��

However� the real Hohmann transfer is a plane trajectory between two circular orbits�
It consists of two horizontal thrust maneuvers separated by one coast arc �
��� arc
length�� To move from the initial orbit �radius r�� to the �nal orbit �radius r���
the spacecraft utilizes an elliptic orbit with the eccentricity � � �r� � r��	�r� ! r��
and the semimajor axis a � �r�!r��	�� Transfer time %t is half the orbital period T �
The spacecraft raises its velocity twice� the �rst impulsive maneuver accelerates the
vehicle from the circular velocity v� �

p
�	r� at radius r� to the pericenter velocity

vp � v� �
p

 ! �� the second maneuver accelerates the vehicle from the apocenter

velocity va � v� �
p

� � to the circular velocity v� �

p
�	r� at the radius r�� Thus�

%v�

%v�

r�r�

%v� �

r
�

r�
�
� s

�r�
�r� ! r��

� 


	

%v� �

r
�

r�
�
�


�
s

�r�
�r� ! r��

	

%v � %v� !%v� ��� ���

%t � �

s
�r� ! r���

��

A spacecraft which orbits on an equatorial LEO �altitude ��� km� r� � ��� km�
has a circular velocity of v� � ��� km s� For changing to GTO �r� � ����� km��
the vehicle accelerates to perigee velocity vp � 
����
 km s� The spacecraft coasts
��� hours until it reaches apogee� where it has the smaller velocity va � 
���� km s�
To depart for GEO� the spacecraft accelerates a second time until it reaches again the
circular velocity� v� � ���� km s at GEO altitude� The total velocity requirement
for the maneuver amounts to %v � ����� ! 
�� � ����� km s�
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Coplanar transfer with intermediate impulse� The Hohmann transfer with two
horizontal thrust maneuvers is the simplest way to move from one circular orbit to
another one� Usually� it is also the optimal way� It is easy to demonstrate that the
overall velocity requirement %v increases when we use a third impulse �on the way��
the three	impulse transfer utilizes an intermediate impulse �%vX� radius rX� at the
junction point of two 
��� coast arcs� We have to consider two cases� since the radius
rX of the intermediate impulse can be smaller or greater than the �nal radius r��

%v�

%v�

%vX

r�r�

rX

%v�

%v�

%vX

r� r�

rX

%v	
p
�	r� as function of rX

parameter r�	r�

r� r� �r� � r�
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%v� �

r
�

r�
�
� r

�rX
r� ! rX

� 


	

%vX �

r
�

rX
�
� r

�r�
r� ! rX

�
r

�r�
r� ! rX

	

%v� �

r
�

r�
�
�


�
r

�rX
rX ! r�

	

%v � %v� !%vX ! j%v�j ��� ���

The �gure shows the velocity requirement %v �related to the velocity v� �
p
�	r�

on the initial orbit� for several ratios r�	r� as function of rX� When rX � r��
the �rst impulse vanishes and we actually consider a two	impulse Hohmann transfer�
When rX � r�� the last impulse vanishes and again the Hohmann transfer is present�
Anyway the overall velocity requirement %v increases when rX lies between r� and r��
It is remarkable that for high ratios of r�	r� the Hohmann transfer is not the optimum
anymore� for r�	r� � 
��� and rX � r� the three	impulse transfer saves indeed
propulsion� The �rst impulse %v� accelerates the spacecraft nearly to escape velocity�
a small intermediate impulse %vX raises the pericenter to radius r�� and �nally a
retro	impulse %v� performs circularization� The three	impulse maneuver is of little
importance in practice� because the transfer time is very long and the saving is small�
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Transfer with several pericenter or apocenter burn maneuvers� Considered
is the case of a usual Hohmann transfer trajectory� After the �rst impulsive thrust
maneuver %v� the spacecraft must have su�cient velocity to reach the altitude of
the target orbit� When the burnout velocity is smaller� the apocenter altitude of the
coast arc will remain below the altitude of the �nal orbit� but the spacecraft has the
option to return on an elliptic orbit back to exactly the same location on orbit where
it has performed the initial maneuver� Burning a second time it can complete the
maneuver %v�� In comparison to the two	impulse Hohmann transfer� the modi�ed
maneuver takes longer� but actually its overall velocity requirement %v is the same�

%v�

%v�

�r��r�

The modi�ed Hohmann transfer with sev	
eral pericenter impulses �separated by el	
liptic coast arcs� requires all	together the
same %v� capacity at pericenter position as
the usual two	impulse Hohmann transfer�
Only when su�cient velocity has been at	
tained� the spacecraft coasts to apocenter
position� where the apocenter impulse %v�
accelerates it to circular velocity �also %v�
can be distributed among several burn ma	
neuvers�� A Hohmann transfer trajectory
with several pericenter burn maneuvers
needs a comparatively long transfer time�
but sometimes a long �ight time is desired�

Transfers with several pericenter burn periods are important for low thrust vehicles�
where the duration at pericenter position is too short for the complete maneuver�

%v�� %��

%v��%��

�r�

�r�

aspect:

line of nodes

Hohmann transfer with inclination change� Often initial and �nal orbit are not
in the same plane� the transfer maneuver has not only to change the altitude but also
the inclination of the orbit� Usually it is not a good idea to perform the inclination
change by a separate maneuver� Remember that an inclination change is just �cheap�
when the velocity is small� or when at least also the velocity increases considerably
during the maneuver� The best option is to perform the inclination change while the
motor burns anyway� Impulses %v� and %v� must be located on the intersection

line between the planes of initial and �nal
orbit ��line of nodes��� The essential part
of the inclination change %�� is performed
during the apocenter maneuver %v�� since
the spacecraft is comparatively slow im	
mediately before it reaches the apocenter�
Also the pericenter maneuver %v� con	
tributes with a smaller part %�� to the en	
tire inclination change� since we get small
inclination changes at the pericenter nearly
for free �when cos%�� � 
� equation �	�
��
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Pericenter maneuver %v� and apocenter maneuver %v� are both horizontal impulses
�thrust angle � � ��� To analyse the relationship between the thrust angles ��� ��
and the total inclination change %� � we can regard the velocity vector triangles for
the pericenter impulse and for the apocenter impulse� We observe the two maneuvers
from certain positions in space� located on the �line of nodes�� We always look down�
and� when we see the velocity vector triangle� the celestial body lies behind it�
The plane of the initial orbit is in both cases just a horizontal line when we look
at it from above� The velocity vectors form the following triangles�

%v� %v�

v�

��

vp

%��

va

��v�
%��

%��

pericenter velocity vector triangle apocenter velocity vector triangle

The angle �� represents the thrust direction immediately before the pericenter im	
pulse %v�� and the angle �� is the thrust angle immediately before the apocenter
impulse %v�� The pericenter impulse accelerates the spacecraft from circular veloc	
ity v� to pericenter velocity vp� the apocenter impulse accelerates it from apocenter
velocity va to circular velocity v�� Note that the values of the velocities vp and va
are not functions of the inclination change maneuver� however� vp and va are entirely
determined by initial radius r� and �nal radius r� �just like the values v� and v���
The inclination angle %�� is free for optimization� The angle %�� remains constant
while the spacecraft coasts from the pericenter position to the apocenter position�
According to the equation ��	�
�� the transfer maneuver needs a total %v capacity of�

%v � %v�!%v� �
q
v�p ! v�� � �vpv� cos%��!

q
v�a ! v�� � �vav� cos%�� ��� ���

All terms in the equation above are de�ned� except for the optimal distribution %� �
%�� ! %��� interesting is the distribution that requires the minimum %v capacity
for a given angle %� � To �nd it we may replace %�� by the expression %� �%��

and form �%v	�%�� � �� Finally� di�erentiation and transformation leads us to�

v� sin �� � va sin �� ��� ��

The product of the initial velocity and the sine of the thrust angle � is the same
for both maneuvers� it de�nes the best distribution of the inclination change %�
among %�� and %��� For example� for a Hohmann transfer from a low earth orbit
�r� � ��� km� v� � �� m s� to geostationary position �r� � ����� km� va � 
���
m s� the optimal distribution is determined by the ratio sin ��	 sin �� � �����
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	�	�� Impulsive Escape Maneuvers

Hyperbolic escape from circular low earth orbit� Remember that the parabolic
escape velocity vparabolic is by the factor

p
� higher than the circular velocity vcircular�

Like the circular velocity� the parabolic velocity depends on the radius r of the orbit�
From the practical point of view� hyperbolic escape maneuvers are more important
than parabolic escape maneuvers� a spacecraft escapes faster with hyperbolic speed
and has at an in�nite distance still a relative velocity v�� We can consider a parabolic
escape maneuver as a special case of hyperbolic maneuvers� The term %vparabolic
describes the minimum %v capacity which is at least necessary to let the spacecraft
escape from the gravitational �eld of the celestial body� We call the %v capacity
which exceeds the parabolic speed %vsuperparabolic� Thus�

vhyperbolic � vparabolic !%vsuperparabolic

vhyperbolic � vcircular !%vparabolic !%vsuperparabolic ��� ����
with vcircular �

p
�	r � %vparabolic � �

p
�� 
� �

p
�	r

�
Only the velocity increase %vsuperparabolic gives at an in�nite distance the relative
velocity v�� To �nd v� we can use the energy conservation law of conic orbits ��	����
e � �u� ! v��	�� �	r � constant � v��	�� The result is the following relationship�

%vsuperparabolic �
p
v�� ! ��	r �

p
��	r ��� ���

%vsuperparabolic � v�

v�
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The capacity %vparabolic � ����� km s is the minimum that is required to escape
from a ��� km circular low earth orbit �r � ��� km�� this %v requirement is
smaller than the %v requirement for a coplanar transfer into geostationary posi	
tion �%vLEO�GEO � ����� km s�� When the motor of the spacecraft burns longer�
the spacecraft reaches superparabolic speed� and� after having left the gravitational
�eld of the earth� the spacecraft escapes with the velocity v� relative to the earth�
Note that the �nal relative velocity v� is much higher than %vsuperparabolic�
Once the spacecraft has attained escape speed� the gravity of the celestial body helps�
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Interplanetary escape from LEO� After the spacecraft has left the gravitational
�eld of earth� it moves towards the target planet on a heliocentric transfer orbit�
For this it is necessary that the hyperbolic earth escape trajectory �matches� the or	
bital elements of the heliocentric orbit� Escape direction� escape velocity and injection
time have to �t� When the mission starts from a circular LEO� the right moment for
engine ignition has to be calculated� We must consider that inclination changes are
just �cheap� when they are really small� For launching an interplanetary spacecraft
from a space	station� the orbit of the station must have the appropriate inclination�

When the mission begins with a launch from the surface� the inclination of the orbit
is provided by the launcher� Launch cannot occur any time� just once a day �the
appropriate launch daytime has to be calculated�� Utilizing an intermediate LEO
�with appropriate inclination� avoids this disadvantage� The �parking orbit� brings
the launcher�s upper stage more often in a suitable position for the planetary injection�

escape

trajectory

LEO parking

orbit
launch

launch of a spacecraft from LEO to interplanetary space
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Interplanetary escape from GTO� The situation is more complicated when the
mission starts from GTO� Some launchers are capable to launch several satellites at
the same time �so	called �multiple launching�� a method to save some launch costs��
All satellites must use on	board propulsion to maneuver from the terminal of the
launcher �GTO� to their �nal destinations �GEO�� A scienti�c deep space probe has
to escape from the terminal of the launch vehicle GTO to its planetary destination�

GTOs have an inclination with respect to the earth equator� depending on the geo	
graphical latitude of the launch site� The heliocentric orbit lies usually more or less in	
side the ecliptic plane �the ecliptic is inclined against the equator� the angle is �������
Often an inclination change is necessary� because it is improbable that the inclination
of the GTO is suitable for a direct injection into interplanetary space� Since an incli	
nation change at perigee speed is not a practicable option �for example� with a speed
of 
� km s� a change of the inclination by ��� requires a %v of more than � km s��
a separate maneuver is required at low speed and high altitude� The place of this
maneuver is preferably the apogee position of a high	eccentric intermediate orbit�
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Thus� a high	eccentric intermediate orbit must be used to change the inclination�
Three burn maneuvers are required to escape from GTO to the interplanetary target�
First� the maneuver %v� is executed in order to raise the apogee of the orbit� There	
fore the engine of the spacecraft burns either immediately after the burnout of the
upper	stage of the launcher� or at the �rst perigee passage� The %v� for the �rst
maneuver is slightly lower than what is required for a parabolic escape maneuver�
%v� � � m s� Then the spacecraft coasts to the apogee of the intermediate orbit�
where it performs the inclination change maneuver %v� by thrusting perpendicular
to the �ight plane� The velocity requirement for the second maneuver depends on
inclination angle and on the apogee altitude� The higher the apogee altitude the
lower the velocity requirement %v� �down to the theoretical value zero at in�nite
altitude�� but also the �ight time is longer on a highly eccentric parking orbit� When
the apogee altitude is ������ km �distance earth	moon�� the coasting time is � days
and the apogee velocity is 
� m s� at a million kilometers the coasting time is ��
days and the apogee velocity � m s� A small impulse %v� su�ces even for a sub	
stantial change of the orbital inclination� After having performed this maneuver� the
spacecraft falls back to the perigee position where its propulsion system is re	ignited�
The tangential impulse %v� accelerates the spacecraft to hyperbolic escape velocity�
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The spacecraft spends mission time coasting on the highly eccentric intermediate
�parking orbit�� This waiting period makes it possible that the launch may occur
on a date when the GEO satellites are ready� The launch may occur any day in a
period of a few months before the actual interplanetary injection of the spacecraft�
The earlier the launch occurs� the less propellent has to be spent for the inclination
change maneuver� and the planetary mission itself takes much longer anyway�

Thus� the �date of launch� is in some limits a free variable� when we consider the in	
terplanetary injection� but the �daytime of launch� is not a free variable� GTOs have
their perigee and their apogee always above the equator� Since the perigee orienta	
tion with respect to interplanetary space has to �t for the interplanetary injection�
it is essential that a suitable daytime is used for launching� To the other passengers�
the simultaneously launched geostationary satellites� it makes no other di�erence�
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�� Orbit Optimization

The optimization of transfer trajectories is a very important topic in the design and
the preparation of space missions� A spacecraft must transport its payload on the
optimal trajectory to the destination orbit� and� particularly when the payload is
very small in comparison with the initial mass of the spacecraft� only small devia	
tions from the optimal trajectory can deteriorate the capacity of the spacecraft badly�
The problem is to �nd the best way through space where the mission is optimally per	
formed �the way that allows the maximal payload capacity or the minimal �ight time��
We can solve the problemmathematically by an application of the Hamilton	Lagrange
theory �also called �calculus of variations��� This method transforms the nonlinear
trajectory optimization problem into a so	called �two point boundary value problem�
�it is the problem of �nding a solution to a system of di�erential equations which is
determined by values at the initial and at the �nal state�� Iterative search strategies
have to be applied to solve such a �two point boundary value� problem numerically�

This chapter demonstrates how the Hamilton	Lagrange theory can solve trajectory
optimization problems� but you will not �nd a prove of this mathematical method�
Rigorous proofs you can �nd� for example� in the books of L�S�Pontryagin
��The Mathematical Theory of Optimal Processes�� Interscience� 
����� G�Leitmann
��Foundations of Optimal Control Theory�� McGraw Hill� New York� 
����� Nu	
merical solution strategies are treated in the books of J�P�Marek ��Optimal Space
Trajectories�� Elsevier� Amsterdam� 
��� and A�E�Bryson Y�C�Ho ��Applied Opti	
mal Control�� Hemisphere Publishing Corporation� New York� 
���� However� the
fundamental books which treat the analytical theory of optimal transfer trajectories
were written by D�F�Lawden ��Optimal Trajectories for Space Navigation�� Butter	
worth� London� 
��� and �Analytical Methods of Optimization�� Scottish Academic
Press� Edinburgh and London� 
���� Lawden introduced the �primer vector� and the
�switch function�� he worked on trajectory optimization problems already at a time
when no	one else imagined that optimal trajectories would become important one day�


��� Optimal Transfer Trajectories

The analytical optimization theory was established by Leonhard Euler �
�	
����
Joseph de Lagrange �
��	
�
��� Sir William Hamilton �
���	
����� and other fa	
mous mathematicians� Following this theory we consider the di�erential equations of
the powered orbital motion of a spacecraft and form the so	called �Hamilton function�
or �Hamiltonian�� Then� as the next step� we introduce the �Lagrange multipliers�
and derive the �Lagrange equations� �an �adjoined� system of di�erential equations
that determines the Lagrange multipliers�� The behaviour of the thrust vector con	
trol functions is de�ned by �Pontryagin�s principle�� it requests for an �optimum
control� a maximization of the Hamiltonian at every instant of the entire �ight time�
Pontryagin�s principle constitutes only a necessary condition for an optimal control�
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We get a continuous time function for the optimal control of the thrust angles� but
for the optimal control of the thrust magnitude we get a switch function that de	
termines the right moments for switching between maximum thrust and zero thrust�
However� it is important that we adjust the initial values of the control functions
correctly� the steering of the thrust vector in direction and magnitude must bring
the spacecraft to the prede�ned �nal destination orbit� When the trajectory obeys
the Lagrange equations and the switch function� the mass of the spacecraft assumes
a �relative� maximum at the �nal instant of the transfer trajectory� The search for
these initial conditions is the numerical problem in spacecraft trajectory optimization�
Solutions have to be found on a computer by the application of an iteration algorithm�


���� Application of the Hamilton�Lagrange theory

Optimization of functionals� Sometimes we have to �nd the optimal solution
to a mathematical problem that is the function of just one parameter� Then the
technique works as follows� we di�erentiate the objective function with respect to this
parameter and �nd out where the di�erential quotient vanishes� When the problem
is a continuous function z�x� of the parameter x� the quotient dz	dx vanishes at
the optimum �which could be a minimum or a maximum�� The situation is similar
when we intend to adjust two parameters� we can imagine the function z�x� y� as a
terrain with the altitude z over the x�y�plane� The gradient vector ��z	�x� �z	�y�
vanishes on top of mountains� but also in valleys and on so	called �saddle points��
Second order derivatives can help us to indicate whether a solution is a maximum�
a minimum or a saddle point� It is a �necessary condition� that the gradient vector
vanishes at the top of a mountain� but unfortunately it is not a �su�cient condition�
because we have no guarantee that there is just one mountain� a solution can be the
global maximum but also just a local maximum� The problem becomes even more
complicated when the objective function depends on many parameters� a parameter
optimization strategy will probably not �nd the solution� the desired global optimum�
The search will stop at the �rst local optimum where the gradient vector vanishes�
When the problem is a function of many parameters� the danger increases that the
algorithm stops at a local optimum� where actually the solution is badly non	optimal�

�Maximization of payload capacity� is usually the objective in spacecraft trajectory
optimization �sometimes the objective is �minimization of �ight time��� The problem
is to optimize a so	called �functional�� a function of the �nal state� The value of this
functional is controllable by three time functions for the thrust vector� two functions
steer the thrust direction and one function steers the thrust magnitude �sometimes
the thrust magnitude is a predetermined function of time� not open for optimization��
In any case we do not have the problem to adjust a �nite number of parameters� some
of these thrust vector control functions are continuous functions of time� We could
intersect the �ight time and get a set of �nite time intervals� with the intention
to transform the problem into a parameter optimization problem� Then we could
use the values of the thrust vector at the �corner times� as optimization parameters�
approximating the continuous thrust angle control functions by linear polygonal lines�



ORBIT OPTIMIZATION ���

The technique of parameter optimization is not commendable to solve a spacecraft
trajectory optimization problem� this approach involves two severe disadvantages�
First� the solution will be anyway only an approximation� and second� there is the
danger that the parameter optimization strategy �nds a badly non	optimal solution�

The mathematical formalism to solve trajectory optimization problems�
Fortunately there is a much better way to optimize spacecraft trajectories� it is the
Hamilton	Lagrange theory� also called calculus of variations or Pontryagin�s principle�
Assume the motion is represented by a system of n �rst order di�erential equations�

*xi � fi��x� �q� t� � 
 
 i 
 n ��� 
�

Term �x is the vector of the state variables� controllable by the control variables �q�
The time derivatives of the state variables dx	dt are nonlinear functions f��x� �q� t��
Then we introduce the �Lagrange multipliers�  and construct the HamiltonianH as�

H �
nX
i��

 i fi ��� ��

These Lagrange multipliers  i do not really have a physical meaning� they are just
dimensionless mathematical quantities �elements of vector � �� Their time functions
are determined by the so	called �Lagrange equations�� which here take the form of�

* i � � �H
�xi

� 
 
 i 
 n ��� ��

Now it is a necessary condition for an optimum control that the vector �q maximizes
the HamiltonionH at every instant of time t� however� the optimum control of vector
�q must obey the limits of allowed control� Any other control of the vector �q in the
allowed limits is non	optimal� This law is called �maximum principle of Pontryagin��

H�� � �x� �q� t� �� maximum ��� ��

For continuous components of the control vector �q the maximum principle demands�

�H
�q

� � ��� ��

The total time derivative and the partial time derivative of the Hamiltonian are equal�

dH
dt

�
�H
�t

��� ��

since� *xi �
�H
� i

� 
 
 i 
 n ��� �

Therefore the Hamiltonian remains constant on the whole optimum trajectory when
the equations of motion do not depend explicitly on the time t� and the Hamiltonian
constitutes then a �rst integral of the system of Lagrange equations ��	���
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The optimization objective is de�ned by the �nal conditions only� optimized is a
functional of the �nal state and the �nal time� The state variables must coincide
with the desired �nal state after the integration of the trajectory� therefore the initial
values of the Lagrange multipliers  have to be adjusted appropriately� The trajectory
must be integrated obeying the maximum principle of Pontryagin� which constitutes
a necessary �but not a su�cient� condition for an optimum control� �The trajectory
is optimum� means it is a relative extreme in sense of the Hamilton	Lagrange theory�

Sometimes it makes sense to use another representation of the optimal control theory�
using relationships which are apparently di�erent from the equations ��	
� to ��	��
However� then it is just another formalism� the essential results are always the same�
Our representation of the Hamilton	Lagrange theory is concentrated on the laws
which we need for spacecraft trajectory optimization� We can always transform a
trajectory optimization problem in a way that our representation of the method �ts�

Restrictions or constraints� It can be the case that additional conditions restrict
the state variables or the control variables� For examples� a parabolic antenna that
aims at the earth can restrict the thrust direction of a planetary probe� or the earth at	
mosphere can prohibit that a space launcher upper stage �ies below a certain altitude�
Pontryagin�s principle is also valid for these cases� It states that the Hamiltonian H
must be maximized at every instant of time� however� just possible control is involved�
When a control is not allowed because a restriction or constrain is valid� then an	
other control has to be found which is allowed and which maximizes the Hamiltonian�
This principle holds also for discontinuous control functions� Pontryagin proved that
the Lagrange multipliers  i and the HamiltonianH remain continuous time functions
even in case of discontinuous control� but their time derivatives d 	dt and dH	dt
may be discontinuous functions at these �corners�� The behaviour of the control
equations at discontinuities is also called �Weierstrass	Erdmann corner conditions��

Restrictions can occur in form of equations or in form of inequalities� Let us �rst con	
sider restriction in form of equations� Actually� the system of equations corresponds
now to a system of reduced order� We can use every constrain to eliminate one
control variable� Sometimes such a procedure is not possible or at least complicated
�it depends on the form of the equations�� The formalism of the Hamilton"Lagrange
theory accepts a slightly di�erent form when a set of additional equations is valid�

gj��x� �q� t� � � � 
 
 j 
 k ��� ��

Naturally� the number of the restricting equations k must be smaller than the number
of the control variables� otherwise the control system would be �over	de�ned�� we can
eliminate one control variable for every additional equation� However� now we want
to use the control theory in a di�erent form and modify the Hamiltonian as follows�

H �
nX
i��

 i fi !
kX
j��

�j gj ��� ��

Therefore we introduce new dimensionless multipliers � for the additional equations�
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Pontryagin�s principle� determined by equation ��	�� or equation ��	�� respectively�
is still valid in the same form� Also the Lagrange equation system ��	�� that de�nes
the behaviour of the multipliers  remains unchanged� However� we must not derive
some more di�erential equations for the new multipliers �j � Condition ��	��� which
is still valid for all continuous control variables� must be used indirectly to de�ne the
time functions for the new multipliers �j � Remember that every additional equation
reduces the order of free control� and it is not possible to devise a control function
for a control variable which has already been determined by an additional equation�

Now let us examine restrictions in form of inequalities� for example�

g��x� �q� t� 
 � ��� 
��

Obviously� the restriction is either not violated on the optimal trajectory and can
therefore be ignored� or it is violated and must therefore be regarded as a restriction in
equation form� Remember the example of a spacecraft that has to obey a certain min	
imum �ight altitude� It can be the case that the restriction is not e�ective� since any	
way the optimal trajectory keeps the spacecraft always above the minimum altitude�
However� it can also be the case that the unrestricted optimal trajectory would guide
the spacecraft in some �ight phases below this minimum altitude� Then the restric	
tion becomes e�ective and keeps the spacecraft exactly at the minimum �ight altitude�
Thus� the optimal �ight path consists of two di�erent trajectory types� phases where
the restriction is ignored and phases where the restriction is valid as an equation�
The moments when the operation changes from one phase to another phase are called
�corner times�� At these corner times the control may take a discontinuous course�
but Hamiltonian and Lagrange multipliers remain continuous functions of time�

Transversality conditions� The optimization objective is usually a nonlinear func	
tion of the state variables xend at �nal time tend� We can express the objective G� as�

G���xend� tend� �� extreme ��� 

�

Sometimes there are also restrictions for the �nal state variables in form of equations�

Gj��xend� tend� � � � � 
 j 
 k ��� 
��

These restrictions for the �nal state variables can be transformed into restrictions
for the �nal values of the Lagrange multipliers� so	called �transversality conditions��
Therefore the Hamilton	Lagrange theory uses the following mathematical formalism�
When k equations restrict the �nal conditions� then the functional J is established as�

J �
kX
j��

�j Gj ��� 
��

Again new multipliers � are introduced� Since their values are unknown� these mul	
tipliers have to be eliminated later �after di�erentiation� from the equation system�
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Then the Lagrange multipliers  i and Hamiltonian H must satisfy the following
�transversality conditions� at the �nal instant of the optimal transfer trajectory�

 i�end �
�J

�xi�end
� 
 
 i 
 n ��� 
��

Hend � � �J
�tend

��� 
��

In case a �nal state variable xi is not restricted �when xi is free at tend�� it follows�

 i�end � � ��� 
��

When the time tend is unrestricted �free�� we get a �nal condition for the Hamiltonian�

Hend � � ��� 
�

When additionally the equations of motion ��	
� do not depend explicitly on time t�
condition ��	�� is valid and the Hamiltonian vanishes on the whole optimal trajectory�

Numerical solution to a trajectory optimization problem� Let us now con	
sider that we want to �nd a numerical solution to a system of di�erential equations�
The integration procedure is comparatively simple when the initial values are known�
Several fast integration routines are provided by numerical mathematics �for example
�Runge	Kutta	Fehlberg� methods or �Runge	Kutta	Merson� methods�� However�
the procedure is much more complicated when the set of the initial conditions is not
completely de�ned� for example� when the di�erential equation system is de�ned by
conditions at the initial time and at the �nal time� Such a numerical problem is
called a �two point boundary value problem�� and the optimization of trajectories
involves usually this kind of problem� We have to �nd the initial values of the control
variables which bring us the desired �nal state variables after trajectory integration�
The adjustment of the initial values must be done by an iteration method� the algo	
rithm estimates initial conditions� integrates the trajectory� and tries to �nd improved
estimates for the initial conditions by an analysis of the deviations in the �nal state�

The strategy can be denoted as follows� we consider a system of di�erential equations�

*x � f�x� q� t� �x�t�� � x� ��� 
��

*q � g�x� q� t� �x�t�� � x� ��� 
��

Equation ��	
�� determines the state functions� equation ��	
�� the control functions�
The vector of the state variables x is controlled by the vector of the control variables q
�to simplify the notation we omit vector arrows�� The boundaries of the state vari	
ables x�t� are completely de�ned at the initial time t� and the �nal time t�� however�
the boundaries of the control variables q�t� are unknown at the initial and �nal time�
The Hamilton	Lagrange theory allows us always to transform a trajectory optimiza	
tion problem into the form of a two point boundary value problem� the actual problem
is then how we can �nd the solution to a nonlinear system of di�erential equations�
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Functions f�x� q� t� and g�x� q� t� have to be integrated simultaneously� We insert the
control functions q�t� into the state functions f and get the �nal state variables x� as�

x� � x� !

Z t�

t�

f�x� q� t�dt � q�t� � q� !

Z t

t�

g�x� q� t�dt

x� � x� !

Z t�

t�

f


x� q� !

Z t

t�

g�x� q� t�dt� t
�
dt � I�q�� ��� ���

All quantities of the right hand side of equation ��	��� are de�ned� except for the
initial values q�� In a �condensed� notation� the vector function I represents the
numerical integrations� We have the problem of solving a nonlinear equation system�
equation ��	��� must contain exactly the same number of unknown initial values q�
as it contains �nal values x�� otherwise the equation system would have no solution�

We can compute the function I also for estimated initial values (q�� however� this will
not lead us to the desired �nal values x�� When (q� is a good estimate� it will bring us
approximately the desired �nal values x�� The next step is the linearization of I�q��
in the vicinity of this estimate �using numerical di�erentiation techniques��

I�q�� � I�(q�� !

 �I
�q�

�
(q�
� �q� � (q�� ��� �
�

The matrix �I	�q� has to be transformed numerically to resolve the linear equation
system above �the exponent 	
 is actually wrong here� it means �inverted matrix���

q� �

�
 �I
�q�

�
(q�

���
� �x� � I�(q���! (q� ��� ���

Hopefully� the solution is an improved estimate (q� for the nonlinear system� We can
start the method again with the new estimate �Newton�s method�� Iteratively we can
repeat the method� until �nally the boundaries are satis�ed with su�cient accuracy�

The Newton method needs an initial estimate which is at least �su�ciently good��
In practice� this requirement can involve serious numerical problems� For bad guesses
the integration process can fail ��crash��� or the algorithm can be divergent� Some	
times a known solution for a similar problem can provide such a good initial estimate�
A known solution can be transformed step by step into the desired solution� modifying
in every step parameters and improving the initial estimate ��homotopy method���

As an example� let us consider the generation of a �low	thrust� transfer trajectory�
It is much easier to �nd an impulsive trajectory than a real low	thrust trajectory� but
impulsive trajectories are good approximations for trajectories with high thrust levels�
An impulsive reference trajectory can be used to generate a high thrust trajectory
�with only small modi�cations of the control functions�� A real thrust trajectory with
high thrust level is a good approximation for a real thrust trajectory where the thrust
level is a little lower� Again� data of a well	known trajectory are used as estimates
for the generation of unknown trajectory control functions� Iteratively the thrust
level can be diminished until �nally the desired low thrust trajectory has been found�
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���� Optimum Control of Thrust Arcs

Equations of motion� The �equations of motion� of a mechanical system are sec	
ond order di�erential equations� they describe the in�uence of forces and moments on
the motion of the system� The vector form of the equations of motion is independent
of a coordinate system �like every vector equation�� but it depends on the orien	
tation of the coordinate system whether the component notation of the equations
of motion takes a more complicated or a less complicated form� A suitable coordi	
nate system can considerably simplify the component notation of a vector equation�

We could base the equations of motion on an inertial coordinate system� however�
this would involve the disadvantage that the description of orbits is circumstantial�
For example� consider a spacecraft that moves on a conic orbit� the equations of mo	
tion take a quite simple form when we use inertial coordinates �their vector form is
d��r	dt� � �� �r	j�rj��� but the analytical solutions are complicated three	dimensional
transcendental functions of time� The analytical solutions are much more transpar	
ent when we base them on polar coordinates� where the distance and the velocity
are functions of the path angle� we get the well	known equations for conic orbits�
Thus� a moving coordinate system that is carried along with the motion of the space	
craft seems to be much better conditioned for the interpretation of numerical results�

You can �nd a detailed description of this moving coordinate system in chapter four
of this book� The center of the system coincides with the center of gravitation� and
the orientation of the axes is de�ned as follows� every time the spacecraft moves on
the 
"axis� and every time the �"axis is perpendicular to the location vector �r and
the velocity vector �v� Thus� the velocity vector is always in the 
"�"plane� and the
location vector has just one component in 
"direction� The equation system ��	���
describes the trajectory of a spacecraft in the three	dimensional space near a celestial
body completely by a system of seven �rst order di�erential equations� We can write�

� �
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The components of the velocity vector are termed u �vertical� and v �horizontal��
Symbol r is the distance of the spacecraft from the gravitational center� The orien	
tation of the coordinate system is de�ned by three Euler angles� named �� � and ��
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The actual spacecraft mass M is the di�erence between initial mass and consumed
propellent mass �the time integral of the mass �ow rate m is exactly the mass of ex	
pelled propellent�� Mass �ow rate m� multiplied with the e�ective exhaust velocity c�
constitutes the thrust of the engine� The thrust direction is de�ned by the thrust an	
gles � �in �ight plane� measured against the horizontal line� and � �out of actual �ight
plane� measured against the �ight plane�� The gravitational constant is termed as ��

Now look at the system of equations from the mathematical point of view� u� v� r�
�� �� � and M are the state variables� �� � and m are the control variables� Problem
speci�c constants are c and �� We control the spacecraft trajectory by steering the
thrust vector in direction �� and �� and magnitude �m�� By this we want to �nd a
trajectory which brings the spacecraft from its well"known initial state �a position
on orbit� to the desired �nal state �a position on another orbit�� Additionally� as op	
timization objective� the transfer should require a minimum propellent consumption
�synonymous with maximum �nal massM�� Transfer time may be prede�ned or free�

For liquid rocket engines operating in space the e�ective exhaust velocity c is constant�
The value of c depends on the propellent which is used and on the construction of
the motor� Most rocket engines work also with constant maximum mass �ow rate m�
Often the motor can be switched"o� and switched"on again� The mass �ow rate m
becomes a control variable with a discontinuous course� Some rocket motors o�er the
option of throttling the thrust in some limits �down to ���� by a reduction of the
mass �ow rate�� In this case we may regard the thrust magnitude as a continuous
control function� controllable in the limits of maximum and minimum thrust� A lot of
theoretical e�ort has been invested in the analysis of such �intermediate thrust arcs�
�sometimes trajectories with this type of thrusting are named �Lawden�s spirals���
In some cases complete analytical solutions are possible� However� it can be proved
that these arcs are non	optimal� and that the real optimum trajectories consist of
�thrust arcs� with full	operative engine and �coast arcs� with switched"o� engine�
Intermediate thrust arcs are ignored in this book due to missing practical importance�

When we consider solid rocket motors the thrust is a prede�ned function of time �often
not constant�� Solid motors cannot be switched"o� and later be switched"on again�
If two �or more� burning periods are required to complete the transfer trajectory�
we will also need two �or more� solid rocket stages� Solid rocket motors can easily
generate a high thrust force� often high thrust is desired but sometimes other restric	
tions prohibit high thrust� The e�ective exhaust velocity c of solid rocket motors is
constant when the motor operates in the vacuum of space �at least approximately��

In the analysis of electric	propelled missions both c and m can be treated as control
variables� however� existing ion engines work with constant exhaust velocity c �but it
would also be possible to construct ion engines with variable exhaust velocity when
this is desired�� When the energy source is the sun �solar electric propulsion�� the
available energy diminishes with the distance r of the spacecraft from the sun� Then
the mass �ow ratem is a nonlinear function of r� and the exhaust velocity c is constant
�the mass �ow rate m of existing ion engines can be throttled down to maybe �����
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Lagrange equations� We follow the Hamilton	Lagrange theory to derive optimal
control laws� According to the equation ��	�� we construct the Hamiltonian as�

H � u �
v�

r
� �

r�
!
c m

M
sin� cos ��

! v �� u v

r
!
c m

M
cos� cos ��

! r � u �

! � �
v

r
� c m

M

sin �

v
sin� cot��

! � �
c m

M

sin �

v
cos��

!  �
c m

M

sin �

v
� sin�
sin�

�

! M � �m � ��� ���

The HamiltonianH is a linear function ofm� It is important whether an expression in
H contains the mass �ow rate m or not� Therefore we re	arrange H correspondingly�

H �

�
�
v�

r
� �

r�
�  u � u v

r
 v ! u  r !

v

r
 �

�

! m

�
c

M

�
cos � � u sin�!  v cos�� ��� ���

!
sin �

v
�� � sin� cos�!  � cos�!  

sin�

sin�
�
��  M

�

The next step is the derivation of the Lagrange equations� as demanded by ��	���

* u � � �H
�u

�
v

r
 v �  r

* v � � �H
�v

� ��v
r
 u !

u

r
 v � 


r
 � !

c m

M

sin �

v�
�� � ��

* r � � �H
�r

� �
v�

r�
� �

�

r�
� u � u v

r�
 v !

v

r�
 �

�
��m
�r

�
� � �
�	

* � � � �H
��

�
c m

M

sin �

v
� � sin�!  � cos� cot��  

cos�

sin�
�

* � � � �H
��

�
c m

M

sin �

v

sin�

sin� �
�  cos��  ��

*  � � �H
��

� �

* M � � �H
�M

�
c m

M�

�� � �� ��� ���

We have omitted some expressions in parenthesis to make the notation of system
��	��� less complex� the contents of ������ ����� and f���g are de�ned by equation ��	����
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When the mass �ow rate m is a function of r �solar electric propulsion in inter	
planetary space�� then we have to consider this dependency and form the derivative
* r � ��H	�r for the third Lagrange equation of the system ��	����

According to Pontryagin�s maximum principle ��	��� the Hamiltonian ��	��� must be
maximized with respect to all possible controls� This means for the thrust angle � �

 u sin�!  v cos� �� maximum ��� ��

The condition ��	�� states the same� since � is a continuous function of time� Thus�

�H
��

�  u cos��  v sin� � � � tan� �
 u
 v

��� ���

Analogously� we use the condition ��	�� to obtain a control law for the thrust angle � �

�H
��

� � � tan � �
 � cos�!

sin�

sin�
�  �  � cos��

v � u sin�!  v cos��
��� ���

We have to resist the temptation of using the condition ��	�� again and control the
mass �ow rate according to �H	�m � �� This would lead us to the case of a so	called
�singular� thrust arc �H is a linear function of m� so equation �H	�m � � does not
contain m anymore� therefore �singular��� No	one really doubts that these singu	
lar thrust arcs are non	optimal �but some mathematicians are interested in singular
thrust arcs� because in some special cases it is possible to �nd analytical solutions��
However� the actual optimum control of the thrust magnitude brings us trajectories
which consists exclusively of �thrust arcs� and �coast arcs�� The mass �ow rate must
be controlled discontinuously between maximum thrust and zero thrust� Pontryagin�s
principle ��	�� is still valid� but it is not possible anymore to conclude the validity of
condition ��	��� Instead of this we summarize all terms in equation ��	��� which de	
pend explicitly on the mass �ow rate m� and abbreviate the result using the name K�

K �

�
c

M

�
cos � � u sin�!  v cos��

!
sin �

v
�� � sin� cos�!  � cos�!  

sin�

sin�
�
��  M

�
��� ���

It is the statement of Pontryagin�s maximum principle that� for an optimum control�
H has to be maximized at every time� and this means with respect to equation ��	����

H � f���g ! m � K �� maximum ��� �
�

K is the switch function� In thrust periods its value is positive� in coast periods its
value is negative� The motor must be switched	o� when the switch function changes
its sign from positive to negative� At the moment when the switch function becomes
positive� the motor must be switched	on again� The instantaneous change of the
control variable m will not lead to a discontinuous behaviour of the Hamiltonian H�
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Analysis of the control equations� The equations ��	��� to ��	�
� determine
the control of an optimal transfer trajectory� however� quite complicated nonlinear
di�erential equations are involved� For a simpli�cation of the notation we introduce
now two abbreviations� The �rst important term is called P ��primer��� de�ned as�

P �  u sin�!  v cos� � �
p
 �u !  �v � ��� ���

The other abbreviation is the rotation velocity of the actual �ight plane� called ��

� �
c m

M
� sin �

v
��� ���

The notations for the HamiltonianH and the switch function K become less complex
when we use these abbreviations together with the control laws ��	��� and ��	����

H �

�
�
v�

r
� �

r�
�  u � u v

r
 v ! u  r !

v

r
 �

�
!m � K

K �

�
c

M

P

cos �
�  M

�
��� ���

The Hamiltonian H is not an explicite function of the time t� therefore H constitutes
an integral of the Lagrange equations� We can re	write the Lagrange equations as�

* u �
v

r
 v �  r

* v � ��v
r
 u !

u

r
 v � 


r
 � ! � P tan �

* r � �
v�

r�
� �

�

r�
� u � u v

r�
 v !

v

r�
 �

�
��m
�r

� K
	

* M �
c m

M�

P

cos �
��� ���

Fortunately� we can integrate three of the seven Lagrange equations analytically�

 � � �CA sin� � CB cos�� sin�! CC cos�

 � � CA cos� ! CB sin�

  � CC ��� ���

It is not easy to �nd these relationships� but you can easily di�erentiate them to
verify their validity� The terms CA� CB and CC are the integration constants� Now
we are able to re	write the thrust angle control law ��	��� in a more transparent form�

tan � �



v P
� CA fcos� cos� � sin� sin� cos�g
!CB fcos� sin� ! sin� cos� cos�g
!CC fsin� sin�g � ��� ��

The Euler angles �� � and � de�ne the position of the spacecraft and the orientation
of the actual �ight plane� the thrust angle � controls the �rotation of the �ight plane��
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� �

�

�

�

�

1

3
2

Alternatively Cardan angles ��� � � �� can be
used to de�ne the control law for thrust angle ��

tan � �



v P
�CA cos� cos�

!CB sin� cos�

!CC sin�� ��� ���

The thrust angle � can be controlled between ����� and the control law ��	��
�or �	��� will never become singular� However� the thrust angle � can be controlled
in any direction� For numerical calculations it is better to replace equation ��	��� by�

sin� �
 u
P

� cos� �
 v
P

��� ���

This allows a control of � between �
��� and avoids the singularity in tan� at �����


���� Control Equations for Impulsive Transfers

Impulsive transfer trajectories� Let us now analyze the behaviour of the con	
trol equations for the important case of �impulsive transfer trajectories�� when it is
assumed that the burning periods are very short in comparison with the total �ight
time� then it is possible to consider in a simpli�cation that the trajectory is composed
of two arc types� impulsive thrust arcs and coast arcs� These impulsive trajectories
constitute very often good approximations for real trajectories� particularly when the
thrust of the spacecraft is high and the transfer time is long� Fortunately� for impul	
sive transfer trajectories it is possible to integrate the control equations analytically�

Impulsive thrust arcs� It is assumed that the spacecraft has an in�nite mass �ow
rate �m��� during an in�nitely short time interval �%t� �� and as a consequence�
that the spacecraft changes instantaneously its velocity and its mass� while it keeps
its position in space� The spacecraft velocity after the impulse can be calculated by
vector addition of the velocity vector before the impulse and the velocity change %�v�
We can use the famous Ciolcovskij equation to establish the relationship between
the change of the mass and the change of the velocity� actually we can calculate the
time integral of the thrust acceleration �s � cm	M� for a certain time interval %t�
M� is the mass of the spacecraft immediately before the impulse and M� is the mass
immediately after the impulse� and the velocity change becomes %v � �c ln�M�	M��
�compare chapter two of this book�� Term c is the e�ective exhaust velocity�

Consider now the equations of motion ��	��� with an in�nite mass �ow rate �m����
we can ignore all terms which do not depend directly or indirectly on m� We can
conclude that the velocity components u and v change during an impulsive thrust arc
while the radius r is constant� Even when the spacecraft position is constant in space�
the Euler angles alter because the attitude of the �ight plane turns instantaneously�
When we use Cardan angles to determine the position� we can see that the angles
� and � are constant and the angle � changes according to the integral � �

R
�dt�
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The Cardan angles � and � de�ne a position in space which does not change when
an impulse is applied� However� the Cardan angle � will alter its value when � � �
�the thrust angle � �out of the �ight plane� turns the �ight plane instantaneously��
All the three Euler angles assume di�erent values after the impulse when a rotation
of � shifts the �line of nodes�� but the left hand sides of the following equations take
immediately after the impulse the same values as immediately before the impulse�

cos� cos�� sin� sin� cos� � constant �� cos� cos��

sin� cos�! cos� sin� cos� � constant �� sin� cos��

sin� sin� � constant �� sin�� ��� ���

It follows from these relationships �and equation �	�� that the expression �vP tan ��
is constant during an impulsive thrust arc� However� the thrust angle � changes its
values when the coordinate system turns instantaneously �the thrust angles � and
� refer to the moving coordinate system� they can change their values even though
the inertial thrust direction is conserved at the moments of impulsive thrusting��
Chapter four of this book analyzes the geometry of the maneuver� We can calculate
the thrust direction immediately after the impulse �index �
�� from the well	known
thrust direction before the impulse �index ����� The following equations are valid�

sin�� cos �� � sin�� cos ��

v� cos�� cos �� � %v �
� sin� �� cos
� ��� ! v� cos�� cos ��

v� sin �� � v� sin �� ��� �
�

Let us now consider the Lagrange equations ��	���� the control equations degrade
�like the equations of motion� when all terms are ignored if they are independent ofm�
We can see that multipliers  u and  r do not change during impulsive thrust arcs�
Since the expressions �vP tan �� and �v sin �� remain constant during this time in	
terval� we can follow that also the important expression �P	 cos �� remains constant�
Knowing this� we can calculate the instantaneous change of multipliers  v and  M �

* u � �

* v � � P tan �

* r � �

* M �
c m

M�

P

cos �

�

 u� �  u�

 v� �  v� �cos �� cos���	�cos �� cos���

 r� �  r�

 M� �  M�
M�

M�
��� ���

The equations ��	��� represent the integrals of system ��	��� for impulsive thrust arcs�

The behaviour of the switch function for impulsive transfers� It follows from
the theory that the Hamiltonian H and also the switch function K ��	��� are always
continuous functions of time� also in case of discontinuous control� As a consequence�
switch function K must vanish at moments of in�nite thrusting �K � � for m����
Since the expression �P	 cos �� remains constant� we can di�erentiate equation ��	���
at once to form the time derivative of the switch function� The Lagrange equation
system ��	��� shows us that also the derivative *K vanishes when an impulse is applied�
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At moments of impulsive thrust the switch function must accept a convex behaviour�
K and its �rst time derivative *K are zero� Everywhere else the function K is negative�

K
t

Kimpulse � c

M

P

cos �
�  M � �

*Kmidcourse impulse � � ��� ���

However� the situation can be di�erent at the initial or at the �nal instant of the
transfer trajectory� we cannot conclude anymore that the expression �P	 cos �� is
constant for the initial or �nal impulse� because the time before the initial impulse
and the time after the �nal impulse are not necessarily parts of the optimal transfer
trajectory� Therefore the derivative of the switch function can be di�erent from zero
� *K can be smaller zero at the initial impulse and greater zero at the �nal impulse��
but in any case� at impulses the value of the switch function K is always equal zero�

Coast arcs� When the motor is switched o� �m � �� the spacecraft moves on a
conic orbit� and the motion is independent of the behaviour of the control variables�
In any case the orbit is a circle� an ellipse� a parabola or a hyperbola� Obviously�
the spacecraft mass M is constant for coast �ight periods� Now the Euler angles
are better conditioned for a description of the motion than the Cardan angles� the
node angle � and the inclination angle � remain constant� just the path angle � is a
transcendental function of time �determined by Kepler�s equation�� The radius r� the
velocity components u and v can readily be written as functions of the path angle ��
You can �nd a detailed description of these equations in chapter four of this book�

Obviously� a steering of the thrust direction cannot in�uence the motion of a space	
craft on a coast arc� However� we cannot simply ignore the control functions during
coast arcs� it is necessary to know the behaviour of the Lagrange multipliers ��	���
during these �ight intervals� because they de�ne the thrust angles � and � at the be	
ginning of the next thrust period� and they de�ne the course of the switch function K�
Fortunately� whenm � � we can integrate the Lagrange equations ��	��� analytically�

 u � H�r � �tu

�e
! Cuu! C��� � hv�

 v � H��tv
�e

! Cuv ! Cvr ! C��uh!
u�

v
�

 r � Hu� �t��	r��

�e
! Cu

�

r�
! Cvv ! C�

�u

r

 � � H�h
�e

! C�
�eh� ! ��

h

 M � constant ��� ���

The termsH� Cu� Cv and C� are the integration constants� H is the constant value of
the Hamiltonian ��	���� and C� is equivalent to the constant value given by the �rst
equation of system ��	���� The speci�c mechanical energy e � �u�! v��	�� �	r and
the speci�c angular momentum h � rv are also constant during coast �ight periods�
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Control equations for the �ight on circular orbits� The use of equation system
��	��� is not possible when the spacecraft moves on an orbit with an extremely low
eccentricity �u � �� hv � ��� We can observe that the equation system is singular
for circular orbits �we would have Cu � �� Cv � �� and C� � ��� Therefore a
di�erent solution to the system ��	��� has to be used for the motion on circular orbits�

 u � Hr

e
! C� sin� *�t� ! C� cos� *�t�

 v � H��tv
�e

! �C� cos� *�t�� �C� sin� *�t� ! C�

 r � H��t��	r
��

�e
! *�C� cos� *�t�� *�C� sin� *�t� ! *�C�

 � � H�h
�e

 M � constant ��� ���

The equations above are just valid for circular orbits� and� because of this� the solution
is of little importance �in reality the spacecraft moves on an elliptic orbit because the
eccentricity is never exactly zero�� H� C�� C� and C� are the integration constants�
We can see that equation system ��	��� describes a harmonic oscillation for the
Lagrange multipliers� with *� � v	r as the angular velocity of the circular orbit�


���	 Final Conditions for Optimal Transfer Trajectories

Classi�cation of transfer maneuvers� Every transfer trajectory is characterized
by its �nal conditions� The following maneuvers are of practical importance�

Rendezvous� The spacecraft approaches a target object that moves on a prede�ned
target orbit� Finally� at the end of the maneuver� position and velocity of the space	
craft coincide with position and velocity of the target object� The �nal path angle
�the location where the spacecraft encounters the object� is prede�ned or optimized�

Positioning� The only di�erence to the rendezvous maneuver is that now the space	
craft enters the target orbit at any time �the transfer time is free�� Position and
velocity coincide with the target orbit at the �nal instant� but the target object is
somewhere else on the same orbit� Again� the �nal path angle is prede�ned or free�

Flyby� Now the spacecraft approaches the target object on a way where the location
coincides at the �nal instant� but not the velocity� The spacecraft does not enter
the target orbit� but it remains on the transfer orbit where it has a velocity di�erent
from the velocity of the target object� Usually� the spacecraft velocity is free at the
�nal time� while the encounter location on the target orbit is either prede�ned or free�

Escape� An escape maneuver will give the spacecraft su�cient energy to depart
from the gravitational �eld of the celestial body� The �nal condition for an escape
maneuver is that the spacecraft enters a predetermined hyperbolic �or sometimes
parabolic� orbit� The transfer time and the �nal path angle are free for optimization�
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Optimization of the �nal path angle� Let us now consider a rendezvous or
positioning maneuver with a �free� �nal path angle �end �the location where the
spacecraft enters the target orbit is free for optimization�� Then the �nal values of
the state variables �uend� vend� rend� and in case of a rendezvous maneuver also tend�
are explicit functions of �end� The well	known equations for a conic orbit are valid�

uend �
��

h
sin��end � �p�

vend �
�

h
�
 ! � cos��end � �p��

rend �
h�

��
 ! � cos��end � �p��

tend � t��end� ��� ���

The values h �speci�c angular momentum�� � �eccentricity� and �p �pericenter angle�
are elements of the prede�ned target orbit� and� when �end was given� we could
use the equations ��	��� to compute the �nal state variables� In case of a ren	
dezvous maneuver also the transfer time is a function of �end �but not quoted here��
The formalism of the Hamilton	Lagrange theory allows us to transform these rela	
tionships into a �nal condition for the Lagrange multipliers� The method is called
�derivation of transversality conditions�� First we construct the functional J ��	
���

J � �u
�
uend � u��end�

�
! �v

�
vend � v��end�

�
! �r

�
rend � r��end�

�
! �t

�
tend � t��end�

�
��� ��

Then we di�erentiate this functional J according to the conditions ��	
�� and ��	
���

 u�end �
�J
�uend

� �u �  v�end �
�J
�vend

� �v �  r�end �
�J
�rend

� �r

 ��end �
�J
��end

� ��u �u��end�
��end

� �v
�v��end�

��end
� �r

�r��end�

��end
� �t

�t��end�

��end

Hend � � �J
�tend

� ��t
It is easy to calculate the derivatives of the functions ��	��� with respect to the �nal
path angle �end when we consider that �t��end�	��end � 
	 *�end and h � rendvend�
After having calculated the derivatives we eliminate the multipliers �u� �v� �r� �t
from the �ve equations above� The result is one �nal condition at the �nal time tend�

H � �
v�

r
� �

r�
�  u � u v

r
 v ! u  r !

v

r
 � ��� ���

This condition is also valid on coast arcs� when the �nal path angle �end is free� the
switch function K is zero at the �nal time tend� and the �nal orbit is a part of the
transfer trajectory� However� the condition ��	��� is not valid when �end is restricted�
then the �nal K is positive and the �nal orbit is not a part of the transfer trajectory�
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Optimization of the �ight time� It is the important point in question whether the
equations of motion contain quantities which depend explicitly on the time t� We can
observe that there are no explicit time dependencies in the equation system ��	����
and we can follow for the Hamiltonian ��	��� that �H	�t � �� Then condition ��	��
states that dH	dt � �� the Hamiltonian has the same constant value H on the whole
optimal trajectory �but the value of H is not constant when the thrusting is a pre	
determined time function� for example when c orm are explicit functions of the time��

Additionally� it follows from condition ��	
� that H � � at the �nal instant of a
maneuver with a free transfer time �unrestricted or optimized�� We may summarize�

Hfinal time optimized � �

Hfinal time predefined � constant ��� ���

For positioning maneuvers the value of H vanishes during the complete transfer time�
for rendezvous maneuvers H is not zero� usually� but H is another constant value�

Final conditions for �yby maneuvers� We talk about a �yby maneuver when
the spacecraft encounters the target object with a relative velocity� The location
where the �yby takes place is a position on the �nal target orbit� this place is either
entirely predetermined or a function of the �nal path angle �end of the target object�

The �yby velocity is usually free for optimization� When the velocity components
uend and vend are unrestricted� we can consider the condition ��	
�� and conclude�

 u�end � � �  v�end � � ��� ���

This means that the control law ��	��� for thrust angle � becomes an expression of
the type � �� and � is unde�ned at the �nal instant� The plausible result is that the
thrust angle � can be directed arbitrarily at the moment of the encounter�

We may expect that also the control law for the thrust angle � is an expression of
the type � � at the �nal instant of a �yby trajectory� The transversality conditions
can be used to demonstrate that this is the case� the location of the encounter is
predetermined for a �yby maneuver and the encounter velocity is free �in contrast
to a rendezvous maneuver where both� location and velocity� have �nally to coincide
with the corresponding values of the target orbit�� A location in space is entirely
determined by three values �for example� radius r and the Cardan angles � and ���
When the location of the �yby maneuver is given� then the expressions �sin� cos��
and �sin�� are predetermined at the �nal time� and we can write for the instant tend�

cos� cos�� sin� sin� cos� � sin� cos� �� predetermined�

sin� sin� � sin� �� predetermined� ��� �
�

The Euler angle � de�nes the orientation of the �line of nodes�� When we change �
�shift the line of nodes� and keep the �yby location constant� then the Euler angles �
and � change their values� but the left sides of the equations ��	�
� remain constant�
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The equations ��	�
� are �restrictions in equation form� at the �nal time of the �yby
trajectory� We construct the functional J ��	
�� for the Lagrange multipliers ��	
���

J � ���cos� cos�� sin� sin� cos�� sin� cos�� ! ���sin� sin�� sin��

 � � �J	�� � ���� sin� cos� � sin� cos� cos�� ! ���sin� cos��

 � � �J	�� � ���sin� sin� sin�� ! ���sin� cos��

  � �J	�� � ���� sin� cos�� cos� sin� cos�� ��� ���

After elimination of the unknown multipliers �� and �� we get the �nal condition�

 � cos�! �  �  � cos�� � sin�
sin�

� � ��� ���

When we compare this result with the equation ��	��� and consider that the multipli	
ers  u and  v equal zero at the �nal instant� then we see that also the control law for
the thrust angle � becomes an expressions of type � � at the end of a �yby trajectory�
As expected� the thrust direction is not de�ned at the moment of the encounter�

Final conditions for escape maneuvers� �Maximization of mechanical energy�
is the optimization objective for escape maneuvers� We can write for the energy e �

e �
u� ! v�

�
� �

r
�� maximum ��� ���

Therefore we establish the functional J ��	
�� and di�erentiate �according to �	
���

J � � �
u� ! v�

�
� �

r
� e� ��� ���

 u �
�J
�u

� � u �  v �
�J
�v

� � v �  r �
�J
�r

� � �	r�

The thrust angle � is always controlled as tan� �  u	 v �compare equation �	����
We can conclude that the �nal condition for escape maneuvers is �tangential thrust��

tan�end �
u

v
��� ���

To get the �mechanical work� of a force that acts along a way we have to integrate
the dot vector product of the force vector and the in�nitesimal distance vector� Anal	
ogously� the time derivative of the speci�c mechanical energy e is equivalent to the
dot vector product of thrust acceleration vector �s and velocity vector �v� Therefore�

*e � �s � �v ��� ��

Obviously� the thrust vector must be aligned with the velocity vector for the fastest
increase of energy� This statement is true for any instant of the �ight time� We might
expect that �a maximization of the �nal energy� requests having tangential thrust all
the time� Surprisingly this is not the case� energy maximization does not request
tangential thrusting� but� at least� it requests tangential thrusting at the �nal instant�
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��� Behaviour of Lagrange Multipliers and Switch Function

We have seen that spacecraft trajectory optimization involves �two point boundary
value problems�� where we actually have to integrate di�erential equations and ad	
ditionally �nd the solutions to nonlinear equation systems� When we integrate the
equations of motion and the Lagrange equations simultaneously� we must observe that
the switch function is valid on the optimal trajectory� it de�nes whether a thrust arc
or a coast arc is present� The numerical integration of the trajectory must satisfy
special �nal conditions� The theory sounds easy� but put into practice is di�cult�
There is the danger that a trajectory is non	optimal because it is based on wrong
assumptions �switch function must be correct and �nal conditions must be satis�ed��
This justi�es a closer look at the same problem� using di�erent approaches�


���� Vector Representation of the Optimal Trajectories

Equations of motion for a transfer trajectory in vector form� The equations
of motion are vector equations� We can write down a very compact representa	
tion for optimal trajectories when we use the vector form of an inertial system� and
such a form is quite transparent to draw some general conclusions �but this vector
form is not advisable for a numerical integration� the speci�cation of orbits is com	
plicated� and anyway the vectors have to be resolved into their component notations��

Let �r be the location vector and �v be the velocity vector� The thrust acceleration
vector �s and the gravitational acceleration vector �g act on the spacecraft �mass M��

�r

�s

�g

�v

1

3

2

*�v � �s ! �g
*�r � �v
*M � �m ��� ���

� j �s j �
c �m
M

� �g � � ��r

j �r j �
�

The mass M diminishes in time t� and the amount *M �the time derivative of M� is
equivalent to the rate of expenditure of propellentm� The expression c�m represents
the thrust of the engine� we assume a constant exhaust velocity c� The equation
system ��	��� represents seven �rst order di�erential equations �like the system �	����
we have three equations for the location vector and three equations for the velocity
vector� and one equation to determine the actual mass� Using inertial components�
the vectors can be written as �r � �r�� r�� r��� �v � �v�� v�� v�� and �g � �g�� g�� g���
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We do not necessarily consider a central gravitational �eld coincident with the center
of the coordinate system �in this case we may write for the gravitational acceleration
�g � �� �r 	j �r j � �� The gravitational �eld may also be di�erent� it may be the asym	
metric �eld of an oblate celestial body� a uniform �eld with parallel gravity or even
the �eld of several celestial bodies� The only assumption is that the vector of gravi	
tational attraction �g depends on nothing else than on the position �r of the spacecraft�

The thrust acceleration vector �s is subjected to the following set of constraints�

j �s j �
q
s�� ! s�� ! s�� �� cm	M�

� 
 m 
 constant maximum ��� ���

We assume a discontinuous control of the mass �ow ratem betweenm � � �coast arcs�
and m � constant maximum �thrust arcs�� The thrust direction is not restricted�

Control of the thrust direction� The Hamilton	Lagrange theory accepts a com	
pact form when we use vectors for the representation of the optimal thrust direction�
Following the equation ��	�� we establish the Hamiltonian H as�

H � � v � � �s! �g � ! � r � �v �  M �m! � � � cm
M

� j �s j � ��� ���

Remember that H has to be maximized for an optimal control �maximum principle��
We can observe that for an optimal control the thrust direction �s must be aligned with
the vector � v �the dot product takes its maximum when both vectors are aligned��

The vector � v is an important quantity� it is renamed and called �P �primer vector��
Every time the thrust vector �s must be directed into the same direction as this
primer vector �P � The time function of the primer vector is de�ned by a second or	
der di�erential equation� we �nd it when we form the Lagrange equations ��	��� Thus�

*� v � � � r

*� r � �r� � v � �g �

�
��P � r� �P � �g � ��� �
�

The equation ��	�
� determines the primer vector �operator r is called �Nabla���
When we want to integrate this second order di�erential vector equation numerically�
we need to know �ve initial values for the primer vector and its time derivative �the

length of �P is not important to the direction of �s �� Everywhere on the optimal tra	
jectory� the primer vector and its �rst time derivative are continuous time functions�

Term � �equation �	��� is a quantity with a physical interpretation� � is equivalent to
the length of the primer vector� Since the thrust direction �vector �s � is a continuous
function of time� we may apply condition ��	�� to every component of �s and follow�

� v � � � �s

j �s j
�

� � j �P j �
q
P �
� ! P �

� ! P �
� ��� ���

The length of the primer vector �P is important to �nd the optimal thrust magnitude�
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Optimal thrust magnitude control� The next step is the analysis of the behaviour
of the switch function K� Hamiltonian H �equation �	��� is rearranged to �nd K as�

H �

�
� v � � �s! �g � ! � r � �v � � � j �s j

�
!m �

�
� � c

M
�  M

�
��� ���

K �

�
� � c

M
�  M

�
��� ���

The expression in curly braces is the value of Hamiltonian H on coast arcs �m � ���
The expression in square brackets is switch function K� The motor must be switched
discontinuously between maximum thrust and zero thrust� the switch function is pos	
itive for thrust arcs and negative for coast arcs� K is a function of two multipliers�
� �the length of the primer vector� and  M �adjoined to the equation for mass M��
According to the condition ��	�� we form the Lagrange equation for multiplier  M �

* M � � � cm
M�

� � j �P j � cm
M�

� ��� ���

The time derivative *K of the switch function can also be denoted in a simple form�
We di�erentiate K �equation �	��� and insert the relationship ��	���� Finally we get�

*K � *� � c

M
� �

*j �P j � c

M
� ��� ���

Obviously� with m � � both� spacecraft mass M �equation �	��� and multiplier  M
�equation �	���� are constant if the motor is switched	o�� During the time interval of

a coast arc the switch function is a direct function of the length � of primer vector �P �

Di�erential vector equations for optimal maneuvers� Finally� we can write
down the conditions for optimal trajectory control in their most compact vector form�

��r � �s ! �g ��� ��

��P � r� �P � �g � ��� ���

*M � �m ��� ���

*K �
*j �P j � c	M ��� ��

We use exclusively location vector �r� thrust vector �s� gravity vector �g and primer
vector �P � Every time vector �P is aligned with vector �s� Spacecraft massM � mass �ow
rate m� constant exhaust velocity c and switch function K are not vector quantities�
When K � � we have m � constant maximum� when K � � we have m � ��
Seven initial state variables are given� the predetermined initial orbit allows us to
calculate the vector �r and its time derivative *�r� and the initial mass M is also well	
known� Usually� nothing is known about the initial values of the control variables�
We can choose any value for the initial length of �P �for example j �P j � 
�� and then

we have to �nd six more initial values ��ve for �P � d�P	dt and one for K� to meet six

predetermined state variables �r and *�r at �nal time� The �nal mass M is maximized�
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���� Plane Optimal Trajectories

Optimal control using inertial coordinates� Unfortunately� analytical solutions
to the behaviour of the primer vector in a central gravitational �eld are not available�
Anyway� we depend on numerical integration procedures� When we use an inertial
representation of the equations of motion� we must resolve all vectors to get their
component form� In case of a plane motion we just have two	dimensional vectors�

�r

�s

�g

�v

1

2
�r� �

cm

M
� s�
s
� g

r�
r

�r� �
cm

M
� s�
s
� g

r�
r

*M � �m ��� 
�

with � r �
q
r�� ! r��

s �
q
s�� ! s�� �

cm

M

g �
q
g�� ! g�� �

�

r�

The equation ��	��� determines the primer vector P � but we must resolve this vector
representation and form the component notation �evaluating the �Nabla� operator��

Considering that g� � �� r�	
p
r�� ! r��

�
and g� � �� r�	

p
r�� ! r��

�
we can denote�

�P� � P� � �g�
�r�

! P� � �g�
�r�

� �P��
�r��
r�

� 


r�
� ! �P��

�r�r�
r�

�

�P� � P� � �g�
�r�

! P� � �g�
�r�

� �P��
�r�r�
r�

� ! �P��
�r��
r�

� 


r�
� ��� ��

Systems ��	
� and ��	�� have to be integrated simultaneously� Therefore we have
to transform these second order di�erential equations into �rst order representations�
For the time derivatives of the components of location vector �r we can simply use
the velocity components �for example *r� � v� and *r� � v��� for the time derivatives

of the components of the primer vector �P we may write *P� and *P�� We need the
time derivatives of the components of the primer vector anyway for a determination
of the switch function K� According to the equation ��	�� we can conclude�

*K �
c

M
� �P� *P� ! P� *P��	

q
P �
� ! P �

�

The numerical integration of the trajectory is still troublesome� we have to guess four
initial control variables to make an agreement with four �nal state variables �or four
transversality conditions�� The �fth state variable �or a functional of the �nal state
and the �nal time� represents the optimization objective� Since the orbit de�nition
is circumstantial anyway� it cannot be recommended to use the inertial coordinate
representation for the numerical optimization of transfer trajectories�
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Optimal control using polar coordinates� Polar coordinates are better condi	
tioned for the description of orbital motion ��	���� Considered is a spacecraft that
moves in the central gravitational �eld� surrounding a celestial body� Again we exam	
ine a plane motion where the thrust angle � vanishes� The position of the spacecraft
is determined by r �radius� and � �path angle�� with pole at the center of attraction�
Using velocity components u � *r �vertical� and v � r *� �horizontal�� the motion can
be formulated by a system of �rst	order di�erential equations� Symbol � represents
the gravitational constant� and again the e�ective exhaust velocity c is assumed to
be constant� M is the mass of the spacecraft and m its propellent consumption rate�

The plane equations of motion are then�

r

�
v

�	r�

cm

M

u

�

*u �
v�

r
� �

r�
!
c m

M
sin�

*v � � u v

r
!
c m

M
cos�

*r � u

*� �
v

r

*M � � m ��� ��

The powered motion should be optimally controlled when the spacecraft transfers
from one orbit to another coplanar orbit� To �nd optimal time functions for thrust
angle � and mass �ow rate m we follow the optimization formalism of the Hamil	
ton Lagrange theory� equations ��	
� to ��	�� The Hamiltonian H is constructed as�

H � u �
v�

r
� �

r�
!
c m

M
sin�� ��� ��

! v �� u v

r
!
c m

M
cos�� !  r u!  � �

v

r
��  M m

The behaviour of the Lagrange multipliers is de�ned by the Lagrange equations ��	���

* u � � �H
�u

�
v

r
 v �  r

* v � � �H
�v

� ��v
r
 u !

u

r
 v � 


r
 �

* r � � �H
�r

� �
v�

r�
� �

�

r�
� u � u v

r�
 v !

v

r�
 �

* � � � �H
��

� � ��� ��

* M � � �H
�M

�
c m

M�
� u sin�!  v cos��

Note that multipliers  in these di�erential equations are continuous time functions�
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Then� the optimal control law for thrust angle � is determined by the equation ��	���

�H
��

�  u cos��  v sin� � � � tan� �
 u
 v

��� ��

Besides the direction of thrust� the spacecraft can be controlled by its thrust level�
Usually� the thrust of a rocket engine �given by the product of fuel consumption m
and e�ective exhaust velocity c� is constant� Such is often the case for rocket en	
gines using chemical propellent� A decrease in the rate of propellent expenditure m
will throttle the motor� but this raises technical problems and trajectories �own with
throttled engines ��singular thrust arcs�� are non	optimal� Optimal trajectories con	
sist of �ight periods using maximum thrust and �ight periods with the engine o��

According to Pontryagin�s principle �equation �	��� Hamiltonian H and Lagrange
multipliers  must be continuous at moments of discontinuous control� If the multi	
pliers do not vanish simultaneously� it follows from this condition that thrust angle
� and its �rst time derivative *� are continuous along the whole optimal trajectory�

The course of mass �ow rate m� however� is discontinuous at moments when the
engine is switched� We may conclude that a continuous course of Hamilton function
and Lagrange multipliers demands the following conditions at the switching times�

H � �
v�

r
� �

r�
�  u � u v

r
 v ! u  r !

v

r
 �

K �
c

M
� u sin�!  v cos�� �  M � � ��� �

The �nal values of the Hamiltonian H and the Lagrange multipliers  depend on the
restrictions at the �nal time� called �transversality conditions�� The Hamiltonian
H is a constant since it does not depend explicitly on the time t� In case the �ight
time is not predetermined� H vanishes at the �nal time and therefore along the whole
optimal trajectory� Of course� �ight	time	unrestricted trajectories demand less fuel
consumption than trajectories with predetermined time of arrival�

Often� we also have no restrictions for the �nal path angle �� Thus� the concerning
multiplier  � will accept the value zero at the �nal instant� and� since  � is a con	
stant� it will also vanish along the whole optimal trajectory� Therefore we may write
for transfer trajectories with unrestricted �nal time and unrestricted �nal path angle�

 � � � ��� ��

H � � ��� ��

The problem now is to calculate the initial values of the Lagrange equations in such
a way� that the spacecraft reaches a desired terminal orbit after having �own its
transfer trajectory� A �ight path controlled by these equations maximizes the �nal
value of the rocket mass M � Analytical solutions can be derived for �ight periods
with switched	o� engine� but under all circumstances trajectory integration has to be
done on a computer� because analytical solutions to thrust periods are not available�
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Optimal control using energy and angular momentum as coordinates� We
can use alternatively inertial coordinates or polar coordinates to formulate the equa	
tions of motion� expecting that the conditions for optimal control are substantially
a�ected by the form we represent the motion with� The actual trajectory in physi	
cal sense is always the same �always it is just a di�erent representation of the same
�ight path through space�� Use of quite di�erent approaches to �nd equivalent laws
can make a complicated problem more transparent� as another completely di�erent
alternative we can use energy e and angular momentum h to represent the plane mo	
tion of a rocket powered spacecraft in the central gravitational �eld of a celestial body�

e �



�
�u� ! v�� � �

r
h � r v ��� ���

Di�erentiation of the equations above enables us to replace the system ��	�� by�

*e �
c m

M
�u sin�! v cos��

*h �
c m

M
�r cos��

*r � u

*� �
v

r

*M � � m ��� �
�

Speci�c energy e and speci�c angular momentum h of the orbit are �state variables��
together with polar coordinates r and � and rocket mass M � The velocity compo	
nents u �vertical� and v �horizontal� are no state variables anymore� they are treated
as if they were control variables� u and v are not free for optimization but subjected
to constraints� as represented by the equations ��	���� The only real control vari	
ables are � and m� Thrust angle � is a continuous function of time� however� mass
�ow rate m is a discontinuous function of time �motor switched	on or switched	o���
Like always� we consider a thrust acceleration cm	M with constant maximum mass
�ow rate and constant exhaust velocity c� The gravitational constant is called ��

Since we have restrictions in form of equations� we must now use scheme ��	�� to
establish the Hamiltonian� The multipliers adjoined to the di�erential equations are
termed  � the multipliers adjoined to the constraints are termed �� We denote H as�

H �  e
cm

M
�u sin�! v cos�� !  h

cm

M
�r cos�� !  r u!  �

v

r
�  M m

! �e �



�
�u� ! v��� �

r
� e� ! �h �rv � h� ��� ���

Under certain circumstances it is possible that we consider a simpli�ed problem�
H becomes constantly zero when we regard problems with unrestricted �nal time�
and if we impose no restriction concerning the �nal path angle �� we may even ignore
the equation *� � v	r �since H is not an explicit function of � we have  � � ���
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Application of law ��	�� brings us the adjoined system of Lagrange equations� Thus�

* e � ��H
�e

� �e

* h � ��H
�h

� �h

* r � ��H
�r

� � h cm
M

cos�!  �
v

r�
� �e

�

r�
� �h v

* � � ��H
��

� �

* M � � �H
�M

�
cm

M�
� e�u sin�! v cos�� !  h r cos�� ��� ���

The velocity components u and v are considered as control variables� subjected to
constraints� We can use law ��	�� twice to �nd the courses of multipliers �e and �h�

� �
�H
�u

�  e
cm

M
sin�!  r ! �e u

� �
�H
�v

�  e
cm

M
cos�!  �




r
! �e v ! �h r ��� ���

The �control equations� ��	��� are just helpful to eliminate the unknown multipliers
�e and �h from the system of Lagrange equations ��	��� �the procedure is straight	
forward and not quoted here�� Finally� control law ��	�� for thrust angle � becomes�

� �
�H
��

�
cm

M
� e�u cos�� v sin���  hr sin�� ��� ���

The switch conditions for the optimal control of mass �ow rate m can be stated as�

H �  r u !  �
v

r
��� ���

K �
c

M
� e �u sin�! v cos�� !  h �r cos����  M � � ��� ��

We can observe that the representation of motion and control using orbital energy
and angular momentum as coordinates is helpful to understand the behaviour of the
control functions for the motion on coast arcs �withm � � the state variables e� h� M
and the multiplier  M remain constant�� Actually� it is possible to �nd the complete
analytical solution ��	��� of system ��	��� for coast arcs by a similar method �using
Lagrange�s equation for the perturbation of orbital elements as a replacement for the
equations of motion�� For the motion on thrust arcs the representation in such a
form is not very helpful� The set of equations which we have found is equivalent to
sets provided by analysis of motion using inertial coordinates or polar coordinates
�system �	
 or system �	��� we do not get relationships which can bring us to new
conclusions� However� we can see that quite di�erent approaches are possible for the
same problem when we use di�erent coordinates or di�erent equations of motion�
It depends on the point of view� which representation is the most transparent�
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���� Elimination of the Lagrange Multipliers

Plane thrust angle control� As we have seen� so	called Lagrange multipliers de	
termine the optimal control of the thrust vector �its direction and magnitude�� These
multipliers do not really have a physical interpretation� they are given as functions
of time in the form of di�erential equations� where the initial conditions are missing�
The combination of all this creates problems� when you do not have the analytical
solution to a system of di�erential equations� and when you also do not have the ini	
tial conditions for these equations� then the analysis is usually di�cult� In some cases
it is possible to replace the Lagrange multipliers by notations with the thrust angles
and their time derivatives� Again� the replacement does not bring new relationships�
but thrust angles have a physical meaning� and therefore a notation with the thrust
angles and their time derivatives can be more transparent�

We make use of the gravitational acceleration g � �	r� and the thrust acceleration
s � cm	M and transform the system ��	�� to represent it by two second	order di�er	
ential equations� Radius r and path angle � determine the position of the spacecraft�

vertically � �r � r *�� � s sin�� g

horizontally � r ��! � *r *� � s cos� ��� ���

In the equation system above� intentional use of *r � u and *�r � v is made for
the components of the velocity vector� we want to minimize the number of di�erent
terms in the equations� The thrust angle � should be controlled optimally� The �rst
three Lagrange equations ��	�� together with control equation ��	�� provide a set
of four equations to calculate � �assuming  � � ��� We use analytical di�erentiation
and eliminate the Lagrange multipliers  u�  v and  r� The di�erentiation allows us
to replace the set of four control equations by one second	order di�erential equation�

r���� ��� ! � *r� *�� *��� �g sin� cos�! �r� *�� � � *� *�! � *��� tan� � � ��� ���

Control of thrust angle � according to the equation above gives the �nal value of the
spacecraft mass M a �relative� maximum� The di�erential equation ��	��� consti	
tutes a necessary condition for a time optimal or fuel	consumption optimal control�
The equation is valid for optimal or non	optimal functions of thrust acceleration s
�even if s is a discontinuous time function� for example in case of multi	stage rockets��

Equivalent �but better conditioned for application on computers� is the �rst	order
di�erential equation form of this control law� We introduce the variable  and write�

*� �  �cos�	r�� ! *�

* � �� *�! � g r� tan� ��� ���

Like the Lagrange multipliers� the �help	variable�  has no physical interpretation�
 is just a nonlinear function of the thrust angle � and its �rst time derivative *��
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Thrust magnitude control� During thrust	�ight periods the rocket motor operates
with maximum thrust� and the spacecraft expels fuel mass� Consequently the thrust
acceleration s increases in time� The working rocket engine must be switched	o� at
the instant when the following switch	o� condition has been reached�

d

dt

�
*r

r tan�
� *�

	
� � ��� �
�

This condition is equivalent to the �rst equation of system ��	�� using the Lagrange
equations ��	�� and putting H � � �we consider a maneuver with free arrival time��
Condition ��	�
� is valid as an equation during the coast arc that follows and� during
that time period� it de�nes the thrust angle � as an integral of equation ��	����

tan� �
*r

r *�! Cv r
��� ���

Term Cv represents the integration constant �remember that we avoid the use of u � *r
and v � r *� to minimize the number of di�erent terms in the equations�� Of course�
there is no necessity to control the thrust angle when the motor is not operative�
In any case the spacecraft moves along a conic orbit �often an elliptic orbit�� but we
can calculate the optimal switch	on instant by using equation ��	��� as a control law�
Beginning and �nal time of the coast arc are connected by equation system ��	��
After eliminating the Lagrange multipliers� the second condition takes the form of�

*r�
sin��

�
*r�

sin��
��� ���

In this notation� index �
� refers to the beginning instant and index ��� to the �nal
instant of the coast arc� A determination of this switch	on condition demands the
computation of thrust angle � during the coasting time� � and its �rst time derivative
*� are continuous everywhere� Since we considered H � � �equation �	�� the �ight
time of a trajectory controlled by these switch conditions is fuel	consumption optimal�

The equations of motion ��	��� determine the spacecraft trajectory as a function of
its control� Thrust angle control law ��	��� and switch conditions ��	�
� and ��	���
determine the course of the control� Consequently� the terminal orbit reached by the
spacecraft depends on nothing else than on the initial values of the control equations�
If initial orbit and initial time are given� the whole transfer trajectory of the spacecraft
�and� thus� the �nal destination orbit� depends upon only the initial values � and *�
of control equation ��	���� We have just two values to control the destination orbit�

Unfortunately� there is no possibility to analyze the initial conditions analytically as
a function of the destination orbit� for there is no analytical solution to the motion
during thrust arcs� The �nal trajectory calculation must be done numerically on
a computer� which takes initial trial values and integrates the trajectory� From
deviations in the �nal values of the di�erential equations the initial values can be
adjusted� The integration process must be repeated until the �nal values are satis�ed�
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Change of the inclination angle� When the destination orbit is not coplanar
with the initial orbit� the spacecraft has to change the inclination angle while per	
forming its orbital transfer� By inclining the thrust acceleration �vector �s� out of the
trajectory plane� the thrust acceleration component in the trajectory plane is dimin	
ished by cos � �calling the angle between the thrust vector and the trajectory plane ���
Component s sin � of thrust acceleration vector �s creates a rotation of the �ight plane�
We consider a spacecraft that moves horizontally in the apse of a transfer ellipse
�u � �� � � � and � � �� equation �	���� There it performs a high	thrust inclination
change maneuver� characterized by the following set of two di�erential equations�

v

�
�

s

*v � s cos �

*� �
s sin �

v
��� ���

Rotation velocity *� of the trajectory plane is simply the component s sin � of the thrust
acceleration vector divided by the horizontal component of the spacecraft velocity v�
The value of v can be evaluated by equating the acceleration *v with the thrust acceler	
ation s cos � that lies in the trajectory plane �radial components of thrust and velocity
can be neglected in the apse of a transfer ellipse�� The problem is to �nd the optimal
control function for the thrust angle �� Hamiltonian ��	��� Lagrange equations ��	��
and maximum principle ��	�� determine the optimal course of �� Therefore�

H �  v � s cos � !  �
s sin �

v

* v � � �H
�v

�  �
s sin �

v�

* � � � �H
��

� �

�H
��

� � v s sin � !  �
s cos �

v
� � ��� ���

Next step is the elimination of the Lagrange multipliers  � and  v� Di�erentiation
and transformation brings us to the following control equation for the thrust angle ��

*� !
s

v
sin � � *� ! *� � � ��� ���

As the inclination � increases� the thrust angle � must be diminished� The plausible
and well	known result is a thrust direction constant with respect to inertial space�

At the end of the maneuver the desired inclination change %� has to be realized�
We have to adjust the initial value of the di�erential equation ��	��� appropriately
to satisfy this �nal condition� The analytical solution to this problem is easy� we
can readily �nd the thrust angle � at the beginning of thrusting when we form the
velocity triangle of the maneuver �initial velocity� �nal velocity and velocity change��
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���	 The Course of the Switch Function

The switch function for a Hohmann transfer� The coplanar Hohmann trans	
fer trajectory consists of two impulsive burn maneuvers with horizontal thrusting�
separated by a 
��� coast arc� The thrust angle � is zero at both apses of the transfer
ellipse� and the thrust angle � is zero everywhere since no inclination change is made�
The Hohmann transfer is an optimal trajectory considering its velocity requirement�
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Example ���� A spacecraft travels from an equatorial circular low earth orbit �LEO� to a
coplanar geostationary position �GEO� on a two�impulse Hohmann transfer trajectory�
The switch function K is zero at the moments when impulsive thrusts are applied�
but K is negative everywhere else �rLEO� ���	 km � rGEO� ���� km��

In case of a plane trajectory we may use instead of system ��	��� the simpli�ed sys	
tem ��	�� to de�ne the equations of motion� Then the optimal control functions are
given by the equations ��	�� to ��	��� The transfer is a �free positioning maneuver��
we have H � � and  � � �� because �nal time and �nal path angle � are unrestricted
�compare equations �	� and �	��� Except for  M which behaves discontinuously at
the moments of impulsive thrusting� all the other Lagrange multipliers are continuous
functions of time �also  v in this case since � � �� compare equation system �	����
these multipliers assume the same values immediately after and immediately be	
fore the impulse� Since the multipliers  u and  v are continuous function of time�
equation ��	��� is valid to determine the optimal control law for thrust angle ��

tan� �
 u
 v

�
u

v ! Cv � r ��� ��

Disregarding the value of constant Cv� control law ��	�� requests horizontal thrusting
at pericenter and apocenter position of the Hohmann transfer ellipse �where u � ���
We need to know the value of Cv just to calculate the course of the switch function�



�	� ASTRONAUTICAL ENGINEERING

We know that the switch function K vanishes at moments when impulses are applied
�condition �	���� It follows from the switch condition ��	� that the multiplier  v
accepts at both impulses the same value �because the spacecraft mass M and the
multiplier  M are constant on coast arcs�� The multiplier  u is zero where the vertical
velocity u vanishes �on the apses of the coast arcs�� Then the constant Cv becomes�

Cv �
vapocenter � vpericenter
rpericenter � rapocenter

��� ���

Term v is the horizontal component of the velocity vector� term r is the distance of
the spacecraft from the center of gravitation� Knowing constant Cv we can plot the
time functions of thrust angle � and switch function K� As expected� the Hohmann
transfer orbit is an optimal trajectory in the sense of the Hamilton	Lagrange theory�
We can observe that K and *K vanish at moments when impulsive thrusts are applied�

Trajectories with several burn periods� The real	thrust Hohmann transfer is not
the only optimal way to reach the destination orbit� other trajectories exist which are
also free positioning maneuvers� subjected to the same conditions� We can split the
time interval of the pericenter burn maneuver into two �or several� burning periods�
Always a nearly ���� coast arc brings the spacecraft back to pericenter position�
where the next burning phase is executed �until �nally the maneuver is completed��

one pericenter burn period two pericenter burn periods three pericenter burn periods

These nearly ���� coast arcs begin with cuto� of the engine� they end with restart of
the engine immediately before the next pericenter passage� The equation ��	��� de	
termines the corner conditions� together with the relationship ��	���� We can denote�

r�end of pericenter passage � !r�beginning of next pericenter passage

u�end of pericenter passage � �u�beginning of next pericenter passage

v�end of pericenter passage � !v�beginning of next pericenter passage

��end of pericenter passage � ���beginning of next pericenter passage ��� ���

The same splitting procedure can be done with the burn period at apocenter position�
Several burn phases prolong the total transfer time� but� due to lower gravity losses
in case of low thrust spacecraft� several burn periods require always less propellent�

All trajectories are positioning maneuvers with free time of arrival� they are all �local
optima� in the sense of the Hamilton	Lagrange theory� �Global optimum� is just the
transfer trajectory with an in�nite number of pericenter and apocenter burn periods
�of in�nitely short duration�� It will bring the spacecraft to target orbit after in�nitely
long time� requiring exactly the same velocity %v as the impulsive Hohmann transfer�
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Example ���� The satellite transportation from a space station orbit to a destination
orbit serves as an example for an optimal positioning maneuver with free time of arrival�
It is necessary to raise the velocity at the perigee and the apogee of the transfer ellipse�
Several optimal solutions exist because the velocity increase can be distributed among
several burning phases� The �gures show thrust angle control function and switch
function for transfers with two perigee and two apogee thrust periods� considered
are multi�burn positioning maneuvers which bring a spacecraft from ��� km circular
low earth orbit to coplanar geostationary orbit �initial thrust acceleration s � 
 m�s��
exhaust velocity c � ���� m�s�� The splitting of the perigee burn phase reduces
slightly the propulsion requirement but increases considerably the transfer time�

� pericenter maneuver� %v� ��	 m�s in ���� hours�
� pericenter maneuvers� %v� 
��� m�s in 	��� hours�

 pericenter maneuvers� %v� 
�� m�s in ���� hours�
 pericenter maneuvers� %v� 
�� m�s in ��� hours�

All trajectories constitute optimal solutions in sense of the Hamilton�Lagrange theory�
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The control of impulsive escape trajectories� The optimization objective for
escape maneuvers is a maximization of the total mechanical energy at burnout ��	����
Equation ��	��� shows that the optimization objective demands tangential thrusting
at the �nal time �the thrust angle � vanishes when no inclination change is made��
Since the inertial thrust direction remains constant during an impulsive maneuver� we
can conclude that the Lagrange multipliers  u�  v and  r are continuous everywhere�
It follows that the control law for the thrust angle � is a quite simple relationship�

tan� �
u

v
��� 
���

with�  u � � � u�  v � � � v
 r � � � �	r�

and� H � � �free �nal time�

 � � � �free �nal path angle�

Condition ��	� demands that the impulsive escape maneuver requires a free �nal
time and a free �nal path angle� when tan� � u	v immediately before thrusting�
then the switch function K is a linear function of the velocity v �

p
u� ! v� on the

conic orbit� and it follows that the spacecraft should ignite the rocket engine exactly
when it passes the pericenter position of the initial orbit�

Low thrust escape trajectories� The calculation of low thrust escape trajectories
has to be done numerically� Now we have tangential thrust only at the �nal instant�
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Example ��
a� A �low�thrust� spacecraft escapes from a circular low earth orbit �LEO��
with tangential thrust only at the �nal time� During the maneuver the switch function
K is positive� �rLEO� ���	 km � u� � 
�
� m�s� s � � m�s�� c � 

� m�s�
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Example ��
b� Low thrust earth escape maneuvers can be performed via several burn
periods at pericenter passage� with the advantage of reduced gravity losses and the
disadvantage of extended �ight time� The following table compares four di�erent ways
to accelerate from a low earth orbit to hyperbolic velocity �s � � m�s�� c � 

� m�s�
rLEO� ���	 km � u� � 
�
� m�s� impulsive thrust requires %v� 
��	 m�s��

� pericenter maneuver� %v� 
�� m�s in ���� hours�
� pericenter maneuvers� %v� 
�� m�s in 
��� hours�

 pericenter maneuvers� %v� 
��� m�s in ���� hours�
 pericenter maneuvers� %v� 
	�� m�s in ���� hours�

The behaviour of the switch function is interesting� during coast arcs K remains
negative indicating that the engine must be switched o�� At apogee passage the
thrust direction is inverted �� � �
����� and K accepts a local maximum near zero�
but when the apogee altitude is very high� K becomes positive indicating that then
an apogee retro�thrust is optimal in order to reduce the perigee altitude for a more
e!cient �nal burn period �the atmosphere of earth makes such a mission unworkable��
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Moon landing maneuvers� All the preceding examples treated trajectories with
unrestricted �nal path angle� Then the condition ��	��� is valid and the target orbit
can be considered as a part of the optimal transfer trajectory� As a consequence the
switch function K must vanish at �nal time �and in case of impulsive trajectories also
the time derivative of the switch function dK	dt�� We will use trajectories of a moon
landing vehicle to demonstrate examples where K is positive at the end of a maneuver�

The monthly revolution of the moon �gravitational constant � � ������� �
��� m� s��
radius � 
�� km� causes a slow motion of its surface� about ��� m s at the equator�
We assume that a highly eccentric elliptic orbit exists inside the moon� this �orbit�
has the eccentricity � � ����������� and touches the lunar surface with its apocenter�
and the apocenter of this hypothetical orbit is supposed to be the �terminal position�
for a lunar landing craft� Now the �nal path angle �end is a predetermined trajectory
parameter� we may assume the �nal orbit anywhere inside the moon� but the vehicle
has to land on the apocenter of this �nal orbit and not anywhere else on the same
orbit� The �nal path angle �end is restricted for a descent trajectory of a lunar lander�
and consequently the multiplier  � is not zero anymore� We can compare trajectories
for di�erent values of the parameter �end �performing parametric trajectory analysis��

�end
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Example ��a� A landing vehicle descends from 
�� km orbit to the surface of the moon�
Its plane trajectory consists of an short initial breaking maneuver� followed by a
coasting period before �nally the essential breaking reduces the speed for a soft landing�
Immediately before the �nal touch�down the vehicle moves horizontally with a slow
velocity ��� m�s�� The trajectory is an example for a positioning maneuver with
restricted �nal path angle ��end � ���� the switch function K is positive at �nal time��
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Calculation of lunar ascent trajectories is similar�
When the landing vehicle does not proceed directly
to the earth� it will perform a rendezvous maneuver
with a moon orbiter� Since the vehicle can wait
for the optimal moment to lift	o� �it waits for the
best �launch window��� the transfer time is not
restricted� We can conclude that the Hamiltonian
vanishes on the whole ascent trajectory �H � ���
and actually we do not consider a rendezvous
maneuver but a positioning maneuver� The �ight
time %t and the velocity requirement %v are
functions of the predetermined �nal path angle �end�

The propellent consumption accepts its minimum when �end is approximately 
����
and then multiplier  � is zero and the switch function K vanishes at the �nal instant�
The climb rate gets better and the �ight time gets shorter when we reduce �end
�immediately after lift	o� the lunar landing vehicle moves nearly horizontally��
When we reduce the angle �end the switch function K becomes positive at the �nal
instant �this indicates that the restricted trajectory consumes more propellent��
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Example ��b� The upper stage of the moon landing vehicle returns back to orbit�
Since the vehicle waits for the optimal moment to start� the rendezvous maneuver
with the orbiter is actually a positioning maneuver �with �end restricted to �����
The �ight begins with a nearly horizontal phase immediately after lift�o�� then the
vehicle starts climbing with a small angle� A coast phase brings the spacecraft to 
�� km
altitude� where a small �nal burn maneuver establishes the circular speed ����� m�s��
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Rendezvous and �yby� We call the trajectory of a spacecraft which encounters a
target object on a target orbit a �rendezvous maneuver�� the spacecraft enters the
target orbit and meets the object there without relative velocity� We talk about a
��yby maneuver� when the encounter takes place with a relative velocity at �nal time�
The �ight time is restricted for both maneuvers� and we examine the case H � � �
the �ight time is predetermined by the initial and �nal position of the target object�

First we have to solve the �Lambert problem� numerically in order to calculate such
a trajectory� we have to �nd the conic orbit which connects the initial with the �nal
location and additionally satis�es the predetermined transfer time �a description how
to solve the Lambert problem is given in the chapter eight of this book�� The next step
is that we establish the corresponding two	impulse reference trajectory� the geometry
of the trajectory is entirely determined without any optimization� and we can readily
calculate thrust direction and velocity requirement for the impulsive maneuver�
The Lagrange multipliers on a coast arc are de�ned by the equation system ��	����
We know that the value of the switch function K is zero at both corners of the coast
arc� and consequently the expression �P	 cos �� accepts at the end of the coast arc
the same value as at the beginning �we have P � �  �u !  �v� with  u � P sin� and
 v � P cos�� compare the equations �	�� and �	���� Therefore we can solve a linear
equation system to calculate the four integration constants H� Cu� Cv and C�� Thus�

sin�� cos �� � H r�
e

! Cuu� ! C��� � hv��

cos�� cos �� � Cuv� ! Cvr� ! C�u��h!
�

v�
�

sin�� cos �� � H�r� � �tu�
�e

! Cuu� ! C��� � hv��

cos�� cos �� � H��tv�
�e

! Cuv� ! Cvr� ! C�u��h!
�

v�
� ��� 
�
�

Since we have already solved the Lambert problem we know the thrust direction dur	
ing the impulsive maneuvers� Knowing � �equation �	�� at both corners of the coast
arc we �nd the constants CA and CB by solving another equation system �CC �  ���

sin �� �



v�
CA

sin �� �



v�
�CA cos�� ! CB sin�� cos�� ! CC sin�� sin��� ��� 
���

The �index 
� refers to �immediately after the initial impulse� and the �index �� to
�immediately before the �nal impulse�� As the last step we �nd the initial values of
the Lagrange multipliers before the �rst impulse by an application of equation ��	����

The geometry of the trajectory is exactly the same for a �yby maneuver� but the
control functions are di�erent then� When the velocity is free at the �nal instant�
then conditions ��	��� and ��	��� are valid and we have an unde�ned thrust direction
at the moment of the encounter �tan� � �	�� tan � � �	��� To calculate the control
functions of a �yby maneuver we may also use the equations ��	
�
� and ��	
����
but then the three expressions �sin�� cos ���� �cos�� cos ��� and �sin ��� equal zero�
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Example ���a� The �gures compare a rendezvous trajectory with a �yby trajectory as
examples for impulsive maneuvers with restricted �ight time and restricted path angle�
The spacecraft starts from a circular low earth orbit to meet a target object in
geostationary position ���� km circular LEO� 
���� km GEO�� This time the target
orbit is not in the same plane as the initial orbit� an inclination of � � �� is assumed�
and the orientation of the node�axis is supposed to be � � ���� It is assumed that the
target object passes the node�axis exactly at the initial instant� when the spacecraft
departs from the low earth orbit� and it is also assumed that � is restricted to ���

�ignoring that a delay of the departure time would actually save a lot of propellent��
While the �ight ways of both trajectories are identical� the control functions behave
di�erently� it can be observed that the switch function for the rendezvous maneuver has
in the middle a pronounced maximum� The maximum is still negative� indicating that
the considered trajectory is correct� However� when the �nal path angle � gets larger
the maximum becomes positive� and this indicates that then a two impulse trajectory
is not correct anymore �a mid�course impulse to adjust the inclination is required��
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Example ���b� Compared is again an impulsive rendezvous with a �yby trajectory�
but this time the �nal path angle is extended to � � ���� Again the spacecraft
departs from a ��� km circular LEO for encountering a target object which moves
on an 	� inclined geostationary orbit at an altitude of 
���� km� If the spacecraft
used just a single impulse to proceed to the meeting point� the transfer orbit would
be inclined extremely against the initial �ight plane� It follows from the geometry
of the trajectory that the transfer inclination angle would have to assume a value of
���� and this can certainly not be the optimum� An additional mid�course impulse to
adjust the inclination can save plenty of propellent� The rendezvous trajectory is now
a transfer orbit with three impulses� the �yby trajectory needs just two impulses�
The rendezvous trajectory is a maneuver with restricted transfer angle� because the
time derivative of the switch function does not vanish at the �nal instant� Therefore
the �nal orbit is not a part of the optimal transfer trajectory� The transversality
condition can be used to calculate the optimal �nal path angle �� assuming that the
value of the Hamiltonian does not change abruptly after the �nal impulse�
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Trajectories of electrically propelled spacecraft� Ion engines promise the fea	
sibility of deep space missions which are impossible for conventional propulsion or at
least extremely di�cult� considered are particularly a �comet nucleus sample return�
mission and a �multi asteroid rendezvous and �yby� mission� In the preliminary
design of such a mission� trajectory computation techniques play a key role� The
source of energy for propulsion is the sun� the �solar electric propulsion spacecraft�
is equipped with large solar arrays which provide the electric power for the engines�
However� the thrust declines as the available energy diminishes with distance from
the sun r� and the mass �ow rate m is proportional to the factor r���
 because the
solar cells generate more power when it gets colder �but they fail completely when it
is colder than a certain temperature�� Even though the thrust is extremely low� the
exhaust velocity of the engines is by a factor of typically 
� better than the exhaust
velocity of chemical engines �for example c��� km s to �� km s�� and the long oper	
ation time interval �years� gives the probe a high %v capacity� The chapter nine of
this book gives a description of electric propulsion system and some mission examples�

%v ������ m�s�
%t� 	� days�
c � 
��� m�s

Example ���� The rendezvous trajectory from the earth to the main belt asteroid
�Vesta serves as an example for an interplanetary mission of an electrically propelled
deep space probe� The computation of three�dimensional low thrust orbits is the
most di!cult problem in trajectory optimization� it is� however� also a key to success
in the preliminary design of electrically propelled missions�
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The optimization of three	dimensional trajectories is complicated� since it usually in	
volves an unknown number of thrust periods� Often three thrust periods are required
for three	dimensional rendezvous trajectories� the �rst maneuver is necessary to leave
the initial orbit� the second maneuver is used to change the inclination of the transfer
orbit� and the third maneuver is used to enter the target orbit� However� the inclina	
tion change is also performed during the �rst and during the last maneuver� and it
is also possible that a mid	course maneuver is not necessary� Sometimes even more
than three thrust periods are required� particularly when the transfer time is long�

We have to look at the switch function when we want to �nd out whether a trajectory
is correct or not� the trajectory is certainly not the optimum when the switch function
is positive anywhere during a coasting period or negative during a thrusting period�
When the switch function of a two impulse trajectory is positive we apply a small
mid	course maneuver at the moment when the switch function passes its maximum�
The additional maneuver deviates the �nal values of the trajectory� and we correct
the �nal values by an adjustment of the initial values of the Lagrange multipliers�
By this we increase the mid	course impulse iteratively until �nally the switch function
is correct� When the switch function is negative everywhere� then we have generated a
three impulse trajectory that is optimal in the sense of the Hamilton	Lagrange theory�

Docking� In practice a rendezvous maneuver can be dangerous� When a manned
shuttle is trying to approach a space station on low earth orbit� it always involves
the risk that the shuttle collides with the station� To reduce the risk of collision�
the shuttle must �rst approach a position in the vicinity of the station� From this
position the shuttle starts with precise navigation for the �nal rendezvous and docking
maneuver� A convenient point to start the �nal approach is located exactly on the
target orbit� on a position where the path angle � is some degrees smaller than the
path angle of the space station� When the shuttle has reached this point� it executes
a small retro	thrust maneuver to reduce the eccentricity of its orbit� and then the
relative position of the shuttle performs a cycloid motion with respect to the space
station �the relative radius r and the relative path angle � oscillate with the angular
velocity of the orbit� where a slow forward drift of the path angle is super	imposed��
Precise adjustment of the retro	thrust maneuver is necessary� after one �or several�
orbital revolutions the shuttle arrives at the space station with a slow relative velocity�

Satellite position stabilization� Gravitation of sun and moon cause geostationary
satellites to drift away from their nominal position� To keep a broadcasting satellite in
position �a cube in space with edges of about 
�� km length�� rendezvous maneuvers
with the nominal position have to be performed every now and then �actually in time
intervals of about two weeks�� For practical reasons it is not desired that the satellite
changes its attitude when a station keeping maneuver is executed� Usually� control
thrusters have �xed	canted nozzles� The thrust direction is not changeable� and the
satellite needs at least six control thrusters to be able to maneuver in three di�erent
directions in space� Inclination� altitude and eccentricity of the orbit are adjusted by
individual burn maneuvers� In this case the rendezvous maneuver with the nominal
position is not an optimal trajectory in the sense of the Hamilton	Lagrange theory�
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�� Attitude Stabilization

A spacecraft may be regarded as a mass particle without size when its translational
motion is under consideration� but every spacecraft is an object with a real physical
size and thus it cannot only translate but also rotate� In space�ight dynamics� the ro	
tational motion can be treated separately from the translational motion� since usually
the size of a spacecraft is very small compared to the size of its orbit� Orbiting in space
the spacecraft rotates about its center of mass� while its center of mass is displaced
simultaneously� The rotational motion of spacecraft is the content of this section�

Nearly all satellites have to attain a special predetermined attitude when they are
operative in space� Solar arrays� parabolic antennae� sensors and other equipment
must point into de�ned directions� Without control or stabilization� the attitude of
a space vehicle would soon drift away from the desired orientation� The subject of
spacecraft attitude dynamics is to calculate the rotational behaviour of satellites and
to �nd appropriate means to establish and keep orientation in space�

Gyro dynamics is the appropriate tool for the analysis of the rotational behaviour
of space vehicles� Like particle dynamics� gyro dynamics is an old �well	established�
subject of technical mechanics� A gyro can execute two di�erent types of motion�
a nutation as the result of special initial conditions� and a precession as the result of
an external torque� The behaviour of a gyro is fascinating and seemingly paradox�
but naturally the movement of a gyro obeys the rules of technical mechanics�

The book of K�Magnus ��Kreisel�� Springer Verlag� Berlin	Heidelberg	New York�

�
� gives a detailed introduction to gyro dynamics� Special emphasis on the attitude
dynamics of spacecraft is made in the books of W�T�Thomsom ��Introduction to
Space Dynamics�� Dover Publications Inc�� New York� 
����� M�H�Kaplan ��Modern
Spacecraft Dynamics and Control�� John Wiley and Sons� New York� 
��� and
M�J�Sidi ��Spacecraft Dynamics and Control�� Cambridge University Press� 
����

���� The Angular Motion of Satellites

The rotational behaviour of spinning satellites is described by �equations of motion��
These equations for the rotational behaviour of satellites are second order di�erential
equations� like the equations of motion for the translational behaviour� but now the
�rst time derivatives refer to the angular velocity� and the second time derivatives
refer to the angular acceleration� In astronautics� trajectory dynamics and attitude
dynamics are nearly perfectly decoupled� the rotation has no in�uence on the orbit of
the spacecraft� and usually the orbit has no in�uence on the attitude of the spacecraft
�a large gravity stabilized space station is an example where this is not the case��
The equations of motion for the rotational behaviour of a satellite consider the in	
�uence of external moments �torques� which act on the satellite� We can establish
these equations by an application of the �angular momentum law��
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����� Newton�s Law for an Object with Physical Size

De�nitions� Before we start with calculations we have to de�ne some expressions
�otherwise there is a high possibility of confusion� particularly when the analysis is
very di�cult� it is necessary to determine uniquely the applicability of formulae��
Any material object with in�nitely small size we will call a �mass particle�� This
includes mass particles of in�nitely small mass dM � If an object has a physical size it
is termed �extended object�� Thus� extended objects are also gases� liquids or elastic
bodies� Extended objects consist of a �usually in�nite� number of mass particles�
Sometimes the location of all mass particles is invariant in relation to the other body
elements� then the object is termed a �rigid body�� Often� satellites are not perfectly
rigid bodies� as the may have �exible antennae or tanks which store liquid propellent�

We will call every coordinate system �inertial coordinate system� if no forces or
moments are introduced which come originally from a motion of the system� Thus� a
non	rotating system that moves with constant speed is an inertial system� When we
change the de�nition for the location vector� the origin of the coordinate system does
not matter any more� and every non	rotating system becomes an inertial system�
The origin �or center� of the coordinate system implies that location vectors start at
this point� but when by de�nition location vectors locate positions just in relation to
other well	de�ned positions� the origin of the coordinate system becomes obsolete�
It is always advisable to indicate clearly where a location vector starts� In this case a
coordinate system is just useful to resolve vector equations into component notations�
For vector resolution it is not necessary to specify the origin of the coordinate system�

When a rigid body is under consideration� a coordinate system that is �xed with
respect to the body is called a �body frame of reference�� Its attitude is always
coincident with the orientation of the rigid body� Usually� the center of the body
frame of reference is coincident with the center of mass of the rigid body�

The center of mass of an extended object� Consider an extended mass M
which consists of an in�nite number of mass particles dM �we have M �

R
M
dM��

The point of application of the gravity attraction vector is called �center of mass��
It is the same point for any orientation of the mass in a parallel gravitational �eld�

�xOM

�xOP

P

O

M

�xOM �



M
�
Z
M

�xOP dM ��� 
�

�vM �



M
�
Z
M

�vP dM ��� ��

�
since � *�xOM �




M
�
Z
M

*�xOP dM
�

Location vector �xOM locates the center of mass M in relation to reference point O�
Velocity vector �vM de�nes the relative velocity of the center of mass�
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Linear momentum and angular momentum of a mass particle� We make use
of an inertially �xed reference point O and consider the motion of a mass particle dM �
The mass particle dM has the velocity �vP in relation to inertial space� According to
their equations of condition� linear momentum d�V and angular momentum d �HO are�

d�V � �vP � dM ��� ��

d �HO � �xOP � d�V ��� ��

Both� linear momentum and angular momentum� are vectors� The linear momentum
vector has always the same direction as the velocity vector� because it is simply the
product of mass and velocity� The angular momentum vector is perpendicular to the
location vector and perpendicular to the linear momentum vector� because it is the
vector cross product� While the linear momentum is independent of the reference
point� the angular momentum is usually di�erent if another reference point is used�

Linear momentum and angular momentum of an extended object� Analo	
gously we �nd linear and angular momentum of an extended object by integration�

�V �

Z
M

�vP � dM � M � �vM ��� ��

�HO �

Z
M

� �xOP � �vP � dM ��� ��

Again� vector �HO depends on point O� and vector �V does not� The linear momentum
�V of an extended object is simply its mass multiplied with the absolute velocity of the
center of mass� The calculation of the angular momentum �HO is more complicated�

Newton�s law� In classical mechanics� many relationships follow directly from a
geometrical interpretation of Newton�s three laws �as announced in his �Principia���

Newton recognized that the absolute time derivative of the linear momentum �V of
an object is caused by the external force �F that acts on the object� Analogously� the
absolute time derivative of the angular momentum �H of the object is caused by the
external moment �or torque� �M� provided that an inertially �xed reference point is
taken as a basis� These relationships are used to establish the equations of motion�
Usually� the �rst form of �Newton�s law� is used to analyze the translational motion�
while the second form is used for the rotational motion�

d�V 	dt � �F ��� �

d �HO	dt � �MO ��� ��

Often� equation ��	� is interpreted as �force is mass multiplied with acceleration��
but in this form the statement is not precise and thus not always correct� We should
always use a more precise formulation� here the word �force� means the result of
all external forces that act on the extended object when it is completely liberated
from its surrounding� The �mass� of the object must be constant� the mass may
not be a function of time or location� and �nally the word �acceleration� means the
acceleration of the location of the center of mass with respect to inertial space�
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����� The Angular Momentum Law for another Reference Point

Transformation of the moment vector� Equation ��	�� states that the change in
time of the angular momentum is the same physical quantity as the external torque
vector which acts on the extended object� In satellite attitude dynamics� the angular
momentum law in the form of equation ��	�� is not appropriate for many problems�
Even though the equation ��	�� is valid� it cannot be applied directly in this form�
Usually we need the representation of the law in a moving coordinate system�
The transformation is a comparatively complicated procedure� as a �rst step we

have to transfer the external moment
vector from the inertial �xed point O
to another reference point Q� Usually
point Q is not �xed with respect to
inertial space� and Q is not necessarily
coincident with the center of mass M �

�MO � �MQ ! �xOQ � �F ��� ��
�xOM

�xOP�xOQ

�xQP

O

Q P

M

Forces with a line of action distant from point O generate in O the torque vector �MO�
When we change the reference point from O to Q� we shift the torque vector directly�
Additionally we have to consider that also the external force vector �F acts on point O�
an additional moment �xOQ� �F �or ��xQO� �F� must be included in the relationship�

Transformation of the angular momentum vector� The next step is the trans	
formation of equation ��	��� which is the conditional equation of the absolute angular

momentum �HO� The objective is to �nd a representation which involves the relative
angular momentum �HQ� We can constitute �HQ when we know the relative distance
�xQP and relative velocity �vP�relative of a particle dM � For any point Q we have�

�xOP � �xOQ ! �xQP ��� 
��

�vP�inertial � �vQ ! �vP�relative ��� 

�

Now we insert these relationships into equation ��	��� to �nd�

�HO �

Z
M

�
� �xOQ ! �xQP �� � �vQ ! �vP�relative �

�
dM

�

Z
M

��xOQ � �vP�inertial�dM !

Z
M

��xQP � �vQ�dM !

Z
M

��xQP � �vP�relative�dM

� �xOQ � �vM�inertial �M ! �xQM �M � �vQ ! �HQ ��� 
��

This is the general relationship between the inertial angular momentum �HO and
the relative angular momentum �HQ� Reference point Q can be any moving point�
Equation ��	
�� accepts a simpler form under some important special conditions�
point Q can also be �xed with respect to inertial space �then we have �vQ � ���
Q can coincide with the center of mass �then we have �xQM � ��� and Q can move
parallel to the center of mass �therefore we have �vQ � �vM and �xOM � �xOQ ! �xQM ��
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Of practical interest are three special cases where simpler relationships between the
inertial angular momentum �HO and the relative angular momentum �HQ are valid�

Q is inertially �xed� �HO � �xOQ � �V ! �HQ ��� 
��

Q is center of mass� �HO � �xOM � �V ! �HM ��� 
��

�vQ � �vM and �xOM � �xOQ ! �xQM � �HO � �xOM � �V ! �HQ ��� 
��

The �rst transformation is important in gyro dynamics when instead of O another
�xed reference point Q is used as basis for the calculation of the angular momentum
vector� The second transformation is often required to transform the angular mo	
mentum vector from the center of massM to a �xed point O or vice versa� Naturally�
the center of mass can also be a point that is �xed with respect to inertial space� The
third case occurs when we use a reference point Q that moves in the same way as the
center of mass M � When we compare equation ��	
�� with ��	
��� we can observe

that for this case the angular momentum �HQ is equal to the angular momentum �HM �

Transformation of the angular momentum law� Next step is the transformation
of the angular momentum law� We insert ��	�� and ��	
�� into law ��	�� to �nd�

d ��xOQ �M�vM�inertial�

dt
!
d ��xQM �M�vQ�

dt
!
d �HQ

dt
� �MQ!�xOQ� �F ��� 
��

� ��vQ�M�vM�inertial�!��xOQ� d�V

dt
�!��vM�relative�M�vQ�!��xQM �M d�vQ

dt
�!

d �HQ

dt

Since d�V	dt � �F � the second terms of both sides of equation ��	
�� cancel out�
First and third term of the right hand side will also cancel out� because we have
�vM�inertial � �vQ!�vM�relative and �vQ��vQ � �� For reference point Q law ��	�� yields�

� �xQM �M
d�vQ
dt

� !
d �HQ

dt
� �MQ ��� 
�

Very often �but not always� reference point Q is not accelerated �then d�vQ	dt � ���
Also very often Q is the center of mass M of the extended mass �then �xQM � ���
Thus� in both cases the angular momentum law accepts the very simple form of�

d �HQ

dt
� �MQ ��� 
��

Remember that the angular momentum vector �HQ is by de�nition the integral of the
vector cross product of location vector �xQP and in�nitesimal small linear momentum
vector �vP�relative � dM �compare equation �	
��� �Reference point Q� is always the
location where the location vector �xQP starts� We should emphasize that Q is not
necessarily �xed with respect to the object� and that the object does not necessarily
rotate around point Q �sometimes reference point Q is located outside the object��
The �rotation axis� of a rigid body is a straight line� it connects all the elements which
are not moving at a certain moment �but often the rotation axis itself is moving��
We can just say that Q coincides with the �center of the rotation�� when Q is in rest
with respect to the reference system and Q is �xed with respect to the rigid body�
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����� Inertia of a Rigid Body

Moment of inertia matrix� Before we are able to resolve equation ��	
�� into a
component notation of a moving coordinate system� we have to learn more about the
inertial behaviour of rigid bodies� Now we regard exclusively the relative angular mo	
mentum �HM of a rigid body which rotates around reference point M � We can write�

�HM �

Z
M

��xMP � �vP�relative� dM ��� 
��

Reference point M is the center of mass� Often M is inertially �xed� but this is not
mandatory for equation of condition ��	
��� Vector �xMP locates mass element dM �
Since we assumed that the rigid body rotates around point M � we can �nd an ex	
pression for the relative velocity �vP�relative of each mass element dM �

�vP�relative � �� � �xMP ��� ���

Equation ��	��� is the equation of condition for the rotation vector ��� As a vector
equation� this relationship is independent of a coordinate system� Without dedication
to a particular coordinate system� we write for location vector �xMP � �x�� x�� x�� and
for rotation vector �� � ���� ��� ���� Naturally� the elements of �xMP and �� depend on
the reference system that we take as a basis� but for every coordinate system we get�

�HM �

Z
M

�
! �x�� ! x��� �� � x�x� �� � x�x� ��
� x�x� �� ! �x�� ! x��� �� � x�x� ��
� x�x� �� � x�x� �� ! �x�� ! x��� ��

�
A � dM ��� �
�

Equation ��	�
� is the component form of vector equation ��	
��� valid for every
coordinate system� Usually� the elements of vector �� are not constant but functions
of time� The elements of vector �xMP locate mass element dM � it is very important
to notice that vector �xMP is constant if a body frame of reference is taken as a basis�
Then we can express the angular momentum vector as product of a matrix and the
rotation velocity vector ��� This matrix is called �moment of inertia matrix�� Thus�

�HM � �M � �� �

�
A F E
F B D
E D C

�
A �

�
��
��
��

�
A ��� ���

with diagonal elements� A�
R
M
�x��!x

�
��dM � B�

R
M
�x��!x

�
��dM � C � R

M
�x��!x

�
��dM

and o�	diagonal elements� D�� R
M
x�x�dM � E �� R

M
x�x�dM � F �� R

M
x�x�dM

The moment of inertia matrix � is a symmetric matrix �referring to other particular
properties � is also called �second range tensor� or �dyadic��� Matrix � contains
all information on the mass distribution within a rigid body� When we use a body
system of reference� the elements of the moment of inertia matrix � are constant�
In this important case these elements are independent of the attitude of the system�
Then we can calculate these elements disregarding the motion of the rigid body�
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Principal body axis frame� Equation ��	��� shows that the angular momentum �H

is a linear vector function of the angular velocity ��� Usually� �H and �� are not aligned�
Here we can observe a signi�cant di�erence when we compare the properties of the
angular momentum with the linear momentum� �V is always aligned with velocity �vM �

For a better understanding of the inertial behaviour of a rigid body we will
now regard a simple case� the body should be a homogeneous brick with three
planes of symmetry� The coordinate system ��body frame of reference�� should
be placed into the intersection lines of these planes of symmetry� Since the
brick is symmetric with respect to the coordinate system� the three o�	diagonal
elements of the moment of inertia matrix � must vanish �D � �� E � �� F � ���

A body	�xed coordinate system where the o�	
diagonal elements of the moment of inertia
matrix are zero is called a �principal body
axis frame�� In the component notation of
the principal body axis frame the angular
momentum vector �HM takes the form of�

�HM �

�
A � �

� B �
� � C

�
A �

�
��
��
��

�
A ��� ���1

2

3

When we assume that the length of the edges are all di�erent� we have A � B � C�
In this case there are exactly three directions where the angular momentum and the
rotation velocity are parallel� �HM is aligned with �� when the body rotates on one of
the coordinate axes� When A � B� the vectors �HM and �� are aligned if �� � ��� �� ���
or if �� � ���� ��� ��� All elements are equal when the body is a cube �A � B � C��
and then the angular momentum vector is always aligned with the rotation vector�

Rotations on the principal body axes� Let us consider the body rotates with the
angular velocity �� on the 
	axis� TorqueM� will increase �or decrease� its spin rate�
The angular momentum is a linear function of the rotation velocity� both vectors are
aligned and �xed with respect to inertial space� Therefore we can conclude�

M� �
dH�

dt
� A � d��

dt
� or� A �

dH�

d��
�

H�

��
��� ���

This follows from the angular momentum law ��	
��� Thus� termA �
R
M
�x��!x

�
��dM

is a scale for the �power of resistance� to torques� A ring around the 
	axis with
mass M and a certain radius RA has the same resistance to torques as the brick
�expression �x�� ! x��� is the rectangular distance of particle dM from the spin axis��
We can replace every diagonal element of the moment of inertia matrix by an expres	
sion which uses the mass multiplied by the square of a certain �radius of gyration��

MR�
A � A� MR�

B � B� MR�
C � C ��� ���

Sometimes notations with the �radius of gyration R� are preferred in gyro	dynamics�
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Ellipsoid of inertia� The next point in question is what happens if the rigid body
rotates on another �arbitrarily directed� spin axis� The spin axis is determined by its
unit direction vector� the rotation vector �� � ���� ��� ��� divided by its length j �� j�

The angular momentum vector �HM is not aligned with the rotation vector �� anymore�
but the angular momentum is still a linear vector function of the rotation velocity� an
increase of the spin rate will let the angular momentum vector grow proportionally
�the angular momentum law ��	
�� states that torques are required to change the
angular momentum vector with respect to inertial space�� Using the direction of
the spin axis� the angular momentum vector can be resolved into two rectangular
components� The component that is aligned with the spin axis is important to �nd
the moment of inertia ��power of resistance to torques�� for a rotation on this axis�
Again� we use termMR�

� to characterize the moment of inertia �and compare it with
the inertia of a ring around the rotation axis of mass M and radius R��� Thus�

MR�
� �

�HM � ��	j �� j
j �� j ��� ���

We form the scalar �dot� vector product of angular momentum vector �HM and the
unit vector in direction of the spin axis� This yields the length of the component
of the angular momentum vector in direction of the spin axis� Then we divide the
result by the length of the rotation vector to �nd the moment of inertia ��power of
resistance to torques�� for a rotation on the spin axis� We can observe that radius
R� is just a function of the orientation of ��� but not a function of its length j �� j�
The function R� � ��	j �� j � determines a three	dimensional geometrical �gure�

Equation ��	��� applied to equation ��	��� gives
�principal body axis frame��

MR�
� � A ��

�

j �� j� ! B ��
�

j �� j� ! C ��
�

j �� j�

��� ��

Equation ��	��� applied to equation ��	��� gives
�the general case��

MR�
� � A ��

�

j �� j� ! B ��
�

j �� j� ! C ��
�

j �� j�
! �D ����

j �� j� ! �E ����j �� j� ! �F ����
j �� j�
��� ���

1

1

2

2

3

3

Both geometrical �gures represent ellipsoids �the inverse length 
	R� determines the
�ellipsoids of inertia��� The symmetry axes are aligned with the coordinate axes
when a principal axis frame of reference is used �equation �	��� but in the general
case ��	��� the symmetry axes are not aligned with the axes of the coordinate system�
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Direction of the principal axis� When we analyze the inert behaviour of a rigid
body as function of the spin direction� we �nd the geometrical �gure of an ellipsoid�
This is also the case for the general moment of inertia matrix �M �equation �	���
where the reference system is arbitrarily directed� If two completely di�erent rigid
bodies have identical ellipsoids� these bodies behave identically concerning rotations�
The rotational behaviour of a rigid body is entirely determined by the ellipsoid of
inertia� and the ellipsoid of inertia is entirely determined when in the principal body
frame of reference the three diagonal elements �terms A� B and C� are well	known�
The �ellipsoid of inertia� de�ned by the length 
	R� resembles the shape of the body�
an oblate disk has a lentiform ellipsoid� and a thin stick has an elongated ellipsoid�

The problem is to �nd the attitude of the principal axis frame of reference �and the
elements A� B and C� for a rigid body with a well	known matrix of inertia ��	����
When the body rotates on one of its principal axes� the angular momentum vector is
aligned with the rotation velocity vector� Only then the following condition is valid��

A F E
F B D
E D C

�
A �

�
��
��
��

�
A �  �

�
��
��
��

�
A ��� ���

Condition ��	��� has a non	trivial solution �with �� � �� for exactly three directions
of the rotation velocity vector �� � the three directions of the principal axes� Then
multiplier  is the moment of inertia for a rotation on the concerning principal axis�
When we write down the component form of condition ��	���� we get a system of
three equations� Since the length of �� does not matter� the equation system must
be singular when the body rotates on one of the principal axes� The direction of
the principal axes can be found by the solution of a so	called �eigenvalue problem��
Non	trivial solutions of condition ��	��� are just possible if the determinate of the
linear equation system vanishes�������

�A�  � F E
F �B �  � D
E D �C �  �

������ � � ��� ���

or� �A� ��B� ��C� �!�FDE��A� �D���B� �E���C� �F� � � ��� �
�

Multipliers  are called �eigenvalues� of the matrix� equation ��	�
� is the �charac	
teristic equation� of the problem� For rigid bodies with realistic mass distribution�
equation ��	�
� must have three solutions� These three solutions are the moments of
inertia for rotations on the principal axes �the principal moments of inertia  � � A�
 � � B�  � � C�� Once we have found the principle moments of inertia� we can
readily calculate the direction of the principal axes� we simply insert a solution into
condition ��	��� to get a singular system of three equations �the length of �� does
not matter�� We can choose one component of �� arbitrarily and use two equations
to calculate the other two components of ��� Then the direction of �� shows us the
direction of the concerning principal axis�
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Angular displacement of the reference system� A body frame of reference
exists for every rigid body� where the o�	diagonal elements �the products of inertia
D� E and F� vanish and the diagonal elements �moments of inertia A� B and C�
assume relative extremes� In case the body has a homogeneous mass distribution
and a simple symmetrical shape �a stick� brick� cylinder� disk� spherical segment
or something like that�� the orientation of the principal axes is evident and the
principal moments of inertia can be found by analytical integration� Alternatively
we can �nd the moments of inertia of many bodies with di�erent shape tabulated in
fundamental books on mechanics� When we want to calculate the inertia matrix of a
satellite� we can compose �add up� this matrix if we know the moments of inertia of
all elementary parts of the satellite� Therefore every individual inertia matrix has to
refer to the same coordinate system� Using transformation matrices� we can change
the representation of the inertia matrix from one coordinate system to another one�

First� let us consider rotational changes of the reference system� As we have seen�
the rigid body is represented in its principal axis frame of reference by�

�HM �

�
A � �

� B �
� � C

�
A �

�
��
��
��

�
A ��� ���

with�
R
M
x�� dM � �B ! C � A�	�R

M
x�� dM � �A! C � B�	�R

M
x�� dM � �A! B � C�	�

and�
R
M
x�x� dM � �R

M
x�x� dM � �R

M
x�x� dM � �

�

�

1
2

3

M

The vectors �HM �the angular momentum� and �� �the rotation velocity� are written
in the component notation of the principal axis frame of reference� Now we represent
the body in another system that is rotated on the 
	axis� with the twisting angle � �

�HM �

�
 A � �

� B cos�� ! C sin�� �C � B� sin� cos�
� �C � B� sin� cos� B sin�� ! C cos��

�
A �

�
��
��
��

�
A ��� ���

Now vectors �HM and �� are written in the component notation of the rotated frame of
reference� The new matrix of inertia can be expressed using the principal moments of
inertia A� B and C� We �nd the new elements by a simple coordinate transformation�
in a component notation of the principal axis frame of reference� �xMP � �x�� x�� x��
is the vector which locates mass element dM � When we take the rotated system�
the same vector takes the form of �xMP � �x�� x� cos�!x� sin� ��x� sin�!x� cos���
With these new components we must form the integrals of the individual elements
of the matrix of inertia ��	���� considering the relationships ��	���� Equation ��	���
serves as an example for a single rotation of the coordinate system� To come to an
arbitrary new orientation of the reference system� three rotations are required�
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Parallel axis displacement� Equations ��	
�� and ��	
�� indicate that� when point

Q and point M move parallel� the angular momentum �HQ �with respect to Q� is the

same as angular momentum �HM �with respect to center of mass M�� Then we have�

�vM�relative �



M

Z
M

�vP�relative dM � �
��� ���

Consequently�

�HQ �

Z
M

��xQP � �vP�relative� dM ��� ���

�

Z
M

���xQM ! �xMP �� �vP�relative� dM

�

Z
M

��xMP � �vP�relative� dM � �HM

�xQP � �xQM ! �xMP

1

2

3

M
Q

P

Note that the velocity �vP�relative of particle dM relative to the reference point is the
same for point Q and for point M � the velocity �vM�relative equals zero� However�
point Q is not �xed with respect to a body frame of reference of the rotating body�

Now let us consider a di�erent case� where Q is a �xed location with respect to the
rigid body� Point Q does not move parallel with point M when the body rotates� and
consequently �HQ � �HM � We can write for the relative angular momentum vector�

�HQ �

Z
M

��xQP � ��� � �xQP �� dM ��� ���

The body rotates about point Q� and �vP�relative � ��� �xQP replaces equation ��	����
We will assume that the elements of the moment of inertia matrix are well	known
regarding a body frame of reference centered in point M �terms A� B� C� D� E � F��
The question is what happens if the body frame of reference is parallel	displaced�
maintaining the orientation of its axes�

Vector �xQP � �xQM ! �xMP locates mass particle dM � We can use the elements of
�xMP � �x�� x�� x�� and �xQM � �%x��%x��%x�� for the composition of vector �xQP �
�xQP � �x� !%x�� x� !%x�� x� !%x��� In a body frame of reference� the elements
of �xQM are constant� Since point M is the center of mass� we have

R
M
�xMP dM � ��

Evaluation of equation ��	��� gives �nally �with A� B� C� D� E � F of equation �	����

�HQ �

�
A!M�%x�� !%x��� F �M%x�%x� E �M%x�%x�
F �M%x�%x� B !M�%x�� !%x��� D�M%x�%x�
E �M%x�%x� D�M%x�%x� C !M�%x�� !%x���

�
A � ��

��� ��

Vector �HQ is the angular momentum when the rigid body rotates with �� around
reference point Q� We can observe that anyway the diagonal elements of the matrix
of inertia are always positive and bigger than for a rotation about the center of mass�
O�	diagonal elements �D� E � F� appear when we translate a principal axis body
frame of reference that was originally centered in pointM �provided that two or three
elements of the displacement vector �xQM � �%x��%x��%x�� are not zero��
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����	 Kinetic Energy of a Rigid Body

Energy and work� A force that accelerates a mass produces work� this work is
stored in the motion of the mass in form of �kinetic energy�� To calculate the kinetic
energy of mass particle dM � we have to substitute the force by the time derivative
of the linear momentum dM � d�vP 	dt� consider �vP � dt as coordinate and integrate
��vP is the absolute velocity of dM�� The kinetic energy of a mass particle becomes

	� � �v�P dM � For the entire kinetic energy E of an extended mass M we can write�

Ekinetic �



�

Z
M

j �vP j� dM ��� ���

Translational and rotational kinetic energy� Now we consider a rigid body that
translates and rotates simultaneously� If we take the center of mass as reference point�
we can split up the kinetic energy in a translational part and in a rotational part�
The velocity �vP of a mass particle can be replaced by �vP � �vM ! �� � �xMP � where
�vM is the velocity of the center of mass of the rigid body and �� its rotation vector�

Ekinetic �



�

Z
M

��vM ! �� � �xMP �
� dM

�



�

Z
M

�
�v�M ! ��vM � ��� � �xMP � ! ��� � �xMP �

�
�
dM ��� ���

The �rst term inside the square brackets can be integrated immediately� The in	
tegral of the second term vanishes since the expression

R
M
�xMP dM equals zero

�it is the equation of condition for the center of mass�� Also the integral of third

term yields a simple expression� it can be written as ��� � �HM �� Finally we get�

Ekinetic � Ekinetic�translational ! Ekinetic�rotational

�



�
M�v�M !




�
�� � ��M � ��� ��� ���

Equation ��	��� determines the entire kinetic energy of a rigid body of mass M �
�M is the moment of inertia matrix with respect to the center of mass �point M��
Term �vM is the translation velocity vector and term �� is the rotation velocity vector�

����
 Equations of Motion of a Rotating Rigid Body

The angular momentum vector in a moving coordinate system� We return
to the angular momentum law �equation �	
�� When we take the center of massM as
reference point �or any other point which is not accelerated�� the angular momentum
law accepts a form which is particularly simple �equation �	
��� The absolute change
of the angular momentum vector in time is the change of this vector with respect
to inertial space� Using a moving frame of reference� the absolute time derivative
consists of two parts� a change of the vector with respect to the moving system� and
a change of the vector introduced by the angular motion of the coordinate system�
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Then we calculate the absolute time derivative of the angular momentum vector
�expression d �H	dt in equation �	
�� simply by di�erentiation of the components

�forming the relative time derivative of �H�� adding to the result the cross product of

rotation velocity vector ��system and angular momentum vector �H� The rule is simply�

�HM

��

�� � �HM

body

frame of reference

�MM �

�
d �HM

dt

	
inertial

��� �
�

�MM �

�
d �HM

dt

�
relative

! ��system � �HM

�HM � �M � ��rigid body ��� ���

It must be emphasized that term ��system is the rotation velocity vector of the mov	
ing coordinate system� and term ��rigid body is the rotation velocity of the rigid body
�sometimes it is sensible to use a special coordinate system that rotates with another
angular velocity as the rigid body�� However� when we consider a body frame of
reference� these two rotation velocities are identical� Remember that the elements
of the matrix of inertia �M are time invariant if a body frame of reference is used�
Then we insert the angular momentum vector ��	��� into law ��	�
� and conclude�

�MM � �M � *�� ! �� � ��M � ��� ��� ���

Dynamical Euler equations� Equation ��	��� is of fundamental importance to
gyro	dynamics �it is the vector form of the so	called �dynamical Euler equations���
We �nd this law by a transformation of the angular momentum law ��	
��� taking as a
basis a body frame of reference coincident with the center of mass of the rigid body�
The elements of the matrix of inertia �M are constant in time� and the rotation
velocity of the rigid body is identical with the rotation velocity of the coordinate
system� When equation ��	��� is resolved into its component notation� the use of a
principal axis frame of reference is favorable� the o�	diagonal elements �D� E �F� of
the matrix of inertia vanish� and just diagonal elements �A�B� C� are involved� Thus�

M� � A *�� ! �C � B� ����
M� � B *�� ! �A� C� ����
M� � C *�� ! �B � A� ���� ��� ���

Equation system ��	��� is the component form of the dynamical Euler equations�
These di�erential equations allow us to calculate the rotation velocity �� as a function
of time when a satellite spins without attitude control � �M � ��� or when a spinning

satellite is controlled by application of thrust � �M � ��� When �� is a predetermined

function of time� equation system ��	��� can be used to calculate torques �� �M�
caused by rotating parts of a satellite �gyros or spinning platforms inside a satellite��
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Kinematical Euler equations� Finally we must know how to compute the atti	
tude of a spinning satellite when the rotation velocity vector �� is a well	known time
function� Using equation system ��	���� the components of vector �� refer to a moving
coordinate system �the �body frame of reference��� We can use alternatively Euler
angles ��� �� �� or Cardan angles ��� � � �� to determine the attitude of this moving
system �
� �� �� with respect to an inertial coordinate system �
�� ��� ����

attitude of a satellite
using
Euler or Cardan angles

*�
*�
*�

*�
*�
*�

�

�

�

� �

�

The time derivatives of the Euler angles *�� *�� *� or alternatively the time derivatives
of the Cardan angles *�� *� � *� can be used to compose the rotation velocity vector ���

�� �

�
��
��
��

�
A �

�
 *� sin� sin�! *� cos�

*� sin� cos�� *� sin�
*�! *� cos�

�
A �

�
 *� sin� ! *�

*� cos� sin� � *� cos�
*� cos� cos� ! *� sin�

�
A ��� ���

To �nd the attitude of the satellite we have to transform vector equation ��	����
insert the components of �� and integrate a �rst order di�erential equation system�

*� � ��� sin�! �� cos��	 sin�

*� � �� cos�� �� sin�

*� � �� � ��� sin�! �� cos�� � cot�

*� � ��� sin� ! �� cos��	 cos�

*� � ��� cos� ! �� sin�

*� � �� � ��� sin� ! �� cos�� � tan�
��� ���

The nonlinear di�erential equations ��	��� are called �kinematical Euler equations��
They serve to obtain the attitude of a moving coordinate system as function of time�
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���� Spin Stabilization

We have to integrate a system of three �rst	order di�erential equations� the so	called
�dynamical Euler equations� ��	���� to calculate the rotation velocity vector of a
satellite as a function of the external moment vector� Both vectors are given in a
component notation of the body frame of reference� When we want to �nd the actual
attitude of the satellite� we have to insert the components of the rotation velocity
vector into the �kinematical Euler equations� ��	���� and integrate simultaneously an	
other system of �rst	order di�erential equations� It is not advisable to integrate sim	
ply the components of the rotation velocity vector� integration of ��� �� and �� yields
attitude angles which are not appropriate for a determination of the vehicle�s attitude
�these angles are nonholonomic coordinates�� In case of three	dimensional rotations�
the correct way to the attitude of the vehicle is the integration of the Euler equations�

����� Motion of a Torque�free Satellite

The axisymmetric spacecraft� In some special situations it is possible to �nd
analytical solutions� We take the equation system ��	��� and consider a torque	free

satellite� �M � �� The solution to the general case �A � B � C� involves so	called
�elliptical integral functions�� and it depends on the point of view whether these
functions are �analytical solutions�� Considerably less complex and much more im	
portant in practice is the motion of spacecraft with axisymmetric moment of inertia�
A spinning satellite has usually an axisymmetric moment of inertia �A � B � C��
You can readily verify that for B � C the following rotation vector �� constitutes the
general solution to the dynamical Euler equation system�

�� �

�
 ��
�� � sin� �
�A	B� �� �t� t�� �
�� � cos� �
�A	B� �� �t� t�� �

�
A ��� ��

When the axisymmetric satellite rotates on the 
	axis� A is the moment of inertia�
The moment of inertia is termed B for every axis which is rectangular to the 
	axis�

The integration constants are �� �the constant
component of the rotation velocity vector in
the symmetry axis�� �� �the amplitude of the
circular motion of the tip of vector ��� and
t� �the initial instant�� An observer in the
body frame of reference sees that vector ��
moves on the surface of a cone� The rotation
frequency of this motion is ���B �A�	B�
The tip of the vector �� rotates clockwise
when the satellite is a prolate rotor �A � B��
it rotates counterclockwise when the satellite
is an oblate rotor �A � B��

��

A � B

A � B
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Knowing the matrix of inertia and the rotation velocity vector� we can write down
the vector of the angular momentum �H of the rotating satellite �equation �	����

�H �

�
A � �

� B �
� � B

�
A �

�
��
��
��

�
A �

�
A ��
B ��
B ��

�
A ��� ���

Since �� is constant in the body frame of reference� the component of the angular mo	
mentum vector in 
	direction A��� must also be constant� The two other components
�in �	direction and in �	direction� de�ne a circular motion� like the components of the
rotation vector� Seen from the body frame of reference� both vectors execute a coning
motion� vector �H rotates synchronously on the 
	axis with the same frequency as
vector ��� When A � B �a prolate satellite�� �H is more distant from the 
	direction
than vector ��� Then the angle of the H cone is larger than the angle of the � cone�
When the satellite is an oblate rotor� A � B and the H cone is inside the � cone�

the prolate satellite
A � B

the oblate satellite
A � B

��

��

��

��

�H

�H

�H

�H

1 1

1 1

2

2

3

3

body cone

body cone

space cone

space cone

H cone

H cone

� cone

� cone

nutation
cone

nutation
cone

Now we try to �gure out the motion seen from an inertial frame of reference�
The direction of the rotation velocity vector �� is not constant in time� neither in the
body frame of reference nor in the inertial system� but the absolute angular momen	
tum must be a constant vector� since all external torques equal zero� The direction of
�H is �xed with respect to inertial space� vector �� and the unit vector in 
	direction
rotate on the axis of �H� The motion can be regarded as the rolling of the �body cone�
��xed in the satellite� on the �space cone� ��xed in inertial space�� The vector ��
determines the actual rotation axis� it is always located exactly there where the body
cone touches the space cone� The unit vector in 
	direction determines the attitude
of the satellite� this vector travels through the �nutation cone�� Nutation cone and
space cone have the same centerline �the axis of the angular momentum vector �H��
Seen from this line� vector �� and the body	�xed 
	direction are on the same side
when A � B �the prolate satellite�� Then the body cone rolls outside on the space
cone� When A � B �the oblate satellite�� �� is on the other side as the 
	direction�
Then the body cone rolls on the space cone� which is now inside the body cone�
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Nutation frequency� The body	�xed 
	axis rotates counterclockwise on the space	
�xed �H	direction� To �nd the rotation velocity �nutation� we resolve vector �� into two
�usually not rectangular� components� one in the direction of the angular momentum

vector �H� the other one in the direction of the body	�xed 
	axis� Therefore�

��

�H

��

��

�nutation

A�� B��
�nutation

��
�
j �H j
B ��

�

p
�A ���� ! �B ����

B ��

�nutation �

r
�
A
B ���� ! ��

� ��� ���

� A
B ��

The nutation frequency �nutation is smaller than j �� j for a prolate rotor �A � B�
and larger than j �� j for an oblate rotor �A � B�� When the nutation amplitude is
small ��� �� ���� the nutation frequency is approximately a linear function of j �� j�

����� Attitude Maneuver of a Spinning Satellite

Precession of a spinning satellite� When a satellite rotates on its symmetry axis�
the direction of the spin axis is aligned with the direction of the angular momentum�
This direction is stabilized with respect to inertial space� as mandated by the angular
momentum law �d �H	dt � �M�� changing the angular momentum with respect to

inertial space d �H	dt is just possible by the application of external torques �M�

When the external torque vector �M is aligned with the angular momentum vector �H�
it changes the spin rate� However� in this case the spin direction remains unchanged�
For an attitude maneuver we need a torque vector that is perpendicular to

the angular momentum vector� when
�M is perpendicular to �H� it conserves
the spin rate while it pivots the spin
direction towards the direction of the
external torque vector� The torque
vector should always be perpendicular
to the spin axis� but it should not
spin simultaneously with the satellite�
A direction that is �xed with respect
to inertial space rotates in the body
frame of reference� The attitude control
system of the satellite must generate a
rotating torque vector �but the torque
is just a rotating vector seen from the
rotating body frame of reference��

�H

�precession

�M � d �H	dt
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Impulsive thrust attitude maneuver� The conventional way to generate an
external moment for changing the attitude of a satellite is the use of control thrusters
�orbiting satellites use sometimes magnetorquers� utilizing the earth�s magnetic �eld��
We consider a spinning satellite� It rotates without nutation on the body �xed 
	axis
��� � �� �� � ��� The angular momentum �H is aligned with the spin axis and has
the magnitude A � ��� When the actuators are not mounted on a despun platform�
their line of action runs periodically through the appropriate orientation �the thrust
direction is determined with respect to inertial space�� We can operate the attitude
control thrusters several times� but always just for a very short time interval %t�
In order to change the direction of angular momentum vector �H� these thrusters
execute impulsive burn maneuvers of the magnitude % �H � �M%t� The direction of
the impulsive torque �M should always be perpendicular to the body	�xed 
	axis�

At the right moment the control thrusters are �red� The burn maneuver changes the
direction and also the magnitude of the angular momentum �H �it creates a rectangu	
lar componentM%t �� We can use equation ��	��� to verify that the burn maneuver
alters also the rotation vector �� �it creates the rectangular component M%t	B ��

After the impulsive torque has been applied� �� is not aligned with �H anymore�
the satellite executes a nutational
motion now �provided that A � B��
The body cone rolls on the space
cone� and the body	�xed 
	direction
rotates on the new direction of �H�
When the body	�xed 
	direction ar	
rives on the other side of the space
cone �half a rotation period later��
we execute the same burn maneuver
once again� The second maneuver
re	establishes the parallel orientation
of �� and �H� Now the satellite rotates
again without nutational oscillation
on the new spin axis�

A ��

A ��

��
%�

M%t

M%t

Propellent is very expensive in space� We need propellent to operate the attitude
control thrusters for the generation of impulsive torques� The change of the attitude
angle %� requires the application of two impulsive burn maneuvers M%t� where�

M%t � A �� � tan�%�	�� ��� ���

Usually� the momentM of the attitude control system is predetermined� and we can
use the relationship above to calculate the �time interval of impulsive burning� %t
as a function of angle %� � The tangent function in equation ��	��� is responsible
for the fact that it saves propellent when we split a maneuver with large angle %�
into several smaller maneuvers� An example is the 
��� attitude turn maneuver of a
spin stabilized upper stage� the spacecraft requires more than two burn maneuvers to
reverse the thrust direction between the perigee and the apogee of a transfer ellipse�
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����� Stability of a Spinning Satellite

Rotations on the principal axis of inertia� We have seen that the rotational
motion of a satellite with symmetric moment of inertia can be interpreted as the
rolling of the body cone on the space cone� When the satellite is a perfect rigid	body�
the motion is stable� The word �stability� has many interpretations� here it means
that the cone angles remain constant in time� The nutation amplitude will not grow�

Generally� the rotational motion of a torque	free rigid body is stable when the body
rotates on the principal axis with the maximum moment of inertia� or when it rotates
on the principal axis with the minimum moment of inertia� When the body rotates
on the axis with the intermediate moment of inertia� the motion is unstable� Now we
consider the general rigid body �A � B � C� that rotates predominantly on the 
	axis
of its principal body frame of reference� Equation ��	��� determines the motion of

the rotation vector �� �with �M � ��� We can observe that the �rst component of this
vector �� is not constant anymore� since now B � C� However� component �� is still
approximately constant when the components �� and �� are much smaller than ���

� � A *�� ! �C � B� ���� � � �� � constant

� � B *�� ! �A� C� ����
� � C *�� ! �B �A� ���� ��� �
�

The second and the third equation of the system above describe a linear oscillation�
where the stability of the oscillation is determined by the �characteristic equation��
We �nd the characteristic equation of this di�erential equation system when we insert
the solution �� � C�e

�t� �� � C�e
�t� and eliminate from the equations the amplitude

coe�cients C� and C�� Multiplier  is the �characteristic value� of the problem�

 � !
A� C
B �� � A � BC �� � � ��� ���

 ��� � �
r
� �A� C� � �A� B�

BC ��
� ��� ���

The roots of the characteristic equation may not have positive real parts� otherwise
the oscillation is unstable �an imaginary part corresponds to a periodic oscillation�
a negative real part corresponds to an exponentially declining amplitude�� We can
observe that the motion is unstable when A is intermediate in value to B and C�
Then the positive real root of the characteristic equation indicates that a motion
with exponentially growing amplitude is present� The oscillation is stable when A is
bigger than B and bigger than C �when the body rotates on the principal axis of the
maximum moment of inertia�� The motion seems also to be stable when the body
rotates on the principal axis of its minimum moment of inertia �when A is smaller
than B and smaller than C�� In satellite dynamics� however� the rotation of a satellite
on the axis of the minimum moment of inertia is just stable for a short time interval�
Unfortunately� for extended time periods of a day or longer� the motion is unstable�
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Dissipation of energy� Energy dissipation is responsible for the instability of rota	
tions on the axis of the minimum moment of inertia� Equation ��	��� determines the
mechanical energy of a rigid body� When we use a principal body frame of reference
and consider just the rotational part of the energy� we can write down the equation as�

�E � A ��
� ! B ��

� ! C ��
� ��� ���

Expression E is the entire rotational energy of the rigid body as a function of the
rotation velocity vector ��� The notation resembles the equation for the square of the
length of the angular momentum vector H�� Using equation ��	���� we can denote�

H� � A� ��
� ! B� ��

� ! C� ��
� ��� ���

Both� energy E and angular momentum �H� are constant for a torque	free rigid body�
The expressions for �E and H� are similar but not identical functions of vector ���
They de�ne di�erent ellipsoids in the body frame of reference� We divide these equa	
tions by their left sides to �nd �energy ellipsoid� and �angular momentum ellipsoid��

energy ellipsoid�
A
�E

��
� !

B
�E

��
� !

C
�E

��
� � 
 ��� ���

angular momentum ellipsoid�
A�

H�
��
� !

B�
H�

��
� !

C�
H�

��
� � 
 ��� ��

Note that the energy ellipsoid has axes of the length�
p
�E	A� p�E	B� p�E	C�

the angular momentum ellipsoid has axes of the length� H	A� H	B� H	C�
The intersection line of the ellipsoids is a three	dimensional �gure called �polhode��
�� is a moving vector in the body frame of reference� its tip lies always on this curve�

Let us �rst consider that A is the maximum
moment of inertia� and that the rigid body
rotates exclusively on the 
	axis ��� � ��
�� � ��� We �nd that �E � H�	A� and
the polhode is a single point on the 
	axis�
The energy ellipsoid is smaller than the an	
gular momentum ellipsoid� since �E	B is
smaller than H�	B�� and �E	C is smaller
than H�	C�� Then the energy ellipsoid lies
entirely inside the angular momentum el	
lipsoid� but the two ellipsoids touch each
other at the point of the polhode� Let
us now consider that A is the minimum
moment of inertia� The two ellipsoids still
touch each other at the point of the pol	
hode� but now the energy ellipsoid is big	
ger than the angular momentum ellipsoid
�since �E	B � H�	B� and �E	C � H�	C���
In this case the energy ellipsoid lies entirely
outside the angular momentum ellipsoid�

��

��

angular
momentum

ellipsoid
�white�

energy

ellipsoid
�gray�

1

1

2

2

3

3
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A torque	free rigid body cannot dissipate mechanical energy� However� no satellite
is a perfectly rigid body� every satellite can dissipate mechanical energy �usually the
satellite has �exible antennae� tanks with liquid propellent and so on�� The satellite
is a �semi	rigid body�� and the mechanical energy E is a declining function of time t�

When the satellite rotates on the 
	axis
and A is the maximum moment of iner	
tia� the rotation is stable� dissipation of
mechanical energy damps out any nuta	
tional motion� The energy ellipsoid shrinks
while the angular momentum ellipsoid con	
serves its size� The polhode for the nu	
tational oscillation is a curve which spi	
rals slowly towards the 
	axis� Finally�
when the polhode reaches the 
	axis� the
satellite cannot dissipate energy anymore�
The oblate satellite rotates stable�

However� when A is the minimum moment
of inertia� the motion is unstable� En	
ergy dissipation excites a nutational motion
with growing amplitude� Again� the energy
ellipsoid shrinks slowly while the angular
momentum ellipsoid conserves its size� but
this time the polhode is a curve which spirals
slowly away from the 
	axis� Even though
the angular momentum vector of the motion
is not altering its orientation and its length�
the satellite tumbles wildly after some time�
The prolate satellite rotates unstable�

��

��

stable motion
A � B� A � C

unstable motion
A � B� A � C

����	 The Single�Spin Satellite

The semi�rigid spacecraft� As we have seen� the rotation of a torque	free satellite
on the axis of the maximum moment of inertia is always stable� but the rotation on
the axis of the minimum moment of inertia is just stable for a short time period�
Rotations on the intermediate axis of inertia are always unstable� Now we return to
the axisymmetric satellite �A � B � C�� Equation ��	�� determines the nutational
motion when the satellite rotates on the 
	axis of its body frame of reference� The
motion conserves in any case the direction and length of the angular momentum �H�
Only if the satellite were a perfectly rigid body the motion would also conserve the
mechanical energy E� but the satellite is never a perfectly rigid body� it is always a
�semi	rigid� body� The energy of the rotation is a never increasing function of time�
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When the mechanical energy E of the rotational motion is a well	known time function�
then the growing �or shrinking� of the amplitude of the nutation is determined by�

�E�t� � A ��
� ! B ���

� ! ��
�� ��� ���

H� � A� ��
� ! B� ���

� ! ��
�� ��� ���

Expression �� �
p
��
� ! ��

� is the amplitude of the nutation� �� is the component
of the rotation vector that is aligned with the 
	axis of the body frame of reference�
In case of a stable motion� �� grows while �� shrinks� The square of the length of the
angular momentum vector �term H�� is always constant� The equations ��	��� and
��	��� determine the behaviour of the nutation amplitude as function of time entirely�

The angular momentum law in form of the dynamical Euler equations �system �	���
cannot be applied to calculate the stability of the motion of semi	rigid spacecraft�
The equation of condition for the angular momentum vector � �H � �A ���B ���B ����
is based on the assumption that the satellite is a perfectly rigid body� and this
assumption is not valid any more for a semi	rigid spacecraft� If we used system ��	����
we would just �nd out that a rotating torque	free rigid body does not dissipate
energy� Strictly speaking� also the de�nition for the energy �equation �	��� uses the
assumption of a rigid body� It is not obvious that the energy	sink approach is correct�

Nutation dampers� When we want to treat the satellite as a rigid body and apply
the angular momentum law in form of equation ��	���� we must use another approach�
Now we consider the loss of mechanical energy as the e�ect of nutation dampers�
Nutation dampers absorb mechanical energy but conserve the angular momentum�
The damper masses exert on the satellite the external damper moment �Mdamper�
The point in question is orientation and magnitude of the damper moment vector�

�Mdamper �

�
 A *��
B *�� ! �A� B� ����
B *�� ! �B � A� ����

�
A

� Cdamper �
�
B ���

� ! ��
��	�A ���

���
���

�
A ��� ���

You can readily verify that the model above complies with the following conditions�
To ensure that the damper moment does not change the length of angular momentum�
the damper moment must always be rectangular to the angular momentum vector
�the vector dot product vanishes� �Mdamper � �H � ��� Additionally� to ensure that
the damper moment does not change the orientation of angular momentum vector�
the damper moment must rotate � �Mdamper is always in the same plane as �� and �H��
Finally� to ensure that the motion is stable� the damper moment lets ��

� grow �it has
a positive component in the body	�xed 
	direction�� Term Cdamper is a factor that
provides information on how much time it takes to dissipate the mechanical energy�
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the prolate satellite� A � B the oblate satellite� A � B

��

�H

��

�H

�M �M

The e�ect of the damper moment is that the angular momentum vector �H of the
satellite executes a coning motion in inertial space �the cone angle is very small since
the damper moment is small�� On the long	term� however� the angular momentum
vector of the satellite keeps its length and its direction� The reaction moment has a
similar e�ect on the damper masses �the entire angular momentum of satellite and
damper masses is a vector which is exactly constant with respect to inertial space��
but the damper moment changes the rotation velocity vector and by this also the
mechanical energy of the satellite�

*E � �� � �Mdamper � Cdamper��
�
� ! ��

�� � �B	A� 
� ��� �
�

Important is the sign of *E� When A � B �the prolate satellite�� *E � � and the
satellite needs active nutation dampers� When A � B �the oblate satellite�� then
*E � � and a satellite with passive nutation dampers rotates stable� We can observe
that a satellite with a spherical ellipsoid of inertia �A � B� cannot dissipate energy�
In this case the rotation vector �� is always parallel with the angular momentum
vector �H� and the satellite rotates stable without nutational oscillation �compare
equation �	���� Erroneously we might follow that such a construction is advisable�
but in practice it is impossible to build a satellite with exactly spherical ellipsoid�
the satellite with a nearly spherical ellipsoid of inertia would lose mechanical energy�
The consequence is that the spherical satellite would not rotate about a de�ned axis
�it would soon start tumbling wildly�� We can conclude that the correct construction
of single	spin satellite is an oblate rotor with a de�ned rotation axis�
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Time interval of stable rotation� Finally� it is interesting how long it takes
to damp down a nutational motion� or how long a prolate spacecraft is stable�
When we assume that the energy dissipation rate is proportional to the ampli	
tude of the nutation� then the factor Cdamper in equation ��	��� is constant in time�
The vector equation ��	��� can be used to �nd a relationship that determines the
nutation amplitude as a function of time� We can multiply the second component of
this vector equation by �� and the third component by �� and add up the results�
considering that ��

� � ��
� ! ��

� and d��
�	dt � ��� *�� ! ��� *��� Then we get�

d

dt
��
� � ��Cdamper

B ��
� � or� ���t� � ���t�� � e�Cdamper � t	B ��� ���

For an oblate satellite the amplitude of the nutation �� �
p
��
� ! ��

� is an expo	
nentially declining function of time t� For a prolate satellite without active nutation
dampers� however� Cdamper is a negative constant� Any nutation amplitude �� at the
initial instant t� will grow exponentially� The time interval of �quasi stable motion�
depends on the quality of the initial adjustment and on the rigidity of the vehicle
�the value of Cdamper�� A solid upper stage can be kept stable for the duration of
the mission� but a satellite with �exible antennae will tumble after less than a day�

����
 The Dual�Spin Satellite

Shape of the satellite and the payload bay� As we have seen� stability of the
rotational motion requires that the satellite is an oblate axisymmetric rotor� Often
this requirement does not meet the dimensions of the payload bay of conventional
satellite launchers� particularly in the case of a big satellite� To �t in the payload
shroud� the satellite should usually be a prolate rotor� The solution to this problem
is the construction of a so	called �dual	spin� satellite� Under certain conditions a
dual	spin satellite can rotate stable on its axis� even when it is a prolate construction�

the dual	spin satellite

AP�� !AR�R

��

��

p
��
� ! ��

�

��R

�R

p
��
� ! ��

�

�M � �H

�H
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The angular momentum vector of a dual�spin satellite� To analyze the rota	
tional behaviour of a dual	spin satellite� we use the �damper moment approach�� we
consider that the spacecraft consists of two perfectly rigid bodies with axisymmetric
ellipsoid of inertia� where nutation dampers are responsible for the loss of mechanical
energy� One part of the satellite is called �platform� �index P �� the other one is
called �rotor� �index R�� For the derivation of the equations of the motion we will
use the body	�xed frame of reference of the platform� the platform rotates with ��
on the 
	axis� the rotor rotates with �R exactly on the same axis� We will assume
that the rotor rotates faster than the platform ��R � ���� and that both components

of the rotation are positive� Then the entire angular momentum �H is composed
of the angular momentum of the platform and the angular momentum of the rotor�

�H �

�
AP ��
BP ��
BP ��

�
A!

�
AR �R
BR ��
BR ��

�
A �

�
AP �� !AR �R

B ��
B ��

�
A ��� ���

The motions of platform and rotor in �	direction and �	direction are always combined�
We may use their combined moment of inertia B to describe the nutational oscilla	
tion� According to equation ��	��� for the single	spin satellite� the damper moment is��
BBBB
M�

M�

M�

�
CCCCA � Cdamper

�
BBBB

B ���
� ! ��

��

AP �� !AR �R
���
���

�
CCCCA �

�
BBBB

AP *�� !AR *�R

B *�� ! �A� B� ���� !AR ���R

B *�� ! �B � A� ���� �AR ���R

�
CCCCA

��� ���

The damper moment vector �M is always rectangular to the angular momentum �H�
and it is in the same plane as the rotation vector �� and �H� The vector equation ��	���
describes the nutational motion of the dual	spin satellite� where a vector notation
of the body frame of reference of the platform is used� Vector �� determines the
rotation velocity of the coordinate system� We have to use relationship ��	��� for the
di�erentiation of the angular momentum vector� since the dynamical Euler equations
�in the form of equation system �	��� do not apply for the motion of the rotor�

Excited by the damper moment� the angular momentum �H performs a coning motion
with small cone angle and short rotation period� but the length and the inertial
direction of �H are kept constant when a long time interval is under consideration�

H� � �AP �� !AR �R�
� ! B� ���

� ! ��
�� ��� ���

Cdamper �
d
dt �AP �� !AR �R�

�

� B ���
� ! ��

��
��� ���

Term H� is constant in a long	time treatment� and we can conclude that for stability
the expression ���

�!�
�
�� must decrease while the expression �AP ��!AR �R�

� grows�
Transformed into equation ��	���� the �rst component equation of ��	��� shows that
the motion is stable when the damping factor Cdamper assumes a positive value�
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Conditions for the stability of a dual�spin satellite� Stability analysis is more
complex for a dual	spin satellite than for a single	spin satellite� It is not only im	
portant which component �platform or rotor� dissipates the energy� but also how
fast the energy is lost� An internal moment between platform and rotor �friction
in the bearings or an actuator motor� can exchange angular momentum between

the two components of the satellite� but cannot change the angular momentum �H�
The component of this vector in 
	direction �term AP �� ! AR �R� can only be
changed by the �rst component of the damper moment M�� We can write�

M� � AP *�� !AR *�R �MP !MR

MP � AP *�� � X �M� ��� ��

MR � AR *�R � �
�X� �M� ��� ���

We use factor X to split the damper moment into a part MP that acts on the plat	
form and another partMR that acts on the rotor� X can assume the following values�

X � � a motor moment accelerates the rotor and decelerates the platform�

X � � the platform is not damped� or a motor keeps �� constant�

� � X � 
 both parts of the satellite use nutation dampers� platform and rotor�

X � 
 just the platform dissipates energy� the rotor is a rigid body�

X � 
 bearing friction brakes the rotor and accelerates the platform�

The mechanical energy of the dual	spin satellite is given by the following equation�

�E � AP ��
� !AR ��

R ! B ���
� ! ��

�� ��� ���

For stability E must be a declining function of time� otherwise the satellite needs
active nutation dampers� The time derivative of the energy *E is determined by�

*E � �� MP ! �R MR ! �� M� ! �� M�

� Cdamper � ���
� ! ��

�� �
�B �X �� ! �
�X� �R�

AP �� !AR �R
� 


�
��� ��

For stability with passive nutation dampers it is required that the expression in square
brackets is smaller than zero� thus� �AP �� !AR �R� � B � �X �� ! �
�X� �R��

A satellite with AP ! AR � B �the oblate dual	spin satellite� is probably stable�
More important in practice is the prolate dual	spin satellite� where AP !AR � B�
When the nutation dampers are mounted on the platform�X � 
 and �R � constant�
It follows as the criterion for passive stability that �AP �� ! AR �R� � �B ����
The satellite will be stable if the rotor is spinning much faster than the platform
��R �� ���� If the nutation dampers were mounted on the rotor �X � ���
the satellite would be unstable� For passive stability of a prolate dual	spin satel	
lite it is required that the rapidly spinning rotor dissipates the energy at a lower rate
than the slowly spinning platform� The rotor of the dual	spin satellite should be a
rigid body� and the platform should be equipped with nutation dampers�
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���� Three�Axis Stabilization

When it is not desired that the satellite rotates� it needs another stabilization method�
The attitude control and stabilization system of the satellite must be able to generate
appropriate external control moments� In space� aerodynamic �ns do nearly not
work anymore� and the gravity force is not available on board of a space vehicle�
To generate control moments� orbiting satellites use sometimes the interaction of the
earth�s magnetic �eld with on	board electro	magnets �so	called �magnetorquers���
but the usual method to exert external moments on the satellite is use of small
thrusters� which involve the disadvantage of propellent consumption� To avoid that
propellent is constantly expended while the control thrusters stabilize the attitude of
a satellite� the control system uses additionally internal moments generated by fast
rotating gyros �momentum wheels�� These wheels reduce the demand for attitude
stabilization propellent considerably �but they cannot eliminate it entirely�� The
method of attitude control by momentum wheels is called �three axis stabilization��

����� The Gyroscope Wheel

Moment of inertia� Momentum wheels in gyroscopic instruments are fast	rotating
symmetrical disks� These wheels behave surprisingly� when we pivot the spin axis�
the wheel reacts with a moment �or motion� in an unexpected direction�

We can describe the power of inertia of a
�ywheel using a matrix notation of a body	
�xed principal axis coordinate system ��	����
Assume that the �ywheel has the mass M
and the shape of a cylindrical disk� with the
radius R and the thickness 
� Then A is the
moment of inertia for rotations on the 
	axis
�the axis of symmetry�� and B is the moment
of inertia for rotations on the �	axis and on
the �	axis� These terms can be written as�

A �
MR�

�
��� 
�

B �
M

�
�R� !


�

�
�

�ywheel of a gyroscope




R

M

Mass elements which are distant from the spin axis contribute more to the mo	
ment of inertia than mass elements which are near to the spin axis� When weight
saving is important� we will try to remove mass from the inner part of the wheel
�for example� the white regions in the �gure above�� Then we have to correct the
equations ��	
� appropriately �when removed parts of the wheel have also the shape
of a cylindrical disk� we may use the same law and subtract the rotational inertia��
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Balancing of wheels� Before we analyze the complicated behaviour of gyroscopic
wheels in detail we have to study their shape and mass distribution� A fast rotating
gyro wheel should not exert periodic forces or moments on the bearings� We say
that a wheel is in an unbalanced state when its rotation about a �xed axis causes
unwanted vibrations� A wheel is �statically unbalanced� when its center of mass is
not located on the rotation axis� Consider the case that the wheel �mass M� rotates
on an axis parallel to the 
	direction of the principal axis body frame of reference�
The displacement is x�� and the moment of inertia � is bigger for rotations about Q
than it is for rotations about the center of mass M � We can use the equations ��	��

and ��	�� to calculate the linear momentum �V and the angular momentum vector �H�

�V � M�vM �

�
 �
M��x�

�

�
A ��� ��

�HQ � �Q � �� �

�
 �A!Mx��� ��

�
�

�
A

�HQ

��
�V

�vM

�F

x�

1

2

3

Q

Mrotational
axis

Both� �V and �H� are constant vectors with respect to the body frame of reference�
but while the angular momentum �H does not change with respect to inertial space�
the linear momentum �V rotates� The change of the linear momentum is equivalent
to a periodical bearing force �F that acts on the wheel� The wheel vibrates� it does
not run concentrically� To avoid these oscillations� we have to �statically balance�
the wheel and observe that the center of mass is located exactly on the rotation axis�

A wheel is �dynamically unbalanced� when the rotation axis is not parallel with the
direction of a principal axis of its body frame of reference� Now we consider the case
that the wheel rotates about the center of mass M � but the �xed rotation axis is
inclined with respect to the 
	direction ��� � ���� �� ��� � constant� with �� �� ����

�HM � �M � �� �

�
A ��

�
C ��

�
A ��� ��

�MM � �� � �HM �

�
 �

�A� C� ����
�

�
A

�H

��

��

��
�M

1

2

3

M
rotational
axis

The angular momentum �H is still a constant vector in the body frame of reference�
However� �H changes with respect to inertial space� We may conclude that the wheel
requires for the motion the moment �M �exerted from the bearings on the wheel��

When A � C� the bearing moment �M aims into the positive �	direction of the body
frame of reference� The moment �M is zero when A � C and negative when A � C�
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The case A � C corresponds to an oblate wheel �a disk�� where the main share of
the mass is located near the �	� plane� The case A � C� however� corresponds to a
prolate wheel �a stick�� where the main share of the mass is located near the 
	axis�
Centrifugal forces act on all mass elements of the rotating wheel� These centrifugal
forces cause a moment on the wheel when the spin axis is not exactly parallel with the

	direction of the body frame of reference� Due to shaft �exibility and bearing slack	
ness we can assume that the spin axis is never perfectly aligned with the 
	direction�
Then the oblate rotor with A � C is better conditioned for an application as gyro
wheel than the prolate rotor� the centrifugal forces act in a way that they try to
adjust the 
	direction with the spin axis� In case of a prolate rotor the centrifugal
forces try to deviate the 
	direction� and the rotor runs unsteady causing vibrations�

The symmetrical gyroscopic wheel� We talk about a symmetrical rotor when
two of its principal moments of inertia are the same� for example A � B � C�
This is the case when the body has a rotationally symmetrical mass distribution�
Flywheels of gyroscopic instruments are nearly always oblate symmetrical rotors�

To understand why symmetrical �ywheels have better true running qualities we con	
sider the case of an asymmetrical rotor� with A � B � C� The rotor rotates on its
body	�xed 
	axis� additionally we pivot the rotation axis in a way that the rotor
executes a precessional movement in the horizontal plane� The rotation velocity ��
of the rotor is a constant vector in the body frame of reference� while the precession
velocity �p is a constant vector with respect to inertial space� Term t is the time
coordinate� vector �p rotates with the angle ���t� in the body frame of reference�
There the rotation vector takes the form of �� � ���� �p sin���t�� �p cos���t��� Thus�

�H � � � �� �

�
 A ��
B �p sin���t�
C �p cos���t�

�
A ��� ��

�M �

�
 �C � B� ��

p sin���t� cos���t�
�!A� �C � B�� �p�� cos���t�
��A� �C � B�� �p�� sin���t�

�
A

��t

��

��

�p
1

2

3

Mrotational
axis

vertical line

horizontal line

To �nd the bearing moment �M� we have to di�erentiate the angular momentum
vector �H with respect to inertial space� Since �H is not a constant vector in the body
frame of reference� we have to consider both� relative changes and changes which
come from the rotation of the coordinate system� The dynamical Euler equations
�relationships �	�
� apply directly to the problem� We can observe that the notation

of the moment �M simpli�es substantially when a symmetrical rotor is used �B � C��
Only then the motion of the rotor generates a non	vibrating horizontal moment M
�M � A �p �� aims always in a horizontal direction� rectangular to the spin axis��
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����� The Gyro as Sensor

The gimbal frame of reference� The �body frame of reference� is appropriate to
analyze the motion of rigid bodies� However� it involves the disadvantage that some
vectors� which are actually constant with respect to the bearings� rotate rapidly in
the body	�xed system �compare equation �	��� We can avoid this problem when
we use another coordinate system� We will call it �gimbal frame of reference� since
it is �xed with respect to the gimbal mounting of the gyroscope� Like the principal
axis body frame of reference� its 
	direction is always aligned with the spin axis of
the symmetrical rotor �A � B � C�� but in contrast to the body	�xed system� the
�	direction does not rotate� The �	direction of the gimbal frame of reference remains
horizontally� The wheel can be pivoted about the vertical axis �Cardan angle ��
and about the horizontal axis �Cardan angle � � by turning the gimbal�� it rotates
on the 
	axis �Cardan angle ��� Thus� the gimbal frame of reference assumes always
the same orientation as the wheel� the only exception is that it does not execute
the rotation on the 
	axis� Now we have to consider two di�erent angular velocities�
vector ��gyro of the wheel and vector ��system of the gimbal frame of reference�

��gyro �

�
 *� sin� ! *�

� *�
*� cos�

�
A ��� ��

��system �

�
 *� sin�

� *�
*� cos�

�
A ��� ��

�compare equation �	���

*�

*�

*�

The dynamical Euler equations ��	��� do not apply anymore� since ��gyro and ��system
are di�erent vectors� The angular momentum �H �equation �	��� takes the form of�

�H � � � ��gyro �
�
A � �

� B �
� � B

�
A �

�
 *� sin� ! *�

� *�
*� cos�

�
A ��� �

Advantageously� the symmetrical wheel with C � B allows us to use the gimbal frame
of reference� since here the matrix of inertia � is invariant when the wheel rotates on
the spin axis �compare equation �	���� To �nd the moment vector �M� we have to

apply relationship ��	�
� and di�erentiate �H with respect to inertial space� Therefore�

�M �
d

dt

�
A� *� sin� ! *��

�B *�
B *� cos�

�
A!

�
 *� sin�

� *�
*� cos�

�
A�

�
A� *� sin� ! *��

�B *�
B *� cos�

�
A ��� ��

This time the components of �M refer to a notation of the gimbal frame of reference�
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As �nal result we get the di�erential equations of motion for the symmetrical wheel�

M� � A d

dt
� *� sin� ! *�� ��� ��

M� � �B �� !A� *� sin� ! *�� *� cos� � B *�� sin� cos� ��� ���

M� � B �� cos� � �B *� *� sin� !A� *� sin� ! *�� *� ��� �
�

Moment of constant precession� The �rst case which we want to consider is
the locked	up gimbal� The gimbal is not allowed to move with respect to the �	axis�
but it senses a moment �M ��output�� as function of the angular rate *� ��input���
Furthermore� we will assume that the spin rate �� � *� is constant� The notations for
�H �equation �	� and for �M �equation �	�� simplify considerably when � vanishes�

�H �

�
A ��

�
B *�

�
A ��� ���

�M �

�
 �
A �� *�
B ��

�
A ��� ���

*� � �

*�

*�

B ��

A�� *�
B *�

A��

�H
�M

When the �ywheel spins rapidly ��� �� *��� the input rate *� produces a pro	
portional gyro moment �M� � A�� *�� exerted from the bearings on the rotor��
The countervailing bearing moment acts in �	direction� it prevents that the �ywheel
puts up its spin axis into upright position� The rotor tries to align its spin direction ��
with the direction of the forced motion ��� It is remarkable that the input rate *�
has no in�uence on the spin velocity ��� Astonishingly� a constant rate *� requires
a constant moment in �	direction� but not a moment in �	direction� Just when the
input rate *� accelerates� a bearing moment appears also in �	direction �M� � B ����

The rate gyro� We can use the gyroscopic e�ect to build an instrument for mea	
suring the angular rate *�� The usual way to indicate the moment M� is to use a
spring	damper mechanism on the �	axis� This allows rotational motions on the �	axis�
however� we will assume that the angle � remains small �sin� � � � cos� � 
��
We learn from equation ��	�� that the angular rate �� � *� sin� ! *� is constant
�provided that no moment M� accelerates or brakes the �ywheel�� When the �y	
wheel spins rapidly� �� � *� � and we can neglect term � *� sin�� in equation ��	����

M� � Cspring �� ! Cdamper � *� � �B �� !A�� *� ��� ���

The bearing moment M� is exerted by a spring �constant Cspring� proportional to

the displacement � and by a damper �constant Cdamper� proportional to the rate *� �
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Now our objective is to �nd appropriate values for the constants Cspring and Cdamper�
The spring in�uences the sensitivity of the rate gyro� the damper diminishes periodic
oscillations� When the motion is excited by an instantaneous change of the rate *�
�a step function or an exciting impulse�� the response value � should reach its new
equilibrium state as soon as possible �without overswinging or slow creep speed��

The angle � behaves like a harmonic oscillator� excited by the function A �� *��
We �nd the general solution to this type of di�erential equation ��	��� by the
superposition of the solution to the homogenous form �without excitation function�
with one particular solution to the inhomogenous form �with excitation function��
The equilibrium state �equilibrium is reached when *� and �� vanish� Therefore�

Cspring ��equilibrium � A �� *� ��� ���

Mathematics shows that the solution to the homogenous form of equation ��	��� can
accept three di�erent forms� a periodic damped oscillation when the damping is low�
and an exponentially declining curve when the damping is high� Both solutions are
not appropriate for our purpose� What we want is the intermediate third form� a fast
declining function without overswinging� For this case the damper constant is�

Cdamper �
p
�B �Cspring ��� ���

The problem is the correct adjustment of the constant Cspring� The gyro is sensitive
when we use a soft spring� but then the output angle � exceeds the allowed limit
for large input rates *� �the gyro is said to be �saturated��� When we use a strong
spring� the instrument is less sensitive but can tolerate larger input rates�

The integrating rate gyro� As the next case we consider that spring and damper
are removed from the bearings of the rate gyro �M� � ��� Now the displacement �
is not small any more� but �� � � *� sin� ! *�� is still constant if M� equals zero�
We can observe thatM� � A �� *� � constant� � � constant is a particular solution�
describing a precession on the �	axis with constant rate �precession � M�	�A ����

Equation ��	��� serves to �nd the �output� rate *� as function of the �input� rate *��
and equation ��	�
� serves to �nd the moment M� that is required for the motion�
When *� is constant� we can readily integrate equation ��	���� We assume the initial
state without any precessional movement �� � �� *� � �� and �nd�

*� �

q
� �A	B� �� *� sin� � *�� sin�� ��� ��

The result is a nonlinear rotation velocity *� � When the �ywheel rotates rapidly�
the output rate *� can be much higher than the input rate *�� Again� the rotor
tries to align its spin direction �� with the direction of the forced angular motion *��
The instrument becomes a so	called �integrating rate gyro� when we consider the
displacement angle � as the output� Angle � is now a direct function of angle ��
provided that the gyro executes no precessional movement at the initial state�
The range for measuring � is limited� since the gyro is saturated when � � �����
A damper on the �	axis can reduce the sensitivity of the instrument�
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The attitude reference gyro� Now we add a second �outer� gimbal to the gyro
to enable it to rotate also about the vertical direction� We know that the gyro must
conserve the length and direction of its actual angular momentum �H when no bearing
moments �M act on the rotor� Equations ��	��� ��	��� and ��	�
� con�rm the trivial
solution � *� � constant� � � constant� � � constant � for a fast	rotating �ywheel�

However� the gyro is also able to execute another movement that is called �nutation��
The preconditions for this motion are certain initial condition� When �M � �� the
rotation velocity vector �gyro accepts the following solution �compare equation �	���

��gyro �

�
 *� sin� ! *�

� *�
*� cos�

�
A �

�
 ��
� *�max � sin��A	B � 
���t! ��
! *�max � cos��A	B � 
���t! ��

�
A ��� ���

Term �� is the constant component of the rotation vector in 
	direction� term *�max

is the amplitude of the oscillation �the maximum value of the angular velocity *���
The nutation frequency of a fast	rotating wheel is approximately �nutation � �� �A	B
�assuming ��t � ��� The nutation velocity is proportional to the spin velocity ���
in contrast to the precession velocity which is inversely proportional to ���

Now we consider the motion of the
arrow head of the unit vector in the
body	�xed 
	direction� Term �	 *��
is the velocity in �	direction ��north	
south��� term � *� cos�� is the velocity
in �	direction ��east	west��� The ve	
locity in 
	direction equals zero� The
arrow head rotates about a certain axis
�xed in inertial space� its motion is ex	
actly a circle� The axis that is �xed in
inertial space has the direction of the
angular momentum vector �H�

*�

*�

*�

�H

In practice� the application of the double gimbaled gyro as a direction reference in	
strument involves serious problems� The direction of the angular momentum is not
�xed with respect to inertial space� unfortunately� but it drifts slowly� First� in prac	
tice it is impossible to produce the gimbal bearings completely without any friction�
A small rest bearing friction will cause the gyro to execute a precessional movement�
Second� the center of mass of the rotor must be located exactly on the intersection
point of the gimbal bearing axes� otherwise acceleration �or gravity� moments let the
gyro drift� Third� also the mass of the gimbals cannot be neglected� When we con	
sider the moments of inertia of the gimbals in the calculations� we �nd that now the
nutation is not exactly a circular motion anymore� The reason for this drift e�ect is
that� in the gimbal frame of reference� the moment of inertia of the outer gimbal� with
respect to �east	west� movements � *� cos��� depends on the actual �north� value � �
Even a very precise gyro can just be used as attitude reference for a short time period�
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The inertial platform� The uncertain double	gimbaled attitude reference gyro is
not used in astronautics� With precise rate gyros it is possible to measure on	board
the components of the rotation velocity ��� The computer of the attitude control
system �nds the actual attitude of the vehicle �determined by Euler angles ��� �� ��
or Cardan angles ��� � � �� alternatively� by the �real	time� numerical integration of
the �kinematical Euler equations� ��	���� This method is called �strap	down inertial
navigation�� The attitude must be well	known at the initial instant and has to be
updated in certain time intervals� Since the output values of the rate gyros are never
perfectly accurate� the attitude reference of the inertial navigation system will also
drift� Update information is necessary particularly for long space missions �provided
by �horizon crossing sensors�� �star trackers�� �sun acquisition sensors� and so on��

Strap	down navigation systems have now more or less replaced old	fashioned inertial
platforms� The modern �strap	down� navigation system uses gyros which are �xed
with respect to the vehicle� the attitude of inertial reference ��platform�� is calcu	
lated by a computer� The old	fashioned inertial navigation method uses real physical
platforms� Such a gimbaled platform stabilizes its attitude by actuators in the gimbal
bearings� using the input signals of precise rate gyros on the platform �the actuators
control the attitude of the platform in a way that the angular velocities measured
by the rate gyros are zero�� The inertial platform is a complex technical instrument�
Its only advantage� in comparison with modern strap	down systems� is that it does
not need a digital computer� the inertial attitude is given directly by the platform�

The laser�gyro� The employment of rate gyros is not the only way to sense the
angular motion of rotating objects� so	called �laser	gyros� use the constant velocity
of light� �solid state gyros� use the in�uence of the Coriolis force on a rotating
mechanical resonator� Particularly interesting for space applications are laser	gyros�
They have actually nothing to do with mechanical gyros� except for the fact that they
are also used to measure angular velocities� As an optic	electronic device the laser
gyro is considered as more accurate and more reliable that the mechanical rate gyro�
A light beam �rotates� inside the light path of a laser gyro� via a triangular tube with
mirrors as corner re�ectors �ring	laser gyros� or via an optic coil ��ber optic gyros��

Two contra rotating beams of coherent
laser light are transmitted around the
light path� both light beams travel in op	
posite direction with the velocity of light
and complete one rotation in exactly the
same time interval� but when the laser
gyro rotates on an axis orthogonal to the
light path� transmitter and sensor are
displaced during the travel time and the
travel distance is not the same anymore�
The di�erence in the arrival time is ex	
tremely short� but it can be measured
accurately using a laser light phase shift�
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����� The Gyro as Actuator

Gyrostabilizers� Up to now we considered the gyro as a small sensor� small in
comparison with the size of the spacecraft� The motion of the spacecraft had an e�ect
on the gyro� but the inertia of the gyro did not in�uence the motion of the spacecraft�
Especially when the gyro is big� this is not true anymore� then the inertia of the gyro
in�uences the motion of the spacecraft� When the gyro runs concentrically on the
spin axis� it has the angular momentum �H � A � ��spin� where term A is the moment

of inertia� The angular momentum �H is aligned with the spin axis ��spin� We have
seen that the gyro reacts di�erently on torques� when the torqueMaligned acts in the
direction of the spin axis� it accelerates �or decelerates� the spin rate� but when the
torque Morthogonal acts in a direction orthogonal to the spin axis� the gyro reacts
with a slow precessional rotation� The motion �precession happens in a way that
the rotating gyro tries to align its spin axis with the direction of the external torque�
Using mathematical relationships� we can formulate this typical behaviour as follows�

��t�spin �

Z t

�

Maligned

A dt ! ����spin ��� ���

��t�precession �
Morthogonal

A � �spin ��� ���

When a satellite is equipped with a fast	rotating momentum wheel� it �inherits�
this typical gyroscopic behaviour� On orbit the satellite is always exposed to small
external moments �a remainder of drag� light pressure� irregular gravity and so on��
Without gyro the original attitude of the spacecraft would soon drift away� and the
satellite would start tumbling� but a gyro inside the satellite stabilizes the attitude�
When the moment acts in a direction orthogonal to the spin axis it causes a drift of
the attitude� However� the attitude drift is very small and the displacement angle
is proportional to the time interval of the perturbation� When the moment acts in
direction aligned with the spin axis it causes a rotation of the satellite� However�
it is easy to exchange angular momentum between the �ywheel and the satellite�
A controlled drive motor can stop the rotation and pivot the satellite about the spin
axis of the gyro to any desired orientation� The method of controlling the attitude
of a spacecraft by a single momentum wheel is called �one axis stabilization��

The gimbaled actuator gyro� A fully gimbaled gyro can control the satellite�s
attitude in all directions� provided that the bearings are equipped with servomotors�
The principle is easy� the angular momentum conservation law tells us that the entire
angular momentum of satellite and gyro together is constant in time when no external
moments act on the satellite� The servomotors can exchange angular momentum
between satellite and wheel and damp down nutational motion� So� assuming that
the satellite stops moving at the initial and at the �nal time of an attitude changing
maneuver� direction and length of the angular momentum vector of the wheel are
exactly the same before and after the maneuver� When the maneuver is executed
slowly� the angular momentum of the satellite can be neglected� Then the wheel keeps
the length and the direction of its angular momentum during the entire maneuver�
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Satellite attitude maneuver� A satellite will change its attitude when a gyro is
turned inside the satellite� Assume that the satellite is in rest� the working machine
is a fast rotating fully gimballed gyro with servomotors in all gimbal bearings�
Our objective is to generate a rotation of the satellite about the vertical direction�
Conveniently we use a �gimbal frame of reference� for the analysis� its attitude

is determined by the Cardan angles
� �not with respect to the satellite
but with respect to inertial space�
and � �with respect to the horizon��
The symmetrical �ywheel has the
moments of inertia A for rotations
on the symmetry axis �
	direction�
and B for rotations orthogonal to
the symmetry axis� To initiate the
motion� the gyro must generate a
momentM about the vertical axis�

�M �

�
M�t� sin�

�
M�t� cos�

�
A ��� �
�

*�

*�

*�

�M

Vector ��	�
� determines the torque exerted from the servomotors on the �ywheel�
We consider that the torque vector is aiming upwards� the satellite will start to
rotate into �west direction� �with a rotation velocity vector aiming downwards��
Obviously� just the servomotors for the 
	axis and for the �	axis must drive the wheel�
the horizontal moment vanishes� Equations ��	�� to ��	�
� apply to the problem�
When the wheel spins rapidly� the spin rate �� is much higher than the rates *� and *� �
and the terms B *� and B *� can be neglected in comparison with the term A���
Then a simpli�ed equation system follows from the equations ��	�� and ��	�
��

M�t� sin� � A � *�� ��� ���

M�t� cos� � A � �� � *� ��� ���

The solution to the equation system is�

A �� cos� � constant ��� ���

M�t� � A�� cos� d�tan��	dt ��� ���

d �H

dt

A�� cos�
�

�H

�M�t�

Term A�� cos� is the horizontal component of the angular momentum vector �H�
termM�t� � d �H	dt is the variation of the angular momentum vector in time� At the
beginning of the motion �� � �� the gyro reacts on the torque with a comparatively
slow precession� It puts its spin axis upwards� without changing its spin rate� When
the gyro comes to its saturation point �� � ���� it stops the precessional movement�
Then the gyro must speed up its spin rate to exert a moment about the vertical axis�
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However� our objective was to turn the satellite� not to exert a moment about the ver	
tical direction for an in�nite time interval� Therefore we just have to generate a verti	
cal torque for a short time period� We can stop the precession of the gyro early before
it reaches the saturation point� Then the gyro keeps its orientation while the satellite
rotates �� � ��� To stop the rotation of the satellite� we simply have to turn the gyro
back to its original orientation �� � ��� The �gimbal frame of reference� accepts
the same orientation with respect to inertial space before and after the maneuver�

Finally� we want to evaluate equation ��	��� to �nd the relationship between the
angles � and � � When � is constant and *� is zero� then the precession rate *� is
also constant and the motion is exactly determined by the equations ��	��� and ��	����
However� the servomotors can control the gyro in a way that it also oscillates slightly
about the vertical line� Since term A�� cos� is constant and term B *�� sin� cos� is
negligibly small� we can integrate equation ��	��� and conclude in an approximation�

B � *� � �A��� � � ��� ���

Term A�� is the length of the angular momentum vector at the beginning of the ma	
neuver� when the gyro spun concentrically on the horizontal line �� � � and *� � ���
Equation ��	��� con�rms that the angle � remains small during the whole maneuver�

The reaction wheel� The application of gimballed bearings for rapidly rotating
gyros is not unproblematic in space �an attitude control system that uses gimballed
gyros is not very reliable�� Gimbals can be avoided when several �ywheels are used�

The working principle of reaction wheels is quite simple� Regard a satellite and
consider that the reaction wheel mounted inside the satellite is initially in rest� When
a servo	drive starts rotating the wheel� the wheel builds up an angular momentum�

The satellite must begin to rotate
on the same axis into the oppo	
site direction� to cancel out with
its angular momentum the angular
momentum of the wheel� When the
attitude change maneuver is com	
pleted� the servomotor must brake
down the rotation of the wheel� and
the satellite stops simultaneously�
Finally� satellite and reaction wheel
are in rest again�

At least three reaction wheels are necessary to provide control about all three axes�
It is not necessary that the three operative rotation axes are mutually perpendicular�
Often� the attitude control system of a satellite employs more than three wheels to
increase the reliability by redundancy� For example� four wheels can be mounted in
such a way that their axes form a pyramid	like con�guration� When one of the four
wheels fails� the operative wheels are still capable to control the satellite completely�
Problematic lubrication limits the life time of reaction wheels to ten years� typically�



� ASTRONAUTICAL ENGINEERING

The momentum wheel� A rapidly rotating reaction wheel becomes a momentum
wheel� Like the reaction wheel� the momentum wheel can be used to generate a con	
trol torque about its rotation axis by a servo	motor which accelerates or decelerates
the wheel� Additionally� an angular momentum vector is associated with the rapidly
rotating wheel� it stabilizes the direction of the rotation axis� When a satellite is
controlled by a single momentum wheel ��one axis stabilization��� it behaves simi	
lar to a dual	spin satellite� one axis is stable with respect to inertial space� and an
actuator can turn the satellite about this axis utilizing the inertia of the wheel�

The situation is similar when a satellite is controlled by several momentum wheels�
Consider the case that three wheels are mounted on mutually perpendicular axes�
We �nd the entire angular momentum �H when we add the three individual angular
momentum vectors of the wheels and the angular momentum vector of the satellite
�reference point should be the center of mass of the satellite�� When the external
torque that acts on the satellite equals zero� the angular momentum law states
d �H	dt � �� It tells us that the entire angular momentum vector keeps its direction
and length with respect to inertial space� Assume that the satellite is in rest while
the wheels are rotating� The wheels stabilize the axis of the angular momentum
vector� When we want to turn the satellite on the �	axis� we have to alter the spin

rates of the wheels on the �	axis
and on the 
	axis� observing that
the length of their combined angu	
lar momentum remains constant all
the time� For example� a turn of the
satellite on the vertical �	axis into
�west	direction� requires a reduc	
tion of the spin rate of wheel � and
simultaneously a raising of the spin
rate of wheel 
� A slight reduction
of the rate of wheel � is also nec	
essary during the maneuver� when
the satellite turns rapidly and builds
up its own angular momentum�

H�

H�

H�

Unloading of momentum wheels� Reaction momentum wheels are sensitive ac	
tuators� In contrast to attitude control thrusters they have not the unwanted charac	
teristic of a permanent propellent consumption� Unfortunately� they cannot eliminate
the need of propellent consumption entirely� wheels become faster and faster when
they neutralize a perturbation torque that acts all the time in one predominant di	
rection� When the wheels arrive at their saturation rate� they have to be �unloaded��
During a �momentum wheel unloading maneuver� the spin rate of the gyros is re	
duced while control thrusters hold the attitude of the satellite� In earth orbit� electro
magnets are able to generate small torques� When a three	axis stabilized satel	
lite is orbiting on a low earth orbit� magnet	torquers can perform the unloading of
the wheels� Then it is not at all necessary to consume propellent for attitude control�
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���� Gravity Gradient Stabilization

Rotation period and orbital period are identical for some natural satellites in the
solar system �for example our moon or planet Mercury�� The rotational motion is
coupled with the translational motion in a way that an observer on the surface of the
earth sees always the same side of the moon� Up to now we have treated the attitude
dynamics of satellites as perfectly independent of their orbital mechanics� However�
particularly when a satellite is very big and has not a spherical shape� there is a small
interaction between the orbit and the attitude� the orbital period is not exactly the
same as the orbital period of a mass particle� and the attitude is in�uenced by a small
torque which comes from the gradient of the central gravitational �eld� The rotational
motion of big satellites is coupled with the orbital motion� Even though the inter	
action is extremely small� it can be used for the attitude stabilization of large space
stations� This method of attitude control is called �gravity gradient stabilization��

��	�� The Motion of a Gravity Gradient Satellite

Attraction in the central gravitational �eld� Consider a satellite that moves on
a circular orbit in the central gravitational �eld of a celestial body� The gravitational
acceleration is inversely proportional to the square of the distance to the center of
the attraction� When we use a coordinate system where the �	axis is aligned with
the velocity vector and the �	axis aims towards the gravitational center� we can write�

��orbit �

�

p
�	r�orbit
�
�

�
A ��� ��

�vorbit �

�
 �p

�	rorbit
�

�
A ��� ���

�gorbit �

�
 �

�
�	r�orbit

�
A ��� ���

�gorbit

�vorbit

��orbit

rorbit

center of
gravity

2
1

3

Term rorbit is the distance to the gravitational center� term � is the gravity constant�
Rotation velocity ��orbit� translation velocity �vorbit and gravitational acceleration
�gorbit form a �right	hand� frame system �the vectors are perpendicular to each other��
The expression �gorbit	gorbit is the unit vector that aims at the gravitational center�
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Let us now consider what happens to a
satellite that has the form of the masses
which weight	lifters use� When the
satellite consists of two equal masses
P and Q� its center of mass M �in
the middle of the straight line between
the two weights� moves on the circular
orbit� Weight P �nearer to the gravita	
tional center� is a little more attracted
than weight Q� and weight P experi	
ences a slightly lower centrifugal force
than weight Q� The result is a torque
that tries to adjust the orientation of
the elongated satellite with the direc	
tion towards the gravitational center�
Our next objective is to calculate the
torque on the satellite that comes from
the small variation in the gravity �eld�

�gorbit

gQ �
gorbit

gP �
gorbit

%rorbit

Q

M

P
�xP

�xQ

to the center
of gravity

The gravity gradient vector� We �nd the gradient of a vector �eld when we
di�erentiate the �eld with respect to directions coordinates� the gradient determines
with its length and its direction the maximum increase of the �eld� The gradient
of the gravitational acceleration �	r� aims at the gravitational center and has the
length ��	r�orbit or � �

�
orbit� However� the spacecraft moves on a circular orbit where it

experiences the centrifugal acceleration v�	r� The gradient of the corresponding at	
traction has the length v�orbit	r

�
orbit or �

�
orbit and aims also at the gravitational center�

The gravity gradient torque� The di�erence in the attraction between point P
and the center of massM �or between point Q and M respectively� can be calculated
using the magnitude of the gravity gradient vector� The di�erence %gP is approxi	
mately the distance %rorbit �added or subtracted� multiplied with the length of the
attraction gradient vector � ��

orbit� We �nd the distance %rorbit of point P when
we form the scalar vector product of the vector �xP �the vector which locates P with
respect to M� and the unit vector in direction of the gravitational center �remem	
ber that the scalar �dot� vector product yields the product of the lengths of the two
vectors� multiplied by the cosine of the angle between them�� Therefore we can write�

%gP � � ��
orbit �%rorbit ��� 
���

%rorbit � �xP � �gorbit	gorbit ��� 
�
�

Let us now treat the variation of the attraction as a vector %�gP � %gp � �gorbit	gorbit
that aims at the gravitational center �or away from it�� The concerning torque is�

�M �

Z
M

��xP �%�gP � dM �
� ��

orbit

g�orbit

Z
M

��xP � �gorbit � ��xP � �gorbit�� dM ��� 
���

We �nd the entire torque M that acts on the satellite �mass M� by integration�
considering the torques �x�%�g of all the mass elements dM of the whole satellite�
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Equation ��	
��� involves the rotation velocity �orbit of the satellite orbit and the
unit vector �gorbit	gorbit that aims at the gravitational center� The integral of all mass
elements dM �located by vector �xP � can be solved when we consider the satellite as a
rigid body and use the conditional equations for the elements of the matrix of inertia�

� �

�
A F E
F B D
E D C

�
A ��� 
���

The diagonal elements� A�
R
M
�x��!x

�
��dM � B�

R
M
�x��!x

�
��dM � C � R

M
�x��!x

�
��dM

and o�	diagonal elements� D�� R
M
x�x�dM � E �� R

M
x�x�dM � F �� R

M
x�x�dM

make use of the location vector �xP � �x�� x�� x�� to locate a mass element dM at P �

When we write the gravity acceleration vector as �gorbit � �g�� g�� g��� then we have
�xP��gorbit � �x�g��x�g���x�g�!x�g�� x�g��x�g��� �xP ��gorbit � x�g�!x�g�!x�g��
The vector form of equation ��	
��� for the gravity gradient torque becomes �nally�
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g�orbit

Z
M

�
 g�g��x

�
� � x��� ! x�x��g

�
� � g��� ! x�x�g�g� � x�x�g�g�

g�g��x
�
� � x��� ! x�x��g

�
� � g���� x�x�g�g� ! x�x�g�g�

g�g��x
�
� � x��� ! x�x��g

�
� � g��� ! x�x�g�g� � x�x�g�g�

�
A dM

�
� ��

orbit

g�orbit

�
 g�g��C � B��D �g�� � g���� F g�g� ! E g�g�
g�g��A� C�� E �g�� � g��� ! F g�g� �D g�g�
g�g��B �A��F �g�� � g���� E g�g� !D g�g�

�
A ��� 
���

As a vector equation� the de�nition ��	
��� is valid in every coordinate system�
but when we resolve the vector equation to get the component notation ��	
����
we have to decide us for a certain coordinate system� When we use a body frame
of reference� the elements of the matrix of inertia ��	
��� are constant in time�
When we use a principal axes body frame of reference� the notation for the gravity
gradient torque vector becomes particularly simple� Nearly always a principal axis
body frame of reference is used for the analysis of gravity gradient satellites �remem	
ber that in a principal axes body frame of reference the diagonal elements A� B and C
are extremes while the o�	diagonal elements D� E and F are zero�� Then we can write�

�M �
� ��

orbit

g�orbit

�
 g�g��C � B�
g�g��A� C�
g�g��B � A�

�
A ��� 
���

The order of magnitude of the gravity gradient torque can be compared with the
gyroscopic torque ���������� assuming that the satellite rotates slowly with a rotation
velocity � that is similar to rotation velocity of the orbit �orbit� The gravity gradient
torque cannot be neglected for earth orbiting satellites� It can mean a burden for the
active control system of a satellite that has to accept a certain de�ned attitude with
respect to inertial space �for example a large telescope or a space station with �xed
solar arrays�� On the other hand� the gravity gradient torque is useful to stabilize
the attitude of a space station with respect to the direction towards earth�
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Equations of motion for the gravity gradient satellite� When we insert the
gravity gradient vector ��	
��� into the dynamical Euler equations ��	���� we �nd�

A *�� ! �C � B� ���� � � ��
orbit�C � B�g�g�	g�orbit

B *�� ! �A� C� ���� � � ��
orbit�A� C�g�g�	g�orbit

C *�� ! �B �A� ���� � � ��
orbit�B � A�g�g�	g�orbit ��� 
���

This �rst order di�erential equation system involves two vectors� �� �the rotation
velocity vector of the satellite� and �gorbit	gorbit �the unit vector that aims at the
gravitational center�� In order to use these vectors in the equation system ��	
����
we have to resolve them into a component notation of the body frame of reference�
In the body	�xed coordinate system� however� the direction of the gravitational at	
traction depends on the actual attitude of the satellite� Therefore it is necessary
that we determine the actual attitude of the satellite with respect to the orientation
of another coordinate system� where the direction of the gravity vector is well	known�

We will call this other coordinate
system �orbit frame of reference��
Its �	axis aims always at the cen	
ter of gravity� its �	axis is always
aligned with the translational ve	
locity of the satellite� The �orbit
frame of reference� is not an iner	
tial system� since it rotates slowly
on the 
	axis �the rotation veloc	
ity of the system is exactly �orbit��
We will use the Cardan angles ��
� and � to specify the attitude of
the �body frame of reference� with
respect to the well	known attitude
of the �orbit frame of reference��

�

*� *� *�

��orbit

�

�

1

3

2

relative
rotation
velocity:

rotation
velocity
of the orbit:

2

3

1

orbit

orbit

body

body

body

orbit

to the center of
gravity

translational velocity

The component notation of a vector in the �orbit frame of reference� �xorbit can be
transformed to the corresponding component notation in the �body frame of refer	
ence� �x by multiplication with the following transformation matrix� We can �nd
this matrix by a geometrical analysis� or we can take it from books on gyro dynamics
�a description of coordinate transformations is given in the chapter four of this book��

�x�

�
 cos�cos� sin�cos� sin�
�sin�cos��cos�sin�sin� cos�cos��sin�sin�sin� cos�sin�
sin�sin��cos�sin�cos� �cos�sin��sin�sin�cos� cos�cos�

�
A��xorbit
���
��

The unit vector in the �	direction of the orbit frame of reference determines the
direction to the center of gravity� To use this vector as �gorbit	gorbit in the equation
system ��	
���� we have to transform it to a notation of the body frame of reference�
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The result of the transformation is the third column of the transformation matrix�

�gorbit
gorbit

�

�
 sin�

cos� sin�
cos� cos�

�
A ��� 
���

The next step is to �nd the component notation of the rotation vector �� of the
satellite in the body frame of reference� The rotation vector �� consists of two parts�
��relative �the rotation velocity of the satellite relative to the orbit frame of reference�
and ��orbit �the rotation velocity of the orbit frame of reference�� The components of
the relative rotation are functions of the Cardan angles and their time derivatives�
they can be found by a geometrical analysis �the �kinematical Euler equations��
described in detail in the chapter four of this book�� The rotation velocity of the or	
bit frame of reference is the term �orbit multiplied by the unit vector in 
	direction�
The transformation of this vector into a component notation of the body frame of
reference is again a comparatively simple procedure� The rotation vector �� becomes�

�� � ��relative ! ��orbit ��� 
���

�

�
 *� sin� ! *�

*� cos� sin� � *� cos�
*� cos� cos� ! *� sin�

�
A! �orbit

�
 cos� cos�
� sin� cos� � cos� sin� sin�
sin� sin� � cos� sin� cos�

�
A

As the last step we have to insert the expressions for the unit vector in direction
of the center of gravity ��gorbit	gorbit� equation �	
��� and the rotation vector of the
satellite ���� equation �	
��� into the Euler equations �system �	
���� Finally we get�

A � � �� sin� ! *� *� cos� ! �� ! �orbit�� *� sin� cos� � *� cos� sin��� !

�C � B� � � *� cos� sin� � *� cos� ! �orbit�� sin� cos� � cos� sin� sin����
� *� cos� cos� ! *� sin� ! �orbit�sin� sin� � cos� sin� cos���

� � ��
orbit�C � B� cos�� sin� cos�

B � � �� cos� sin� � *� *� sin� sin� ! *� *� cos� cos� � �� cos�!
*� *� sin� ! �orbit�� *� cos� cos� ! *� sin� sin�!
*� sin� sin� sin� � *� cos� cos� sin� � *� cos� sin� cos��� !

�A� C� � � *� sin� ! *� ! �orbit cos� cos���
� *� cos� cos� ! *� sin� ! �orbit�! sin� sin� � cos� sin� cos���

� � ��
orbit�A� C� sin� cos� cos�

C � � �� cos� cos� � *� *� sin� cos� � *� *� cos� sin� ! �� sin�!
*� *� cos� ! �orbit�! *� cos� sin� ! *� sin� cos�!
*� sin� sin� cos� � *� cos� cos� cos� ! *� cos� sin� sin��� !

�B �A� � � *� sin� ! *� ! �orbit cos� cos���
� *� cos� sin� � *� cos� ! �orbit�� sin� cos� � cos� sin� sin���

� � ��
orbit�B � A� sin� cos� sin� ��� 

��

The di�erentiation of �� leads to comparatively complicated equations of the motion�
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��	�� Stability of the Gravity Gradient Satellite

Stationary attitude� The equations of motion for the gravity gradient satellite
��	

�� are a complicated system of nonlinear second	order di�erential equations�
However� we can observe that the equation system has a particular solution where the
satellite is in rest with respect to the orbit frame of reference� This is the case when
the three Cardan angles ��� � and �� equal zero �then the rotation velocity vector is
�� � ��orbit� �� �� and the unit vector to the center of gravity is �gorbit	gorbit � ��� �� 
���
One principal axis of the satellite points towards the central body� another one is
aligned with the orbit normal� and the third principal axis is aligned with the trans	
lational velocity vector� The case is important in practice� since usually it is desired
that earth orbiting satellites face the earth always with the same side� The point in
question is under which conditions would the earth	stationary orientation be stable�

Equations of motion for small perturbations� We will use a conventional way to
analyze the stability of the gravity gradient satellite� The �rst step is the linearization
of the equation system ��	

�� in the vicinity of the equilibrium solution �consider
the Cardan angles �� � and � and their time derivatives as small� replace the sine
function of a small angle by the angle itself� replace the cosine function of a small
angle by the value 
� and neglect all terms which involve products of small values��
The result of the procedure is the following linear equation system�

A �� � ��C � B� ���
orbit � � ��� 


�

B �� � �A� B � C� *��orbit ! ��A� C� ���
orbit � � ��� 

��

C �� ! �A� B � C� *��orbit � �B � A� ���
orbit � � ��� 

��

The equation system above determines a linear oscillation �term �orbit is constant��

The characteristic equation� As the next step we have to insert the trial solutions�

� � C��e�orbit t� � � C��e�orbit t� � � C��e�orbit t� into the linear equation
system ��	


 to �	

�� and eliminate the amplitude coe�cients C�� C� and C��
Since the �rst equation ��	


� is not coupled with the second and the third equation�
the elimination of C� from equation ��	


� is easy� We �nd the following condition�

 � � �
C � B
A � � ��� 

��

Elimination of C� and C� from the equations ��	

�� and ��	

�� is more compli	
cated� because the two equations are coupled� We �nd after some transformations�

 � !

�

 ! �

A� C
B !

A� C
B � A � BC

�
�  � ! �

A� C
B � A � BC � � ��� 

��

The roots of the characteristic equation determine the solution to the system�
When a root is a complex numbers� its imaginary parts corresponds to a harmonic
oscillation and its real part corresponds to an increasing or decreasing amplitude�
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For stability no root of the characteristic equation may have a positive real part
�otherwise an unstable solution with exponentially increasing amplitude is present��

Stability analysis of the characteristic equation ��	

�� for the motion � is easy�
The condition is a simple quadratic equation� we get as the �rst stability criterion�

B � C ��� 

��

The characteristic equation ��	

�� for the coupled motion � and � is a quadratic

equation of the type  � ! p � ! q � �� or transformed � ����� � � �
�
p� �

�

p
p� � �q�

For stability we do not want to have positive real parts of any one of the four roots  �
Using mathematics of complex numbers� we can readily verify that stability is present
when the value of  � is a purely negative real number �when  � is negative and has
no imaginary part�� We can conclude that stability is present when p � � as well as
q � � �otherwise one solution for  � would be a positive real number�� and p���q � �
�otherwise  � would be a complex number�� These apparently three conditions are
actually just two conditions� namely q � � and p � �

p
q� When we evaluate the

characteristic equation ��	

�� using the condition q � �� we �nd the second stability
criterion for the gravity gradient satellite�

�A� C� � �A� B� � � ��� 

�

This criterion is equivalent to the statement that A must be either the maximum
or the minimum moment of inertia� We can combine criterion ��	

� with criterion
��	

�� and conclude that stability requires either con�gurations A � B � C or
con�gurations B � C � A� The third stability criterion p � �

p
q becomes��


 ! �
A� C
B !

A� C
B � A � BC

�
� �

r
�
A� C
B � A � BC ��� 

��

While this criterion has no e�ect on the con�gurations A � B � C� it cancels out a
large part of the possible con�gurations B � C � A� However� also the con�gura	
tions B � C � A which are not violated by criterion ��	

��� are not advisable for
the construction of a gravity gradient satellite� The gravity gradient satellite rotates
with the rotation velocity �orbit on the 
	axis of its body frame of reference� and A
is the moment of inertia for the rotation on this axis� When the satellite is not a
perfectly rigid body and energy dissipation is present� the rotation is just stable if A
is the maximum moment of inertia� We can conclude that the correct construction of
a gravity gradient satellite requires the condition A � B � C� The principal axis of
the maximum moment of inertia A must be aligned with the orbit normal� the axis
of the intermediate moment of inertia B must be aligned with the velocity vector and
the axis of the minimum moment of inertia C must point to the gravitational center�
Natural satellites �moons� in the solar system with a �captured� rotation rate have
usually an asymmetric �not exactly spherical� ellipsoid of inertia� They have dissi	
pated the entire energy of the relative rotation during the astronomically long time
of their past life� After having orbited very often around the planet� their orientation
has �nally assumed the stable attitude of a gravity gradient satellite�
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Stability diagram� It is a convenient way to make the conditions of stability for
the gravity gradient satellite more transparent by showing a graphical representation�
According to their conditional equation ��	
���� the moments of inertia A� B and C
may not assume arbitrary values� they are subjected to certain conditions� The mo	
ments of inertia must all be positive� then the sum of two elements must always be
greater than the third element �in other words A! B � C� B ! C � A� A! C � B��
If one element is approximately zero �the prolate stick rotor�� then the other two
elements must be nearly equal �for example when A equals zero then B equals C��

A triangle with three equal sides has the appropriate shape for the stability diagram�
It has the corner points A� B and C� The moments of inertia accept their
minimum value at �or near� a corner� For example� the corner location A
represents a stick	shaped rotor with A � � and B � C� The moments of inertia

accept their maximum value on the
side lines of the triangle� where a side
line in opposition to a corner belongs
to the same moment of inertia� For
example� locations on the line between
B and C represent disk	shaped rotors
with A � B ! C� Axisymmetric rotors
are located on the bisecting lines of
the corner angles� For example� the
bisecting line of the angle at the corner
A represents rotors with A � B � C�
The middle point of the triangle is
the location for rotors with a spherical
ellipsoid of inertia� where A � B � C�

The stability triangle is capable to con	
tain inside its border lines the possible
con�gurations of the moments of iner	
tiaA� B and C for all rotors �the border
lines themselves are actually not legal
locations�� When we draw the regions
for stable motion of the gravity gra	
dient satellite in the stability triangle�
criterion ��	

�� eliminates the lower
right half of the triangle �all regions
below the bisecting line of the an	
gle at corner A�� Criterion ��	

�
leaves over two smaller triangular re	
gions� an upper one where A � B � C
and a lower one where B � C � A�
Finally� evaluation of criterion ��	

��
eliminates most of the lower region�

A � � B

C

A � B ! C

A � � B
� � C

A � B � C

B � C

A B

C

A � B � C

B � C � A
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��	�� The Rotating Space Station

The axisymmetric space station� When we look at the dynamical Euler equations
��	
��� once again� we can see that the gravity gradient satellite is not the only
equilibrium solution� Obviously� a satellite with an exactly spherical ellipsoid of
inertia �A � B � C� can rotate stable about any space	�xed axis� More interesting
in practice is the case of a large space station with axisymmetric ellipsoid of inertia
�A � B � C�� An equilibrium motion is possible when the station rotates with a
constant rate �� on the body	�xed 
	axis� provided that the body	�xed 
	axis remains
always perpendicular with the orbital plane� In this case we have �� � ���� �� ���
�gorbit	gorbit � ��� sin������orbit�t�� cos������orbit�t��� The unit vector that aims at
the gravitational center rotates in the body frame of reference with the rate ����orbit�
The spin rate of the space station �� may be greater than �orbit� for example to
generate arti�cial gravity for the crew�

Equations of motion for small perturbations� We want to calculate the motion
in the vicinity of the equilibrium solution� When we simplify the system ��	

���
we have to observe that now � and its time derivative *� are not small any more�
However� we assume that the two other Cardan angles � and � and their time
derivatives *� and *� are still very small� Again we replace the sine function of a
small angle by the angle itself� replace the cosine function of a small angle by the
value 
� and neglect all terms which involve products of small values� The �rst
equation of the system con�rms that *� is constant �we learn nothing else from this
equation�� The result of this simpli�cation procedure for the second and the third
equation of system ��	

�� is the following second	order di�erential equation system�

B � � �� sin� ! *� *� cos� � �� cos� ! *� *� sin� !

�orbit�� *� cos� ! *�� sin� � *� sin� � *�� cos��� !

�A� B� � � *� ! �orbit� � �! *� cos� ! *� sin� ! �orbit�� sin� � � cos���

� !� ��
orbit�A� B� � cos�

B � � �� cos� � *� *� sin� ! �� sin� ! *� *� cos� !

�orbit�! *� sin� ! *�� cos� � *� cos� ! *�� sin��� !

�A� B� � � *� ! �orbit� � �� *� sin� ! *� cos� ! �orbit�� cos� ! � sin���

� �� ��
orbit�A� B� � sin� ��� 

��

The nonlinear equation system is still complicated� Fortunately� we can transform it�

�� !
�A��
B � ��orbit

� � *� !
�A���orbit

B � ��
orbit

� � � � � ��� 
���

�� � �A��B � ��orbit
� � *� !

�A���orbit
B � ��� �

A
B
�
��
orbit

� �� � �

To �nd the system above we have to add the equations of system ��	

�� two times
�using the �rst time the factors sin� and cos� � the second time � cos� and sin���
Furthermore� we replace the expression � *� ! �orbit� by the constant value ���
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Stability of the rotating gravity gradient satellite� The linear system ��	
���
is much better conditioned for a stability analysis than the nonlinear system ��	

���

We insert the trial solutions � � C��e�orbit t and � � C��e�orbit t� eliminate the co	
e�cients C� and C� from the equation system and get the characteristic equation as�

 � !

��A
B

��
�orbit

�� � �
�A
B

��
�orbit

�
! �

A
B � 


�
�  �

!

��A
B

��
�orbit

��
!
�
�
A
B � �

� � �AB ��
�orbit

�� �
A
B ! �

�
� � ��� 
�
�

Again� the characteristic equation ��	
�
� for the coupled motion � and � is a
quadratic equation of the type  � ! p � ! q � �� For motion stability it is required
that q � � and p � �

p
q� When we evaluate the characteristic equation ��	
�
�

numerically� we can use the ratios ��	�orbit and A	B as parameters for the diagram�

stability diagram for the rotating gravity gradient space stationA	B

��	�orbit

It must be emphasized that the diagram analyzes exclusively the e�ect of the grav	
ity gradient vector on the stability of a rotating axisymmetric satellite �considering
the satellite as a perfectly rigid body and ignoring the e�ect of energy dissipation��
The satellite moves on a circular orbit and rotates on the axis which is perpendicular
to the orbital plane� An oblate satellite �A � B� is stable when it rotates faster than
the orbit ��� � �orbit�� However� also a prolate satellite �A � B� can be stable� pro	
vided that it rotates fast enough� A non	rotating satellite ��� � �� is just stable when
it is slightly oblate �
 � A	B � 
����� In this case a disk	shaped satellite �A	B � ��
is unstable� as well as a stick	shaped satellite �A	B � ��� A satellite that accepts
always the same orientation with respect to the gravitational center ��� � �orbit�
is stable when it is either oblate �A	B � 
� or slightly prolate ����� � A	B � 
��
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	� Launcher Dynamics

The ancient German V�� a missile of the second world war� was actually the �rst
rocket that became operational� Its shape has still an in�uence on the general image
of conventional space launchers� the V� weapon was a cigar	shaped tube with a conic
tip and �ns at the rear end� Today aerodynamic �ns are not used anymore� but con	
ventional space launchers have still much in common with the �rst operational rocket�
space launchers are slender bodies with a more or less tubular shape� The propellent
is stored in cylindrical tanks with hemispherical ends �also spherical tanks are used��
The payload is carried on top of the vehicle� and the propulsion system that drives
the vehicle is mounted at the rear end� Conventional space launchers are multi	stage
rockets� composed of stages with the shape of a cylinder� The upper stage has usu	
ally a smaller diameter than the rest of the vehicle� The payload is protected against
aerodynamic loads by a jettisonable shroud �the payload shroud has usually a larger
diameter than the upper stage�� Often strap	on booster motors are used to assist the
launch phase� however� these boosters are nothing else than cylindrical rocket stages�

Rocket engines are used to propel the vehicle� but they are also used to control the
trajectory and to stabilize the attitude during the ascent �ight phase� The thrust di	
rection can be deviated from the nominal centerline in a way that the engines generate
control torques about the center of mass of the vehicle� By this the guidance sys	
tem is able to control the attitude and simultaneously the trajectory of the launcher�
Thus� when we want to analyze the problem of how to control a space launcher we
are actually faced with three quite independent partial problems� �rst� we have to
�nd an optimized nominal reference trajectory� second� we have to �nd a navigation
strategy that makes the launcher follow the predetermined reference trajectory� and
third we have to �nd a way to stabilize the attitude of the �exible body of the vehicle�

The dynamics and control of conventional space launchers is the content of the sev	
enth chapter of this book� The �rst section of this chapter is concerned with the prob	
lem of ascent trajectory optimization� taking surface	launched and airborne	launched
rockets as examples �airborne launchers use an aircraft as a launch platform�� The
optimal ascent trajectory of a space launcher determines important design aspects�
such as the payload capacity and the stress environment for the structure� Once
we have established a nominal reference trajectory� the next problem is how to im	
plement an optimal navigation strategy� Now we simulate the reference trajectory
and consider the disturbances which can occur during the real �ight� The objective
of the navigation strategy is to guide the launcher as close as possible to the de	
sired terminal orbit �it is not important anymore to maximize the payload capacity��
Finally� when we have determined and tested an appropriate steering strategy�
we consider the launcher as a �exible material body with �nite dimensions and calcu	
late its behaviour as a function of the control torques which occur during the �ight�
The trajectory simulations of this chapter are results of a special computer program
��Skynav�s User Manual�� Ingenieurb�uro Dr�Schlinglo�� Munich	Regensburg� 
�����
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��� Thrust Vector Optimization

The optimization of a launcher demands an optimal performance of the propulsion
system� the thrust vector �determined by the thrust direction� the mass �ow rate and
the mixture ratio� has to be controlled appropriately during the ascent �ight phase�
We will use the Hamilton Lagrange theory to �nd optimal time functions for the
variables that determine the behaviour of the thrust vector� The application of the
Hamilton Lagrange theory is explained in more detail in the chapter �ve of this book�

����� Control of the Thrust Angle

Uniform gravitational �eld without drag� Initially� when the space launcher
departs from the launch pad� the thrust vector points vertically upwards� and �nally�
when the launcher enters a circular orbit� the thrust vector points in a more or less
horizontal direction� The tipping movement of the thrust direction during the ascent
�ight phase is approximately a linear function of time �also called �tilt	function���
We will show the application of the Hamilton	Lagrange method for the optimization
of the thrust direction during the ascent �ight of a launcher using a simpli�ed scenario�
we take the equations of motion of a rocket that moves in a uniform gravitational �eld
without atmosphere� The simpli�ed scenario allows us to obtain analytical solutions
�the �real problem� of space launcher trajectory optimization is more complicated and
requires the application of a computer�� We use the coordinate x to de�ne the hori	
zontal distance from the launch pad and the coordinate y to de�ne the �ight altitude�
When we assume that the constant gravitational acceleration g points downwards�
the equations of motion for the non	atmospheric �ight of a space launcher follow as�

*u � s sin�� g

*v � s cos�

*y � u

*x � v �� 
�

x

y

u

g

s

v

�

The velocity vector of the vehicle is given by the vertical component u and the
horizontal component v� the angle � determines the direction of the thrust vector�
Our objective is to calculate an optimal control strategy for the thrust angle ��
considering the thrust acceleration s as a predetermined function of time�
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Optimization of the thrust direction� To �nd an optimal control strategy for the
thrust angle � we follow the mathematical scheme of the Hamilton	Lagrange theory�
Therefore we introduce Lagrange multipliers  and establish the Hamiltonian H as�

H�t� � �s sin�� g�  u ! s cos�  v ! u  y ! v  x �� ��

The value of the Hamiltonian changes in time when the thrust acceleration s is an
explicit time function �the thrust acceleration of a launcher is usually not constant��
The behaviour of the Lagrange multipliers  is de�ned by the Lagrange equations�
These di�erential equations take a simple form for the motion of a rocket in a uniform
gravitational �eld without drag� We can readily integrate the equations analytically�

* u � � �H
�u

� � y
* v � � �H

�v
� � x

* y � � �H
�y

� �

* x � � �H
�x

� �

�  u � � y� � t!  u�

 v � � x� � t!  v�
�� ��

The initial values of the Lagrange equations �terms  u��  v��  x� and  y�� are also
the integration constants� Then the optimal thrust angle control follows as�

�H
��

�  u s cos��  v s sin� � � � tan� �
� y� � t!  u�
� x� � t!  v�

�� ��

Our next problem is to �nd the correct values for the constants  u��  v��  x� and  y��
The theory demands that the initial values of the Lagrange equations are adjusted
appropriately� the integration of the trajectory must satisfy certain �nal conditions�

Thrust angle control for intercept maneuvers� Let us �rst consider the simple
case that a missile intercepts a target object� When the intercept velocity is not
restricted �when the velocity components u and v are free at the �nal time tend��
then the multipliers  u and  v vanish at the end of the trajectory� We can denote�

 u�end � � y� � tend !  u� � �

 v�end � � x� � tend !  v� � � �� ��

When we insert these relationships �	�� into the thrust angle control equation �	��
we �nd that the thrust angle � is constant for this type of trajectory� Thus�

tan� �
 y�
 x�

� constant �� ��

It is easy to integrate the equations of motion �	
� when the thrust angle � is
constant in time� the optimal intercept trajectory is a curve that joins the starting
place and the location where the missile hits the target object�
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Thrust angle control for the ascent to orbit� Let us now apply the equations
of motion �	
� to the ascent of a space launcher to a circular orbit� a prede�ned
horizontal velocity at a certain altitude is now the �nal condition for the trajectory�
In contrast to an intercept maneuver the �nal values of the multipliers  u and  v are
not automatically zero now �the velocity components u and v are predetermined at
the �nal time�� However� the range x is not restricted� and therefore the concerning
multiplier  x vanishes at the end of the trajectory� We can conclude�

 x�end �  x� � � � tan� � � y�
 v�

� t!  u�
 v�

�� �

The thrust angle control tan� is a linear function of time� de�ned by the initial
value tan�� �  u�	 v� and the constant �tilt rate� d tan�	dt � � y�	 v�� The
�nal altitude y is maximized when we adjust these values in a way that the �nal
values of the velocity vector u and v are satis�ed� However� a maximization of the �	
nal altitude y requires automatically that the �nal vertical velocity u equals zero�
and therefore we may consider the �nal value of the velocity u as unrestricted�
Also the Lagrange multiplier  u vanishes at the �nal instant of the ascent trajectory�

tend

tan��

 u�end � � y� � tend !  u� � � �� ��

It follows that the launcher thrusts horizon	
tally at the �nal time of the ascent trajectory�

tan� � tan�� �
�

� t

tend

	
�� ��

The trajectory integration requires an adjustment of the initial thrust angle and the
�ight time� we must choose �� and tend in a way that the launcher reaches the circular
horizontal velocity v exactly at the moment when the vertical velocity u vanishes�

����� Control of the Thrust Magnitude

Vertical �ight through the atmosphere� Let us now concentrate on whether it
is sensible to control also the thrust magnitude during the ascent �ight of a launcher�
Liquid rocket engines are sometimes throtteable �or can be switched o� and on again��
solid motors can have a prede�ned time function for the thrust magnitude� The struc	
ture of the launcher is exposed to aerodynamic stresses during the atmospheric �ight
phase� and probably it makes sense to reduce the thrust in order to limit these loads�
Obviously� a thrust reduction reduces the drag losses but increases the gravity losses�
To analyze the in�uence of a reduction of the lift	o� thrust on the payload of a space
launcher we will use again a simpli�ed model that allows some analytical results�
Let us consider again a uniform �eld of gravity where a rocket ascends vertically
through the atmosphere� now the vehicle is exposed to an aerodynamic drag force�
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We are allowed to disregard the constant range variable x and the horizontal velocity�
However� it is necessary that we introduce the actual rocket mass M as a new state
variable� because the thrust acceleration s � c �m	M is a function of the mass �ow
ratem �term c is the constant exhaust velocity�� Thus we can formulate the equations
of motion by the following system of �rst	order di�erential equations�

x

y

g

cm

M

d

u *u �
cm

M
� d� g

*y � u

*M � �m �� 
��

The �ight altitude y� the vertical velocity u and the rocket massM are state variables�
the mass �ow rate m is the only control variable� The launcher is pushed upwards
by the thrust force� but gravity and drag pull it down� We assume in a simpli�cation
that the gravitational acceleration g is constant� however� the drag deceleration d de	
pends on aerodynamic pressure and air density and is therefore a quadratic function of
the velocity u and an exponentially declining function of the altitude y� We can write�

d �
CD u�

� M
� � e�y	hscale �� 

�

Term CD is the drag coe�cient� term � is the air density at sea	level� and hscale is
the atmospheric scale height �we consider these terms as approximately constant��

Optimization of the mass �ow rate� Now we construct the Hamiltonion H and
rearrange it considering all terms which are functions of the control variablem� Thus�

H � �
cm

M
�d�g� u!u y�m M � ��d!g� u!u y!m

� c
M

 u� M
�
� � �� 
��

Hamiltonian and Lagrange multipliers are continuous functions of time� also when
the control variable takes a discontinuous course� We denote the partial derivatives
�d	�u � �d	u� �d	�y � �d	hscale� �d	�M � �d	M and the Lagrange equations�

* u � � �H
�u

�
�d

u
�  u �  y

* y � � �H
�y

� � d

hscale
�  u

* M � � �H
�M

� �
cm

M�
� d

M
� �  u �� 
��

The Hamiltonion is constant in time since it is not an explicit function of the time t�
its value is constantly zero when we consider the case of an unrestricted �nal time tend�
Then the equation �	
�� constitutes a �rst integral of the Lagrange equations �	
���
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Discontinuous control of the mass �ow rate� It can be the case that the opti	
mal trajectory consists exclusively of �ight periods with wide open throttle and �ight
periods with switched	o� engine� Therefore we introduce the switch function K as�

K �
 M
 u

� c

M
�� 
��

The Lagrange multipliers  remain continuous time functions also at moments of
discontinuous control� and the Hamiltonian H is just constantly zero when the value
of the continuous switch function K vanishes at the switching instances� As the
next step we form the time derivative of K and eliminate the Lagrange multipliers�
The result of the procedure is a �rst	order di�erential equation for the switch function�

*K �
�K !

c

M

� � g � d!m � K
u

� d

M
�� 
��

The equation above is the control law that we need to calculate the optimal switch
function for the mass �ow rate m� The function K is positive during the initial �ight
phase� however� the drag grows while the launcher climbs through the atmosphere�
The motor must be switched	o� when the switch function runs through zero and its
time derivative is negative �K � �� *K � ��� This demands the following condition�

d �
g


 ! u	c
�� 
��

The drag deceleration must exceed a certain value� otherwise it cannot be optimal
to switch	o� the engine in order to maximize the payload capacity of the vehicle�
We should just switch o� the engine when the condition �	
�� is ful�lled� As a
consequence the drag diminishes in the following �ight phase and we can switch on
the engine when K becomes positive� However� it makes just sense to reduce the
thrust for a certain time interval when a fast sounding rocket is under consideration�
condition �	
�� will probably never be ful�lled during the ascent �ight of a heavy
space launcher� and a reduction of the thrust would lead to a smaller payload capacity�

Continuous control of the mass �ow rate� It is just of theoretical interest what
happens when switch function K and its time derivative *K vanish simultaneously�
Then �H	�m � �� and we consider the singular case of a so	called intermediate thrust
arc with a mass �ow rate control m�t� between zero thrust and maximum thrust�
Such an intermediate thrust arc can only take place when the condition �	
�� be	
comes valid for the �rst time� and in order to keep *K at zero it is necessary that we
throttle the motor exactly in a way that the condition remains valid as an equation�

d �
g


 ! u	c
�� 
�

We can di�erentiate this equation to �nd the control function for the mass �ow rate�

m�t� � M � u
��u! c�	hscale ! ��c! �u��d! g�

�c� ! �uc! u�
�� 
��

However� it will usually be impossible to accomplish the condition �	
�� because the
actual drag force of the launcher is probably always smaller than its actual weight�
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����� Control of the Exhaust Velocity

Variable mixture ratio� Liquid rocket engines are usually bipropellent systems
�for example� engines which operate with hydrogen as fuel and oxygen as oxidizer��
The performance is determined by the relative velocity c of the exhausted gases� and
the best performance demands that the engine works with a certain mixture of fuel
and oxidizer �usually not a stochiometric mixture�� However� sometimes rocket en	
gines work with a mixture ratio that deviates slightly from the performance optimum�
for example when the mixture with the highest exhaust velocity involves the disad	
vantage of comparatively heavy tanks� Since liquid rocket engines can be operated
at least in some limits with a variable mixture ratio� the question arises whether it
is sensible to variate the mixture ratio of a space launcher during the mission�

We have to take the energy of the propellent under consideration when we want to
analyze the in�uence of a variation of the mixture ratio on the performance of the
space launcher� The propellent energy useful for propulsion is equal to the kinetic
energy of all the exhausted masses dM � we can write the di�erential form down as�

dEjet � �


�
dMc� �� 
��

The negative sign in the equation above comes from the de�nition of the mass �ow
rate m as m � �dM	dt� the term dM refers to the mass of the launcher and is neg	
ative by de�nition� The rate of expenditure of this energy is called �power of the jet��

*Ejet �



�
m c� �� ���

Thus� while the thrust acceleration s � c m	M is a linear function of both� mass �ow
rate m and exhaust velocity c� the power of the jet is a linear function of the mass
�ow rate but a square	law function of the exhaust velocity�

Let us use again the term v to characterize the horizontal velocity of the rocket
powered vehicle� When the vehicle accelerates exclusively under the in�uence of
the thrust force� its motion is governed by the following di�erential equation system�

*v �
c �m
M

�� �
�

*M � �m �� ���

*Ejet �
c� �m
�

�� ���

We can readily insert the equation �	��� into the equation �	�
� and integrate�
provided that c is constant� Then the equation �	��� is valid but can be ignored�
and the well	known result of the integration �the so	called �Ciolkovskij equation�� is
valid for any time function of the mass �ow ratem� However� the Ciolkovskij equation
is obviously not valid anymore when c is a function of time� In this case it is necessary
to �nd optimal control functions for the exhaust velocity c and the mass �ow rate m�
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To calculate the conditions for an optimal control of mass �ow rate m and exhaust
velocity c we make again use of the Hamilton	Lagrange theory� This time the opti	
mization objective is the �maximization of the �nal velocity�� The velocity v is de	
termined by the equation of motion �	�
�� the conditions �	��� and �	��� however�
must be considered as �restrictions in di�erential form�� The term *M is actually
just another name for the mass �ow rate� but the equation *M � �m states that the
consumeable propellent mass is limited� and the equation *Ejet � c�m	� states that
the energy available for propulsion is limited� Then the Hamiltonian takes the form of�

H �
c m

M
�  v �m �  M !

c� m

�
�  E �� ���

We form the partial derivatives of the Hamiltonian with respect to the state variables�

* v � ��H
�v

� � �  v � constant �� ���

* M � � �H
�M

�
c m

M�
�  v �� ���

* E � � �H
�Ejet

� � �  E � constant �� ��

The condition for an optimal control of the control variable m can be denoted as�

�H
�m

�
c

M
�  v �  M !

c�

�
�  E � � �� ���

This condition is equivalent to the condition H � � along the optimal trajectory�
the Hamiltonian is singular regarding the mass �ow rate m� The equation �	��� can
be used as a replacement for the di�erential form �	��� in two occasions� either when
the exhaust velocity c is constant or when c is not constant but optimally controlled�
Thus� the condition for an optimal control of the variable c is either H � � or�

�H
�c

�
m

M
�  v ! c m �  E � � �� ���

This demands that either the mass �ow rate m vanishes �trivial in this case�� or that
the three Lagrange multipliers vanish simultaneously �also trivial�� or� since  v and
 E are constant� that the expression �c �M� is constant along the optimal trajectory�
Also in this nontrivial case the mass �ow rate m is an arbitrary function of time�

Let us �nally integrate the equation of motion for the nontrivial case� The exhaust ve	
locity c grows inversely proportional to the mass M � and the expression c �M � c�M�

is constant �c� is the initial exhaust velocity and M� the initial mass�� We can write�

vend�v� �
Z end

�

cm

M
dt � c�M�

Z end

�

m

M�
dt � c�M�

�



Mend
� 


M�

	
� cend�c�

�� ���

The equation above is a replacement for the Ciolkovskij equation� It is valid when
the exhaust velocity is a variable and the energy available for propulsion is limited�
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Mixed mode� We have seen that the Ciolkovskij equation is not valid anymore
when the vehicle follows an optimized thrusting pro�le and the exhaust velocity is
controllable� However� we have still not answered the question whether it is sensi	
ble to equip a space launcher with engines constructed for variable exhaust velocity�
The operation with a high exhaust velocity requires the excessive consumption of
jet power �for example the use of high energetic propellent�� the operation with
low exhaust velocity saves propulsion energy �utilizing low energetic propellent��
When we simply o�ered the operation with high exhaust velocity without giving
a penalty for the consumption of energy� we would get the trivial result that opera	
tion with high energetic propellent is preferable for a high �nal velocity� The use of
high energetic propellent is usually preferable� indeed� but the operation of a space
launcher with low energetic propellent has the advantage that the tanks for storing
the propellent are considerably smaller than the tanks for high energetic propellent�

To analyze the problem we will use the following approach� we consider the stage of a
space launcher that can burn simultaneously two di�erent propellent combinations in
the same engine� low energetic propellent with the exhaust velocity cI and high ener	
getic propellent with the exhaust velocity cII � At the moment of its ignition the stage
carries in its tanks a certain predetermined amount MI of the low energetic propel	
lent and a certain amountMII of the high energetic propellent� The exhaust velocity
c is constant in single	mode operation �then c � cI when the engine burns exclusively
low energetic propellent� or c � cII when the engine burns high energetic propellent��
However� the exhaust velocity c is a function of the actual mixture ratio when the
engine operates in mixed	mode� The energy �ow in the thrust chamber determines
the e�ective exhaust velocity c as a function of the mass �ow rates mI and mII �

MI MII M�

v

c �

s
c�I �mI ! c�II �mII

mI !mII
�� �
�

m � mI !mII �� ���

M � MI !MII !M� �� ���

Note that the exhaust velocity c is a nonlinear function of the mass �ow rate mI

and the mass �ow rate mII � For example� the condition �	�
� is valid when the
low energetic propellent MI is the combination kerosene LOX and the high ener	
getic propellent MII is the combination LH� LOX �this tripropellent system would
require the construction of a special engine that can burn kerosene and hydrogen
simultaneously with oxygen�� A rocket stage that uses exclusively the bipropellent
combination LH� LOX achieves the highest exhaust velocity in �fuel	rich� operation�
however� the fuel requires larger tanks per unit of mass than the oxidizer� Then we
can use the symbol MI to characterize a certain amount of the oxidizer combined
with a small amount of the fuel and the symbol MII to determine another amount of
the oxidizer combined with the amount of fuel that gives the highest exhaust velocity�
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Mass �ow rate pro�le� The problem is now to �nd the optimal way to operate the
engine� optimization objective is again the maximization of the �nal velocity vend�
The �rst section of the chapter two of this book shows that it is e�cient to expend
during the initial �ight phase low energetic propellent and during the �nal �ight phase
high energetic propellent� Thus� the optimal way might be that the launcher expends
in single	mode operation �rst all the low energetic propellent and switches then in	
stantaneously to the operation with high energetic propellent ��bang	bang control���

However� this is not the optimal
way to control the mixture ratio�
We can use the Hamilton	Lagrange
method to demonstrate that the op	
timal control of the mixture rate in	
volves a �ight phase �t� � t�� with
mixed	mode operation between the
initial �ight phase �t� � t�� and
the �nal �ight phase �t� � tend��

mass �ow rate

mI mII
m

t� t� t� tend

time

Application of the optimization theory� Let us use again a simple model to ex	
amine the case of mixed mode operation because it allows us to �nd analytical results�
We consider just the thrust force and ignore all other forces which act on the vehicle�
then the time derivative of the velocity is simply the thrust acceleration s � c m	M �

*v �

p
�c�I �mI ! c�II �mII � � �mI !mII �

M� !MI !MII
�� ���

*MI � �mI �� ���

*MII � �mII �� ���

The three equations above constitute the equations of motion� The exhaust velocity
c is constant when the engine works in single mode operation �when either mI or
mII equals zero�� and then we can easily integrate the equation �	��� analytically
to �nd the famous Ciolkovskij equation� However� it is also possible to integrate
this equation analytically when the engine works in optimal mixed mode operation�
To �nd conditions for an optimal control of the mixed mode operation we follow the
principles of the Hamilton	Lagrange theory and construct the Hamiltonian H as�

H �

p
�c�I �mI ! c�II �mII � � �mI !mII �

M� !MI !MII
�  v �mI �  MI �mII �  MII �� ��

Optimization objective is the maximization of the velocity vend exactly at the instant
when the entire low energetic propellent MI and the entire high energetic propellent
MII have been consumed� Therefore it is necessary that we take the equations �	���
and �	��� as restrictions in the form of di�erential equations into the considerations�
otherwise we would get the trivial result that� in order to reach a high �nal velocity�
it is more e�cient to spend high energetic propellent than low energetic propellent�
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The theory demands that the Hamiltonian H accepts a constant value when it is
not an explicit function of the time� and that H vanishes at the �nal instant when
a trajectory with unrestricted �nal time is under consideration� We can conclude
that in our case the Hamiltonian H �equation 	�� is constantly zero when the mass
�ow rates mI and mII are controlled between the values zero and constant maximum
�but H is a time function when the maximum of the mass �ow rate is not constant��
As the next step we write down the Lagrange equations� Here they take the form of�

* v � ��H
�v

� � �  v � constant �� ���

* MI � � �H
�MI

�

p
�c�I �mI ! c�II �mII � � �mI !mII�

�M� !MI !MII��
�  v �� ���

* MII � � �H
�MII

� * MI

�
�

cm

M�
 v

	
�� ���

We can observe that the multiplier  v is constant and that the time derivatives of the
multipliers  MI and  MII are equal� It is obviously easy to integrate these equations
when the engine works in single mode operation� However� let us pay attention to
the optimal control of mixed mode operation� when the following conditions are valid�

�H
�mI

�
c�I�mI !mII � ! �c�ImI ! c�IImII �

�
p
�c�I �mI ! c�II �mII � � �mI !mII � �M� !MI !MII�

�  v �  MI � �

�� �
�

�H
�mII

�
c�II �mI !mII � ! �c�ImI ! c�IImII �

�
p
�c�I �mI ! c�II �mII � � �mI !mII � �M� !MI !MII�

�  v �  MII � �

�� ����
or �  MI �

c�I ! c�

� c M
�  v �  MII �

c�II ! c�

� c M
�  v

	
The Lagrange equations �	���� �	��� and �	��� are valid along the whole optimal
trajectory �for single mode operation as well as for mixed mode operation�� however�
the conditions �	�
� and �	��� are valid for mixed mode operation only� The multi	
plier  v is constant� and while the time derivatives of the multipliers  MI and  MII

are equal� their di�erence  MI �  MII must also be a time invariant constant value�
We get the following equation when we subtract equation �	��� from equation �	�
��

 MI �  MII �
c�I � c�II
� c M

�  v � c �M � constant �� ���

Thus� an optimal control of the mass �ow rates mI and mII during the time interval
of mixed mode operation demands that the product of the actual mass M and the
exhaust velocity c is constant in time� The mass diminishes while the engine expels
propellent� and the exhaust velocity grows inversely proportional to the launcher
mass� The time interval of mixed mode operation starts with the low exhaust velocity
cI at the end of the phase of burning low energetic propellent exclusively� it ends with
the exhaust velocity cII when all the low energetic propellent has been consumed and
the launcher continues its �ight with burning high energetic propellent exclusively�
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Comparison of mixed mode and single mode operation� However� the proof
is still missing that the mixed mode operation is better than single mode operation�
switching instantaneously between burning low energetic propellent and high ener	
getic propellent� the bang	bang control would also lead to a trajectory that is optimal
in the sense of the Hamilton Lagrange theory� The only way to decide the best way
of operation is to integrate both trajectories analytically and compare the results�
The interval of mixed mode operation starts at the instant t� when the launcher has
the actual massM� and operates with the exhaust velocity cI � it ends at the instant t�
when the launcher has the actual massM� and operates with the exhaust velocity cII �
The product c �M � cI �M� � cII �M� is constant during that time interval� We can
integrate the thrust acceleration s � cm	M to �nd the velocity increase %v � v��v��

%v �

Z �

�

cm

M
dt � cIM�

Z �

�

m

M�
dt � cIM�

�



M�
� 


M�

	
� cII � cI �� ���

The time interval between t� and t� is quite short� particularly when the exhaust
velocity cII is not much higher than the exhaust velocity cI � The next problem is
to calculate the mass of low energetic propellent MI and the mass of high energetic
propellent MII which the launcher expends during this time interval �now MI and
MII are the propellent masses expended during the time interval t�� t��� Therefore�

MI !MII � M� �M� �� ���

We get another equation to calculate these propellent masses when we integrate the
mass �ow rates mI and mII over the time interval t� � t�� Therefore we must insert
equation �	�
� into the condition c �M � cI �M� �� cII �M�� and square the result�Z �

�

�c�I mI ! c�II mII � dt � �cIM��
�

Z �

�

m

M�
dt

or� c�I MI ! c�IIMII � cIM� � �cII � cI� �� ���

Equation �	��� together with equation �	��� allow us to �nd the propellent masses�

MI �
cII � cI
cII ! cI

�M� � MII �
cII � cI
cII ! cI

�M� �� ��

Once we know the propellent masses MI and MII it is easy to compare the mass �ow
rate pro�les� Let us assume that cI � ���� m s and cII � ���� m s� When the engine
operates in mixed mode� the velocity increases by the value %v � cII�cI � 
��� m s
�equation 	���� However� when the engine burns �rst the low energetic propellent
MI and then the high energetic propellent MII � the velocity increases by the value�

%v � �cI ln M� �MI

M�
! cII ln

M� !MII

M�
� �cI ln �cI

cI ! cII
! cII ln

�cII
cI ! cII

� ������ m s �� ���

The numerical result proves that the mixed mode operation is indeed the optimum�
but the calculation shows also that the advantage is so small that we can ignore it�
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�� Launcher Trajectory Optimization

We have analyzed the optimal thrust vector control for the ascent trajectory of a
space launcher already in the preceding section of this chapter� however� the analysis
was based on the unrealistic assumption that the launcher moves in a uniform gravi	
tational �eld without drag �in this simpli�ed scenario the thrust angle control tan� is
a linear declining function of time�� The problem gets much more complicated when
we consider the three	dimensional motion of a space launcher in the central gravita	
tional �eld with atmosphere� and the solution to this problem requires the application
of a computer� Space launcher trajectories are in�uenced by the atmospheric forces
lift and drag� Since the lift force is harmful to the structure� space launchers must
be guided through the atmosphere in a way that the lift force is kept below a certain
small value �therefore it is necessary to impose a lift limitation for the optimization of
a launcher trajectory�� The drag force reduces the payload capacity of the launcher�
however� the in�uence of the drag force on the payload capacity is usually small�
During the optimization process there is no reason to reduce the thrust in order to
maximize the payload capacity �but it is sensible to reduce the thrust in order to keep
aerodynamic loads and thrust acceleration in the allowed limits�� Our objective is
to �nd an optimal thrusting programme that brings the launcher to the destination
orbit and that obeys the restrictions imposed by �ight safety and structure �rmness�

����� Ascent of Conventional Space Launchers

Trajectory pro�le� The launcher stands on its launch pad when a command trig	
gers the ignition of the liquid engines� In case the engines show problems� the launcher
is not detached from the launch pad �in this case the valves which control the fuel
�ow are turned o� again�� However� when the liquid engines operate properly� the
solid booster motors are ignited and the vehicle lifts o� �we assume that the launcher
is equipped with solid boosters�� Initially� the launcher ascends vertically for some
seconds� the �ight control system is concentrated on the lift	o� phase and pays at	
tention that the launcher does not tilt over or touches the launch tower� but when the
altitude is high enough the vehicle starts slowly to incline� About one minute later�
at an altitude between 
� and �� km� the aerodynamic pressure reaches its maximum
�famous Qmax�� Now the launcher is slaved to ascend with a very small angle of at	
tack� in order to limit the lateral acceleration which could break the fragile structure�
A reduction of the motor thrust during the �ight phase of high aerodynamic loads
is advisable to limit the stresses for the structure of the vehicle� The �gravity tilt�
trajectory guides the launcher to higher layers of the atmosphere where the strict lim	
itation of the angle of attack can be released� Now the launcher has lost propellent
mass and its thrust acceleration becomes a problematic load for the structure and
the payload� It is necessary to limit this load� either by switching	o� or throttling
the liquid engines or by an appropriately predetermined thrusting programme for the
solid booster motors� The boosters and the �rst stage are dropped when they are
empty� and the launcher continues its �ight with the propulsion of its second stage�
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The separated empty stage continues to climb on its trajectory to space� but later
it falls and splashes down in the ocean� The sea area where the reentry decay takes
place has to be closed to tra�c during the launch period� In some limits it is possible
to in�uence the impact location by letting the launcher follow a certain ground track
�a curve called �dog	leg��� The essential acceleration phase to orbital velocity starts
when the launcher has left the atmosphere and moves in the vacuum of space
�the launcher cannot �y very fast inside the atmosphere� because the thermal load is a
problem when the �ight altitude is below 
�� km�� The shroud that protects the pay	
load can be dropped when in all later �ight phases the heat load is smaller than a cer	
tain value �when the launcher has climbed above an altitude of 
�� km� for example��
The launch vehicle has attained orbital velocity when its second stage is empty�
Even if the risk is in fact small that the reentering second stage means hazard to the
surface of the earth when it falls down anywhere� it is not wanted that the empty
stage stays on orbit� The stage should either be equipped with a deorbiting system
or it should be separated when it is still on an orbit with a well	known impact point�
The launcher is usually equipped with one more upper stage when the payload is
advanced to geostationary orbit GEO� This upper stage brings the satellite �rst to
the geostationary transfer orbit GTO� then the circularization is either performed
by satellite integrated propulsion� or by re	ignition of the upper stage or by a sepa	
rate �kick� stage� The transfer orbit is inclined with respect to the equatorial plane�
however� its apogee and its perigee are located exactly above the equator� In case
the capability of the launcher is greater than the payload mass� the launcher anni	
hilates its over	capacity by �ying on a non	optimal trajectory �this may include� for
example� a higher �ight altitude for a better radar visibility or a dog	leg curve for an
improved �ight safety�� Additionally� the launcher needs some over	performance as
contingency in order to be able to adjust trajectory disturbances�

Simpli�ed equations� The use of simpli�ed di�erential equations of motion is usu	
ally not advisable for the numerical computation of an accurate launcher trajectory�
a computer program has to be used anyway� and then it is simply easier to implement
all the complete equations than to justify that a certain simpli�cation is allowed�
Therefore it is necessary that we know the behaviour of the launcher accurately�
sometimes however� particularly when we perform preliminary design studies� the
accurate dynamical behaviour of a launcher is still unknown� Then we are forced to
simplify the equations� we may� for example� neglect the lift force or assume constant
aerodynamic coe�cients� or take a spherical model of the earth with an exponentially
declining air density� However� it is not permissible that we assume a non	rotating
earth or that we use the model of a plane trajectory� or that we disregard load limits�

The use of simpli�ed control functions is less problematic than the use of simpli�ed
equations of motion� it is sure that in reality the launcher can follow the computed
trajectory� even when the computed trajectory is not 
��� optimized� In reality
it is not possible that the launcher follows a totally optimized trajectory� because
the trajectory is subjected to disturbances which are not known before the �ight
�for example the weather on the launch date� uncertainties in burn behaviour of solid
propellent� the performance reserve which is necessary for stabilization and so on��
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Equations of motion� The derivation of the equations of the translational motion
for the trajectory of a �ying object is explained in the fourth chapter of this book�
Six �rst order di�erential equations determine the translational motion of the vehicle
�which is considered as a mass particle without size�� state variables are the velocity
components u �vertical�� v �horizontal� and the radius r� together with the Euler
angles �� � and �� or� alternatively� the Cardan angles �� � and � � We can write�
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In these equations � is the gravitational constant of the earth� �������
��� m� s��
Our objective is to �nd control functions for the three components s�� s� and s� of
the thrust acceleration vector� We assume that a conventional space launcher follows
a trajectory with a very small angle of attack� so that we can neglect the components
of the lift vector l�� l� and l�� Then the components of the drag deceleration vector
d�� d� and d� are just functions of the actual �ight velocity and �ight altitude�

The drag deceleration� The principal in�uence of the drag on the steering of a
launcher trajectory causes a steep vertical ascent during the initial �ight phase� the
drag drives the launcher out of the atmosphere� The drag deceleration �d is a function
of the relative velocity �w of the vehicle with respect to the ambient atmosphere� and�
even when a calm atmosphere without wind is under consideration� the atmosphere is
in motion because it is carried along with the rotation of the earth ��earth � ��	day��
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Term CD is the drag coe�cient� term A is a reference area and M is the actual
mass of the launcher� The air density �r� is an exponentially declining function of
the altitude �we assume a sea	level air density ��
���� kg m�� an equatorial earth
radius Rearth���� km and an atmospheric scale height of hscale � ����� km��
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The thrust acceleration� We have two options to determine the direction of the
thrust acceleration vector �s� either we use the thrust angles � �in the actual �ight
plane� measured against the horizontal line� and � �out of the actual �ight plane�
measured against the actual �ight plane�� or� alternatively� we us the angles � �the
angle of attack� and � �the banking angle�� When the launcher moves in space we
better take � and � because these angles refer to the coordinate system and not to the
direction of the incident wind� However� when the launcher climbs through the atmo	
sphere� we better use the angles � and �� because during the atmospheric �ight phase
it is necessary that we impose a limitation of the lift� when the lift limitation is e�ec	
tive it restricts the angle of attack � but it does not in�uence the banking angle ��
Knowing the actual velocity of the incident wind �w we can transform a notation
of the thrust acceleration vector �s with the angles � and � into a notation with the
angles � and � �and vice versa�� Term s is the length of the thrust acceleration vector�
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We ignore the lateral component w� of the incident wind in these relationships since
it is much smaller than the other components w� �vertical� and w� �horizontal��
The simpli�cation w� � � can be interpreted as uncertainty in the physical meaning
of the angles � and �� like � and � these thrust angles are �
��� correct�� however�
they represent just approximately the angle of attack and the banking angle�

The lift limitation� The lift force appears when the launcher �ies with an angle of
attack� and the lift is a dangerous lateral load for the structure of the vehicle �thrust
and drag are axial loads�� The launcher �ies with a small angle of attack� therefore�
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The direction of the lift force is always rectangular to the direction of the incident
wind� its magnitude l is approximately proportional to the sinus of the angle of attack
�factor sin��� The thrust acceleration �s �equation 	��� which is always aligned with
the centerline of the vehicle generates a component in direction of the incident wind
�proportional to cos�� and a component perpendicular to the direction of the incident
wind �proportional to sin��� We make nearly no mistake in neglecting the lift because
the lift is represented by the component of the thrust force that is rectangular with
the incident wind� in our model we neglect the lift force� however� therefore we incline
the thrust vector a little more with respect to the direction of the incident wind as
it would be inclined in reality� The actual value � is even smaller than in our model�
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Hamilton function and Lagrange equations� In trajectory optimization for con	
ventional space launchers it is allowed to neglect the lift force� but it is not allowed to
ignore the lift limitation� If we ignored the lift limitation� the optimization method
would lead us to a wrong trajectory which the launcher would never be able to follow
in reality �the launcher would not be able to stand the load of the lateral acceleration��
The aerodynamic pressure Q � 
	� w�� multiplied with the angle of attack �
�or sin��� may not exceed a certain �predetermined� small value� and we are allowed
to neglect the lift acceleration because the launcher will follow a trajectory with a
strict lift limitation� The assumption that the lift force is negligibly small is also valid
for winged space shuttles� however� this assumption is not valid anymore when we con	
sider future aerospace planes or airborne launchers which require some lift for �ying�

We consider the equations of the motion �	��� and construct the Hamiltonian H as�
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The thrust acceleration s is an explicit function of the time t� and therefore the
Hamiltonian H is a value that changes in time� You can observe that� in oder to �nd
optimal functions� we neglect the lift acceleration l and the third component of the
drag deceleration d� �w� � ��� The Lagrange equations for  u�  v and  r follow as�
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The components d� and d� of the drag deceleration vector �equations 	�� and 	�
�
are functions of the incident wind and the �ight altitude� Approximately is valid�
w� � �u� w� � v� � v� w� � � and w �

p
u� ! �v� � v��� The components of the

velocity vector of the launcher u �vertical� and v �horizontal� refer to inertial space�
and the term v� represents the inertial velocity of the launch pad �the launcher has the
same inertial velocity as the ambient atmosphere when it stands on the launch pad��
The factor v� is approximately constant during the atmospheric �ight phase� because
the drag deceleration causes a steep ascent through the atmosphere� We can assume�
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The drag and its derivatives vanish when the vehicle �ies out of the atmosphere�
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The Lagrange equations �	��� are still not complete because we have still not con	
sidered the partial derivatives of the thrust acceleration vector with respect to the
direction of the incident wind� A dependency of the thrust direction on the direc	
tion of the incident wind is not present when the launcher moves in the vacuum
of space� In space the lift limitation is not e�ective and we can de�ne the uncon	
strained thrust direction using the thrust angles � and �� However� the lift limitation
restricts the thrust direction during the atmospheric �ight phase� and in the atmo	
sphere it is advisable that we use the angles � and � to determine the thrust direction�
The lift limitation restricts just the angle of attack � but not the banking angle ��
We insert the thrust vector according to its de�nition �	��� and di�erentiate�
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The partial derivatives �	�� and �	��� vanish when the vehicle leaves the atmo	
sphere� but they are not zero when the angle of attack � is restricted during the
atmospheric �ight phase� Then it is necessary that we consider these terms in the
Lagrange equations� otherwise the launcher would follow a non	optimal trajectory�

Let us consider again the Hamiltonian H �equation 	���� The third component of
the thrust acceleration vector s� is multiplied by an expression that is a function of
the Euler angles �� � and �� We di�erentiate the Hamiltonian with respect to the
Euler angles to �nd the Lagrange equations for the multipliers  ��  � and  � Thus�
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Fortunately we can integrate these di�erential equations analytically and write down�

* � � ��H	�� �  � � �C� sin� � C� cos�� sin�! C� cos�
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*  � ��H	�� �   � C� �� ���

The terms C�� C� and C� in the equation system above are the integration constants�
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Control of the banking angle� The ground track of the ascent trajectory is mainly
a function of the banking angle �� The time function of the angle � is responsible
for the �nal values of the inclination angle �� the node angle � and the path angle ��
In order to guide the launcher into the desired �nal orbit we have to adjust the initial
values for the Lagrange multipliers  ��  � and   appropriately �or the integration
constants C�� C� and C��� The Hamiltonian H �	��� contains an expression in
parenthesis that is a function of the Euler angles and the concerning multipliers�
When we insert the integrals �	��� into this expression we �nd the relationship�

 � sin� cot�!  � cos�!   sin�	 sin�

� C� fcos� cos� � sin� sin� cos�g! C� fcos� sin� ! sin� cos� cos�g
! C� fsin� sin�g � C� �� �
��

� C� cos� cos� ! C� sin� cos� ! C� sin�
�

The relationship above contains three expressions in curly braces with trigonometric
functions of the Euler angles �� � and �� If we want we can replace these expres	
sions by notations which use trigonometric functions of the Cardan angles � and �
�the geometry of these angles is explained in detail in the chapter four of this book��

The �nal inclination � of the ascent trajectory is usually prede�ned� but the �nal
node angle � and the �nal path angle � are usually free� In this case we can re	
place the whole expression �	�
� in an approximation by the single constant C�

�the angles � and � are small� C� � � and C� � C� tan�end�� We have to adjust
only the value of C�� and the ground track of the trajectory is nearly a straight line�
However� when we want that the ground track of the trajectory is a �dog leg� curve�
we must use the more complicated form and adjust also the constants C� and C��

Let us assume the simple form of the expression �	�
� and rewrite the Hamiltonian
using the de�nition of the thrust acceleration vector �the equations 	���� Thus�
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Term s is the value of the thrust acceleration �the thrust acceleration is usually a
discontinuous function of time when an engine is switched	o� or a stage is separated��
The optimal control for the banking angle � requires a maximization of the Hamilto	
nian H at every instant� and� since � is not restriced and a continuous time function�
the maximum principle is equivalent to the condition �H	�� � �� We can conclude�
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The lift limitation has no in�uence on the optimal control of the banking angle ��
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Control of the angle of attack� The maximum principle states that Hamiltonian
has to be maximized with respect to all possible control functions� and this principle
is also valid to �nd the optimal control law for the angle of attack �� Therefore�
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In case the lift limitation is not violated we have to control the angle of attack
according to the condition above� However� it can be the case that the launcher is
exposed to high aerodynamic loads and that the angle of attack proposed by the equa	
tion above violates the lift limitation� The lift limitation requests that the angle �
must be smaller than a certain value �max �usually� the product of the aerodynamic
pressure �Q � 
	�  w�� and the sine of the angle of attack is kept constant during
the aerodynamic �ight phase�� When the lift limitation is e�ective we are forced to
ignore condition �	��� and control the angle of attack at the borders of the limitation�

We have seen that during the aerodynamic �ight phase with an e�ective lift limitation
the angle of attack � is predetermined and the condition �	��� is valid to determine
the banking angle �� The condition �	���� however� is just valid during �ight phases
when it does not violate the lift limitation� During the �ight phases when the lift
limitation is not e�ective we can replace the angles � and � by notations using the
thrust angles � and �� Then we can consider the relationships �	��� and transform
the control laws �	��� and �	��� into the following conditions for tan � and tan��

tan� �
 u
 v

� tan � �
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v � u sin�!  v cos��
�� ���

A replacement of the angles � and � is sensible for the �ight in the vacuum of space
where the incident wind is not present anymore� because the thrust angles � and �
refer directly to the attitude of the moving coordinate system �� with respect to the
horizontal line and � with respect to the actual �ight plane�� It is easy to verify that
we would �nd the same conditions �	��� when we used the thrust angles � and �
from the beginning and formed the partial derivatives �H	�� � � and �H	�� � �
of a notation of the Hamiltonian with the thrust angles � and ��

Initial conditions� We have to integrate the equations of motion �	��� simulta	
neously with the Lagrange equations �	���� therefore it is necessary that we adjust
the initial values of the three Lagrange multipliers  u�  v�  r and the constant C��
the trajectory must comply with the desired �nal state variables u� v� r and ��
Actually it is necessary that we �nd only three correct initial conditions for these
control variables� because the values of these multipliers in relation to each other are
decisive �and not their absolute values�� We can choose the initial value of one of these
multiplies arbitrarily� for example  u � 
 at the initial time of the ascent trajectory�
However� we are also forced to adjust the payload mass of the launcher appropriately�
otherwise the numerical trajectory integration cannot satisfy the four �nal conditions
of the target orbit �the trajectory maximizes the payload mass of the launcher��
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Control of the thrust magnitude� Up to now we have considered the length
of the thrust acceleration vector �s as a predetermined function of time� The thrust
acceleration of a space launcher accepts a discontinuous behaviour when an engine is
switched o� or when a stage is separated� Sometimes it is necessary to switch	o� the
thrust completely �s � ��� for example when the space launcher needs a coasting �ight
period in order to reach the altitude of the �nal orbit or to reach the position above
the equator for the injection into the geostationary transfer orbit� Usually� a coast	
ing period takes place when the launcher has left the atmosphere and moves in the
vacuum of space� The instant when the ignition of an engine terminates the coasting
period is usually an optimization parameter �the beginning of the coast arc is also an
optimization parameter when it is caused by the shut down of a re	ignitable engine��

Let us assume that the thrust acceleration can be controlled either by a throttling
of liquid engines during the �ight or by the determination of an appropriate burning
pro�le for the solid booster motors before the �ight� The launcher loses weight while it
expends propellent mass� and the thrust acceleration s is often a critical load shortly
before the separation of a stage� Then we have to limit the thrust acceleration�

s 
 smax

When a throttling of engines is not possible and the stage is equipped with several
engines� the thrust acceleration load is simply reduced by switching	o� an engine�
We have already seen that it is not sensible to reduce the thrust during the �ight
phase of high aerodynamic stresses in order to improve the payload capacity of the
launcher �because the gravitational losses are usually higher than the drag losses��
Let us consider now a reduction of the thrust acceleration s�t� with the intention to
limit the maximum of the aerodynamic pressure� The actual aerodynamic pressure Q�
determined by the following expression� should be smaller than the valueQmax� Thus�
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Initially� at the launch pad� the launcher experiences no aerodynamic pressure Q
�because w � ��� and Q vanishes also in space �where  � ��� but Q causes serious
loads at �ight altitudes between 
� and �� km� Often it is necessary that we observe
a maximum permissible load Qmax carefully and reduce the thrust acceleration when
the maximum value is reached� A constant value Q demands the following condition�
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When we consider that the launcher thrusts during that time interval nearly exactly
into the direction opposite to the incident wind� we can insert the equations of the
motion �	��� into the condition above and �nd a control function for the thrust
acceleration s that keeps the aerodynamic pressure Q approximately constant�
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u w
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�� ���

Term g � ������ m s� is the gravitational acceleration and term d the actual drag
deceleration� hscale � ����� km is the value of the atmospheric scale height�
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core stage boosters upper stage

propellent LOX�LH� Solid MMH�N�O
ignition mass �t� ��	 �� ����
burnout mass �t� �� 
� 
��
thrust �kN� 	���sl� �����sl� ���v�
c �vacuum� �m�s� 
�� ��
� 
���
c �sea level� �m�s� 

�� ���
diameter �m� �� 
�� ��
height �m� 
��� 
��� ��

Example ���a� The �gures show computational data of the ascent of an Ariane��
launcher from Kourou �������� West� ���
�� North� to a geostationary transfer orbit
�apogee at 
���� km� perigee at 
�� km� � � ��� The boosters are dropped after
�
� seconds at an altitude of � km� the payload shroud of ��
� tons is discharged
after ��� seconds at an altitude of �� km� The launcher has a payload capacity of
just ��� tons because it has to �y a funny curve to bring its core stage to a controlled
re�entry in front of the coast of Peru� The lift limitation keeps the angle of attack
extremely small �� � ����� during the aerodynamic �ight phase �Qmax� 
� kN�m

���

Ariane-5 GTO trajectorygroundtrack
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Example ���b� The computation of optimal reference trajectories is important work
during the preliminary design phase of a space launcher� launch system optimization
requires the optimization of trajectories� The example considers the European
Ariane�� launcher during its preliminary design phase� reference mission was the
transportation of the winged space glider �project �Hermes�� on top of the vehicle�
Therefore it was necessary to limit the maximum aerodynamic pressure Q� and a way
to reach this goal was a reduction of the booster thrust during the aerodynamic �ight
phase �it is possible to predetermine a thrust time function for the solid boosters��
The �gures show a reference mission of the launcher from Kourou to a ��� km low
earth orbit with �ve di�erent booster mass �ow rate pro�les� the computations verify
that it is possible to reduce the aerodynamic load considerably� but they show also
that a reduction of the load will lead to a reduced payload capacity of the launcher�
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Velocity requirement for the ascent to orbit� It is well	known that the circular
velocity on an orbit around the earth is a function of the altitude of this orbit� For
example� the circular velocity amounts �� m s at an altitude of ��� km above
the surface� and the circular velocity amounts ��� m s at an altitude of ���� km
�geostationary position�� A space launcher must have a higher %v capability than
what is necessary to establish the altitude and the velocity of the destination orbit�
The table below lists the %v distribution for a typical space launcher�

circular velocity at zero altitude� � ��� m s
launch in eastern direction� � 	��� m s
Hohmann transfer to a ��� km orbit� � !
�
 m s
gravitational losses� � !
��� m s
drag losses� � !
�� m s
aerostatic engine losses� � !��� m s
thrusting direction losses� � !
�� m s

total %v to LEO� � ��
� m s

transfer from LEO to GTO� � !���� m s

total %v to GTO� � 

��� m s

transfer from GTO to GEO� � !
� m s

total %v to GEO� � 
���� m s

The entire %v capability which a space launcher needs to ascend to a certain orbit
depends on the construction of the launcher and is a function of many parameters�
The accurate value can only be determined by a computation of the ascent trajectory�
However� we can assume in an approximation that the velocity requirement %v is
composed of the following parts� the launcher has to establish the circular velocity of
��� m s at the surface of the earth� but the velocity requirement for this maneuver
is actually smaller because the launcher starts already with a velocity caused by the
rotation of the earth �about ��� m s�� Additionally� the launcher has to establish
the altitude of the parking orbit �the %v requirement for a Hohmann transfer from
sea	level to ��� km altitude amounts 
�
 m s�� The trajectory is subjected to grav	
itational losses� drag losses and engine losses �the engines work for some time inside
the atmosphere where the exhaust velocity is smaller than in space�� and the thrust
is not always aligned with the optimal direction� Thus� a space launcher for low earth
orbit transportation needs a %v capability of about ��� km s� Since a single rocket
stage is usually not capable to reach such a high burnout velocity even when it carries
no payload� LEO launchers are usually two stage vehicles or single stage vehicles sup	
ported by strap	on booster motors �sometimes� when the performance of the stages
is bad� three or even four stages are used�� A GTO launcher needs one more upper
stage for having a %v capacity of about 
� km s� There are no drag losses in space�
We can calculate the Hohmann transfer once again to �nd the velocity requirement
for the transfer from LEO to GTO and from GTO to GEO� The gravitational losses
are much smaller now� provided that the engine of the upper stage is not too weak�
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����� Ascent Trajectories of Airborne Launchers

Bene�ts of using an aircraft as a launch platform� A launcher that ascends
from the launch pad to its destination in space has to establish the velocity and the
altitude of the target orbit� however� the mission involves losses �gravity losses� drag
losses and a reduced e�ciency of the engines due to the ambient aerostatic pressure��
The launcher has already an initial velocity and an initial altitude when it is launched
horizontally from a �ying jet aircraft� and additionally the trajectory losses decrease
greatly� The airborne launched vehicle has in fact the double payload capacity as a
similar surface launched vehicle� Another bene�t of the method of airborne launching
is that the launch service provider is independent of a launch site in an equatorial
region of the earth� However� the method of airborne launching involves two disad	
vantages� it requires the application of an expensive big jet aeroplane and wings for
the initial pull	up maneuver of the rocket after the separation from the aircraft�

Wings for the initial pull�up maneuver� The wings cause a lift force and an
additional �induced� drag force when the vehicle is �ying with an angle of attack �
�the lift is approximately a linear function of � and the induced drag is approximately
a quadratic function of ��� both forces are proportional to the aerodynamic pressure
Q � �

�w
�� We can write for the lift acceleration l and the drag deceleration d�

l �



�
 w� �CL	 � �� A

M
�� ���

d �



�
 w� �CD� ! CD	 � ��� A

M
�� ��

The aerodynamic coe�cients CL	� CD� and CD	 are functions of the Mach number�
Often these coe�cients are inaccurately known during the preliminary design phase
and later provided from wind channel experiments in form of diagrams or tables�
For the calculation of the trajectory the vector form of the lift acceleration �	��� and
the drag deceleration �	�
� has to be implemented in the equations of motion �	����

Control of the initial pull�up maneuver� Let us assume that the carrier aircraft
is capable to establish the appropriate initial conditions for the ascent trajectory of
the airborne launcher� When a geostationary position is the �nal satellite destina	
tion� the ejection is performed exactly above the equator �ying in easterly direction�
In case the destination is an inclined or polar low earth orbit� however� the ejection is
usually performed at a location distant from the equator� but at this position the air	
craft must turn until it stays on a course with the correct heading angle� Immediately
after the separation from the aircraft the airborne launcher has to start with the pull	
up maneuver� therefore it �ies with the maximum angle of attack and with a vanishing
banking angle �� � �max� � � ��� The lateral �pitch� acceleration is about �� m s��
and the trajectory control is determined by the maximum aerodynamic load that is
allowed during this �ight phase� The pull	up maneuver is �nished when the launcher
climbs with an angle of about ��� through the upper layers of the atmosphere�
Now the lift force is not necessary anymore� the airborne launcher can drop the
wings and continue its �ight like a conventional surface launched vehicle�
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booster�stage phase� ignition burnout

�ight time �s� � �
altitude �km� �� �	
climb angle �deg� 
 	��

launcher mass �t� 	� �	
angle of attack �deg� �� 
��

thrust �m�s�� ���� ����

lift �m�s�� ���� ����

drag �m�s�� ��� ��

Example ���a� A small satellite launcher
�the concept �PAP�L

�H�� composed
of stages of the retired European Ariane�
launcher� is ejected from the back of
the big Russian Antonov ��� transport
aeroplane �a more detailed description of
this airborne launcher concept is given
in the chapter three of this book�� The
�gures consider the complicated control of
the angle of attack during the phase of the
initial �ight with a strict lift limitation�

The separation from the carrier aircraft is performed at an altitude of �� km� when the
aircraft �ies with a velocity of Mach ��	 and a climb angle of 
� in easterly direction�
The angle of attack of the winged rocket is controlled to ��� immediately after the
ejection� but the rocket accelerates and� a few seconds later� the lift limitation reduces
the angle of attack in order to keep the lift force for the pull�up maneuver below ���� kN�
The winged booster stage is empty after � seconds� wings and empty solid boosters
are dropped at an altitude of �	 kilometers when the pull up maneuver is �nished
and the launcher continues its �ight with the propulsion of the second stage L

�
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Example ���b� The appropriate size of the wings was an important question in
the preliminary design study for the airborne launcher �PAP�L

�H��� wings are
necessary to generate the lift force for the initial �pull�up� maneuver �performed at
velocities between Mach � and Mach ��� and� in case the rocket motors are not equipped
with thrust vectoring� the wings must be able to provide �ight stability during the
aerodynamic phase of the mission� For the example design study �delta wings� with a
leading edge sweep of about ��� and vertical �ns at the ends were seen as the solution�
Two parameters of the wings have a strong in�uence on the reference trajectory� the
�lift coe!cient� that determines the lift force as a function of the angle of attack and
the �maximum lift� that determines the load limitation for the structure �rmness of
the vehicle� The light weight construction should be as small as possible� however� the
wings must be capable to generate a certain lift which is required for the maneuver�
Analysis of the ascent trajectory can be used to demonstrate that the payload capacity
deteriorates badly when the wings are not able to provide su!cient pull�up capability�
However� an enlargement of the wings brings no advantages anymore at the reference
design point where the delta wings generate su!cient lift for the pull�up maneuver�

lift coefficient [1/rad],(reference area: 5.31 m²)airborne launcher 2PAP+L33+H10
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��� Space Launcher Navigation

The ability to calculate optimal ascent trajectories is particularly important during
the preliminary design phase of a new space launcher� because in this phase the tra	
jectory optimization serves as a basis for the optimization of the launcher system�
When the construction of the launch system has been de�ned� the trajectory opti	
mization serves as a basis for the implementation of a navigation strategy� For the
real �ight mission it is not su�cient to control the thrust vector in accordance with
the data of the precalculated optimal trajectory� the real trajectory of the launcher
would soon deviate substantially from the precalculated way� because the mathemat	
ical model is never 
��� accurate and the real mission is in�uenced by e�ects which
are not known before the mission �the weather on the launch date� for example��
The duty of the navigation strategy is to keep the launcher close to the precalculated
reference trajectory�

����� Guidance Systems

Stabilization� Let us consider a space launcher that is actually on its way to space�
The launcher should follow its optimized reference trajectory� therefore it is neces	
sary that the vehicle has been equipped with an attitude control system that sta	
bilizes at every instant the predetermined reference attitude� The control of the
equilibrium state of the attitude is called �stabilization� of the launcher� An iner	
tial sensor measures the actual attitude� the attitude control system compares the
actual attitude with the reference attitude and �nds control functions for the appro	
priate thrust vectoring �it is very important that the attitude stabilization system
compels compliance with the correct attitude at every instant of the �ight� because
the launcher is usually destroyed within a few seconds when the attitude is lost��

Navigation� The sensor of the navigation system measures time� actual position and
velocity and transfers these data to the navigation computer �the sensor for measuring
these data is usually an inertial platform�� The computer of the navigation system
compares the measured data with the stored data of the precalculated trajectory�
In case that deviations from the nominal trajectory are detected� the navigation
computer has to determine a new reference attitude for the attitude control system�
The method of detecting deviations from the actual position and �nding the appro	
priate way back to the nominal trajectory is called �navigation� of the launcher�
the on	board computer regulates the change of operating point conditions in order
to recover the reference trajectory ��piloting and guidance��� In this connection let
us de�ne two more terms which are often used in the �eld of control engineering� we
say that the trajectory is controlled �open	loop� when the navigation system ignores
disturbances and controls the thrust angles in accordance to the reference trajectory�
we say that the trajectory is controlled �closed	loop� when the navigation system
measures deviations and tries to re	establish the precalculated reference trajectory�
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Regulators and terminal controllers� Thus� in order to handle the disturbances
which occur during the real �ight mission� it is necessary that we implement a closed	
loop guidance strategy into the navigation computer system of the space launcher�
Such a strategy is called �regulator� when it keeps the launcher close to the reference
trajectory during the entire �ight time� the strategy is called �terminal controller�
when it brings the launcher close to the reference trajectory only at the �nal instant of
the �ight time� Regulators are only preferable when it is necessary to avoid substan	
tial deviations from the reference trajectory all the time� otherwise there is no reason
to guide the launcher back to the reference trajectory� It is important that the navi	
gation strategy brings the launcher as near as possible to the �nal destination orbit�
and it should be avoided that the navigation strategy consumes a lot of propulsion�
A disturbance that occurs at a certain instant of the mission has a negative e�ect
on the accuracy of the payload delivery� however� the negative e�ect can be anni	
hilated during the entire following �ight time� An �asymptotic optimal regulator��
in fact nothing else than a terminal controller� regulates only the �nal state of the
trajectory and is conditioned for saving propulsion in doing this task�

working principle of regulator and terminal controller

nominal
trajectory

open-loop control

regulator

terminal controller

navigation
point

Trajectory re�optimization� A simple but naive idea for the implementation of
a terminal controller is to let the navigation computer update the reference trajec	
tory at certain moments by �nding always totally new optimized trajectories for the
remaining �ight time� Even though this idea is convincing at the �rst look� the
practical application involves serious problems� �rst� it is maybe di�cult for the on	
board computer to calculate during the mission optimal trajectories �the navigation
algorithm should be �fast and robust��� second� the optimization objective is not a
�maximization of the �nal mass� anymore but a �minimization of the �nal deviation��
It is obviously impossible to change the payload mass during the mission� however�
it is essential that the payload reaches safely and accurately its destination orbit�
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Iterative path adaptive guidance� The navigation method that was used in the
Saturn launch vehicles of the American moon landing programme can be seen as
a trajectory re	optimization strategy� even though the simple steering law that was
used is actually not the optimum� We have seen that the optimal control law for the
thrust angle � is approximately a linear function of time when the launcher �ies in
the vacuum of space over a �at �non	spherical� earth� Therefore equation �	� states�

� � tan� � C� � C� � t �� 
�

Here term C� is the constant �tilt	rate� and C� is the thrust angle � at the initial
instant when t � �� The launcher cannot use this control law for its �ight through
the atmosphere� because the lift limitation forces the vehicle to follow a �gravity tilt
trajectory� with an extremely small angle of attack� Consequently� the launcher is
controlled �open	loop� during its atmospheric �ight phase� When the launcher leaves
the atmosphere the thrust angle � is already small� and the law �	
� constitutes a
good approximation for the steering of the optimal thrust direction in the actual �ight
plane� However� now it is necessary to update the constants C� and C� �because per	
turbations deformed the precalculated trajectory�� and the update can be done �on	
board� by an integration of the following �ight phase �therefore the Saturn launchers
used simpli�ed equations of motions to approximate the �ight over the oblate earth
with a realistic gravitational �eld�� The constants C� and C� have to be adjusted in a
way that the �on	board� trajectory integration complies with the desired �nal values
of altitude and velocity� The method is called �iterative path adaptive guidance��
because the thrust angle � is continuously updated during the non	atmospheric �ight�

However� the control law �	
� cannot be used anymore during the �nal �ight phase�
Near burnout� shortly before the vehicle reaches orbital velocity� the navigation
method would give a large thrust angle even for a small altitude error� The altitude of
the destination orbit is reached early before burnout� and the altitude constraint can
be dropped during the navigation of the �nal �ight period� Approximately one minute
before the cuto� the launcher replaces the equation �	
� by an even simpler law�

� � C� �� ��

The turning rate of the vehicle is small near the �nal orbit� and the navigation strat	
egy ignores the rate term C� and concentrates on the adjustment of the �nal velocity�

The updating of the thrust angle � is continued until about 
� seconds before the �nal
cuto�� but during the last seconds the thrust angle is kept constant� Finally� a simple
velocity �or energy� presetting triggers the cuto� of the engines� Even though this
path adaptive guidance strategy is extremely simple� the Saturn	� launch vehicles
could achieve a typical injection accuracy of better than half a kilometer in altitude
and better than 
 m s in velocity for missions to low earth orbit �and the guidance
system could cope with a premature shut	down of an engine of the second stage that
occurred during the �ight of Apollo 
��� However� the disadvantage of the iterative
path adaptive guidance strategy is that this method makes the space launcher follow
an ascent trajectory which is quite far away from the real performance optimum�
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Linear proportional terminal control� A more robust and even simpler strat	
egy than the re	optimization algorithm is called the �linear terminal controller��
The linear proportional terminal controller regulates the �nal state of the trajec	
tory and pays attention to the limits in which the thrust vector is controllable�
The method works as follows� we have to �nd time functions for certain navigation
coe�cients before the actual �ight and implement these functions in the on	board
navigation computer� When the navigation computer senses deviations in the actual
values of position and velocity� it simply multiplies these deviations with the navi	
gation coe�cients to get the control data for the correction of the nominal attitude�
Thus� when r is the altitude� u the vertical velocity� v the horizontal velocity and �
the inclination angle� then the terms %r� %u� %v and %� express the actual devia	
tion from the nominal trajectory at a certain navigation point �time t�� The nominal
attitude of the vehicle is determined by the thrust direction� for example using the
thrust angles � and � �or � and ��� The thrust angle � �out of the actual �ight plane�
is mainly responsible for the control of the inclination� the thrust angle � �in the ac	
tual �ight plane� is mainly responsible for the control of the altitude and the velocity
�we can at least in an approximation consider the control of the inclination as inde	
pendent of the control of the altitude and the velocity�� Then the guidance system
simply calculates the navigation thrust angles %� and %� and adds these angles
to the nominal attitude �de�ned by the nominal thrust direction � and ��� Thus�

%� � N� �%� �� ��

%� � Nr �%r !Nu �%u!Nv �%v �� ��

Terms N�� Nr� Nu and Nv are the navigation coe�cients� These coe�cients are func	
tions of the construction of the launcher� and they are functions of the individual nav	
igation strategy that we want to implement in the guidance system of the launcher�
However� these navigation coe�cients are not functions of actual perturbations�
and we can calculate them before the mission as addition to the nominal trajectory�

Once we have found the navigation coe�cients� the stability and the accuracy of this
navigation strategy can be tested with a computer that simulates the perturbed �ight
of the space launcher� Later� when experience with the navigation strategy is present�
we can easily improve the linear terminal controller by adding navigation coe�cients
which consider also terms of nonlinear deviations from the reference trajectory�

Navigation accuracy� The recovery of the reference trajectory �or the regulation of
the �nal state of the trajectory� by a closed	loop navigation strategy has an in�uence
on the optimal performance of the launcher� However� the deviation of the nominal
thrust direction in order to compensate perturbations cannot lead to a reduced pay	
load capacity� because it is practically impossible to change the payload mass during
the �ight� Instead of this� the reduced performance can be transformed into a reduced
velocity at the �nal instant of the reference trajectory� and the reduced �nal velocity
can be made up be additional �contingency� propulsion� Alternatively� in case the
launcher uses a solid upper stage where additional propulsion is not available� there
is also the option to reduce the altitude of the destination orbit during the �ight�
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����� The Lambda�Matrix Method

Variation of state variables and control variables� The problem is now how we
can calculate the time functions for the navigation coe�cients for such a linear propor	
tional terminal controller �equations 	� and 	��� The following section explains
a method that has become known in the literature as the �lambda matrix method�
�referring to the Lagrange multipliers  of the trajectory optimization theory��

We can consider a perturbation at a certain instant of the �ight �navigation point t�
as a deviation of the vector of the state variables %�x and a deviation of the vector
of the control variables %�q� The actual perturbation will later have an in�uence on
the �nal state variables �xend� There is approximately a linear relationship between
the perturbation and the �nal deviation %�xend for small perturbations� We can write�

%�xend �

�
�xend
�q

�
%�q !

�
�xend
�x

�
%�x �� ��

Our intention is to �nd a control vector %�q that lets the �nal deviation %�xend vanish�
Therefore we have to invert the matrix ��xend	�q�� The procedure is just possible
when the matrix is not singular and contains the same number of rows and columns�
For example� we need three actual control variables �q when we want to adjust three
�nal state variables %�xend � �� When it is possible to invert the matrix we can write�

%�q � �
�
�xend
�q

���
�
�
�xend
�x

�
�%�x �� ��

The exponent 	
 in the equation above indicates the inverted matrix that determines
the behaviour of the �nal deviation of the trajectory in the linear vicinity as a func	
tion of variations of the actual control variables� If we used the thrust angles � and �
as the actual control variables we were just able to adjust two �nal state variables�
The �lambda	matrix method� is preferable because it uses the Lagrange multipli	
ers as control variables �these multipliers  determine the thrust direction directly�
the elements of vector  correspond to the thrust angles and their time derivatives��

Trajectory control with the Hamilton�Lagrange theory� Let us brie�y recall
the optimization theory that we have used in the preceding section of this chapter
�therefore we list all the important equations in their abstract mathematical form��

*xi � fi��x� �q� t� � i � 
� n

H �
nX
i��

 i fi

* i � � �H
�xi

� � �
�H
�q

�� �

We constructed the Hamiltonian H �	��� to the equations of motion �	��� and
derived the adjoined system of Lagrange equations �	�� and 	���� The control of
the thrust direction was then de�ned by the equations �	��� and �	��� �or 	����
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The �lambda	matrix	method� regulates the thrust direction indirectly by an update
of the Lagrange multipliers� Let us �rst consider the control of the inclination and
assume that the control of the inclination is independent of the control of the altitude
and velocity� The actual value of the multiplier  � in�uences the the thrust angle ��
and � is the thrust angle that guides the launcher into the desired orbital inclination�
We �nd the navigation coe�cient N� for the control of the inclination �end simply as�

%� �
��

� �
�% � � % � � � ��end	��

��end	� �
� %�

� N� � � ��

� �
� ��end	��
��end	� �

�
� � ��

��end
� ��end

��

	
�� ��

The control of the altitude and velocity is more complicated since the thrust angle �
is determined by the ratio of  u and  v �equation 	���� the multiplier  r� however�
has no in�uence on the actual thrust direction �the derivative ��	� r equals zero��
We can use a variation of  v to determine a variation of the thrust direction %��

%� �
��

� v
�% v �� ��

Now we have to calculate the deviations of the �nal state variables uend and rend
�or alternatively uend and vend� as functions of a variation of the actual state variables
u� v and r and as functions of the actual control variables  v and  r� Then we form��
B% v

% r

�
CA � �

�
B
�uend
� v

�uend
� r

�rend
� v

�rend
� r

�
CA
���
B
�uend
�u

�uend
�v

�uend
�r

�rend
�u

�rend
�v

�rend
�r

�
CA�
�
B

%u

%v

%r

�
CA �� ���

Finally� we �nd after some transformations the navigation coe�cients Nu� Nv andNr�
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The coe�cients above used in the equation �	�� adjust the �nal values uend and
rend� they transfer the performance loss to a deteriorated �nal horizontal velocity vend
�assuming that the launcher makes up the missing velocity by an extra burn time��
When we want to adjust the �nal horizontal velocity instead of the �nal altitude we
have simply to replace the term rend by the term vend in the systems �	��� and �	�
��
Using the lambda	matrix method we can also adjust other trajectory parameters at
instances di�erent from the �nal instant �for example� we can adjust the apogee
altitude exactly above the equator for a mission to the geostationary transfer orbit��
However� a control strategy has no e�ect on the injection accuracy anymore when the
launcher is already near the �nal orbit� and �nally the method must be suspended
�or replaced by another method� because the equation system �	�
� gets singular�
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Example ��
� Before a closed�loop navigation strategy is implemented in the guidance
system of a space launcher� it has to be tested extensively inmany computer simulations�
The �gures consider the ascent trajectory of a European Ariane�� launcher from
Kourou into a ��� km circular low earth orbit with �	��� inclination� It is assumed
that the speci�c impulse of the booster motors during the real mission is � lower
than expected� The guidance system senses during the �ight deviations from the
nominal state variables r� u and v and multiplies these deviations with precalculated
navigation coe!cients to �nd the angle %� for the correction of the nominal attitude
of the vehicle �%� � Nr%r ! Nu%u ! Nv%v�� The simulation of the trajectory
demonstrates that the �nal deviation of the orbital altitude is corrected from �	 km
�open loop control� to just � km �closed�loop control�� and that the performance loss
is transformed into a reduction of the �nal horizontal velocity �the missing �� m�s of
the �nal horizontal velocity can be made up by a longer burn time of the core stage��

navigation coe�cients for the ascent trajectory of an Ariane	� launcher

%� � Nr �%r !Nu �%u !Nv �%v
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��� Space Launcher Attitude Stabilization

The ascending launcher is a material body with �nite dimensions and thus it can si	
multaneously translate and rotate� Both� translational motion and rotational motion�
are controlled by an appropriate steering of the thrust vector ��thrust vectoring���
The content of the last section of this chapter is the rotational motion of conventional
space launchers and the control of this motion�

��	�� Control of the Angular Motion

Cascade control� The piloting system of a space launcher is actually a cascade
controller that consists of three merged control loops� Its outer loop realizes the
navigation strategy and has a comparatively slow response �we have seen that the
guidance strategy can switch between �open	loop control� for the atmospheric �ight
phase and �closed	loop control� for the accurate navigation of the �nal �ight phase��
The inner control loop steers the actuators of the engines� However� the moment of
inertia of the engines is usually very small in comparison with the rest of the vehicle�
and� provided that the engines react much faster than the vehicle� we can assume
an immediate response of the thrust direction and ignore the rotational dynamics of
the engines in the calculation of the rotational dynamics of the vehicle� Then the at	
titude dynamics of the vehicle is determined by the middle loop of the piloting system�
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Rotational dynamics of the vehicle� In the analysis of the attitude control loop
of a space launcher we assume that the nominal attitude �determined by the angle
of attack and the banking angle� for example� changes just slowly in time� Also the
mass of the vehicle� the location of the center of mass and the moment of inertia
about the center of mass are constant during the short time interval that is now
under consideration� Then we place a coordinate system on the center of mass of
the launcher and align the x	axis with the nominal direction of the incident wind
�the opposite drag direction� and the y	axis with the nominal direction of the lift�
The coordinate system keeps its direction with respect to inertial space during the
short time interval under consideration� and it is an inertial system since we disregard
the gravitational attraction and the centrifugal force along the ballistic trajectory
�the coordinate system can be used to describe the rotational motion with respect
to inertial space and the translational motion with respect to a ballistic trajectory��

! �S

S �RS *�	c

�L

�D

RS

RQ

x

y

�

�w

S

M

Q

roll control

incident wind

The point of application Q of the aerodynamic forces drag �D and lift �L is usually
located in front of the center of mass M �displacement RQ�� and consequently the
non	powered motion is unstable when the launcher climbs through the atmosphere�
The aerodynamic torque is approximately a linear function of the angle of attack ��
For aerodynamic stability we could either shift the center of the aerodynamic pressure
Q back using �ns at the rear end� or we could shift the point M ahead using ballast
at the front� However� every additional weight deteriorates the performance of a
space launcher considerably� and therefore it is much better to establish stability of
the attitude via the method of thrust vectoring� the point of application S of the
thrust force �S is located at the rear end of the vehicle �distance RS�� and when

we deviate the thrust force �S from the centerline of the vehicle it generates a torque
about the center of massM � For �ight stability it is necessary that the control torque
caused by the thrust misalignment �angle !� is greater than the aerodynamic moment�
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Jet damping� The rear end of the launcher accepts a velocity component RS � *�
when the launcher rotates on the z	axis with the rotational velocity *� � and� as a
consequence� a small momentum is exchanged between the launcher and the propel	
lent that leaves the nozzle� The thrust force S is simply the product of mass �ow
rate m and exhaust velocity c� thus S � m � c� We can see that the force caused
by the rotation of the exhaust plume Sjet damping � m � RS *� � S � RS *�	c is much
smaller than the thrust S� This small force is called �jet damping� because it acts
against the direction of the rotational motion� but it is so small that we can neglect it�

Roll control� The rotation of the vehicle on its symmetry axis is indi�erent �neither
stable nor unstable�� and obviously the roll angle will drift away from its nominal
value when a small disturbing torque acts on this axis� The launcher needs the ability
to control this angle� However� the required control torque is quite small� and in case
of several engines the roll control can be performed via an opposite thrust misalign	
ment of two parallel working engines� In case of a single gas generator cycle engine
the roll angle is usually controlled via an appropriate pivoting of the o�	center gas	
generator exhaust plume �the plume is normally parallel with the thrust direction��

Attitude control� The control of the attitude of the launcher with respect to the
incident wind is more critical� because the aerodynamic torque tries to tilt the vehicle�
The launcher must establish and maintain a certain angle of attack and therefore
deviate the thrust from the centerline in order to generate a counteracting torque�
The angular motion of the launcher on the y	axis and on the z	axis is unstable
�without active control a small attitude disturbance would grow rapidly�� and control
of the rotation on these two axes is required� Thrust vectoring is usually performed
by a gimbal de�ection of the engines or their nozzles� A typical value for the the
thrust vectoring capability is a de�ection of the misalignment angle ! between �
��
�in horizontal and vertical direction� and a misalignment velocity of *! � 
��	second�

Equations of motion� We use Newton�s law to establish the equations of motion�
the time derivative of the angular momentum vector is equal to the vectors of all ex	
ternal torques� and the time derivative of the linear momentum vector is equal to the
vector of all external forces� Then we get the equations for the rotation on the z	axis
and for the translation in x and y	direction �multiplied by the launcher mass M� as�

� � �� � L �RQ cos�!D �RQ sin�� S �RS sin! �� ���

M � �x � �D ! S � cos��! !� �� ���

M � �y � L! S � sin��! !� �� ���

You can see that we still consider the launcher as a rigid body� the term � is the mo	
ment of inertia for the rotation on the z	axis� We can derive a similar �or identical�
equation system for the rotation on the y	axis and the translation in z	direction� how	
ever� for small aerodynamic incident angles this other equation system is decoupled
from the equation system �	��� and �	���� The launcher oscillates simultaneously
on the z	axis and on the y	axis� but let us now analyze the stability and control of the
rotation on the z	axis as a representative for the angular motion of a space launcher�
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The attitude controller� The aerodynamic torque that acts on the center of mass
of the vehicle is a linear function of the angle of attack � �provided that the angle
of attack remains small� for example below 
���� and we can abbreviate the aerody	
namic torque as L �RQ cos�!D �RQ sin� �M	 ��� The restoring torque is a nearly
linear function of the thrust misalignment angle ! �for small angles sin! � !��
We can include a perturbation Mdisturbance and rewrite the equation �	��� as�

� � �� �M	 � �� RS S � !!Mdisturbance �� ���

The term M	 in the equation above is the unit aerodynamic moment and� in case
M	 is positive and the control moment S RS � ! is zero� the equation determines
an exponentially growing function of the angle of attack � for the excitement with
an in�nitesimally small perturbation torque Mdisturbance� The nominal angle of at	
tack is always small but usually not exactly zero �the navigation controller requires
that the launcher �ies with a small angle of attack�� and we can write the angle � as�

� � �nominal ! �control �� ���

During the short time interval that is under consideration the term �control is rapidly
changing� the term �nominal� however� is constant and its time derivatives equal zero�
Actually� the nominal attitude of the vehicle changes just slowly during the en	
tire �ight time� and the attitude control system is rather a disturbance controller
than a follow	up controller� Thus� the misalignment of the thrust force generates
an open	loop control moment M	 � �nominal that establishes the nominal attitude
and a closed	loop control moment that stabilizes the nominal attitude� We can write�

RS S � ! �M	 � �nominal ! ��G	 � �control !G �	 � *�control� �� ��

The terms G	 and G �	 are the so	called �gain factors� for � and its time derivative *��
The following connection diagram illustrates the working principle of the controller�
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The controller that we analyze in this section for the rotational stability of the
launcher is a linear controller with proportional and di�erential behaviour� We can in	
sert the control torque �	�� into the equation of motion �	��� to �nd the condition�

��control !G �	 � *�control ! �G	 �M		�� � �control �Mdisturbance	� �� ���

This second order linear di�erential equation describes a harmonic oscillation for the
control angle �control that is excited by a perturbation� the functionMdisturbance	��

The steady state performance� The dynamical system given by equation �	���
is stable as long as the proportional gain factor G	 is greater than the term M		��
We �nd the steady state performance of the controller when we consider a constant
disturbance and calculate the state of the system after an in�nitely long time interval�

�control �
Mdisturbance

� �G	 �M	
�� ���

You can see that a constant disturbance causes a constant attitude control angle�
and that the steady state performance improves when we use a larger gain factor
�the deviation �control from the nominal attitude gets smaller for larger values of G	��

The transient performance� The word transient refers to the time interval when
the system is changing from one steady state to another one� for example when the
system is excited by a step input function Mdisturbance	�� To �nd the solution to
the equation �	��� for the excitement with a step input function we insert the trial
solution �control � C � e�t �with the amplitude C� the multiplier  and the time t�
and calculate the characteristic equation of the homogeneous system� The result is�

 � !G �	 �  !G	 �M		� � � �� ���

or�  ��� � �G �	

�
�
s
G �

�	

�
�
�
G	 � M	

�
	

�� �
�

The di�erential equation �	��� can have three di�erent solutions� depending on the
sign of the argument of the square root function of its characteristic equation �	�
��

When the square root argument is negative the multipliers  are complex numbers
�with negative real parts and conjugate imaginary parts�� Then the solution is�

�control �
Mdisturbance

� �G	 �M	
�
�

� e��G �		��t � � cos �t! G �	

��
sin �t

��
�� ���

with the frequency� � �

s
�G

�
�	

�
!

�
G	 � M	

�
	

�� ���

The solution describes a damped oscillation with the damping factor �G �		�� and the
frequency �� At the initial time �t � �� the excursion �and its velocity� equals zero�
at the �nal time �t��� the excursion accepts the new steady state �equation 	����
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When the square root argument of the equation �	�
� is positive both eigenvalues
are real numbers with negative values� The solution to the equation �	��� is then�

�control �
Mdisturbance

� �G	 �M	
�
�

� e��G �		��t � � cosh�t! G �	

��
sinh�t

��
�� ���

with the factor� � �

s
G �

�	

�
�
�
G	 � M	

�
	

�� ���

The solution describes an overdamped oscillation without overshoot� Once again�
the excursion equals zero at the initial time and accepts �nally the new steady state�

The third solution is more of theoretical interest� because the square root argument
is never exactly zero� In this case both multipliers  are identical negative numbers�

�control �
Mdisturbance

� �G	 �M	
�
�

� �
 ! G �	

�
t
� � e��G �		��t

�
�� ���

in case� G �	 � �
p
G	 �M		� �� ��

The excursion �	��� as response to the step input function corresponds to the criti	
cally damped case� where any further decrease in damping would result in overshoot�
its graphical representation is actually very similar to the overdamped case �	����

The �gure below illustrates the response of the control system �	��� to the step
input function� The undamped system �G �	 � �� oscillates with the frequency
�� �

p
G	 �M		� about the �nal steady state condition Mdisturbance	�������

The underdamped system �G �		��� � ��� or ���� has a comparatively short re	
sponse time but it overshoots the �nal steady state condition� The critically damped
system �G �	 � ���� and the overdamped system �G �		��� � 
��� approach the �nal
steady state condition without overshoot but slower than the underdamped system�

the step input function response of �control �	��� for di�erent damping factors

Mdisturbance
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The gain factors� The problem is now the selection of appropriate values for the
gain factors of the control system �	���� The search is rather an empirical procedure
�based on computer simulations� than an analytical derivation� However� the right
value of rate gain factorG �	 must stand in a certain relation with the natural frequency
of the undamped system �� �

p
G	 �M		�� when the damping is too small� the

system reacts on a step input disturbance with a large overshoot and a long oscilla	
tion period before the new equilibrium is reached� but the transient response time is
also long when the damping is high� Experience shows that a good solution requires a
slight overshoot� for example the damping ratio G �		����� � ���� The left �gure be	
low shows the thrust angle ! during the transient period for several damping factors�

Let us now consider the excursion gain factor G	� To ensure static stability of the
control system this factor must be greater than the term M		�� The response time
of the system �determined by the frequency 	��� and its steady state performance
�determined by the equation 	��� as well improve when we increase the factor G	�
The right �gure below shows the transition of the thrust misalignment angle ! to its
new steady state for several gain factors� and we can observe that also the thrust mis	
alignment reduces for larger gain factors� This all brings us to the conclusion that the
gain factor should be as high as possible� However� the launcher is not a rigid body�
it is a �exible body and it can vibrate� We must avoid resonance conditions where
the frequency of the transient oscillation of the controller is near the natural frequen	
cies of the launcher or its component parts� A large gain factor is desirable� how	
ever� the value is limited by the possible interference with the body of the launcher�
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When the attitude of the launcher with a proportional di�erential controller �	���
is disturbed by a constant torque �the step input function�� the new steady state is
actually an error in the attitude at the end of the transition period� However� the
outer guidance loop with its slow response compensates steady state attitude errors�
When we expect constant perturbations we can also use �error integral compensation�
in the fast attitude control loop and include an additional feedback control propor	
tional to the factor

R
�controldt in the equation �	�� to eliminate the �nal steady

state attitude error� The control torque developed by the integral error reacts slowly�
but it leaves the transient performance of the control system essentially unchanged�
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Acceleration control� Let us now rewrite the equations of the translational motion
�	�� and 	��� for a small angle of attack � and a small thrust misalignment angle !
�the cosine of a small angle equals 
 and the sine equals the angle� approximately��
The aerodynamic lift L is approximately a linear function of the angle of attack �
�we can write L � L	 � � where the term L	 represents the �unit lift force���
The aerodynamic drag D� however� is not a function of the angle of attack� Therefore�

M � �x � �D ! S �� ���

M � �y � L	 � �! S � ��! !� �� ���

Equation �	��� tells us that the acceleration �x in �ight direction is nearly not a
function of the angle of attack� but the thrust misalignment angle ! in equation
�	��� is a linear function of � and its �rst time derivative *�� and� consequently�
the lateral acceleration �y oscillates with the frequency of the angle �� The attitude
control systems of space launchers use sometimes additionally acceleration feedback
control in order to limit the structural loads during the atmospheric �ight phase�
However� accelerometer control means a destabilization of the attitude control loop�
and a compromise between stress reduction and attitude stability must be achieved�

Example ��a� A space launcher is usually a slender body� its motion through
the atmosphere requires active stabilization because the center of the aerodynamic
pressure is nearly always located in front of the center of mass� The �gure shows the
location of the center of pressure for a small tubular shaped launch vehicle with a conic
tip and small �ns at the rear end� The aerodynamic lift force �L � Q	A � CL	 � ��
and the aerodynamic moment �M � Q	A � CM	 � � � RQ � L� are linear functions
of the angle of attack and nonlinear functions of the Mach number� the calculation of
these loads requires the application of a computer program �for example AEROCAD��
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��	�� The Flexible Rocket

Bending vibrations� We have seen that high gain factors are desirable for a fast
reaction of the attitude stabilization feedback control system of the space launcher�
but the body of the vehicle �or parts of it� may not resonate in response to the
attitude control loop� Let us now consider the launcher as a �exible slender body�
In order to the calculate its natural frequencies we have to slice the body into in	
�nitely thin disks of the length dx and the mass dM and establish the conditions of
equilibrium for every disk �the method of dissection�� The aerodynamic loads which
act on the disk are dL �lift� and dD �drag�� The internal loads at the section x are
N �the normal force in x	direction�� F �the shear force in y	direction� and M �the
bending moment in z	direction�� and� since dx is in�nitesimally small� these loads
change proportionally to the length dx when we move the section from the location x
to the new location x!dx �we use the prime to indicate a di�erentiation with respect
to the distance d	dx and a dot to indicate a di�erentiation with respect to time d	dt��
The internal loads on the disk at the location x ! dx act in the negative direction�

xy

x

dx

R

�S

d�L

d �D

N !N 	dx

M!M	dx

F ! F 	dx

y	 � tan� � �
M

F

N
S

We denote the equilibrium of torques for the center of mass of the in�nitely thin
disk �neglecting its rotational moment of inertia d� and considering dx� � �� and
Newton�s linear momentum theorem for the translational motion in x and y	direction�

� � N y	dx�F dx�M	 dx �� 
���

dM � �x � �dD �N 	 dx �� 
�
�

dM � �y � !dL � F 	 dx �� 
���

Note that we do not have to consider an aerodynamic torque in the equation �	
����
the torqueM	 �� with respect to the center of mass M of the vehicle is the result of
the integration of all the torques x � dL over the length of the entire launch vehicle�
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The partial di�erential equation for the bending vibrations� The internal
bending moment that is necessary to deform a beam is proportional to the curvature
of the beam� and this curvature is nearly �but not exactly� a linear function of the sec	
ond order derivative y		 of the elastic de�ection curve y� The proportional coe�cient
is called EI �it consists actually of two parts� the modulus of elasticity in tension
or compression E and the bending moment of inertia I about the neutral axis��
The deformation is a function of the bending moments and shearing forces� however�
the shearing strains can be neglected when the beam is long enough �for example�
when its ratio of length to diameter is greater than the factor ��� Then we can write�

M � �EI y		 �� 
���

Let us return to the equations �	
���� �	
�
� and �	
���� We �nd a system of three
partial di�erential equations when we divide these relationships by the length dx�

F � N y	 �M	 � N y	 ! �EI y		�	 �� 
���

M 	 � �x � �D	 �N 	 �� 
���

M 	 � �y � !L	 � F 	 �� 
���

The acceleration in �ight direction �x is not a function of the location x or the time t
�we consider bending vibrations during a certain short time interval of the mission��
Equation �	��� tells us that �x � �S �D�	M � and we can integrate equation �	
���
at once to �nd the normal force N inside the vehicle as a function of the location x�

N �x� � S �M�x� �x�D�x� �� 
��

We can readily verify that the thrust force S is the integration constant� For example�
the internal normal force N equals S at the location x � �R where M�x� � � and
D�x� � �� it vanishes at the tip of the vehicle where M�x� � M and D�x� � D�
To �nd the equation for the bending vibration �y we di�erentiate the equation �	
���
with respect to the coordinate x and insert the result into the equation �	
���� Thus�

M 	 � �y � L	 � �N y	�	 � �EI y		�		 �� 
���

The equation above is called a �partial di�erential equation� because it contains co	
ordinate derivatives �the primes� and time derivatives as well �the dots�� Bernoullies
approach separates the time derivatives from the coordinate derivatives� We can try�

y�t� x� � C� � sin��t� t�� � f�x� ! g�x� �� 
���

The bending vibration is an oscillation with the frequency � and the amplitude C��
but the functions f�x� and g�x� are both just functions of x and not functions of t�

C� � sin��t� t���
�
�M 	��f�x� ! �N f�x�	�	 ! �EI f�x�		�		

�

�

�
L	 � �N g�x�	�	 � �EI g�x�		�		

�
�� 

��

We �nd the condition above when we di�erentiate Bernoullies approach �	
��� twice
with respect to coordinate and time and insert the results into the equation �	
����
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The trial solution �	
��� separates the time dependent behaviour of the curve y from
the static behaviour� the expression in curly braces in the condition �	

�� equals
zero when the oscillation amplitude vanishes �C� � ��� Therefore we can conclude�

L	 � �N g�x�	�	 ! �EI g�x�		�		 �� 


�

The equation �	


� above is the di�erential equation for the elastic curve g�x� of a
non	vibrating �exible rocket that is exposed to the external length speci�c load L	�
We get the same law for y when we remove the term M 	�y from the equation �	
����
This equation allows us to calculate the equilibrium deformation of the �exible rocket�
but the equation for the bending oscillation is more interesting at the moment�
Therefore we have to �nd a function f�x� that complies with equation �	

�� when
the amplitude is not zero �C� � 
� and the equilibrium condition �	


� is satis�ed�

M 	��f�x� � �N f�x�	�	 ! �EI f�x�		�		 �� 

��

Finding a solution to this equation in the general case requires the application of a
numerical iteration scheme on a computer� However� an analytical solution is possible
when we assume constant mean values for the length speci�c mass M 	� the �exural
strength EI and the internal normal force N � With these constant mean values the
equation �	

�� simpli�es to a fourth order linear di�erential equation� We can write�

EI f�x�				 !N f�x�		 �M 	�� f�x� � � �� 

��

The solution to the equation �	

�� is determined by the characteristic equation�

EI  � !N  � �M 	�� � � �  � �
�N �pN � ! � EI M 	��

� EI
�� 

��

 ��� � �
s
�N !

pN � ! � EI M 	��

� EI
� � �

 ��� � � i

s
!N !

pN � ! � EI M 	��

� EI
� � i �

The characteristic equation has exactly four solutions ��roots�� for the multiplier  �
two of them are real �abbreviated as �� and the two others are conjugate imaginary
�abbreviated as ��� The general solution to the di�erential equation �	

�� is then�

f�x� � C� cosh�x! C� sinh�x! C� cos �x! C� sin �x �� 

��

The equation above contains �ve unknown quantities� the four integration constants
C�� C�� C� and C� and the frequency � of the bending vibration� To �nd integra	
tion constants we have adapt the solution �	

�� to its special boundary conditions
�the bearing conditions of the vibrating beam�� The amplitude of this vibration�
however� is actually not a function of the bearing conditions �constants C� to C���
and we �nd the natural frequencies � of the bending vibrations of the �exible launcher
when we check under which conditions the vibration amplitude is undetermined�
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The natural frequencies of the bending vibration� In order to calculate the
integration constants C� to C� in equation �	

�� we have to consider the special
boundary conditions �or bearing conditions� for the �ying launcher� The second or	
der derivative of the elastic curve f�x�		 is approximately proportional to the bending
torqueM �compare equation 	
���� and the third order derivative f�x�			 is approx	
imately proportional to the shearing force �compare equation 	
���� The bending
moment and its �rst derivative vanish at the tip of the launcher and at the rear
end� because no forces act on the tip of the launcher and the thrust force is parallel
with the curve f�x� at the rear end� We can conclude that the functions f�x�		 and
f�x�			 equal zero at the two locations x � �R �the center of mass M is located
exactly in the middle of the launcher when the length	speci�c mass M 	 is constant��
Di�erentiation of the equation �	

�� brings us to the following equation system�

f��R�		 � � � !C� �
� cosh�R� C� �

� sinh�R� C� �
� cos �R! C� �

� sin �R � �

f�!R�		 � � � !C� �
� cosh�R! C� �

� sinh�R� C� �
� cos �R� C� �

� sin �R � �

f��R�			 � � � �C� �
� sinh�R! C� �

� cosh�R� C� �
� sin �R� C� �

� cos �R � �

f�!R�			 � � � !C� �
� sinh�R! C� �

� cosh�R! C� �
� sin �R� C� �

� cos �R � �

�� 

��
Transformed�

C� � C� � �
� cosh�R

�� cos �R
� C� � C� � �

� sinh�R

�� sin �R

C� � �� sinh�R cos �R! � cosh�R sin �R� � � �� 

�

C� � �� cosh�R sin �R� � sinh�R cos �R� � � �� 

��

The condition �	

� has only then the solution C� � � when the expression in
parenthesis vanishes� and the condition �	

�� demands then that constant C� � ��
or� alternatively� the expression in parenthesis in condition �	

�� vanishes� and
that means C� � � and C� � � �otherwise the equation system has just the trivial
solution where all integration constants equal zero�� Nontrivial solutions exist only if�

tanh�R � ��

�
tan �R or� tanh�R � !

�

�
tan �R �� 

��

The two equations above determine the natural frequencies � of the �exible launcher�
together with the multipliers � and � according to the de�nition in equation �	

���
An in�nite set of natural frequencies � ful�lls these transcendental equations� but
we have to �nd them numerically on a computer� However� we can approximate the
solution when we neglect the in�uence of the internal normal force N � Then we have�

� � � � �

p
M 	��	EI �� 
���

The hyperbolic tangent function is nearly 
 for values larger than �� and this means
that the �rst conditions �	

�� has solutions approximately for �R � �

���


���

��
� ����

and the second condition� however� has solutions approximately for �R � �
���

�
��� �����

We can write the solutions uniformly as �R � �
��k ! �

� �� when we introduce the
quantity k as the oscillation mode of the bending vibration of the �exible launcher�
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The natural frequency � of the mode k is then determined by the following equation�

�k �

r
EI

M 	
�
�
�k ! �

�� �

� R

	�

�� 
�
�

It must be emphasized that this relationship is only valid for a launcher with the
overall length �R that has a constant length	speci�c mass distribution M 	 and a con	
stant �exural sti�ness EI and is not exposed to a load N in the direction of its axis�

The waveforms of the bending vibrations� Still missing in our discussion are the
waveforms �also called �eigenforms�� which belong to the individual vibration modes�
The modes with odd k number �k � 
� �� ����� satisfy the �rst condition �	

�� and
switch	o� the constants C� and C�� The corresponding curves are consequently�

f�x� k� � C� �
�
cosh�x!

�� cosh�R

�� cos �R
cos �x

�
�� 
���

The modes with even k number �k � �� �� ����� satisfy the second condition �	

��
and switch	o� the constants C� and C�� The vibration curves are then�

f�x� k� � C� �
�
sinh�x!

�� sinh�R

�� sin �R
sin �x

�
�� 
���

The �gure on the left illustrates the
di�erent waveforms for the bending
vibrations of the space launcher�
Waveforms with an odd vibration
mode number k resemble the co	
sine function centered in the mid	
dle of the launcher� waveforms
with an even vibration mode num	
ber k resemble the sine function�

waveforms for di�erent vibration modes k

1

2

3

4

Example ��b� A small space launcher with tubular shape �length � � R � 
� m
and cross section area A � 
 m�� utilizes solid propellent �density of �	�� kg�m���

The walls of the vehicle are made of steel� The geometrical moment of inertia I is then
approximately I � �r�t � ����� �
�� mm�� the �exural sti�ness EI � 

��� kN�m�

and the length�speci�c mass M 	 � ���� kg�m� The natural frequency of the �rst
vibration mode �k � 
� of the �exible vehicle is then � � ���� rad�s or ��	
 Hz�

S
length: R m2 = 12

length specific mass: M ' kg/m= 2000 wall material steel: E kN/mm²= 200

area: A m= 1 ²

radius: r m= 0.564

wall thickness: t mm= 1
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Superposition of bending vibrations� The actual oscillation of a �exible launcher
can be considered as a superposition of the waveforms of all bending vibration modes�
however� the bending oscillation has for every waveform k its individual amplitude�
The �acoustic pattern� of the launcher depends on the stimulation of the oscillation
�its excitation� and on the way the oscillation energy is absorbed from the structure
of the vehicle �the damping�� The energy inside the vibrating beam oscillates between
two energy forms� the maximum potential energy and the maximum kinetic energy�

Epotential �



�

Z
EI �f�x�		��dx �� 
���

Ekinetic �



�
��
k

Z
M 	 f�x��dx �� 
���

We �nd these energies via integration� the expression �f�x�		�� is proportional to the
square of the bending moment �	
��� and the expression ��kf�x��

� proportional
to the square of the velocity of the particle dM at zero crossing �compare 	
����
The amplitudes of higher modes �harmonic frequencies� are usually much smaller than
the amplitude of the �rst mode� because energy and bending moment associated with
a certain amplitude increase considerably with the frequency of the vibration� Even
though the harmonic frequencies �k of bending vibrations can produce �loud noise�
�and structural loads�� the displacements caused by these higher vibration modes are
actually very small� The �rst vibration mode k � 
� however� is a phenomenon that
can cause a serious interaction with the attitude control system of the space launcher�

Attitude control� The equation of motion for the bending vibrations of a �exible
space launcher �	
��� is a partial di�erential equation that allows just in some special
occasions analytical solutions� To analyze the interaction of the attitude control sys	
tem with the body of launcher we will use a better conditioned model� we consider the
launcher as composed of two rigid parts connected in the middle by a �exible adapter�

�!%�

�
��%�

%y

%x

y

x

L	�

M	 � �
�

D	�

L	�

M	 � �
�

D	�

R	�
S!

��%�

F

N
M

�!%�

F

N

MS

M
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The �exible connection between the two rigid parts of the space launcher allows
the vehicle to oscillate with the frequency �� of the �rst bending vibration mode�
We will still continue to consider the slender body of the vehicle as homogeneous beam
with the mass M � the overall length �R and the constant length	speci�c mass M 	�
The moment of inertia of the vehicle for rotations about its center of mass M is then�

� � M 	

Z 	R

�R

x�dx �



�
MR�

For example� our model would �t exactly for a two	stage launcher with two identical
stages and a �exible adapter between the two stages� Each one of the two rigid parts
has the length R� the mass M	� and the moment of inertia MR�	�� �for rotation
about its own center of mass�� The �exible connection carries the internal loads
F �the shearing force�� N �the normal force� and M �the bending moment� from
one part to the other one� Let us consider the amplitude of the bending vibration
as so small that it does not in�uence the magnitude of the aerodynamic loads L
�lift�� D �drag� and M	 � � �torque�� Our intention is to analyze the bending vibra	
tion� therefore we can distribute the aerodynamic loads equally among the two parts�
Newton�s law for the motion in x	 and y	direction applied to every part yields then�

�rst part �rear�� second part �front��

M

�
�x � �D

�
!N ! S �

M

�
��x!%�x� � �D

�
�N �� 
���

M

�
�y �

L

�
! F ! S � �!! ��%���

M

�
��y !%�y� �

L

�
�F �� 
��

The mass multiplied by the acceleration is equal to all forces which act on the mass�
The angles !� � and %� are small� and� approximately� the sine of an angle is the
angle itself and the cosine is 
� A kinematical relationship determines the distance
of the center of mass of the second part from the center of mass of the �rst part� Thus�

%x � R �� 
���

%y � R � � �� 
���

It follows that %�x � � and that %�y � R��� and we can use the equations �	
��� to
calculate the internal normal force N � �S	� and the equations �	
�� to �nd a
relationship for the internal shearing force F � The theorem of the angular momen	
tum applied to the rotational motion of the �rst part �rotation angle � � %�� and
the second part �angle �!%�� brings us the following di�erential equation system�

Mr�

��
����%��� �

M	 � �
�

!
R

�

�F �N � ���%��
�
!M� R

�
S � ! �� 
���

MR�

��
���!%��� �

M	 � �
�

!
R

�

�F �N � ��!%��
��M �� 
�
�

Reference point is in both cases the center of mass of the concerning part of the body�
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The next steps in our analysis are the addition and the subtraction of the equations
�	
��� and �	
�
�� the intention is to transform these equations in a way that they
describe the motion of the bending vibration %� separately from the rotational mo	
tion � of the vehicle� We use again the moment of inertia � � �

�MR� and write down�




�
�%�� �

R � S
�

%�� �M!
R

�
S � ! �� 
���

� �� �M	 � �!
R � S
�

%��R S � ! �� 
���

The equations above describe a coupled linear oscillation for the motions � and %��
Let us �rst concentrate our attention on the bending vibration %�� we know that the
internal moment M is a linear function of %� and we are interested in eliminating
this term from the equation system� M must satisfy the following condition when the
beamlike vehicle oscillates with the frequency �� of the �rst bending vibration mode�

��
� �

�M
�%� �

�R S

�
The equation �	
��� can be formulated as a constrained �or forced� linear oscillation�

%��! ��
� �%� �

�R � S
� � !max cos �t �� 
���

The bending vibration of the launcher is excited by the oscillating thrust direction�
Let us assume that the thrust misalignment angle !�t� oscillates with the natural
frequency � �equation 	��� of the closed	loop attitude control system of the launcher
�the term !max characterizes the amplitude of the oscillation of the thrust angle !��
In this case it is possible to write the general solution to equation �	
��� in the form�

%� � C� sin��t! C� cos��t!
�R � S

����
� � ���

� cos �t �� 
���

We can �nd the integration constants C� and C� when we assume initial conditions
for the vibration� for example %� � � and % *� � � at the initial instant t � �� Thus�

%� �
Rr � S

����
� � ���

� �cos �t� cos��t� �
�R � S

����
� � ���

� sin ��� � ��t

�
� sin ��� ! ��t

�

�� 
���

The result is the superposition of two oscilla	
tions with the same amplitude but with dif	
ferent frequencies ��beating interference���
the amplitude gets extremely large for the
situation that � � �� �called �resonance���
Resonance must be avoided in any case
during the entire �ight time� otherwise the
launcher is destroyed within a few seconds�
The �gure on the left shows the beating
vibration of the angle %� �equation 	
���
near the resonance situation as a slow am	
plitude oscillation �frequency� j ���� j	� ��

beating interference near resonance
�R
S

����

�
���

�

j����j

�

j��	�j

t
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When we compare the equation �	
��� for the rotational motion of the �exible
launcher with the equation �	��� for the rotational motion of the rigid launcher we
can observe that now the term RS%�	� corresponds to a perturbationMdisturbance�
The twisting angle %� of the rear end of the vehicle causes an additional thrust torque
about the center of mass M � However� this in�uence of the vibration on the stability
of the vehicle is usually insigni�cant �provided that the vibration amplitude is small��

Structural damping of the bending vibrations �when a small part of the internal
torque M is proportional to the rate % *�� has the e�ect that the oscillation ampli	
tude decays slowly when the stimulation stops� however� the structural bending is
usually not strong enough to prevent excessive amplitudes in the case of resonance�
The resonance situation can just be avoided when the natural frequency of the atti	
tude control loop of the launcher � is during the entire �ight time substantially below
the frequency �� of the �rst bending vibration mode �and the harmonic content��
However� even when � is smaller than ��� an incorrect measurement of the angle �
in the attitude control loop can cause a stimulation of the bending vibration %��
To analyze this interference let us look again at the attitude control circuit�

RS%�	��

�nominal

�control

�%�
*�control

�% *�

M		�

G	

G �	

RS!

�
M		�
R
dt

R
dt

% *� %�

�
_

_ _

_ + +

+
+

+
+

+
+

+

+

the attitude control circuit of the flexible launcher:

controller vehicle

It is the point in question whether the sensors for measuring the attitude � and the
attitude rate *� are installed in the front part of the vehicle �near to the payload� or in
the rear end �near to the engine�� The control unit of the vehicle that is used during
the entire mission is usually installed inside the upper stage �otherwise it would get
lost when an empty stage is dropped�� and we would naturally prefer to install the
sensors next to the control unit� However� the sensors measure actually the incorrect
attitude �!%� and the incorrect rate *�!% *� when they are installed inside the front
part of the vehicle� but they measure also the incorrect values � �%� and *� �% *�
when they are installed in the rear part near to the engine� The vibration angle %�
and its rate % *� act as disturbances on the measurement unit of the space launcher�



�
� ASTRONAUTICAL ENGINEERING

The perturbations %� and % *� are transmitted from the sensors to the controller of
the vehicle and transformed with the gains G	 and G �	 into a faulty control torque�
Instead of using the equation �	�� for the closed	loop control we have to write now�

RS � ! �M	 ��nominal !�
�
G	 � ��control �%�� !G �	 � � *�control �% *��

�
�� 
��

The positive sign is valid when the sensors are mounted in the front part of the vehicle�
the negative sign is valid when the sensors are mounted in the rear part� The e�ect of
the additional �wrong� sensor signal on the bending vibrations is a modi�cation of the
natural frequency and the damping properties �compare equation 	
���� Therefore�

%��! ��
� �%� � � �M		�� � �nominal

! � G	 � ��control �%�� ! � G �	 � � *�control �% *�� �� 
���

This second order di�erential equation consists of a homogeneous part which de	
scribes the natural resonance vibration and an inhomogeneous part which describes
the forced vibration� We have to establish the characteristic equation of the homoge	
neous part of the oscillation to �nd the properties of the free oscillation %�� Thus�

 � � � G �	 ! ���
� � � G	� � � �� 
���

The positive sign in the equation corresponds now to the case that the sensors are
mounted in the rear end of the vehicle� In this case the multiplier  takes the value of�

 � �G �	 �
q
G�

�	 � ���
� ! � G	� �� 
���

We can see that now the natural frequency of the bending vibration is higher than
before and that the rate gain factor damps down the bending vibration� The nega	
tive sign in the equation �	
���� however� corresponds to the case that the sensors
are mounted in the front end of the vehicle� and in this case the multiplier  becomes�

 � !G �	 �
q
G�

�	 � ���
� � �G	� �� 
�
�

The false signal ampli�es now the bending vibration and lowers its natural frequency�

We can conclude that it is not su�cient that a single sensor package for measuring
the attitude angle � and its rate *� is installed in the upper stage of a space launcher�
Any incorrect information about the total behaviour of the vehicle can cause a self	
excitation and instability of the attitude control system� The control unit of a space
launcher is usually a complex multi	sensor system equipped with an inertial plat	
form supported by several �redundant� rate gyros and several acelerometers mounted
inside di�erent parts of the vehicle� The actual signal for the control of the atti	
tude of the vehicle is then generated via a �ltering network on a digital computer�
An appropriate shaping network can damp down the bending vibrations without
a�ecting the stability of the attitude control function� The control gains which de	
termine the frequency of the rigid body must be high enough to guarantee a fast
response of the vehicle in case of attitude errors� however� the rigid	body control
frequency must also be su�ciently below the frequency of the �rst bending mode�
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��	�� Sloshing Propellents

The motion of liquids in tanks� Many parts of the launch vehicle oscillate during
the mission� but an appropriate �xing of the masses is usually easy and the natural
frequencies are then much higher than the frequency of the attitude control system
�the attitude control loop oscillates with a natural frequency of ��
 to 
 Hz� typically��
However� an interaction can take place with the oscillation of liquid propellent in
partially empty tanks �sloshing�� It is obviously not possible to �x these masses�
and the natural frequency of the free oscillation of the propellent is often near the

frequency of the attitude control system�
Oscillating propellent masses are usually
modeled as pendulums in the simulations�
for example� consider a spherical tank
that is actually half empty �radius R��
When we considered the propellent mass
M as a rigid hemispherical body� the mo	
ment of inertia with respect to the center
of the tank would be � � �

�MR�� The
distance between its center of mass and
the center of the tank is then �

�R� and the
oscillation frequency of the �rigid body�
pendulum follows as � �

p

�g	
�R�

Term g is the gravitational acceleration
�for comparison� a cord pendulum of a
particle mass and a cord of the length R
oscillates with the frequency � �

p
g	R��

sloshing propellent in a spherical tank

�
�R

R
�

M��
g

Metal sheets inside the tanks provide damping of the oscillation ��tank ba&ing���
The damping attenuates the amplitude of the sloshing motion considerably� and the
damping has also the e�ect that the propellent does not swing like a cord pendulum�
the oscillation frequency deviates often substantially from the estimate � �

p
g	R�

particularly when the liquid is stored in a cylindrical tank with hemispherical ends
�the behaviour of sloshing liquids is a complicated problem in computational �uid
dynamics� the liquid oscillates often by a factor two faster than a cord pendulum��

Modeling the sloshing motion� The forces caused by sloshing propellents inside
partially empty tanks can be considered as disturbances for the attitude control sys	
tem of the launcher� we remove the sloshing mass MP from the equation system and
replace it by a force F that acts on the vehicle �the point of application is the dis	
tance RP from the center of massM of the vehicle�� The equations of motion are then�

� � �� �M	 � �� S RS � !! RP � Fy �� 
���

M � �x � �D ! S ! Fx �� 
���

M � �y � L	 � �! S � ��! !� ! Fy �� 
���

The sloshing propellent massMP causes the forces Fx and Fy and the torque RP �Fy�
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The easiest way to incorporate the forces Fx and Fy in the dynamical model of the
vehicle is the use of damped spring mechanisms� The e�ect on the mass MP is then�

Fx � MP � ��x!%�x� � Cspring �%x! Cdamper �% *x �� 
���

Fy � MP � ��y !%�y� � Cspring � �� RP !%y� ! Cdamper � � *� RP !% *y� �� 
���

The equations �	
��� to �	
��� provide a system of �ve second order di�erential
equations to calculate numerically the �ve unknown quantities �� x� y� %x and %y�
The result is a coupled linear oscillation of the propellent mass and the space launcher�

! S

Fx

Fy

Fy
Fx

L	 � �

D

M	 � �

RS

RP

x

y

�

MP

Cspring

Cdamper

S

M

P

The launcher as a multi�body system� We have seen that the frequency of the
closed	loop attitude control motion of the �exible space launcher must be lower than
the frequency of the �rst bending mode �for example four times lower� to prevent dan	
gerous resonance conditions throughout the �ight� However� the aerodynamic loads
L and D� the center of pressure Q� the mass of the launcher M � its mass distribution
M 	� the location of the center of mass M and the moment of inertia � are all quan	
tities which change their values substantially during the mission� It is consequently
necessary to adapt the gain factors G	 and G �	 which determine the frequency of the
control oscillation continuously to every new situation� The accuracy of the orbital
injection and the safety margins for attitude stability are tested in extensive com	
puter simulations during the quali�cation tests of a new guidance and control system
for a space launcher� The launcher is modeled as a mechanical �multibody system�
�considering its elasticity� vibrations in the engines� sloshing propellents and so on��
These computer simulations must prove that the control system of the launcher is un	
der all conditions stable and capable to handle all external �and internal� disturbances
that can be encountered during all phases of the mission� The search for the appro	
priate control gains is rather an empirical procedure than a theoretical derivation�
where a compromise has to be found between �ight safety and injection accuracy�
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� Planetary Missions

The American �Apollo�	project is with no doubt the highlight of past astronautics�
Never before man had traveled so far away from home� and managed all the di�culties
which are associated with manned space �ight� The �rst part of this chapter treats
lunar missions� or� more in general� trajectories which are formed by the attraction of
two celestial bodies� The subject is known as the �restricted	three	body	problem� of
celestial mechanics �restricted because the third body� the spacecraft� is of negligible
mass�� The gravitational �eld of earth and moon together allows a variety of funny
shaped orbits� spacecraft can move on periodic trajectories and �yby repeatedly
earth and moon� �halo orbits� can be established around the liberation points of the
earth	moon system� and spacecraft can leave the gravitational �eld of the earth after
having executed a lunar swingby maneuver�

�Deep space� is the destination for some scienti�c missions� When the spacecraft
wants to leave the vicinity of the earth and travel to a distant planet� it has to enter
an earth escape orbit� Astonishingly� a journey to a distant planet requires not much
more propulsion than a mission to our moon� The gravitation of planets can be used
as a propulsion system for planetary space missions� This �transport system� makes
it possible that all planets of our solar system can be visited at the price of a Mars or
Venus �yby� In fact� a space launcher has the same payload capacity for the transport
of a satellite into geostationary position as it has for the transport of a probe to the
far distant planet Pluto� Planets are visited on the way� their attraction works as a
�propulsion system�� which does not consume propellent and will not fail to work�
Nowadays� nearly all planetary deep space missions utilize gravity assist maneuvers�
Planetary �ights and the theory of gravity propelled missions are the content of the
second and the third section of this chapter�

Planet Mars is the most attractive candidate for a future manned exploration of the
solar system� A manned Mars mission is possible with existing technology and will
not necessarily cost much more than the American Apollo project� The propulsion
requirement for a Mars return mission is analyzed in the fourth section of this chapter�

The foundation of two	body celestial mechanics was laid more than two centuries ago�
by Euler� Lagrange �
�� and Jacobi �
����� The science came early to a high de	
veloped state� since accurate observation of planets was useful for nautical purposes�
Later it became known that comets change their orbital elements when they �yby
Jupiter �Tisserand� 
����� The fascinating options which planetary swingbys o�er
to astronautics were �rst seen by M�Minovitch �
��
�� Fundamental work about
halo orbits was done by R�W�Farquhar �
���� and re�ned by D�L�Richardson �
�����
The books of V�Szebehely ��Theory of Orbits�� Academic Press� New York� 
����
J�M�A�Danby ��Celestial Mechanics�� Willmann	Bell� Richmond� Virginia� 
����� and
Kra�t A� Ehricke �Space Flight� D�Van Nostrand Company� Inc�� Princeton� New Jer	
sey� 
���� are recommended as fundamental literature in this �eld�
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���� Lunar Trajectories

Two	body celestial mechanics became important to astronautics when lunar trajecto	
ries had to be studied for the American Apollo project� The project practiced success	
fully manned rendezvous maneuvers in lunar orbit �where a landing vehicle docked
on a return spacecraft�� The project is still the highlight of all past astronautics�

���� Velocity Requirement for a Lunar Mission

Hardware� The American Apollo project was planned and executed in the time
interval between 
��
 and 
��� In those days space �ight was new� and the project
had to face many di�cult technical problems with unknown solutions� New equip	
ment with extraordinary performance had to be developed in a short time interval�
The mission required a huge space launcher �Saturn	��� a spacecraft with reentry cap	
sule �Apollo� and a moon landing vehicle �Lunar Module�� The equipment was devel	
oped and tested during a preparatory phase of the project� Access to space and return
to the surface of the earth were tested with the Mercury capsule �one astronaut��
Orbital maneuvering� rendezvous� docking and extra	vehicular action were trained
with the Gemini capsule �two astronauts�� A smaller derivative of the moon rocket�
the Saturn	
b launcher� was used to test the Apollo capsule �three astronauts��
A Lunar Rover for more e�cient ground activities was developed in a later phase
of the project� when it became sure that the Saturn	� launcher had a su�cient pay	
load reserve� Finally� a left over Saturn	� launcher was used to launch the large space
station Skylab� a laboratory that was implemented in the third stage of the launcher�

Progress by precaution and redundancy� The success of the Apollo project
was based on a careful preceding in small steps from �easy� to �more di�cult��
The safety of the astronauts was all the time in the center of the attention�

	 the capsule was carried on top of the launcher �recoverable by a rescue rocket��
	 the launcher had redundant engines �in its �rst and in its second stage��
	 the launcher had �ns for attitude stabilization in case of engine malfunction�
	 the capsule used three parachutes for splash	down watering� one was redundant�
	 Apollo 

 and 
� used �free	return� trajectories on their way to the moon�
	 one astronaut prevailed in the orbiting spacecraft during the landing mission�

The project became an extraordinary success as a reward for precautions and careful
engineering� nine spacecraft with a crew of three astronauts circumnavigated the
moon� and twelve astronauts had the opportunity to visit the surface of the moon�
All astronauts returned home safely� The greatest success was the rescue of the crew
of Apollo 
� �their spacecraft experienced a serious damage when a fuel cell exploded
on the way to the moon�� Due to engine redundancy� not a single Saturn launcher
failed� However� all precautions could not prevent the death of three astronauts in a
�re accident that in�amed the capsule during an apparently harmless ground test�



PLANETARY MISSIONS �



Example 	��a� The mighty Saturn�� launcher is the giant of past astronautics�
With a weight of ���� tons at lift�o� it was able to carry a payload of 
�� tons to a
lunar transfer orbit� the Apollo cabin ���� tons�� the service module ��
�
 tons�� the
lunar lander ���	 tons� and the crew �the  tons launch escape system on top of the
launcher was discharged shortly after lift�o��� Not a single Saturn launcher failed�
a great reward for excellent engineering in the era of the American Apollo programme�
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Execution of the lunar missions� Lunar Modules of the Apollo project landed
six times on the moon �Apollo 

 to Apollo 
� with the exception of Apollo 
���
A typical mission required a time interval of nine days� where the astronauts were
able to examine the surface of moon for two days� As the �rst step of the mission�
the Saturn	� launcher entered a low earth orbit ��parking orbit��� Some hours later
the third stage of the launcher performed the injection into the lunar transfer orbit
�therefore it was necessary to measure the data of the �parking orbit� accurately��
After burnout of the third stage� the Apollo spacecraft separated from the stage�
turned around� docked on the Lunar Module and withdrew it from the payload
compartment of the empty stage� The transfer time to the moon took �� hours�
the three astronauts lived in the Apollo capsule during the whole time period�
Several midcourse maneuvers were necessary to adjust the transfer trajectory�
Finally� when the �ight con�guration arrived at the other side of the moon� a brak	
ing maneuver of the Apollo spacecraft established an orbit surrounding the moon�
Two astronauts moved into the Lunar Module� one astronaut stayed in the orbiter�
Then the Lunar Module separated from the Apollo spacecraft� reduced its velocity
and attained an elliptic orbit� The actual descent maneuver of the Lunar Module
began about 
� km above the surface by an essential burn maneuver of the �rst stage�
the touch down was about � minutes later� The prevail time on the surface was not the
same for the six missions� it ranged from �� hours �Apollo 

� to � hours �Apollo 
��
The two astronauts used the upper stage of the Lunar Module to return to orbit�
They performed a rendezvous maneuver with the orbiter and moved back into the
Apollo cabin� After the separation of the Lunar Module� the Apollo spacecraft started
its engine for earth return� The return �ight took �� hours� The service module was
dropped from the capsule shortly before the reentry phase� The mission was com	
pleted with the parachute watering of the capsule and the rescue of the astronauts�

initial mass on the launch pad �launcher!payload� � ��� t
mass after the launch to the parking orbit �%v � �
�� m s� � 
�� t
mass on the way to the moon after the injection �%v � ���� m s� � ���� t
mass on the lunar orbit after the braking maneuver �%v � 
��� m s� � ���� t
initial mass of the lander after the separation from the orbiter � 
��� t
mass on the surface after the landing �%v � ���� m s� � ��� t
mass of the second stage when it lifts	o� from the surface� � �� t
mass of the stage after ascent to orbit �%v � ���� m s� � ��
 t
mass of the con�guration after docking and separation of the lander � 
��
 t
mass after the departure from the lunar orbit �%v � 
��� m s� � 
��� t
mass of the reentry capsule� � ��� t

The table above shows that just a very small part of the mass of the launcher at
lift	o� reached the surface of the moon �� ������� another very small part returned
from the lunar parking orbit back to the earth �� ������� We can observe that the
payload of a big launcher for a hard impact on the moon is approximately 
����
however� the payload for a soft landing amounts just about ����� The payload for a
�ight to the surface of the moon with return ticket to the earth is incredibly small�
the only component of the Apollo project which reached the surface of the moon and
returned back to the earth was actually nothing else than two astronauts�
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Example 	��b� A manned moon landing mission needs an immense amount of
rocket propulsion� The �gure above shows that the principal share is the launch of
the mission �%v � 
��� km�s�� to bring the spacecraft on its way to the moon�
Operations on lunar orbit require a %v capacity of about � km�s for each main
maneuver �arrival and departure�� The descent from orbit to the surface requires a
%v capability of about ��� km�s� and the ascent to orbit needs the same amount�
Fortunately� the return to the surface of the earth is �cheap�� rocket propulsion is
not required because an atmospheric reentry maneuver decelerates the capsule�
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���� Lunar Circumnavigation

The earth�moon gravitational system� We may consider the trajectory of an
earth satellite as a conic orbit when it is lower than the geostationary position� The
orbit is subjected to perturbations �there is in�uence of rest atmosphere� asymmetry
of the gravitational �eld� solar pressure and so on�� More distant than geostation	
ary position� the gravitational in�uence of other celestial bodies becomes signi�cant�
Gravitation of the sun forces the earth	moon �two body system� to move on a nearly
circular orbit around the sun �orbital period T � 
 year�� When a spacecraft moves
on an orbit around the earth� the gravity of the sun is neutralized by a nearly equiva	
lent centrifugal force in opposite direction� Thus� the gravitational �eld in near	earth
space is mainly formed by earth and moon� The sun acts as dominant perturbation�

The center of mass of several celestial bodies is called �barycenter�� Barycenter of
earth and moon is located on the straight line between earth and moon� but still
inside the earth� Earth and moon move around their barycenter� and� seen from
this point� earth and moon are always in opposition to each other �the gravitational
in�uence of the sun can be neglected� and no other external forces act on the system��
We �nd the location of the barycenter when we consider the distance of the two bodies
and their mass ratio� When r� is the distance between the center of the earth and
the barycenter� and rcc the corresponding distance of the moon� then we have�

rcc

r�

barycenter

�cc � rcc � �� � r� ��� 
�

�� � ����� � 
��� m�	s�

�cc � ����� � 
��� m�	s�

rcc � ������ km

r� � ��� km

Terms �� and �cc are gravitational constants� they are proportional to the mass of
the concerning celestial body� Regarding its mass� the moon is �
���
 times smaller
than the earth �equatorial earth radius� ��� km� moon radius� 
�
 km��

The mutual attraction between two spherical celestial bodies is inversely proportional
to the square of distance �measured from the center of mass�� The acceleration of

the moon ��rcc is exactly the acceleration caused by the gravitational attraction�

��rcc � � ��
��rcc ! �r���

� �rccj�rccj
� � ��

�

��cc! ����
� �rcc
rcc

�
��� ��

The solution to this equation determines a conic orbit� The moon moves on an elliptic
orbit� the barycenter is one of the focal points� The eccentricity of the orbit of moon
is low �� � ������� and the distance earth	moon �rcc!r�� is approximately constant�
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Let us regard in an approximation a constant distance earth	moon� Then the angular
velocity �orbit of the earth	moon two	body system is also approximately constant�
Centrifugal and gravitational acceleration must be equal� and we can �nd �orbit as�

��
orbit � rcc �

��
�rcc! r���

�orbit �

r
��

rcc�rcc! r���
�

��

������days�
��� ��

The time interval of ����� days is called sidereal period of the moon �sidereal month��

The �restricted three body problem�� The problem is now to calculate the
motion of a spacecraft that coasts in the gravitational �eld of the earth	moon system�
The problem is called �restricted three body problem� of celestial mechanics�
The problem is �restricted� because the mass of the third body �the spacecraft� is
negligibly small in comparison with the masses of the two other bodies ��primaries���
We will use a moving coordinate system to formulate the motion of the spacecraft�
The origin is placed on the barycenter� and the 
	direction aims always at the moon�
Earth and moon move always in the 
	�	plane� Thus� the vector of the angular ve	
locity ��orbit aims in �	direction� The vector that locates the spacecraft �r � �x� y� z�
determines the three	dimensional motion� The trajectory of the spacecraft is just
in�uenced by the gravitational acceleration of the moon �gcc and of the earth �g��

rcc

r�

�g�

�gcc

�r

1

3

2

�gcc �
��cc

j�r � �rccj�

�
x� rcc

y
z

�
A

��� ��

�g� �
���

j�r � �r�j�

�
x! r�

y
z

�
A

When we di�erentiate the location �r to �nd the velocity *�r and the acceleration ��r�
we have to obey the rules for vector di�erentiation in a rotating coordinate system�

�r �

�
x
y
z

�
A � *�r �

�
 *x

*y
*z

�
A!

�
 �

�
�orbit

�
A�

�
x
y
z

�
A �

�
 *x� y �orbit

*y ! x �orbit
*z

�
A

��� ��

��r �

�
 �x� *y �orbit

�y ! *x �orbit
�z

�
A!

�
 �

�
�orbit

�
A�

�
 *x� y �orbit

*y ! x �orbit
*z

�
A �

�
 �x� � *y �orbit � x ��

orbit

�y ! � *x �orbit � y ��
orbit

�z

�
A

The notation for the acceleration ��r would be slightly more complicated when we
considered the angular velocity �orbit of the system as a function of time � *�orbit � ���
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Now the equations of motion � ��r � �gcc!�g� � can be written in a component notation�

�x� � *y �orbit � x ��
orbit � � �cc � �x� rcc�p

�x� rcc�
� ! y� ! z�

� �
�� � �x! r��p

�x! r��� ! y� ! z�
�

�y ! � *x �orbit � y ��
orbit � � �cc � yp

�x� rcc�
� ! y� ! z�

� �
�� � yp

�x! r��� ! y� ! z�
�

�z � � �cc � zp
�x� rcc�

� ! y� ! z�
� �

�� � zp
�x! r��� ! y� ! z�

�

� j�r � �rccj �
p
�x� rcc�

� ! y� ! z� � j�r � �r�j �
p
�x! r��� ! y� ! z�

�
��� ��

The gravity of the moon is small on the surface of the earth �gcc � ��� � 
��� m s���
about ������ times lower than the gravity of the earth �x between �������� km��
The centrifugal e�ects are here of the same magnitude �
�� � 
��� m s� on the side of
the earth that is close to the moon� and ���
��� m s� on the other side of the earth��
The lunar attraction together with centrifugal forces is responsible for the tides�
but in the calculation of low earth orbits it can be neglected�

Lunar rendezvous� It was a safety reason when so	called �free return trajectories�
were used for the �rst manned lunar missions of the Apollo project� a free	return
transfer trajectory does not require propulsion for the circumnavigation of the moon�

In case a mission had to be terminated
before landing on the moon� the free
return trajectory would bring the space	
craft automatically back to the earth�
Since the use of free	return trajectories
means a restriction concerning possible
landing areas on the moon� the safety
method was dropped for later �ights�
�therefore Apollo 
� required some thrust
for circumnavigation� provided by the
engine of the Lunar Landing Module��

Consider a spacecraft that moves on a parking orbit around the earth� for example
at ��� km altitude� To visit the moon the spacecraft has to increase its speed nearly
to earth escape velocity �
���� m s�� When the spacecraft departs with a velocity of

���� m s it arrives at the moon 
�� hours later� The travel time reduces to �� hours
when the spacecraft uses a little more departure speed �
���� m s�� and the �ight
takes just �� hours with a departure speed of 
���� m s� The transfer trajectory
depends sensitively on the initial conditions� slightly more departure speed reduces
the travel time considerably� Very accurate navigation is required� otherwise the
spacecraft will collide with the moon �or will at least not return to earth anymore��
The nearest distance to the moon� called �periscynthion�� is reached when the space	
craft arrives at the opposite side of the moon �y � ��� Here� at an altitude of ��� km
above the surface� the relative speed amounts ���� m s� The spacecraft has to brake
��� m s when it intends to establish a circular moon orbit �velocity� 
��� m s��
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Example 	��� The �rst manned lunar missions of the American Apollo project utilized
for safety reasons so�called �free�return� trajectories for lunar circumnavigation�
The gravity of the moon reversed the �ight direction automatically towards the earth�
additional rocket propulsion was not required for an immediate emergency return�

However� high �ight precision is necessary to prevent a collision with the moon�
When the spacecraft departs with a speed of ��	�� m�s from a 
�� km low earth orbit�
it encounters the moon after a travel time of �� hours �the trajectory depends sensitively
on the initial conditions� and a higher departure velocity means a considerably
reduced �ight time�� The spacecraft passes �periscynthion� with a speed of ��� m�s�
In case it wants to enter an orbit around the moon it has to brake at �periscynthion��
The circular velocity amounts ���� m�s at an altitude of 
�� km above the surface�
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Landing on the moon� A mission pro�le was selected for the American Apollo
project which included the rendezvous between a moon orbiter and a moon lander�
In comparison with the alternative� the �direct landing� of the entire spacecraft�
the �lunar orbit rendezvous� has the advantage that the heavy return vehicle stays
safely on an orbit around the moon� The disadvantage is that on orbit rendezvous
and docking are di�cult and risky maneuvers �but experience proved the feasibility��

The Apollo spacecraft stayed on orbit while the landing vehicle performed its mission�
The moon lander reduced its velocity and descended to the surface �the landing
maneuver consumed the propellent of the �rst stage�� After the visit of the surface
the astronauts returned to orbit with the second stage of the landing vehicle�

Both maneuvers �descent and ascent� re	
quired a %v capability of about � km s
�the Lunar Landing Module had about

�� reserve�� The lander docked on the
orbiter and the two astronauts moved
back to the Apollo cabin� Then the space	
craft discharged the empty second stage
of the lander and departed for the earth�
The empty stage of the lander stayed on
orbit and collided with the surface of the
moon after a braking maneuver�

Lunar orbits are quite unstable� due to perturbations that come from the irregular
gravitational �eld of the moon� As a consequence� the moon does not have natural
satellites �in the entire solar system no moon has a natural satellite� �submoons� do
not exist�� A spacecraft that intends to stay for an extended time interval on an orbit
around the moon needs rocket propulsion for orbit stabilization�

Periodic orbits in the earth�moon system� Let us have again a look at the
equation system ��	��� We can see that trajectories exclusively in the 
	� plane are
possible �z � �� *z � � and �z � ��� It is interesting to identify periodic orbits in the
earth	moon system ��long	duration� orbits which oscillate between earth and moon
can be important for a scienti�c probe or for the planning of a manned space	station��
There are several opportunities to synchronize the plane trajectory of a spacecraft
with the monthly rotation of the earth	moon system� Every orbital revolution the
spacecraft has to execute a single or a double swingby maneuver at the moon�

Periodic orbits in the earth	moon system are unstable� particularly when the orbit
approaches the moon closely� The word �unstable� has many interpretations� here it
means that it is necessary to stabilize a periodic orbit by the appropriate application
of propulsive maneuvers� The trajectory is continuously subjected to perturbations�
the moon moves on an eccentric orbit and has an irregular gravitational �eld�
Any small trajectory deviation will be ampli�ed considerably after a near moon �yby�
It is required to correct the trajectory permanently� otherwise the spacecraft collides
with the moon after a relatively short period of time �after some revolutions��
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Example 	�
� A variety of funny shaped �periodic orbits� exists in the gravitational
�eld of the earth�moon two�body system� Spacecraft can �y on trajectories which
repeatedly visit the moon� Two di�erent frame systems are convenient to represent
a plane periodic orbit� the corotating system or the conventional stationary system�
The upper �gure shows an orbit where a very near lunar �yby takes place at �our
side of the moon� every month� The plots look quite di�erent from well�known
conic orbits� particularly when we use a coordinate system that rotates in the same
way as the earth�moon system �the orbit looks like a heart or like a horseshoe��
Another type of periodical orbits can be established when we use two lunar swingby
maneuvers for every orbital revolution� The lunar �yby altitude is much higher now�
These are not the only possible periodic orbits� orbits with longer period are possible
when even higher apogee altitudes are selected� All periodical orbits are quite unstable�
Accurate navigation with correction maneuvers is required to stabilize these orbits�
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���� Liberation Points of the Earth�Moon System

The three collinear liberation points L�� L� and L�� The 
	axis is the straight
line which connects the earth with the moon �compare equation �	��� A spacecraft
that stays on this line experiences three forces� gravity from the earth�s attraction�
gravity from the moon�s attraction� and also a centrifugal force caused by the ro	
tation of the coordinate system� There are three locations on the 
	axis where the
three forces neutralize each other� called �liberation points� or �Lagrangian points��
A spacecraft placed at one of these points does not notice any acceleration with re	
spect to the moving coordinate system� The equation of condition for the collinear
liberation points L
� L� and L� follows from the system ��	��� all coordinates and
their time derivatives stand at zero� with exception of the coordinate x� Therefore�

�x ��
orbit � ��cc � �x� rcc�

jx� rccj�
� �� � �x! r��

jx! r�j� ��� �

The evaluation of the equation ��	� requires a numerical iteration scheme� We �nd
as solution for L
 x�!������ km� for L� x�!������ km� and for L� x �	����� km�
Point L
 is located between earth and moon in �cislunar space�� comparatively close
to the moon� Point L� is located on the other side of the moon� Point L� is in
opposition to the position of the moon� nearly at the same distance from the earth�

The triangular liberation points L	 and L
� Let us consider again the equation
system ��	��� There are two more locations in the 
	� plane where acceleration and
velocity vanish ��x � �y � �� *x � *y � ��� These solutions are called �triangular
liberation points L� and L��� The locations of L� and L� form with the locations of
earth and moon equilateral triangles� Thus� we have j�r � �rccj � j�r � �r�j � rcc! r��
We can compute the triangular points analytically� in contrast to the collinear points�

L1L3 L2

L4

L5

2

1

x �
�rcc� r��

�
��� ��

y � �
p
�
�rcc! r��

�

From the astronautical point of view�
compared to the collinear positions L

and L�� the triangular positions L� and
L� are less interesting �but� for example�
maybe it is sensible to station a radio
telemetry satellite there��

Stability of the liberation points� Soon after discovery of the liberation points
�in the 
�th century� the question came up whether these positions are stable� It was
assumed that in case of stability celestial material would allocate at these points�
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In astronautics the liberation points are interesting as parking places for spacecraft�
The point in question is whether a spacecraft can be parked there without spending
propellent for �station keeping�� The collinear points L
� L� and L� are unstable�
unfortunately �a parking spacecraft will drift away from the position after a short
period of time�� Under certain conditions the triangular points L� and L� are stable�
Stability is not present for the earth	moon system� due to perturbations from the sun�
The conditions for stability of L� and L� are ful�lled for the Sun	Jupiter system�
and indeed minor celestial bodies were found which oscillate around these locations
�the famous group of �Trojan asteroids���

The demonstration of instability for the points L
� L� or L� is a common task
in the �eld of celestial mechanics� Considered is motion in the �linear vicinity��
where the nonlinear right sides of the system ��	�� can be replaced by linear terms�
Near the points L
� L� or L�� the location vector �r � �x� y� z� is replaced in an ap	
proximation by the expression �r � ��x� ! %x�%y�%z�� The square brackets shall
indicate that now �x� is not a variable any more� but the distance of the concerning
liberation point from the barycenter� Employing linearization� the function f�x� y� z�
becomes f � �f �!��f	�x� �%x!��f	�y��%y!��f	�z� �%z� All expressions in square
brackets are constants� their values have to be calculated for the linearization point�
We get for liberation points L
� L� and L� the following linear equation system�

%�x� ��orbit% *y � ��
orbit%x � ��Ccc! �C��%x

%�y ! ��orbit% *x� ��
orbit%y � ��Ccc! C��%y

%�z � ��Ccc! C��%z ��� ��

with the constants� Ccc �
�
�cc	jrcc� xj�� � C� �

�
��	jr� ! xj�� ��� 
��

In contrast to the more accurate nonlinear representation ��	��� the linear equation
system ��	�� has the only advantage that now an analytical solution can be obtained�
Since expression Ccc ! C� is positive� the motion for %z is stable and not coupled
with the motion of %x and %y any more� For linear stability it is su�cient to consider
the motion in the 
	� plane� The procedure works as follows� insert trial solutions
%x � C� � e�t and %y � C� � e�t� eliminate from the equation system the amplitude
coe�cients C� and C�� and get the characteristic equation of the system ��	�� as�

 �!����
orbit�Ccc�C�� � �!���

orbit!�Ccc!�C����
�
orbit�Ccc�C�� � � ��� 

�

The �roots�  of the characteristic equation are complex numbers� usually� They
determine the solution to the equation system� For stability it is necessary that not
a single root  has a positive real part� Using mathematics of complex numbers we
can �nd out that ���

orbit�Ccc�C�� � � is a condition for stability� This condition is
violated for all collinear liberation points� indicating that these locations are unstable�
Even though stable periodic oscillations exist also in the linear vicinity� some roots
have a positive real part� Small perturbations will also excite these unstable solutions�
and spacecraft parked in L
� L� or L� will not stay there for a longer period of time�
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We have seen that the conventional way to analyze the stability of a mechanical sys	
tem is to establish the equations of motion� then approximate these equations in the
vicinity of a reference point by a linear system and �nd the solution to the linearized
system of the equation of motion� The roots of the characteristic equation are com	
plex numbers� the imaginary part determines a periodic oscillation and the real part
determines the corresponding amplitude function� The motion is just stable when
all roots of the characteristic equation have negative real parts� The linearization
method involves the disadvantage that it ignores possibly dominant nonlinear e�ects�

The simple numerical integration of the more accurate nonlinear system of the
equations of motion avoids these disadvantages� When we place the spacecraft at
the liberation point L
 and simulate the trajectory on a computer using the equa	

tion system ��	��� we can observe
how the spacecraft drifts away from
the unstable position� Initially� the
spacecraft stays for about half a
month in the vicinity of the liber	
ation point� Then it moves slowly
towards the earth� later it performs
�ve revolutions on an elliptic orbit
around the earth� Astonishingly�
after � months ��� days� it returns
back to the initial position� the
liberation point L
� The unstable
position L
 is a part of a periodic
orbit in the earth	moon system�
Presented in a rotating coordinate
system� the path of the trajectory
resembles a �ower with �ve petals�

the resonant orbit that passes point L


earth moon

L1

We want to complete the stability analysis with the calculation of the linear system of
the equations of motion in the vicinity of the triangular liberation points L� and L��
The variables are now x � �rcc� r��	�!%x � y � �p��rcc! r��	�!%y � z � %z�
It is easy to introduce the new variables %x�%y�%z into the left	hand side of equation
system ��	��� because in the co	rotating coordinate system the expressions for velocity
and acceleration are linear terms� The replacement of the nonlinear right	hand sides
of the equation system ��	�� by linear terms is a little more complicated� because the
coordinate y is not zero anymore� Again� we form the derivatives of these nonlinear
functions with respect to the three coordinates x� y and z� and replace a function
f�x� y� z� by its linear approximation f � �f �!��f	�x��%x!��f	�y��%y!��f	�z��%z�
The expressions in square brackets are constant values taken at the liberation point�
We have to consider that the distances of the triangular liberation points L� and L�
from the primaries are

p
�x� rcc�

� ! y� ! z� �
p
�x! r��� ! y� ! z� � r� ! rcc�

The gravitational constants of moon and earth can be eliminated from the equation
system using the relationships �cc � r� ��

orbit�r�!rcc�
� and �� � rcc �

�
orbit�r�!rcc�

��
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Then� motion in the vicinity of L� and L� is determined by the linear equation system�

%�x� ��orbit% *y � ��
orbit%x � �

�

�
� 
� ��

orbit%x�
�
p
�

�

�rcc� r��

�rcc! r��
��
orbit%y

%�y ! ��orbit% *x� ��
orbit%y � �

�

�
� 
� ��

orbit%y �
�
p
�

�

�rcc� r��

�rcc! r��
��
orbit%x

%�z � ���
orbit%z ��� 
��

The system ��	
�� is derived from a linearization of the nonlinear system ��	���
the sign ! refers to the liberation point L� and the sign � to the liberation point L��
The motion %z is entirely decoupled from the motions %x and %y� coordinate %z os	
cillates stable with the period �orbit �the angular velocity of the earth	moon system��

We insert the solutions %x � C�e
�orbit t� %y � C�e

�orbit t in the �rst and second
equation of system ��	
��� eliminate the amplitude coe�cients C� and C� from the
equation system and get �after some transformations� the characteristic equation as�

 � !  � !
�

�

rcc � r�
�rcc! r���

� � � or�  � � �


�
�
s




�
� �

�

rcc � r�
�rcc! r���

��� 
��

For the earth	moon two	body system the ratio �rcc	r�� is �
���
� and both solutions
to the square of the multiplier  are purely negative� The root  � � ����

 or
 � ������p�
 corresponds to a stable oscillation with the period of nearly one
month �exactly ����� �orbit�� this �short	period mode� can be interpreted as a slight
eccentricity of the underlying circular orbit of the liberation point around the earth�
The other root  � � ������ or  � ������p�
 corresponds to a stable os	
cillation with the period of about three months� this �long	period mode� is a
movement of the position toward and away from the moon� The actual trajectory
is a superposition of the two modes� the motion depends on the initial devia	

tion from the liberation point� The
motion is apparently stable when
we integrate the nonlinear system
��	�� numerically to simulate the
trajectory of a spacecraft that is
placed into the vicinity of point L��
Presented in a co	rotating system�
the trajectory resembles clouds that
surround the point L�� However�
the stability of the triangular lib	
eration points of the earth	moon
system is not correctly represented
when we ignore the gravitational
in�uence of the sun� When we in	
clude the in�uence of the sun� the
spacecraft departs from the L� in a
comparatively short time interval�

the trajectory in the vicinity of point L�

earth moon

L4
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Halo orbits� A spacecraft can establish an orbit around a liberation point even
when the location is unstable� Three	dimensional periodic orbits around the liber	
ation points L
 and L� are called �halo orbits�� because they are not centered but
aside of the celestial body� like a halo around a head� Halo orbits are not perfectly pe	
riodic orbits and unstable like their liberation point� station keeping for a �liberation
point satellite� needs deterministic and stochastic trajectory correction maneuvers�
For example� a halo orbit around the L� liberation point of the earth	moon system
could be used by a data relay satellites for a radio telescope station on the other side
of the moon �for observations without interference from terrestrial radio stations��
and a halo orbit around the L
 liberation point of the sun	earth two	body system
is useful for sun observatory satellites �to explore the solar radiation at a distance
where it is still undisturbed by the magnetic �eld of the earth��




�
�

L
 L�

Equation ��	�� shows that in the linear vicinity of the liberation point the oscillations
%x and %y are coupled and have the same frequency� the oscillation %z is decoupled
and has another �but similar� frequency� More distant from the liberation points
nonlinear e�ects become stronger� Let us now consider that the rotation of the
coordinate system stops suddenly ��orbit � ��� when an imaginary hand stops the
motion of the earth and the moon and keeps them in their positions� Naturally� this
is not at all an allowed simpli�cation� in reality the two	body system would collapse�
but the model assumption makes the properties of halo orbits more transparent�
The liberation point L
 �between earth and moon� moves to the position where the
gravity attraction of earth is exactly equal to the attraction of the moon� You can
easily verify that this position is unstable� a parking spacecraft that moves slowly
to the earth or to the moon experiences in any case an increasing gravity attraction�
You can also see that it is possible to lay a circular �or an elliptic� �halo orbit� around
the point L
� where the x coordinate is constant �the x	axis is the orbit normal��
The composed gravity vector �attraction from the earth and from the moon� is all
the time in the orbital plane� rectangular to the x	axis for all locations on the orbit�

More accurate analytical description of halo orbits is a quite complicated procedure�
A linear model is insu�cient since the problem is dominated by nonlinear e�ects�
but numerical computation of the equation system ��	�� is comparatively easy� The
problem is to �nd an orbit stabilization strategy which consumes propellent sparingly�
Halo orbits have been established by American and European probes around the
L
 liberation point of the sun	earth system �the sun explorers ISEE	� and SOHO��
Station keeping required two maneuvers every revolution �%v � 
� m s every year��
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Example 	�a� A data relay satellite moves on a �halo orbit� around the liberation
point L� of the earth�moon two�body system� This orbit allows a continuous data link
between a radio�astronomy observatory on the backside of the moon and its control
station �the other side of the moon is a place where it is possible to observe the
universe without any interference from terrestrial radio stations�� Unfortunately� the
satellite has a limited operation time� because the halo orbit is unstable� Continuously
propellent is consumed to keep the liberation point satellites close to the halo path�

Example 	�b� In near�earth space there are two other liberation points which are
interesting for scienti�c missions� the points L� and L� of the sun�earth system�
We �nd point L� in the direction towards the sun at the distance of ������ km
�about four times farther than moon�� point L� in the other direction at the distance
of ������� km� A halo orbit around L� liberation point of the sun�earth system is
useful for a scienti�c probe to explore the solar wind �data down�link is di!cult when
the probe is stationed directly on the straight line between the earth and the sun��
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���	 Escape from the Earth�Moon System

Jacobi�s integral� There exists one analytical integral for the equation system ��	���

J �
*x� ! *y� ! *z�

�
� ��

orbit�x
� ! y��

�
��� 
��

� �ccp
�x� rcc�

� ! y� ! z�
� ��p

�x! r��� ! y� ! z�

Term J is constant for a spacecraft that coast in the two	body gravitational �eld�
Note that the Jacobi integral ��	
�� is not a representative of the mechanical energy�
the third part and the fourth part of the right hand side of the equation are indeed
the potential energies of the two gravitational �elds� but *x�! *y�! *z����

orbit�x
�!y��

is not the square of the inertial velocity d�r	dt �compare equation �	���

However� the integral J represents the potential with respect to the moving system�
expression � *x� ! *y� ! *z��	� is the �speci�c kinetic energy� of the relative motion�
and expression ���

orbit�x
� ! y��	� is the �potential of the centrifugal acceleration��

We can use the integral J to write down the equations of motion ��	�� in the form�

�x� � *y �orbit � ��J	�x
�y ! � *x �orbit � ��J	�y
�z � ��J	�z ��� 
��

Speci�c mechanical energy� The next point in question is the relation between
the Jacobi integral J and the speci�c �mass related� energy e� We may expect that
the notation for e resembles the notation for J � The energy of a spacecraft that
coasts in the two	body �eld consist of kinetic energy and potential energy� where the
speci�c kinetic energy is the square of the inertial velocity� divided by factor �� Thus�

e �
� *x� �orbity�

� ! � *y ! �orbitx�
� ! � *z��

�
��� 
��

� �ccp
�x� rcc�

� ! y� ! z�
� ��p

�x! r��� ! y� ! z�

We insert equation ��	
�� into equation ��	
�� to �nd the following relationship�

J � e� �orbit �
�
x *y � y *x! �orbit�x

� ! y��
�

� e� �orbit � h cos� ��� 
�

The equation above uses an expression in curly braces� this expression can be inter	
preted as third component of the angular momentum vector �h � �r � �v� The third
component of the angular momentum vector is simply h cos�� when h is the length
of the angular momentum vector and � the inclination angle of the �ight plane�
Equation ��	
� is the theoretical basis for �Tisserand�s criterion� �a rule to identify
lost comets which have changed their orbital elements after a near Jupiter passage��
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Equation ��	
� determines the relationship between the value of the Jacobi integral J
and three other parameters� energy e� angular momentum h and inclination angle ��
The three parameters e� h and � are constant values when a spacecraft coasts in
the gravitational �eld of a single celestial body �the �restricted two	body problem���
However� these values are not conserved when a spacecraft coasts in the gravitational
�eld of two celestial bodies �the �restricted three	body problem��� For trajectories
in the two	body system the Jacobi integral J is the only analytical conservation law�
Here it is a necessary condition that a spacecraft coasts with constant Jacobi integral
�satisfying the complete set of equations of motion�� Like the energy integral of the
one	body system� the Jacobi integral provides no information on the �ight time�

Contours of zero relative velocity� We can set the relative velocity to zero
� *x � �� *y � �� *z � �� and evaluate the equation ��	
�� for every location �r � �x� y� z�
in the two	body system� We get for the liberation points of the earth	moon system�

J��L
� � �
��� km�	s� � J��L�� � �
���� km�	s� � J��L�� � �
��� km�	s�

J��L�� � J��L�� � �
��� km�	s�
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Term J� is the value of the Jacobi integral at a certain position without any veloc	
ity relative to the moving coordinate system� Let us now regard the 
	�	plane of
the earth	moon system� When we mark all positions for a certain �predetermined�
value of J�� we get the concerning �line of zero relative velocity�� Note that the
integral J involves just a quadratic form of the the relative velocity � *x� ! *y� ! *z���
When a spacecraft arrives at a certain line J� and has still a relative velocity there�
then the value J of its �ight path must be higher than the value J� of the intercepted
line of zero relative velocity� and when the spacecraft has arrived at this line and
rests there �with zero relative velocity�� the spacecraft cannot move from this line to
another line with a higher values of J�� It must fall back to lines where the values
of J� are lower� Thus� these contours J� represent border lines for trajectories with
predetermined value of J � which cannot be crossed without propulsion�
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Accessible regions� The contours of zero relative velocity for the value J��L
�
form three curves� there is a drop	shaped curve around the earth� there is another
but much smaller drop	shaped curve around the moon �both are connected at L
��
and �nally there is a bigger curve that encircles the entire earth	moon system�
The three curves are nearly circles� Inside the two smaller curves and outside the
bigger curve the value J� of zero relative velocity is smaller than the value of J��L
��
The trajectory of a spacecraft that coasts from the earth to the moon needs at least
to have the value of J��L
�� A spacecraft that coasts with this value will pass the
liberation point L
 on its way from the earth to the moon� When it arrives at L
�
it will rest there with �zero relative velocity� �later the spacecraft will drift away
because the parking position L
 is unstable�� With the value J��L
� it is impossible
to reach the liberation point L�� While outside again a region with the same value
J��L
� exists� it will not be possible to cross from inside to outside�

The value J��L�� is the minimum value of the Jacobi integral which allows trajec	
tories from inside to outside� If we draw the contours of the value J��L��� a small
bottleneck opens at point L
� A spacecraft that wants to escape from the earth	moon
system with the minimum value of the Jacobi integral will have to pass L
 closely and
L� exactly� The value J��L�� is just slightly higher than the value J��L
�� it indicates
that a moon passage cost nearly as much propulsion as an earth escape maneuver�

Escape utilizing a lunar gravity assist maneuver� The Jacobi integral provides
just limited help to �nd an appropriate minimum energy escape trajectory� First� the
Jacobi integral is not an expression for the energy of the trajectory� Second� there is
no evidence that it is possible to �nd for given value of J an appropriate trajectory�
The contours of zero relative velocity J� are not at all trajectories� In any case it is
necessary to take the system of the equations of motion ��	�� under consideration�
In practical astronautics the question is important whether the moon can be helpful to
save propellent for planetary missions� Computational analysis shows that a close �y	
by at the moon can save propellent equivalent to a %v consumption of up to 
�� m s�
This looks promising� but usually the moon will not be in an appropriate position�
Theoretically� it is even possible to assist an earth escape maneuver by several lunar
swingbys� the spacecraft can return to the earth on an interplanetary trajectory�
but practically the bene�t is small and the price is high �increased mission time�� We
may conclude that a lunar swingby is impractical as an initial step for a planetary
mission� Just in some special situations a lunar swingby maneuver can be helpful
�for example� when a low energy escape is required to �yby a near	earth asteroid��

Sphere of lunar in�uence� The potential of gravitation is inversely proportional to
the distance� and therefore the gravitational �eld of any celestial body is unlimited�
Strictly speaking� a �sphere of gravitational in�uence� does not exist� We can de�ne
it� assuming that outside this sphere the gravity is smaller than a certain limit� Inside
this �sphere of in�uence� the gravity of the celestial body is dominant� outside the
sphere it can be neglected� Since any limit can be taken� the radius of the sphere
is more or less arbitrarily de�ned� The �sphere of in�uence� serves just as a model�
but for trajectory integration this model is usually not accurate enough�
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Example 	��� When the moon is in
an appropriate position� a swingby
maneuver at the moon can be utilized
to reduce the the injection energy for
a planetary mission �saving for a low
energetic mission� %v � 
�� m�s��
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Let us now assume that the gravity of the moon is negligibly small in comparison
with the gravity of the earth �the hypothetical case that �cc� ���� The barycenter
of the earth	moon system moves to the center of the earth� and the �sphere of lu	
nar in�uence� becomes an in�nitely small ball around the moon� A spacecraft that
moves in this gravitational �eld coasts on a conic orbit� with the earth in one of the
focal points� When the spacecraft intercepts the �sphere of lunar in�uence�� however�
it experiences an impulse and changes instantaneously the mechanical energy e� the
angular momentum h and the inclination � of its orbit� Condition ��	
� determines
the relationship between these values� where term J is constant� Equation ��	
�� is
the equation of condition for the value J � Obviously� the location vector �r � �x� y� z�
has the same value for every location on the border of the in�nitely small �sphere of
lunar in�uence�� Since J is conserved� the length of the velocity vector �v � � *x� *y� *z�
�relative to the moon� does not change during the impulsive lunar �yby maneuver�
However� the length of the absolute �geocentric� velocity is not the same any more�
after the maneuver the spacecraft moves with the absolute velocity of the moon�
increased by the relative velocity before the maneuver� The direction of the relative
velocity after the maneuver depends on which side �and how near� moon is passed�

The mass of moon has no in�uence on the maneuver because we considered the moon
as a particle without physical size� but the mass of the moon is not at all concentrated
on a small ball with negligible radius� The moon has a radius of 
�
 km� and a
closer �yby distance is impossible� The mass a�ects indirectly the e�ciency of the
maneuver� because the trajectory de�ection angle diminishes with the �yby distance�



��	 ASTRONAUTICAL ENGINEERING

���� Planetary Flights

After having left the gravitational �eld of the earth	moon system on an escape orbit�
the spacecraft moves on a heliocentric trajectory� When the motor is not switched	
on� the interplanetary trajectory of the spacecraft is a conic orbit with the sun in
one of the focal points� Solar gravity is the dominant force� and the gravitational
in�uence of planets may be neglected� Approaching the target planet� the spacecraft
enters the planet�s �sphere of in�uence�� where the gravity of the planetary system is
dominant and the gravity of the sun may be neglected� Thus� in an approximation�
we may consider planetary transfer trajectories as composed of conic sections�

���� Earth Departure

Hyperbolic earth escape velocity� We regard a spacecraft that moves on a cir	
cular low earth orbit� The rocket motor is ignited and the spacecraft accelerates�
When it is intended that the vehicle escapes from the gravitational �eld of the earth�
the spacecraft must at least accelerate until it has reached �parabolic escape speed��
The burnout velocity must be higher than parabolic escape speed to enable the space	
craft to travel to other planets� This velocity is called �hyperbolic escape velocity��
the spacecraft is by the quantity �superparabolic speed� faster than parabolic speed�

vcircular �
q
��	rp

vparabolic �
p
� � vcircular ��� 
��

vhyperbolic � vparabolic ! vsuperparabolic ��� 
��

In the equations above term �� is the the gravitational constant of earth� and term
rp is the distance of the spacecraft from the gravitational center at the moment of the
burn maneuver� After burnout the spacecraft departs from the gravitational �eld�
the mechanical energy �e � v�	����	r� of the escape trajectory is a constant value�
We can use the constant energy to calculate the velocity at in�nite distance v��

v� �
q
� vparabolic vsuperparabolic ! v�superparabolic ��� ���

The velocity v� �far away from the earth� is higher than the velocity vsuperparabolic�
Once the vehicle has attained escape speed� the gravity helps� it is much more e�cient
to accelerate a spacecraft near the gravitational center than far away from it�

Geometry of the escape orbit� Knowing pericenter radius rp and escape velocity
v�� we can calculate eccentricity � and pericenter velocity vp of the escape trajectory�

�� 
 � rpv
�
�	��

�! 
 � rpv
�
p	�� ��� �
�

Since the escape trajectory is a hyperbolic orbit� we must have � � 
 and vp � v��
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The distance from the gravitational center r��� is known to be inversely proportional
to the expression 
 ! � cos�� where � is the eccentricity and � the path angle of the
conic orbit �Kepler�s �true anomaly��� The spacecraft moves to an in�nite distance
�r � �� when � � arccos��
	��� The asymptotic escape direction �� follows as�

v�

rp

vp
��

sphere of
influence

LEO

escape
direction �� � arccos�

���
rpv�� ! ��

�

� arccos�
���

rpv�p � ��
�

��� ���

We want that the spacecraft moves on a heliocentric trajectory towards the target
planet after earth departure� Therefore it is necessary that we adjust three values
appropriately� the velocity� the direction and the inclination of the escape orbit�

Earth departure seen from the heliocentric system� A �heliocentric observer�
sees the velocity of the earth �v� �� ���� km s�� and he sees the heliocentric velocity
of the spacecraft �v while it departs from the earth� When the spacecraft has left the
sphere of earth in�uence� its velocity relative to the earth is �v� �aligned with the
asymptotic escape direction�� We simply have to add the velocity vectors �v� and �v�
to obtain the heliocentric velocity �v of the spacecraft after earth departure�

�v�

�v

�v
�

towards sunsphere of
departure
directions

When the spacecraft wants to leave for one of the outer planets �for example Mars�
it has to increase its heliocentric velocity �v� At earth departure it is necessary
that the asymptotic escape direction is more or less parallel with the heliocentric
velocity of the earth �the velocity vectors �v� and �v� must point in similar directions��
However� when the destination is Venus or Mercury� the spacecraft must reduce its
heliocentric velocity at earth departure� To visit one of the inner planets� an escape
maneuver in a direction opposite to the heliocentric velocity of the earth is required�
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���� Planetary Flyby

Flyby velocity� Now we consider that the spacecraft approaches the target planet
on a heliocentric trajectory� Then it enters the planet�s �sphere of in�uence� with the
relative velocity v�� Since inside this sphere of in�uence the gravitational attraction
of the planet is e�ective� the velocity of the spacecraft relative to the planet v�r� is
higher than its approach velocity v�� The velocity v�r� is a function of the distance r�
and it depends on the mass of the planet �on its gravitational constant �planet��

v�r� �

r
v�� !

��planet
r

��� ���

At arrival and at departure we have r ��� thus the relative velocity of the spacecraft
is exactly v� on the border of the sphere of in�uence� A spacecraft that shall enter
an orbit around the planet has to reduce its velocity at pericenter passage �r � rp��
To stay in the gravity �eld of the planet it must slow down to a velocity smaller than
parabolic speed �parabolic speed is a function of r�� The spacecraft enters a circu	
lar orbit when� after braking� its velocity is reduced to ��
� of the parabolic speed�

vcircular �
q
�planet	rp � vparabolic	

p
� ��� ���

De�ection of the heliocentric orbit� In case the spacecraft is not decelerated�
it will �yby the planet and leave again the sphere of gravitational in�uence� Then it
departs with the relative velocity v� in another direction� The angle between arrival
direction and departure direction is two times the path angle ��� We can denote�

v�

rp

vp

v�

���

departure direction

sphere of
influence

approach
direction

cos�� �
��planet

rpv�� ! �planet
��� ���

rp �
�planet
v��

�
�


cos��
� 
�

vp �
q
v�� ! ��planet	rp

The �yby maneuver �de�ects� the heliocentric trajectory of the spacecraft� where the
e�ciency of the maneuver is characterized by the de�ection angle ���� An in�nite
�yby distance causes no de�ection �rp � � and ��� � 
����� an in�nitely small
�yby distance reverses the �ight direction �impossible rp � � and ��� � ������
Obviously� in practice a minimum �yby distance has to be observed� The nearest
�yby distance is determined by the radius of the planet and the size of its atmosphere
�sometimes also by the size of a radiation belt which is dangerous for a spacecraft��
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Equation ��	��� shows that the de�ection angle is not just a function of the �yby
radius but also a function of the �yby velocity� the faster the spacecraft passes the
planet� the smaller is the de�ection of its trajectory� No de�ection is made at in�nite
speed �v� ���� the �ight direction is reversed at �zero� speed �v� � ���

Heliocentric view of the �yby maneuver� An observer on the planet sees that
the spacecraft arrives and leaves with the same hyperbolic velocity� Between ap	
proach direction and departure direction is the trajectory de�ection angle ����
The de�ection of the heliocentric trajectory is limited since the maneuver has to
observe the nearest �yby altitude� Above this altitude the restriction is ine�ective�
Any altitude is allowed� provided we are sure that we do not violate the restriction�
Usually we are also free in choosing on which side the planet is passed� When we
imagine a three	dimensional �gure that describes the relationships between the ve	
locity vectors� then the �sphere of departure directions� is a ball with the radius v��
The �yby distance restriction cuts the ball into two pieces� all possible departure
directions lie inside the �allowed cone�� departure directions outside this cone form
the �forbidden cone�� The centerline �symmetry axis� of the allowed cone is parallel
with the approach direction� the cone angle is determined by the maximum de�ection
angle ���� Therefore the cone angle is a function of the relative velocity v��

�v� �v

�vplanet

�rplanet

���

towards sun
cone of
forbidden
departure
directions "allowed cone"

departure
arrival

departure
arrival

sphere of departure directions

The heliocentric velocity �v of the spacecraft is a result of a vector addition� Before
and after the �yby maneuver the velocities form vector triangles� �v � �vplanet ! �v��
Note that the maneuver does not only change the direction of �v� but also the length�

Remember that the actual �yby velocity vp is higher than the relative velocity v�
�equation �	���� We can calculate the direction of the actual relative velocity at peri	
center passage �vp	vp and the unit vector that locates the pericenter �rp	rp with respect
to the planet when we know the relative velocity �v� at approach and at departure�

�vp
vp

�
�v��approach ! �v��departure

j�v��approach ! �v��departurej �
�rp
rp

�
�v��approach � �v��departure

j�v��approach � �v��departurej ��� ���

The heliocentric velocity of the spacecraft at pericenter passage is then �vplanet ! �vp�
and the location of the pericenter with respect to the sun is �rplanet ! �rp�
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Changing of orbital elements� Let us return to the Jacobi integral ��	
�� and
consider that the sun and the �yby	visited planet are a two	body system of celestial
mechanics� The Jacobi integral must be a constant value for a spacecraft that coasts
in this gravitational �eld� It indicates that the relative velocity v� is the same for all
locations on the surface of the small �sphere of gravitational in�uence� of the planet�
Alternatively we can express the Jacobi integral ��	
�� in the form of equation ��	
��
using the speci�c energy e� angular momentum h� and inclination � of the orbit�
The angular velocity �orbit �

p
��	r� of a planet orbit is approximately constant

��� is the gravity constant of the sun� r is the distance of the planet from the sun��

Conveniently� the elements of heliocentric orbits are provided in terms of semi	
major axis a and eccentricity � �rather than using e and h�� but the laws of or	
bital mechanics let us readily transform the equation ��	
�� With e � ���	��a��
h �

p
a���
� ��� we get�

� �J

��
�




a
!

�
p
a�
� ��� cos�p

r�
��� ��

The right hand side of the equation above involves the orbital elements a� � and ��
The left side of the equation is constant� The relationship between a� �� � and r
�the right side� must accept the same value before and after a planet �yby maneuver�

Equation ��	�� is the criterion due to Tisserand� constituted more than a century
ago for the identi�cation of lost comets� Comets can change their orbital elements
when they pass a planet closely� When it is not sure whether a comet is a new one or
just an old one that has visited Jupiter� Tisserand�s criterion ��	�� may be helpful�

���� Heliocentric Transfer Trajectories

Inclination of the transfer orbit� Let us have a closer look now at the junction
line between departure planet and target planet �for example the trajectory of a
spacecraft that coasts from earth to Mars�� The orbital plane of the target planet is
never exactly the same plane as the orbital plane of the departure planet� To reach
planet Mars� the spacecraft has to depart from the earth with an inclination angle ��
When the rendezvous location is determined by the Cardan angles � and � � we have�

r�
r�

�

�

�

�

Mars

Earth

tan� � tan�	 sin�

sin� � sin�	 sin�

cos� � cos� cos�

��� ���

����� � � � !����

����� � � � !����

�� � � � �����

The relationships are simple laws of spherical geometry �fundamental mathematics��
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An important special case is that the target planet is encountered at the other side
of the sun� We know that the so	called Hohmann orbit is an economical transfer
trajectory� and it consists of two tangential impulsive burn maneuvers connected
by a 
��� coast arc� Thus� the �nal point of the transfer trajectory should be in
�opposition� to the starting point� When the angle � is exactly 
���� the equation
��	��� o�ers just two possible geometries� either angle � is exactly �� �then the
inclination angle � is unde�ned and we may choose a plane transfer orbit without
inclination change�� or� in the general case� the angle � is not �� �then � � ����
and the plane of the transfer orbit is perpendicular to the initial �ight plane�� We
can conclude that in three	dimensional space a transfer orbit with a 
��� coast arc is
not an economical trajectory� because immense rocket propulsion would be required
to change the inclination substantially� Either we select a rendezvous location where
� � 
��� and � is small� or we use a midcourse impulse to adjust the inclination�

Let us focus on the geometry of the general case� where � � 
��� and � is small�
The geometry of the transfer trajectory is not uniquely determined� a second solution
to equation ��	��� shows up when we add �or subtract� 
��� to the inclination angle ��
In practice these �retro	grade� transfer orbits are of no importance� The inclination is
uniquely determined when we disregard the unimportant case � � ��� �or � � ������
Eccentricity and pericenter location� Our next problem is to put the appropriate
section of a conic orbit between starting point and rendezvous location� Inclination
angle � and path angle � are determined by equation ��	���� Now we have to �nd the
geometry of a conic orbit that connects the initial point at distance r� with the �nal
point at distance r�� the angle between radial r� and radial r� is the path angle ��
The distance r from the gravitational center �the sun� is a function of the path angle�

r� �
�h�	���


 ! � cos���p� � r� �
�h�	���


 ! � cos��� �p�
��� ���

The two relationships above involve three unknown elements of the transfer orbit�
the speci�c angular momentum h� the eccentricity �� and the path angle between
initial point and perihelion �p �the solar gravitational constant �� is well	known��
We can eliminate h from the equations and �nd a relationship between �p and ��

r��
 ! � cos���p�� � r��
 ! � cos��� �p��

or transformed� r� � r� � � � �sin�p�r� sin��� cos�p�r� � r� cos��� ��� ���

The equation ��	��� is a condition for the eccentricity � and the perihelion angle �p
�the terms r�� r� and � are prede�ned�� The eccentricity � determines the type of
transfer orbit� it can be a circle �� � ��� an ellipse �� � � � 
�� a parabola �� � 
� or
a hyperbola �� � 
�� Obviously� it is easy to calculate � when �p is given� but it is
more complicated to calculate �p for a given value �� When we analyze the equation
��	��� carefully we �nd out that � must be positive and not smaller than a certain
limit� and that not all values are allowed for �p� Furthermore� the equation ��	���
has just one solution for � when �p is given� but two solutions for �p when � is given�
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A geometric analysis will make the important relationship ��	��� more transparent�
We introduce the distance 
 �according to the theorem of the cosine it is the geo	
metrical distance between initial location and �nal location on the transfer orbit�
and the term �p���� �the perihelion angle of the fastest transfer orbit�� Therefore�


 �
q
r�� ! r�� � �r�r� cos� ��� �
�

sin�p���� � �r� � r� cos��	
 ��� ���

cos�p���� � �r� sin��	


Using these new terms� we can transform the equation ��	��� and rewrite it as�

arcsin��min�
�

�p���� �p�����p���min

eccentricity as function of pericenter angle

1

0

� � sin��p � �p����� �
r� � r�




�min �
jr� � r�j




��� ���

Let us �rst consider the case that the transfer angle � is smaller than 
����
When in equation ��	��� �p � �p����� the argument of the sinus function van	
ishes and the eccentricity of the transfer orbit must accept an in�nite value ������
The transfer orbit is nothing else than the straight line �distance 
� that connects
the initial point with the �nal point� the fastest trajectory between these two points�
The transfer orbit is a �degenerated� hyperbola with an in�nitely short transfer time�
and the radial which belongs to its �perihelion� is rectangular to the straight line 
�
The equation ��	��� shows that the eccentricity � accepts its minimum value when
j�p � �p����j � ���� This means that the perihelion radial of the transfer orbit
with smallest eccentricity �p���min is rectangular to the perihelion radial of the or	
bit with the fastest transfer time� To �nd the radial that belongs to �min� we have
to rotate the radial �p���� exactly ���� We have to rotate this radial clockwise if
r� is smaller than r�� we have to rotate it counter	clockwise if r� is bigger than r��
When we continue the rotation in the same direction we come to the radial that
belongs to the perihelion of the transfer orbit with longest transfer time �clock	
wise for r� � r�� otherwise counter	clockwise�� While we rotate� the expression
sin��p � �p����� becomes again smaller and the eccentricity � grows� Finally the
eccentricity arrives at the value � � 
� Here is the perihelion radial of the orbit with
an in�nitely long transfer time� It is a parabola� a �degenerated� ellipse where the
aphelion is on the way between initial point and �nal point of the transfer orbit�

When we rotate the perihelion radial from the fastest to the slowest transfer orbit it
sweeps out a segment which is smaller than 
���� Other values for �p are not allowed�
either the equation ��	��� would give a negative solution to the eccentricity ��
or � � �� and the spacecraft would coast to in�nity and not return any more�
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arcsin��min�

�p����

r�

r�
�




���

� � 


� � �min

�� 


not allowed
sector hyperbolic

sector

elliptic sector

Earth

Mars

Sun

Thus� all �allowed� locations for the
perihelion lie in a sector smaller than

���� The sector starts at the radial
�p���� �perihelion location of the
fastest transfer orbit�� it continues
clockwise for r� � r� and counter	
clockwise for r� � r�� At an angu	
lar distance of ��� we �nd the ra	
dial of the transfer orbit with mini	
mum eccentricity� Rotating further
we �nd the parabolic orbit with the
longest transfer time� The �allowed�
sector is divided into two sub	sector�
perihelion locations of hyperbolic or	
bits �sector angle� arcsin��min�� and
perihelion locations of elliptic orbits
�sector angle� 
����� arcsin��min���

Let us now consider that the transfer angle � is greater that 
��� but still smaller
than ����� The situation is similar� but now the fastest transfer orbit is a degenerated
hyperbola which consists of two straight lines �we excluded retrograde orbits from
the consideration�� the �rst line connects the initial point with the center of the sun�
the second line connects the center of the sun with the �nal point� The orbit has an
in�nitely small perihelion radius �rp � �� �� �
	 cos��	��� and an in�nitely short
transfer time� its perihelion radial is located inside the hyperbolic sector at �p � �	��

When we consider the case that the angle � is greater than ���� �several revolutions��
we have to exclude hyperbolic and parabolic transfer orbits� Only elliptic �or circular�
orbits are allowed now� and in�nitely short transfer times do not exist any more�
All allowed perihelion radial lie inside the elliptic sector� Obviously� the orbit with
lowest eccentricity �min has a comparatively short transfer time� We �nd perihelion
radial with higher values of � when we rotate the radial �p���min either clockwise
or counter	clockwise� Anyway� the allowed sector stops when � reaches the value 
�
The parabolic transfer orbit has an in�nitely long transfer time when at least one
�aphelion passage� lies on the way from the initial to the �nal point�

Angular momentum and energy� The actual problem is to select from the in�nite
set of transfer orbits between initial and �nal point exactly the one which satis�es
a certain predetermined �ight time� When the spacecraft arrives at the rendezvous
location it must encounter the target planet� The transfer orbit is entirely determined
when we know �� �p� and r�� we can use equation ��	��� to calculate the speci�c
angular momentum h of the orbit� and then its speci�c mechanical energy e�

h �
q
��r��
 ! � cos�p� � e � ��� ��� � 
� � ���	h�� ��� ���

The energy e determines directly semimajor axis a and orbital period T of the orbit�
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Transfer time� To calculate the �ight
time we can use either Kepler�s equation
or Lambert�s theorem� compare chapter
four of this book� These transcendental
equations allow a direct computation of
the �ight time between two points on a
conic orbit� Our problem is to �nd the
section of a conic orbit that satis�es a
predetermined �ight time� Therefore we
have to apply a numerical iteration pro	
cess� unfortunately� because we have just
a relation between the eccentricity � and
the perihelion angle �p �equation �	����
The problem has just a unique solution
when the spacecraft proceeds directly to
the target planet� without one or several
orbital revolutions before the rendezvous�
The diagram on the left shows the �ight
time %t for Earth	Mars transfer orbits as
a function of the perihelion angle �p�
with the transfer angle � as parameter�
Longer �ight times involve the option of
an orbital revolution before the encounter�

Synodic period� The time interval between now and the next constellation where
a planet is at the same angle in relation to another planet is called �synodic period��
In astronomy it is the time interval that two planets need to move from one opposition
�or conjunction� to the next one� In astronautics it is the time between two similar
launch windows for the departure for a planet� Planets move on nearly circular orbits�
their heliocentric path angle � is approximately a linear function of time� The planet
which is nearer to the sun moves faster� and consequently its orbital period T� is
shorter than the orbital period T� of the more distant planet� After the time interval
Tsynodic the slower orbiting planet arrives at a position with a certain path angle ��
and the faster orbiting planet arrives at a position with the path angle �!��� Thus�

�� Tsynodic � ��! ��� T� � � T� ��� ���

We can eliminate � from the relationship above� and the synodic period follows as�

Tsynodic �
T� � T�

�T� � T��
��� ���

For transfers from earth �T � 
 year� to Mars �T � 
���
 years� we can compute a
synodic period of ��
�� years ��� days�� For transfers from earth to Venus �T � ���
�
years� the synodic period is considerably shorter� Tsynodic � 
���� years or ��� days�
For departure to a distant planet� the synodic period is slightly longer than one year�
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The Breakwell diagram� We have seen that the travel time %t is a function of the
path angle �� which is a function of the Cardan angle � that determines the �nal point
of the transfer trajectory with respect to the initial point �compare equations �	����
To depart from the initial planet the spacecraft must enter a hyperbolic escape orbit�
after having left the planet�s �sphere of in�uence�� the spacecraft moves with the
relative velocity v� on the transfer trajectory that will bring it to the target planet�
This departure velocity v� is a function of the departure date and the travel time�
Often it is intended to �nd a transfer trajectory that combines a low velocity require	
ment with a short �ight time� Therefore the so	called �Breakwell chart� is helpful�

Mars trajectories, departure = 5 km/s Breakwell chart, departure
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The Breakwell chart is a map where lines of constant velocity requirement v� are
drawn as a function of the departure date �abscisse� and the �ight time �ordinate��
The result is a �gure that looks like an onion cut open into two pieces� The inner	
most curves determine trajectory opportunities with a comparatively low velocity v��
the velocity requirement v� grows when trajectories are selected on outer curves�
The example shows a diagram for departures from Earth to Mars in the year �����
considering transfer times between 
�� and ��� days �contours of v� � ���� m s�
���� m s� ���� m s and so on�� A spacecraft that wants to travel to Mars with
the minimum relative departure velocity has to leave the earth on September �nd
with a relative velocity v� � ���� m s� it will encounter Mars ��� days later� on
October th ����� When the spacecraft is able to depart on the same day with a
higher relative velocity� for example v� � ���� m s� it can use one of four di�erent
transfer trajectories �trajectories 
 to ��� The velocity requirement v� is lower than
���� m s for transfer times between trajectory 
 and trajectory �� and it is also lower
than ���� m s for transfer times between trajectory � and trajectory �� However� the
velocity requirement is considerably higher for transfer times between trajectory �
and trajectory �� to encounter the target planet these trajectories use extreme incli	
nation angles �� If we selected a transfer time of ��� days� for example� we would
have to adjust the inclination of the trajectory by a midcourse burn maneuver�
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Planetary capture� Finally� at the end of the interplanetary transfer trajectory�
the spacecraft arrives at the target planet� Seen from the planet� the spacecraft ap	
proaches the planet on a hyperbolic orbit� however� it is still far away from the planet�
Then the spacecraft enters the planet�s �sphere of in�uence�� Of course� at the bor	
der of the sphere of in�uence the relative speed is di�erent from the relative speed
at departure� However� when we draw a Breakwell chart for the relative velocity at
arrival� the diagram looks similar to the Breakwell chart for the velocity at depar	
ture� Obviously� when the spacecraft departs from a planet with a comparatively low
velocity� it arrives at the target planet also with a comparatively low relative velocity�

Inside the �sphere of gravitational in�uence� the spacecraft moves on a hyperbolic
orbit around the planet� The spacecraft speeds up as long as it approaches the
pericenter� At the pericenter radius rp the spacecraft has the horizontal velocity vp�

vp �

s
v�� !

��planet
rp

��� ��

The pericenter velocity vp depends on the arrival speed v�� on the gravitational
constant of the planet �planet� and on the pericenter radius rp� The spacecraft has to
reduce its speed to establish a periodic orbit around the planet� it must reach a veloc	
ity lower than parabolic speed �vparabolic �

p
��planet	rp� vcircular �

p
�planet	rp��

We can see that the velocity requirement for this maneuver is a nonlinear function
of the approach velocity v�� When we try to �nd the optimal planetary transfer
trajectory� we have to consider that the price for the arrival maneuver �in terms of
propellent consumption� is quite di�erent from the price of the departure maneuver�
This is also the case when the spacecraft uses the same motor for both maneuvers�

Aerocapture� When the target planet has an atmosphere �like Mars or Venus�
the spacecraft has the opportunity to execute an aerodynamic braking maneuver�
The objective can be to land directly on the planet �with parachutes�� or

to establish a circular orbit around the
planet �with a small impulse after the
aerodynamic maneuver�� In both cases the
essential braking requires heat protection
but no propellent� Since the heat shield
weighs just a few percent of the mass of
the spacecraft� the aerocapture maneuver
is much more economical than braking
with conventional rocket propulsion �even
when a spacecraft is not equipped with a
big heat shield� it can utilize the upper
layers of the atmosphere for many smaller
braking maneuvers� in order to transform
a parabolic orbit into a low parking orbit��

circular
orbit

direct
landing

hyperbolic
orbit
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���	 Return Orbits

Coplanar return� Destination may be the same planet where the travel starts from�
When departure planet and target planet are identical� we talk about �heliocentric
return trajectories�� For example� a comet �yby mission can be launched on an
�earth return trajectory� �ESA�s project Giotto�� Some years later� after having
performed the �yby maneuver� the spacecraft will return to the earth automatically�

First� let us consider coplanar return trajectories� these coplanar return trajectories
remain all the time in the orbital plane of the planet� The spacecraft departs from
the planet �relative velocity �v�� and establishes a heliocentric orbit� This orbit is in
the same plane as the heliocentric orbit of the planet� therefore it will intersect the
planet�s orbit exactly at two points� at departure location� and at another location
�just when the departure velocity �v� is exactly parallel with the heliocentric velocity
of the planet� the two orbits touch each other without intersection��

departure
location

planet orbit

spacecraft
orbit

intersection
point just
for coplanar
transfers

Planet and spacecraft run through these two
intersection points every orbital revolution�
After some years the spacecraft encounters
the planet again �planet and spacecraft may
have executed several orbital revolutions��
Therefore it is necessary that spacecraft and
planet run through the intersection point ex	
actly at the same time� a condition which
is easily satis�ed when the velocity �v� �ts�
The spacecraft approaches the planet with
the relative velocity �v� when the arrival
takes place at the departure location� At the
other location� the spacecraft approaches
the planet from another relative direction
in space �but also with relative velocity v��
assuming that the planet�s orbit is a circle��

Return to the same point in space� Now let us consider return orbits which
are not in the same plane as the orbit of the planet� The spacecraft performs an
inclination change maneuver when it departs with a velocity vector �v� that is in	
clined with respect to the plane of the planet orbit� It has still the opportunity
to encounter the planet on its interplanetary return orbit� However� now there
is just one intersection point� the meeting must be exactly at the same location
where the departure maneuver took place� After several revolutions �number n��
the orbital period T of the return orbit has to satisfy the following condition�

T �
nplanet
n

� Tplanet ��� ���

Term nplanet is the number of revolutions of the planet and Tplanet its orbital period�
The spacecraft encounters the planet exactly with the relative departure velocity �v��
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When we know the period T we can calculate the semimajor axis a of the orbit�

a � �� � �

r
�
T

��
�� ��� ���

The orbit has the geometry of an ellipse� Remember that the semimajor axis a de	
pends only on the mechanical energy e of the orbit �as well as the period T �� We have�

e �
j�vj�
�
� ��
rplanet

� ���
�a

At the moment the spacecraft departs from the planet� it has the same distance from
the center of the sun as the planet �term rplanet describes this distance�� Since the

expression
p
��	rplanet determines the circular velocity at the distance rplanet� the

vector �v of the heliocentric velocity at departure must satisfy the following condition�

j�vj �
r
�� rplanet

a
�
r

��
rplanet

��� ���

Term �v is the heliocentric departure velocity as a function of the semimajor axis a of
the return orbit� To encounter the planet in a prede�ned time interval n �T � it is just
important that the lengths of �v �ts� Surprisingly� the direction of �v does not matter�

Resonant return� We can follow that return trajectories require a certain helio	
centric velocity �v at the moment of the departure� but it is not necessary that this
vector has a predetermined direction� The velocity of the spacecraft �v must form a
triangle with the velocity of the planet �vplanet and the departure velocity �v�� Thus�
when the length of v� is given� the tip of v� ends on a circle which is the intersection
line of two spheres� the vector �vplanet points from the center of the �sphere of return
trajectory velocities� to the center of the �sphere of departure directions��

�v

�vplanet

rplanet

�v�

towards sun

sphere of departure directionssphere of return
trajectory velocities

circle of
intersection

After some time the spacecraft returns to the planet� When it arrives� all vectors
of the velocity triangle have the same length and the same direction as they had at
departure� A gravity swingby maneuver at the planet can change now the direction
of the velocity �v�� When the spacecraft changes �v� to another direction conserving
the length �v� then the gravity swingby maneuver does not change the orbital period
T of the return orbit� the spacecraft enters a so	called �resonant return trajectory��
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���� Gravity Propelled Missions

The gravitation of a planet can change the orbital elements of a spacecraft trajectory�
When the interplanetary trajectory is carefully directed on a certain planet� a grav	
ity swingby maneuver at this planet can amplify the heliocentric energy of the orbit�
In this way it is possible to use the gravitational force of the planets as a �propulsion
system� for deep space mission� The �gravity assist transportation system� works in
a fantastic manner� it does not consume propellent� it will always be ready� and it will
never fail to work� With gravity assist maneuvers it is possible to reach any location
in the solar system at the price of a Mars or Venus �yby �including the sun and includ	
ing trajectories to escape from the solar system�� However� launch windows do not
show up every time� and the �ight time to the destination can be considerably long�
In this section we will examine the great possibilities of gravitational maneuvering�

���� Gravity Assist on Earth�Return Trajectories

Gravity swingby at the earth� Actually� the most important planet for gravita	
tional maneuvering is our own planet� The earth moves with the velocity v� � ����
km s on a nearly circular orbit around the sun� Consider a spacecraft that is launched
on a two	year earth	return trajectory �T � � years�� The semimajor axis a of

the return orbit becomes a �
�
p
T � � 
���� AU �Kepler�s law� equation �	����

At earth departure we have to increase the heliocentric velocity of the spacecraft�
v	v� �

p
�� 
	a � 
�
�� �equation �	���� Thus� the minimum �tangential� de	

parture velocity for a two	year earth	return trajectory amounts v� � ���� km s
�the return orbit remains in the ecliptical plane�� When the spacecraft encounters
the earth exactly two years later� a gravity swingby maneuver cannot increase its
heliocentric velocity� the relative velocity at arrival is exactly v� � ���� km s�

The situation changes when we apply a small �retro	impulse� at aphelion position�
The braking deforms the earth	return trajectory a little� now it intersects the orbit
of the earth at two locations� We must adjust the departure velocity v� slightly to
encounter the earth at one of these two locations �the �ight time on the new earth
return trajectory is not exactly two years anymore�� The retro	impulse reduces the
heliocentric energy of the orbit� and consequently the heliocentric velocity of the
spacecraft is lower at arrival than at departure� However� the relative velocity v� at
arrival has grown� and this velocity can be utilized by a gravity swingby maneuver�

We can act in the same way when we take a three	year return trajectory as a basis�
The injection velocity is higher now� v� � ����� km s� However� when the spacecraft
departs with just v� � ����� km s� the orbital period is 
�� years� and the spacecraft
will also encounter the earth after three years� Any departure velocity v� that is
smaller than the solar system�s escape velocity will bring the spacecraft back to earth
one day �but coasting on the return trajectory can take a very long time interval��
For practical reasons we are advised to select a time interval which is not too long�
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Velocity reduction at aphelion position� Let us now regard the e�ect of a retro
impulse at aphelion position a little more in detail� After the interplanetary injection
the spacecraft moves at the pericenter of its heliocentric orbit �radius rp � 
 AU��
We �nd the velocity of the spacecraft vp when we add the relative velocity v� to
the heliocentric velocity of the earth v�� Half an orbital period later the spacecraft
reaches the aphelion position �it can also perform several orbital revolutions before
it arrives there�� At apocenter position �solar distance ra� its velocity amounts va�

va

vp

rp ra

%v

vp � v� ! v�

va �
v�

� � �v�v� � v��
v� ! v�

��� �
�

When the spacecraft arrives at aphelion position� a retro	thrust %v reduces the
energy e � �u� ! v��	� � ��	r and the angular momentum h � rv of the orbit�

%e � va%v �%v�	�

%h � ra%v ��� ���

The new energy e and the new angular momentum h are conserved while the space	
craft coasts to the encounter position� The encounter takes place at one of the two
points where the return orbit intersects the orbit of the earth� either before � or after �
perihelion passage� Now� at a distance rp from the sun� the horizontal component of
the heliocentric velocity is v� The vertical component u is negative when the earth is
encountered before the perihelion passage �� or u is positive on the other location ��
We can use %e and %h to compute the velocity triangle at the encounter location�

juj

v

�v�

�v��swingby

1

2

3

u� ! v� � v�p � �%e � v�p � �va%v !%v�

v � vp �%h	rp � vp �%v � vp	va ��� ���

The relative velocity at encounter follows as�

�v��swingby �

�
 u
v � v�

�

�
A ��� ���

We get �v��swingby when we subtract the velocity �v� from spacecraft velocity �u� v� ���
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Swingby at earth encounter compared with direct injection� Since we ap	
plied a small retro	thrust %v at aphelion position� the relative velocity at arrival
v��swingby is higher than the departure speed v�� We can now execute a gravita	
tional maneuver at the earth to take advantage of the relative velocity v��swingby�

v��swingby �
q
v�� !%v� ! �%v�v� � vp	va � va� ��� ���

vp � v� ! v� � va � ��v�
� � v�p�	vp

The bene�t of the maneuver looks promising� however� the method requires %v

capacity and adds �ight time to the planetary mission� The alternative is to spend
this %v capacity directly at departure� When we spend the %v capacity immediately
after the injection burn maneuver� the departure velocity v� grows to v��direct� and�
since the spacecraft is still near the gravitational center of the earth� the improvement
of v� is much higher than the amount of %v � Furthermore� direct injection has the
advantage of a shorter mission duration� The velocity v��direct is a function of the
altitude where the impulse %v is applied �the lower the better�� For example� the
parabolic escape velocity vparabolic amounts 

 km s at ��� km �ight altitude�

v��direct �

r
v�� !%v� ! �%v

q
v�parabolic ! v�� ��� ���

The �gures below compare v��swingby and v��direct for several values of %v �

�v��swingby �km s� �v��direct �km s�
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E�ect of the �yby distance restriction� The swingby maneuver turns the
relative velocity v��swingby of the spacecraft into a direction which is more or less
parallel with the heliocentric velocity of
the earth� However� the spacecraft may
not pass the earth closer than ��� km
above the surface� the �yby distance
restriction limits the de�ection angle�
Particularly when the �yby velocity is
high� it will not be possible to turn
v��swingby completely into the parallel
direction� The bene�t of the maneuver
is limited� and the heliocentric velocity
increases just about ��� km s� typically�
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The following table compares �ve di�erent earth	return trajectories �v��swingby�
with the corresponding maneuvers that apply %v directly at the injection �v��direct��

�ight time �years� � � � � � � � � � �
revolutions  
 � � �

v��departure �km�s� ��
 ��� 
�� ��� ���

%v �m�s� �
	 ��
 ��� ��� ���

v��direct �km�s� 
�
 
� ��� ��	 ���

v��swingby �km�s� 
�� 
�� ��� ���� ����

Re	targeting the earth for a gravity swingby maneuver extends the mission time
and involves a deep space burn maneuver� A retro	trust maneuver at aphelion po	
sition lowers the heliocentric energy of the return trajectory� but a gravity swingby
maneuver at the earth can take advantage of the increased relative �yby velocity�
The table above considers realistic values for the midcourse maneuver %v � it makes
no sense to spend more capacity at aphelion position� because the swingby maneuver
at the earth has to observe the �yby distance restriction ���� km above the surface��
Swingby maneuvers on earth	return trajectories make just sense when the departure
velocity v��departure is higher than � km s� otherwise the bene�t is too small� and it
is better to spend the capacity of the midcourse maneuver already at the departure�
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Example 	��� A Pluto �yby mission is launched with an energy of v� � ��� km�s
and propelled by two gravity swingby maneuvers at the earth� the far distant target is
reached after a travel time of just ���� years� The trajectory uses the combination of a
two�year return orbit with a �ve�year return orbit� it requires an overall deterministic
�post�launch�%v� of about ��� km�s� expended in three deep space burn maneuvers�
It is advantageous that exclusively the earth is used for gravitational maneuvering�
and that many alternatives ��backups�� exist for this type of trajectory�
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���� Mars Swingby on Earth�Return Trajectories

De�ection of the earth�return trajectory� We have seen that it is possible to re	
target the earth for a gravity swingby maneuver� however� it includes the disadvantage
that the return orbit needs an expensive deep	space burn maneuver� This maneuver
is not supposed to put energy into the earth	return trajectory� it must just deform
the trajectory� the heliocentric energy of the trajectory is increased by the earth
swingby maneuver that follows� We can avoid the deep	space burn maneuver when
we let planet Mars do the job� A near Mars �yby can also deform the return orbit�
Again� it is not required that the gravity of Mars puts energy into the trajectory�
we just need a de�ection of the earth	return orbit� The gravity of Mars can do this�

Mars-earth gravity assist maneuver

Mars

Mars

launch

launch

Earth

Earth

It is obviously desirable to inject with
a low launch energy� but we have to
insert the spacecraft on the earth	return
trajectory which intersects the orbit of
Mars �ra � rMars � 
��� AU�� A short
mission duration is also desirable� thus�
trajectories with � revolutions in � years
�v� � ����� km s� or with � revolutions
in � years �v� � ����� km s� are worth
to be considered� maybe also trajectories
with � revolution in  years �v� � �����
km s�� Mars can be passed at any loca	
tion where its orbit intersects the orbit
of the spacecraft� It is necessary that
the �yby maneuver lowers the perihelion
of the earth return trajectory� Some	
times the spacecraft has to pass Mars on
the �night side�� sometimes on the �day
side�� The earth can be encountered
either before or after perihelion passage�

Thus� we have several trajectory options�
but it is required that Mars is in an
appropriate position� and this is often
not the case� It is not always possible
to �nd a launch date for an earth return
orbit with Mars in a useful position�

This is the essential disadvantage in comparison with the method of retro	thrusting
�which can be applied practically any time�� and it makes a di�erence where Mars
is encountered on its orbit around the sun� its orbit is eccentric �� � ������� and
inclined against the ecliptic �� � 
������� Not all trajectory options are really good�
However� when Mars is passed closely �for example ��� km above its surface��
then the spacecraft can return to the earth with a relative velocity of about 
� km s�
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Departure date and �ight time� It is important how sensitive the Mars	earth
gravity assist maneuver reacts when we change the departure data or the arrival date�

-1 0 1

0

1

-1

3

0

4

1

5

2

6

7

8

9

10

0 2 4 6 8 10

0 10 20 30 40 50
delay [days]

swingby velocity [km/s]

injection velocity

Earth
swingby velocity

arrival / departure

784 km

2165 km

5180 km

17640 km

172000 km

Mars flyby distance

Mars
swingby

retro-
impulse

launch

Earth
swingby

v 8

Mars-earth gravity assist maneuver
Regarded is a probe launched on March�
��th ����� on a three year earth	return
trajectory �injection v� � ��� km s��
A Mars �yby �on September ��th ����
deforms the trajectory so that the earth
is encountered on January �
st� �����
Thus� the �ight time is approximately
two months shorter than three years�
The probe arrives at the earth with a
relative velocity of v� � 
��� km s�
The same relative velocity could have
been achieved by application of 
�� km s
retro	thrusting at aphelion position�
Thus� the Mars �yby saves propellent
equivalent to a %v capacity of 
�� km s�

The earth swingby that follows can use
the relative velocity for the continuation
of the mission to another target� but the
�launch window� for a planetary mission
is quite small� changing the schedule
has a strong impact on the maneuver�
The e�ciency deteriorates rapidly when
we change the departure date or the ar	
rival date� A spacecraft that departs 
�
days later passes Mars at a far distance�
Two years later it arrives at the earth�
nearly with the same relative velocity
that it had for the departure maneuver�

Continuation of the mission� When the spacecraft returns to the earth coming
from Mars� it approaches the earth with a relative velocity of about � to 
� km s�
A gravity swingby maneuver at the earth turns the relative velocity in a direction
more or less parallel with the heliocentric velocity of the earth� In this way the maneu	
ver increases the heliocentric energy of the trajectory� The mission can be continued�
for example to a �main	belt� asteroid� Many asteroids are contained in a ring between
Mars and Jupiter� called the asteroid main	belt� and we may select one that can be
visited using another earth	return trajectory� We may select the departure direction
after the the earth	swingby maneuver in a way that the spacecraft visits an asteroid
and� additionally� returns back to the earth after exactly two or exactly three years�
The swingby maneuver can establish again an earth return orbit� The mission can be
continued in this way� repeatedly visiting other asteroids on the resonant trajectory�
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the Ceres mission: Earth-Mars-Earth-Sendai-Ceres-Rutherfordia-Pallas
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�� June 
� ���� launch ��
�� Dec� �
� ���� Mars ���

� Sep� ��� ���� Earth ���
� July ��� ���� Sendai ��


� Sep� ��� ���� Earth ���
�� June ��� ���
 Ceres ����

� Sep� �
� ���� Earth ���
�� Oct� ��� ���� Rutherfordia ���

� Sep� �
� ���� Earth ���
�� May ��� ���� Pallas ����

Example 	��� A Mars�Earth gravity assist
maneuver can be used to reduce the
injection energy for a �multi�asteroid �yby
mission� on a resonant earth return orbit�
The example shows a tour that includes
the asteroids ��Ceres and ��Pallas� the two
largest bodies in the asteroid main belt�
and 
�

�Sendai and ����Rutherfordia�
The return orbit requires an earth�swingby
velocity v� � ��� km�s� but the gravity
maneuvers reduce the launch velocity to a
comfortable value of just v� � ��
 km�s�
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Double earth swingby� We have seen that a single gravity swingby maneuver at
the earth raises the energy of the Earth	Mars	Earth trajectory su�ciently to visit
the asteroid main belt� However� the spacecraft has to execute two earth swingby
maneuvers to get su�cient energy for travelling to the outer planets Jupiter or Saturn�

�v�

�v�

�v�

�v�

double earth swingby maneuver

Mars

Earth

return orbit

to Jupiter

first earth swingby:

second earth swingby

departure

departure

approach

approach

:

"forbidden
directions"

"allowed
directions"

Consider a spacecraft that approaches
the earth for a gravity swingby maneuver
on a return orbit� Encounter takes place
either before or after perihelion passage�
the vector of the relative velocity of the
spacecraft �v� aims either at the sun
�when the encounter takes place before
perihelion�� or it aims away from the sun
�when the encounter is after perihelion��
but �v� is in both cases approximately
perpendicular to the vector of the helio	
centric velocity of the earth �v�� It is in	
tended that the swingby maneuver turns
the relative velocity �v� into a direction
parallel with the heliocentric velocity �v��
However� a de�ection angle of ��� is not
allowed when the �yby velocity is about

� km s� it would violate the ��yby dis	
tance restriction� �the �yby radius would
be smaller than radius of the earth��
Thus� a single earth swingby maneuver
cannot take full advantage of the relative
velocity �v�� The spacecraft enters �rst
a return orbit that brings it back to the
earth for a second swingby maneuver
after two or after three years� the second
swingby maneuver at the earth turns the
relative velocity �v� parallel with �v��

Remember that there are two di�erent kind of earth	return trajectories� both are
suitable for double earth swingby maneuvers� There is the type that is not coplanar�
where the earth encounter takes place exactly at the same location in space where the
departure took place� This return orbit has the advantage that it is comparatively
easy to �nd an asteroid that can be visited on the way through the main belt �the
inclination of the return orbit is in some limits a free parameter� any inclination will
bring the spacecraft back to the earth�� There is also the coplanar type of return
orbit that remains in the ecliptic plane� where the earth is encountered at a location
di�erent from the departure location� The coplanar return orbit has the advantage
that a small thrust maneuver at aphelion position can adjust the arrival date and the
arrival velocity� When we design a gravity propelled mission to the outer planets�
the adjustment capability makes the coplanar earth return orbit even more valuable�
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Example 	�	� Europe�s deep space probe �Rosetta� intended to exercise a Mars�
Earth�Earth gravity assist maneuver �problems with the launcher prevented a launch
in January ���
�� To perform a rendezvous with the comet �P�Wirtanen� a double
swingby at earth would have been necessary� On its way� the probe would have had the
opportunity to �yby two �main�belt� asteroids� for example Mimistrobell and Rodari�
The probe would have approached the comet with a relative velocity of just ��
 km�s�
a velocity so small that it could have been made up by conventional rocket propulsion�
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���� Gravity Assist from Venus and Earth

Venus swingbys on earth�return trajectories� The principle works similar when
we take planet Venus instead of Mars to deform a trajectory that re	targets the earth
for a gravity swingby maneuver� We need approximately the same launch energy for
the injection of the spacecraft �v� � ��� km s�� but Venus is one of the inner planets�
The vector of the departure velocity must point in a direction opposite to the direction
of the earth�s velocity� and the injection reduces the heliocentric energy of the orbit�

The swingby maneuver at Venus puts back that amount of energy into the trajectory
�after the swingby at Venus� the earth	return trajectory has again the orbital period
of approximately one year�� There are several ways on which the spacecraft can return
to the earth� the fastest way re	encounters the earth already ten months after the
Venus �yby� A two	year �or a three	year� earth	return trajectory �with two gravity
assist maneuvers� utilizes the relative velocity of about 
� km s at earth encounter�
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Venus-earth gravity assist maneuvers
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September 
�th� ��
�� for example� is
an appropriate date to leave for Venus�
The spacecraft departs with a relative
velocity of v� � ��� km s� Venus is en	
countered on February ��th� ��

� with
a relative velocity of v� � �� km s�
The spacecraft can be re	directed to the
earth on several di�erent ways� Venus is
passed at a �yby radius of 
���� km for
a return on the shortest way� then the
spacecraft arrives on January �th� ��
��
with a relative velocity of v� � 
���
km s� Alternatively� the spacecraft can
pass Venus at a radius of ��� km to
return on a longer way� then August

st� ��
� is the arrival date� The long

way has the advantage that the earth is encountered with a higher relative velocity�
v� � 

�� km s� Since the orbital period of Venus is rather short �T � ����� years��
there are also several options to perform more than one Venus �yby before the probe
�nally returns to the earth� The perihelion of a coplanar Venus return trajectory
can be lowered at aphelion position by a small rocket retro impulse �like it is the
case with coplanar earth	return trajectories�� This is an e�cient way to put more
energy into the trajectory� or� in case this is necessary� to adjust the arrival date�

Comparison of Venus�Earth and Mars�Earth maneuvers� We have seen that
we can reduce the injection energy for a planetary mission when we execute as a �rst
step a �yby maneuver� alternatively at Mars or at Venus� However� the substantial
increase of the heliocentric energy comes from the earth� The method works with the
deformation of the earth	return trajectory that is de�ected by the �yby at Mars or
at Venus� One or two earth gravity assist maneuvers take advantage of the relative
velocity� Usually� two earth gravity assist maneuvers are necessary before the mission
can be continued to the outer planets �because of the �yby distance restriction��

When we use Mars to de�ect the earth	return trajectory� the spacecraft arrives at the
earth with a relative speed of � to 
� km s� When the spacecraft comes from Venus�
the relative speed is with 
� to 
� km s a little higher� Trajectories which utilize
Venus need a shorter mission time than trajectories which utilize Mars� A duration
of less than two years is typical for trajectories with a Venus �yby maneuver� while
missions with a Mars �yby maneuver need a �ight time of at least about three years
�the earth	return trajectory that follows on needs additionally two or three years��
Venus is preferable since also the Earth	Venus synodic period is shorter than the
Earth	Mars synodic period� However� the solar radiation at Venus �distance ����
AU� is about twice as severe as at earth �distance 
 AU�� and the thermal environment
for a spacecraft is much better on a trajectory that utilizes a Mars swingby maneuver�
When the mission duration is not a critical point� the planet Mars is preferable�
because the planet Mars itself is certainly a target that is always worth to be visited�
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Example 	��� The American deep�space probes Galileo and Cassini utilized Venus
gravity assist maneuvers to reduce the energy for the injection into interplanetary space�
The Jupiter probe Galileo returned from Venus on the shortest way to the earth�
it raised its energy on a two year earth return orbit with two earth swingby maneuvers�
The Saturn probe Cassini performed a double Venus gravity assist maneuver�
where the substantial raise of energy came from lowering the perihelion of the
Venus�return orbit by the application of a retro impulse at aphelion� On its way
Cassini passed Jupiter� to improve the conditions for entering an orbit around Saturn�
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���	 Gravity Assist on the Way to the Outer Planets

Jupiter gravity assist on the way to Pluto� A spacecraft has to depart from the
earth with a velocity of v� � �

p
�� 
� � v� � 
���� km s when it intends to escape

from the solar system on a parabolic orbit� To reach the far remote planet Pluto
on a Hohmann	type transfer orbit� the spacecraft needs nearly the same injection
velocity �v� � 

������
� km s�� However� in practice the travel time is �too long�
�about �� � 
 years� the di�erences come from the eccentricity of Pluto�s orbit��
The required injection velocity grows for faster transfers� for example v� � 
��� km s
for a travel time of 
� years� or v� � 
��� km s for a travel time of just  years�

A gravity assist maneuver at Jupiter can reduce the injection velocity� for example
from 
��� km s to just 

 km s� maintaining the �ight time of 
� years� The �ight
mission of the American deep space probe �New Horizon� demonstrates the method�

Example 	���� The American deep space probe �New Horizons� demonstrates how
a gravity swingby maneuver at Jupiter can be used to reduce the injection velocity
for a Pluto �yby mission� Velocity triangles at arrival and at departure explain
the working principle� the heliocentric velocity of the probe is the result of the
addition of the vector of Jupiter�s velocity and the vector of the probe�s velocity in
relation to the planet� The probe ampli�es its heliocentric velocity when it departs
from Jupiter in a direction which is approximately parallel with Jupiter�s velocity�
Not all departure directions are allowed� directions inside the �forbidden cone� violate
the �yby distance restriction� where the probe comes too near to Jupiter�s surface�
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Disadvantages of a Jupiter swingby maneuver� A gravity assist maneuver at
Jupiter can greatly reduce the injection energy of a fast mission to the outer planets�
however� a near �yby at Jupiter involves also two disadvantages� First� Jupiter has a
severe radiation environment� and the spacecraft must be protected against radiation�
Second� now the spacecraft cannot be launched �once a year� anymore� For example�
the synodic period of Jupiter and Pluto is approximately 
� years� and launching a
Jupiter	Pluto mission is just possible in a time interval of three years for every synodic
period� Three launch windows exist where the Earth	Jupiter synodic period meets the
Jupiter	Pluto synodic period� For example� launching will be possible in November
��
�� in December ��
� and in January ��
�� The earliest of these launch windows
needs the lowest injection velocity but requires the nearest Jupiter �yby distance�
The injection velocity grows for the later windows� but the �yby distance gets larger�

mission injection Jupiter �yby Saturn �yby overall mission
date �v� �km�s�� date �radius �km�� date �radius �km�� duration �days�

Dec �� ���� ������ � Mar �� ��� �������� ���� � 
���
Nov �	 ���� ������ June �� ���� �������� � ��� � 
�	
Dec �� ���� ������ May �
 ���	 ������� � ��� � 
�	�
Dec �� ���� ������ May �
 ���	 ��	
���� Mar �	 ���� �
	���� ��� � ��� �����
Jan �� ���	 ������ May � ���� ��	
���� � �� � 
���
Jan �� ���	 ������ May � ���� �
����� Oct � ���� �������� �� � ��� �
���

Gravity assistance from Jupiter and Saturn� A question that comes up is
whether it is possible to use on	route gravity assistance from other outer planets
than from Jupiter� In order to be helpful for a fast Pluto �yby mission� for example�
Saturn comes into favorable positions in the time between the years ��
� and ��
��
Then it is possible to take Saturn instead of Jupiter� but the replacement does not
bring advantages� trajectories which use Saturn require a higher injection velocity
than trajectories which use Jupiter� It is an option to include a Saturn swingby in
a Jupiter gravity assist trajectory when we see Saturn itself as an interesting target�
A near Saturn �yby involves the risky passage through the planet�s ring system�
The American space probes Voyager and Cassini crossed the ring plane without dam	
age between the F ring and the G ring� a passage through the bright rings A� B or C
however� is probably not possible� Saturn has an equatorial radius of ����� km�

Saturn inner radius �km� outer radius �km�

D�ring ����� � ����
C�ring ���� � �����
B�ring ����� � ������
A�ring ������ � �
����
F�ring ����� � ��
��
G�ring ���	�� � ��
	��
E�ring �	���� � 	����

When we plan the fast Jupiter	Pluto �yby mission for the three launch opportunities
between ��
� and ��
�� the Saturn �yby is an end in itself� a Saturn �yby will neither
reduce the time of the mission� nor it will enlarge the �yby distance at planet Jupiter�
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Gravity assistance from Jupiter� Saturn and Neptune� The situation is dif	
ferent when we plan a mission to a more distant target� for example to the Kuiper
belt object ���� UB��� which has recently been discovered �and nicknamed �Xena���
Considering that Xena is bigger than Pluto and has at least one moon� we may call
it the 
�th planet of our solar system� However� in comparison with Pluto Xena
has presently about the double distance from the sun� and thus the mission time
would become too long if we used exclusively the gravitational assistance of Jupiter�
Additionally� swingby maneuvers at Saturn and even Neptune are necessary� The
table on the preceding page shows that the appropriate constellation of the planets
Jupiter and Saturn appears for two launch windows� the �rst one in December ��
�
and the second one in January ��
�� Then the mission can be executed as follows�

planet Earth Jupiter Saturn Neptune Xena

date Dec 
 ���� June  ���	 Apr �
 ���� June 	 ���� June �� ��
	
velocity v� ����� m�s ��
�� m�s ����� m�s ��	�� m�s ��
�� m�s
�yby radius � ��
��� km ������ km ����� km �

date Jan �� ���	 May �� ���� Nov �� ���� Dec �� ���� Feb �� ��
�
velocity v� ��	�� m�s �
��� m�s ����� m�s ���� m�s ���� m�s
�yby radius � ������ km ���� km ����� km �

The second of the two trajectories above is the better option� because the radiation
environment for the spacecraft is less crucial when the Jupiter �yby distance is large�
The duration of the mission is then roughly �
 years� A mission that proceeds directly
from Saturn to Xena �omitting the Neptune swingby maneuver� is not possible� such
a mission would pass Saturn closely and intersect one of the bright rings of the planet�

Using additionally Mars or Venus swingby maneuvers� A mission to the outer
planets which incorporates a Jupiter swingby maneuver requires an injection velocity
v� of about 

 km s� but 

 km s is usually �too high� for a reasonable mission�
The solution is to improve the trajectory by the addition of an initial maneuver at
Mars or at Venus� followed by a double swingby at the Earth� before the spacecraft
travels on to Jupiter and �nally to the far distant target� Mars or Venus swingby ma	
neuvers on earth return trajectories can increase the earth swingby velocity v� to a
value of up to 

 km s� These maneuvers add in any case �ight time to the mission�
but they have the capacity to reduce the injection velocity of the mission greatly�

Let us return to our Jupiter	Pluto example mission� The problem is how to combine
the Earth	Jupiter	Pluto trajectories with Earth	Mars	Earth	Earth or Earth	Venus	
Earth	Earth trajectories� We have to �nd maneuvers which match the three launch
windows for the departure from Earth to Jupiter� The search for opportunities has to
be done numerically on a computer� because a large variety of di�erent trajectories
exists� All missions depart earlier now� adding Earth	Mars	Earth	Earth or Earth	
Venus	Earth	Earth trajectories brings the launch date forward� More opportunities
show up when the acceptable duration of the mission becomes longer� but �good�
are just those trajectories which combine low injection energy with short �ight time�



PLANETARY MISSIONS 	��

Other criteria that have to be observed are the Jupiter �yby distance �Jupiter
should be passed as far as possible� and the amount of deterministic post	launch %v

�the midcourse maneuver of the earth	return orbit should be as small as possible��

mission type injection %v Jupiter �yby Pluto �yby
planets date �v� �m�s�� �m�s� date �radius �km�� date �time �years��

� EMEEJP Jan �� ���� ����� ��� May �� ���	�������� May 	 ���� ����
�
� EMEEJP Jan �� ���� ����� � Jul � ���	 �	������ Jul �
 ���� �����

 EMEEJP Dec �� ���� �
���� � Aug � ���� ���	���� Aug � ���	 ������
 EMEEJP Dec �� ���� ��� ��� Jul � ���	 �		����� Oct �� ��
� ������
� EMEEJSP Jan �� ���	 ��	
� ��� May �	 �����	����� Sep � ���� ������
� EMEEJSP Feb �	 ���� �
	�	� ��� Jun �� ������������ Mar � ��
� ��
���
� EMEEJSP Mar � ���� �
���� 
�� May �	 ������������ May � ��
� ������
	 EVVEEJP Sep �� ���� �

��� � May �� ���	������� Oct �� ���� ������
� EVEEJP Mar �
 ���� �
		� � Jun  ���	 ��		���� Nov � ���� ������
�� EVVEJP Apr �� ���� �
�	� 
�� Jul � ���� �������� Jun �	 ���� ������
�� EVEEJP Apr �	 ���� �
���� ��� Aug �� �����
�
���� Sep �� ���	 ������
�� EVEEJSP Apr �� ���� �
��� � May �	 ������
����� Oct �� ��
� ��	���

The table above summarizes favorable launch opportunities for the Earth	Jupiter	
Pluto constellation which appear in the years between ��
� and ��
�� It can be
observed that the Jupiter	Pluto synodic period puts the arrival date to the years be	
tween ���� and ����� All trajectories include a Jupiter �yby� some trajectories visit
Saturn additionally� Trajectories which use a Mars maneuver require a mission dura	
tion of about �
 to �� years� while trajectories which employ Venus are much faster
�the duration of the mission is just about 
� years�� These Venus trajectories are also
better concerning the injection velocity v� and the deterministic post	launch %v �

We can also direct the spacecraft to another target �instead of heading for Pluto��
for example to the Kuiper belt object ���� UB��� Xena� provided that the �nal earth
swingby maneuver takes place in December ��
� or in January ��
�� This is the case
for all trajectories in the table above� with exception of the numbers �� 
� and 

�
A trajectory correction maneuver� executed shortly before the �nal earth encounter�
can adjust the trajectory in a way that Jupiter is passed with a di�erent �yby dis	
tance� and then the spacecraft travels on to Saturn� Neptune and �nally to Xena�
The overall travel time depends mainly on the Saturn �yby distance and is typi	
cally � years� assuming that a Venus gravity assist maneuver is used to lower the
injection energy of the mission� Xena is then encountered between ���� and �����

The trajectories number � and � are the best �or we consider Mars as target itself��
Thus� the launch date for the �nominal mission� must be on September 
�th ��
��
the energy for the injection v� is lower than ��� km s� A �backup mission� exists
for March ��rd ��
�� When the spacecraft is directed to Pluto� it will arrive about

� years after the injection �in October ���� or in November ��� respectively�� We
can reduce the �ight time when we spend some %v at the last earth �yby �about one
year for ��� m s�� The nominal mission o�ers the opportunity for an asteroid �yby
�
 Irma in Sept ��

� 

 Makover in March ��
�� 
��� Edwin in October ��
���
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Example 	���a� Pluto is the name of the most famous member of the Kuiper belt�
A Pluto mission can utilize the gravitation of Venus� Earth and Jupiter to lower the
injection energy� and the far target can be reached after a �ight time of just �� years�
The gravity assist Pluto mission does not demand more launcher capacity than the po�
sitioning of a geostationary earth satellite� but Pluto�s extreme distance in deep�space�
where sunlight is not much brighter than moonlight on the earth� raises up challenging
astronautical problems �data transmission� trajectory accuracy and energy supply��
In case radioisotope thermoelectric generators are �not�available� for the mission�
solar�cells in combination with lithium batteries can be a solution� provided that
it is possible to let the spacecraft �sleep� on the long way from Jupiter to Pluto�
The spacecraft �wakes up� before the Pluto encounter� �nds orientation and starts
data collection� The actual encounter takes just about �� hours and requires
approximately ��� kWh electrical energy� About ��� MBytes of data have to be trans�
mitted to the earth after the �yby� requiring approximately 
 kWh of electric energy�
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Example 	���b� A low energy Pluto mission will not be launched within the next
decades unless the American deep space probe �New Horizons� has either completed
its mission or failed� however� a backup mission to the Kuiper belt object Xena is
maybe sensible� �New Horizons� has been scheduled to pass Pluto on July �� �����
Assuming that the Pluto�Xena mission will be launched on March �
rd ���� with a
low injection energy to perform a Venus�Earth�Earth return trajectory� it will pass
the earth on December 
rd ����� A decision on the �nal target has to be made
shortly before the earth encounter� In case the �New Horizons� spacecraft has failed
and the Pluto �yby must be repeated� the backup probe is directed to a Jupiter�Pluto
trajectory where it will encounter Pluto in November ���� �after a �ight time of
���� years�� In case the �New Horizons� spacecraft has been successful� the backup
mission can be directed to a Xena �yby in June ��
	 �after a �ight time of �� years��
The alternative trajectory includes visits of the planets Jupiter� Saturn and Neptune�
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Example 	���c� Object ���
 UB���� discovered in ���
 and nicknamed �Xena�� is
the largest object that has been found orbiting around the sun since the discovery of
Neptune and its moon Triton� The planet �or planetoid� Xena has at least one moon�
�orbital elements� a � ������� AU� � � ������� � � ������ � � 
��	����
�p � ����



�� perihelion date� Nov� �� ����� perihelion distance rp � ���� AU��
Probably� in future it will be generally accepted that Xena is the ��th planet of the solar
system� because Xena is even bigger than Pluto� even though its orbital data deviate
much from what we know from the real planets� Xena needs ��� years to complete one
orbital revolution� the object performs its perihelion passage at a distance of 
	 AU
from the sun� The orbit is with � highly inclined with respect to the ecliptic plane�
Presently� the object is close to its aphelion position� at a distance of �� AU from the
sun �approximately �
�� lighthours�� However� a deep space probe can reach even this
far distant target in a comparatively short time period� when swingby maneuvers at
the outer planets accelerate the probe to an extraordinarily fast sun�escape velocity�
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���� Manned Mars Missions

Today the surface of planet Mars is an uninhabitable desert� however� the planet
may have carried life in a former period of its existence when parts of its surface were
seemingly covered with water� A manned Mars mission is the most exciting project of
future astronautics� it is the logical consequence of the American Apollo project and
the international space station ISS� and it can help mankind to �nd an answer to the
fundamental question about the origin of life� The surface of planet Mars� covered
with sand and rocks� is accessible by humans with available technology� and maybe
it is the only region in the universe that is still left over for a manned exploration�
This section of the chapter shows that a manned Mars mission is feasible and not
more expensive than the American Apollo project or the international space station�

�	�� Martian Trajectories

The target Mars and its orbit around the sun� Let us �rst have a look at Mars
as a target for a planetary space mission� The planet encircles the sun at a distance
between 
���
 AU and 
���� AU �semiaxis a � 
���� AU�� The orbit is inclined with
respect to the ecliptic and eccentric �inclination � � 
����� eccentricity � � ���������
and we can expect that the velocity requirement for a transfer trajectory from Earth
to Mars varies substantially for the di�erent launch opportunities� Mars has a carbon
dioxide atmosphere with a surface density of ���
 kg m� and a scale height of � km�
and� even though the atmosphere is extremely thin� it su�ces for an aerodynamic
braking maneuver� We can compare the density of the atmosphere of Mars with the
density of the atmosphere of the earth at an altitude of �� km above the surface�
The landing of a spacecraft on the surface of Mars has to be supported and controlled
by rocket motors� since parachutes are either �too large� or the landing vehicle is still
�too fast� immediately before the �nal touch	down� The entry �ight pro�le must take
into consideration that the terrain of Mars is not plane� it contains surface obstacles
�some mountains are quite high� for example Mons Olympus�� Mars rotates on its axis
with a period of ���� hours� the inclination angle between equator and ecliptic is ���

�Mars is similar to the Earth concerning rotation period and inclination of the axis��
However� since the planet is considerably smaller than the earth� it is much easier to
depart from its surface� The gravitational constant is �mars � ������� � 
��� m� s�

�the mass is 

� of the mass of the earth� and the equatorial radius is ��� km�
and we can use equation ��	��� to calculate for a �ight altitude of ��� km above the
surface a circular velocity of ���� m s and a parabolic escape velocity of ��
� m s�

The �Hohmann Mars mission�� The so	called Hohmann transfer trajectory
consists of two tangential thrust periods separated by a 
��� coast arc� and a transfer
orbit that is similar to the Hohmann trajectory it is the most economical way to
reach the planet Mars� We can calculate a transfer time of %t � ��� days for
the �ight from a circular orbit at 
 AU to a coplanar circular orbit at 
���� AU�
where the spacecraft departs from the initial orbit with a relative velocity of v� �
���� m s and arrives at the target orbit with a relative velocity of v� � ���� m s�
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A spacecraft that arrives at Mars on a Hohmann transfer trajectory cannot return
back to the Earth immediately but it has to wait for the appropriate �return window��
The spacecraft needs ��� days for the �ight to Mars and again ��� days for the return
�ight� and if it returned back immediately it would not encounter the Earth at the
�nal instant of its mission �then the earth would be at another place on the orbit��
The spacecraft has to wait approximately ��� days for the appropriate moment to
return �on an average day Mars advances ������ while the Earth advances ��������
The entire mission takes about �� days or ���� years� Even though we appreciate
a long prevail time at Mars for extensive experiments� the long mission time is actu	
ally the disadvantage of the �Hohmann Mars mission�� The crew needs in any case a
heavy container ��Mars habitat�� for staying more than a year on the surface of Mars�
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Example 	���a� When the Mars mission utilizes so�called �Hohmann transfer orbits��
the crew has to stay on Mars for a long time interval ��� years� before the Earth comes
into the right position for a return �ight� The crew has enough time for exploring
the landscape and can perform extended trips into the vicinity of the Mars habitat�
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The �Venus�Mars mission�� In order to reduce the mission time we have to in	
clude a gravity assist maneuver at Venus into the mission� Venus encircles the sun
at a distance of about ���� AU� The �ight times for transfers on Hohmann ellipses
are� 
�� days from Earth to Venus� �
 days from Venus to Mars and ��� days from
Mars back to the Earth� Thus� the �Venus	Mars mission� takes all together ��� days
or 
� years� typically� When we depart from the Earth a little faster than what
we would need for a conventional Hohmann transfer� for example with a velocity
of v� � ��� km s� then we can omit the propulsive maneuver at Venus� Now the
spacecraft arrives at Mars coming from Venus� and therefore it approaches Mars with
a faster relative velocity� v� � ��� km s� It stays at Mars for a short time period
�less than a month� and returns to the Earth on a conventional Hohmann trajectory�
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Example 	���b� The duration of the Mars mission is considerably shorter when the
transfer orbit to Mars utilizes a Venus gravity assist maneuver� Now the crew has
about a week�s time to explore the surface of Mars� and� during that time interval� the
crew can live in the Mars landing vehicle �avoiding the necessity for a Mars habitat��
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The fast mission� An even shorter mission time is possible when we intercept Mars
on its orbit around the sun with a spacecraft on a one year earth	return trajectory�
however� this mission is not really an alternative because it requires an immense
launch energy �v� � 
� km s�� Remember that the orbital period T of a heliocentric
orbit is exclusively a function of the major semiaxis� we can conclude that the semi	
axis of the orbit for the transfer to Mars and back to the Earth must be� a � 
 AU�
The spacecraft stays on Mars for a short period of several days before it returns to the
Earth� where it enters the Earth�s atmosphere with an extremely high reentry velocity�

Comparison of the mission alternatives� The �Venus	Mars mission� seems to be
the best alternative� in contrast to the �Hohmann Mars mission� it is not necessary
to bring a habitat to the surface of Mars� and the mission time is considerably shorter�
Some disadvantages are involved� First� the thermal environment at a distance of ���
AU from the sun �near Venus� can mean a problem to a manned spacecraft� Then the
mission needs more launch energy� when we assume the departure from a ��� km low
earth orbit� the mission requires a %v of approximately ��� km s to achieve a velocity
of v� � ��� km s �the Hohmann Mars mission� %v � ��� km s for v� � ��� km s ��
Another disadvantage is that the spacecraft arrives at Mars with a comparatively
high relative velocity �v� � ��� km s�� where an aerobraking maneuver must decel	
erate the vehicle� Finally we have to notice that launch windows for the Venus	Mars
mission occur less frequently than launch windows for the Hohmann Mars mission�
We can calculate the frequency of the appearance of launch windows when we com	
pare the synodic periods of Earth� Mars and Venus� The Earth	Mars synodic period is
�� days� the Earth	Venus synodic period is ��� days� The next similar constellation
for launching the Hohmann Mars mission appears already after �� days ���
 years��
but the next launch opportunity for the Venus	Mars mission appears when four Earth	
Venus synodic periods meet three Earth	Mars periods� after ���� days or ��� years�

It is also possible to execute the Venus gravity assist maneuver not on the way
to Mars but on the way back from Mars to Earth� Launch opportunities for such
missions appear also in time intervals of ��� years� However� when we compare this
alternative� we realize that then the velocity at Mars departure is comparatively high�
A spacecraft that departs from Mars heading for Venus leaves with a relative velocity
of v� � ��� km s� and this speed must be established by means of rocket propulsion
�in contrast to the aerobraking maneuver that reduces the high entry speed at arrival��
The comparatively high departure speed makes this alternative mission unattractive�

Velocity requirement for a manned Mars mission� When we compare the
velocity requirement for a Mars mission with the velocity requirement for a moon
mission we notice that it is easier to reach the surface of Mars than the surface of the
moon� the reason for this is that the moon has no atmosphere which we could use for
an aerodynamic braking maneuver� However� the return from Mars back to the Earth
requires more rocket propulsion because Mars has a greater mass than the Moon�
Thus� all together a manned Mars mission needs approximately the same propulsion
as a manned Moon mission� but a mission to the planet Mars takes much longer�
the actual problem is the duration of the mission rather than its velocity requirement�
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Example 	��
� Like a manned Moon mission� a Mars mission needs an enormous
amount of rocket propulsion� where again the principal share is the launch of the
mission �%v � ���	 � �
�
 km�s�� The atmosphere of Mars can help to speed down the
spacecraft at arrival� either to attain an orbit around Mars or to descend to the surface�
However� then the mission has to use again rocket propulsion to depart for the Earth
�%v � 
�� km�s for the ascent of the Mars lander and %v � ��� for the return of the
Mars orbiter from a 
�� km circular orbit�� The return to the surface of the Earth is
again �cheap� when an atmospheric reentry maneuver decelerates the return cabin�

a

00

11

22

33

44

55

66

77

88

99

1010

1111

1212

16

1313

17

1414

18

1515

19

km/s

surface of
the earth

surface of
the earth

atmospheric
reentry

surface of Mars

surface of the
moon

surface
of Mars

parking
orbit

parking
orbit

transfer
orbit

transfer
orbit

transfer
orbit

low Mars
orbit

Lunar
orbit

low Mars
orbit

a



	�� ASTRONAUTICAL ENGINEERING

�	�� Flight Operations at Mars

Aerocapture at arrival� The spacecraft arrives at Mars with a relative velocity
v� � ��� km s �Hohmann Mars mission� or v� � ��� km s �Venus	Mars mission�
and accelerates when it is attracted by the gravity of the planet� When we want to
establish a circular orbit at a low altitude �for example ��� km above the surface�
we have to decelerate the spacecraft� and it is much more economical to perform the
velocity reduction by an aerocapture maneuver than by means of rocket propulsion
�%v � ��� to ��� km s�� The spacecraft enters the atmosphere of Mars on a hyper	
bolic trajectory with a velocity between ��� to �� km s� the pericenter of this orbit
is just about �� km higher than the surface of Mars� The ballistic entry maneuver
requires very precise navigation� the entry angle has to be adjusted exactly in a way
that� after braking� the spacecraft leaves again the atmosphere and climbs to the al	
titude of the ��� km where a small thrust maneuver establishes the circular velocity�
The spacecraft needs heat protection to stand the loads of the braking maneuver�
It is necessary that we use a heat shield with a large diameter� because the heat load
reduces greatly when the vehicle decelerates in higher layers of the Mars atmosphere�

heat �ux proportional to
p
 w�

altitude time function �Mars aerocapture maneuver� v� � ��� km s�
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Example 	��� A spacecraft that uses a
large heat shield for the ballistic aerocap�
ture maneuver brakes at a higher altitude
than a spacecraft with a small shield�
The heat load decreases greatly with the
size of the heat shield� the maximum
deceleration� however� is nearly not a
function of the size of the heat shield
�approximately 
 m�s� in any case��
The essential braking phase begins imme�
diately after the entry in the atmosphere
and lasts for about �� minutes� during
this time period the thermal stress can
be discharged in form of heat radiation�
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Aerodynamic landing on the surface� The landing vehicle is also exposed to
aerodynamic heat loads during the landing maneuver� however� the stresses are much
smaller now because the vehicle descends from a circular orbit at ��� km altitude and
enters the Mars atmosphere with a relative velocity of just ��� km s� The vehicle can
use the same heat shield for the landing maneuver as for the aerocapture maneuver�
heat protection is still necessary during the phase of aerodynamic braking� and�
when the shield is large enough� the landing can be performed without parachutes�
Impact velocity and impact angle for a ballistic reentry maneuver are mainly functions
of the ballistic factor� A large shield with a high ballistic factor decelerates the vehicle
down to a moderate velocity �for example ��� m s for a ballistic factor of 
�� m� t��
Shortly before the actual impact the Mars landing vehicle drops the shield� ignites its
rocket motor and decelerates the velocity for a soft touch down on the surface of Mars�

impact velocity vs ballistic factor impact angle vs ballistic factor

landing on Mars from a ��� km circular orbit �ballistic factor 
�� m� t�

9080706050 [minutes]

[km]

0

100

200

300

250

150

50

de-orbit impulse [m/s]

[m²/t]

[m/s]

[m²/t]

65 70
75 80 55

0 5 10 15

0

250

500

750

1000

1250

0 5 10 15

0°

10°

20°

30°

40°

50°

60°

Example 	���� The aerodynamic landing maneuver on the surface of Mars requires
accurate navigation �like the aerodynamic capturing maneuver�� and some lifting
capability is necessary to control the entry trajectory for landing in a predetermined
area of the planet� The thermal stresses are considerably smaller during the landing
maneuver than during the aerocapture maneuver� the landing vehicle experiences a
maximum deceleration of �	 m�s� at about �� km altitude �this value is nearly not
a function of the size of the heat shield�� However� the �nal velocity and the �nal
descent angle depend much on the size of the heat shield� and� when the ballistic
factor is high enough� parachutes are not necessary for the landing maneuver�
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Ascent to orbit� The Lunar Module of the American Apollo project was actually
a two stage rocket� the �rst stage decelerated the velocity of the vehicle for landing
on the moon� the astronauts returned to orbit with the propulsion of the command
module �which was actually the second stage of the lander�� The Lunar Module had
a mass of 
��� tons and an overall %v capability of two times ��� km s� and� when
used as a two stage launcher� the vehicle had been able to reach an orbit from the
surface of Mars� The velocity requirement for the ascent from the surface of Mars
to a ��� km circular orbit amounts approximately to ��� km s� However� the Lunar
Module is not the ideal vehicle for the application as a Mars lander� the thrust of the
�rst stage is too low ��� kN only�� and the in	�ight ignition of the engine of the second
stage means a safety risk to the crew� The Mars lander must be a new construction�
preferably a single stage vehicle with a stronger motor �for example with an initial
thrust acceleration of a little more than 
� m s��� The vehicle needs a rocket stage
that uses storable propellent �e�ective exhaust velocity c � ��
 m s�� a controllable
motor and a manned cabin as �payload�� When the cabin is made for two astronauts
and has the same size and the same mass as the cabin of the Lunar Module �� tons��
the rocket stage must have a mass of 
� tons �charged with 

 tons usable propellent�
and a rocket engine that generates a lift	o� thrust of about 
�� kN� We can use
the Ciolkovskij equation to calculate a %v capability of ���� m s for the vehicle�
This includes some contingency and is enough for the �nal touch down on the surface
after aerobraking �� ��� m s�� the ascent back to orbit �� ���� m s� and the ren	
dezvous maneuver with the orbiter at an altitude of ��� km above the surface of Mars�

ascent in easterly direction

Mars landing vehicle
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Example 	���� The Mars landing vehicle
is preferably a single stage launcher with
approximately the same size as the Lunar
Module of the American Apollo project�
However� since Mars has a greater mass
than the Moon� optimization of the lift�o�
thrust shows that the Mars lander requires
a stronger motor than the Moon lander�
A command module with a mass of two
tons provides space for two astronauts
during a time interval of about one week�
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Departure for the earth� After having visited the surface of Mars the lander
returns to orbit and performs a rendezvous maneuver with the orbiter� At an alti	
tude of ��� km above the surface� for example� the spacecraft orbits with a circular
velocity of vcircular � ���� m s� For a return �ight to the earth the spacecraft has to
increase its velocity to enter a hyperbolic escape orbit �therefore it has to accelerate
to a velocity that is faster than the parabolic escape speed� vparabolic � ��
� m s��
We can use the energy conservation law to �nd the relationship between the %v

�the velocity change on the orbit� and v� �the velocity in interplanetary space��

%v �
q
v�� ! � v�circular � vcircular ��� ��

For a velocity of v� � ��� m s the equation above indicates that a tangential
burn maneuver must raise the circular velocity by %v � �

� m s� However� this
value can be considered as the �minimum which is necessary�� the actual maneuver
needs more %v capacity because of the gravitational losses �approximately 
�� m s
with contingency�� Immediately after the burn maneuver the spacecraft departs
from Mars with a relative velocity of ��
� m s� it has still a velocity of ��� m s
when it crosses the borders of the �sphere of gravitational in�uence� of the planet�

We assume that the �ight operations at Mars involve that the spacecraft enters �rst
a circular orbit around Mars before the lander descends to the surface and the orbiter
stays on orbit� This mission concept has the disadvantage of a di�cult rendezvous and
docking maneuver between lander and orbiter� but the essential part of the spacecraft
�that is necessary for the return to the earth� stays on orbit� The alternative mission
concept is the landing of the entire spacecraft on the surface of Mars� Rendezvous
and docking are avoided when the entire spacecraft lands on Mars� however� then the
departure for the earth starts from the surface� The spacecraft needs for the return
�ight a %v capability of approximately ��� km s ���� km s for the ascent to orbit
and ��� km s for the departure from orbit�� either we have to bring a big two stage
spacecraft with a large amount of propellent to the surface� or we have to produce
the propellent for the return �ight directly on Mars� The production of propellent
from the �natural resources� of Mars via chemical processes operated by equipment
with nuclear power or solar electric energy is apparently not completely impossible�
however� this theoretical option is certainly not available technology now that could
be used for the �rst manned Mars mission� We should bear in mind this theoretical
option for later missions �for a permanent Mars base� for example��

The inclination of the orbit around Mars has to �t for the return �ight to the Earth
�otherwise the spacecraft has to perform an expensive inclination change maneuver��
Therefore the spacecraft has to enter a lowMars orbit with the appropriate inclination
against the ecliptic at the moment when it performs the aerocapture maneuver�
However� the predetermined orbital inclination means another restriction concerning
the possible landing areas on Mars� The mission has to land in one of the planes
where there are no high mountain or deep valleys which could mean hazard to the
landing maneuver �for example in �Mangala Vallis� 
�� South and 
��� West��
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�	�� Expenditures for a Manned Mars Mission

The Mars spacecraft� Finally we are able to sketch out the example project of a
manned Mars mission� The plausibility of the preliminary design increases when we
take over approved components of the American Apollo project� even though these
devices are not �available� anymore and not always �optimized� for our purpose�

A certainly realistic assumption is that the budget is very tight� Therefore we con	
sider that it is intended to send a crew of just two astronauts �preferably a married
couple� on the fast �Venus	Mars Mission�� The mission lasts �� days� where the
crew stays for  days on the surface of Mars� The Mars	spacecraft consists mainly
of four components� a return cabin similar to the Apollo capsule �� tons�� a service
module ��� tons including 
� tons of usable propellent� a landing vehicle similar
to the moon lander of the Apollo project �
� tons� and a large heat shield � tons��
The life support system consumes every day ��
 kg of material for every crew member�
the spacecraft has to carry �� kg of consumables �or better � tons when we consider
some contingency�� More than half of this mass is drinking water �accurately �����
the fresh water as well as the waste water is used for a radiation shielding to protect
the crew against the radiation in space �the water for washing is continuously �ltered
and recycled�� The spacecraft that departs from the Earth heading for Mars via Venus
has a mass of �� tons� About � tons of the material are consumed when the spacecraft
arrives at Mars �where a part of this material can be discharged�� Since the Venus
swingby maneuver needs no propellent� a mass of nearly �� tons arrives at Mars�

1. return cabin: 6.0 t
and consumables: 8.0 t
(4 t earth to Mars
4 t Mars to earth)

2. service module: 22.0 t
(4 t rocket stage
18 tons propellent)

3. Mars lander: 15.0 t
(2 t command module
2 t rocket stage
11 t propellent )

4. thermal protection: 7.0 t
(5 t heat shield
2 t superisolation)

58.0 t

Mars spacecraft (two astronauts, 576 days)

Example 	���a� The Mars spacecraft looks like a �ying saucer because it needs a large
heat shield with a diameter of �� meters to protect it from the heat loads in space
and during the aerodynamic braking maneuver at Mars� The two astronauts are
preferably a married couple� for ��� years they live in the tiny �two room apartment�
that is formed by the return cabin and the command module of the Mars lander�
The spacecraft needs rocket propulsion to depart for the Earth from a low Mars orbit�
provided by the engines of the service module �charged with �	 to �� tons propellent��
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Example 	���b� The two astronauts
stay just for about a week on the
surface of Mars� and during that short
time interval they live in the small com�
mand module of their landing vehicle�
They have just time to plant the �ag�
take pictures� collect sample material
and visit interesting objects in the
near vicinity of the landing place�
The scenario resembles the moon land�
ing mission of the American Apollo
project� however� the Mars lander will
use an aerodynamic braking maneuver
for descending to the surface of Mars�

Injection of the mission� Since the Mars spacecraft is obviously too big for the
payload bay of the American space shuttle �or any other available launcher�� it has
to be transported in pieces to a low earth orbit and assembled in space� The launch
of the components of the spacecraft� their assembly and check	out can be done
several months before the actual injection of the mission into interplanetary space

�before April �nd ��
�� Three shuttle �ights
are enough to bring the mass of �� tons into a
��� km low earth orbit� The actual problem is
the injection of the assembled spacecraft into
interplanetary space� a �shuttle derived vehi	
cle� can provide a solution to this problem�
The proposal is to replace the reusable orbiter
of the space shuttle system by an expendable
cargo container for a payload mass of  tons�
When we equip the expendable cargo shut	
tle with three SSME engines and design the
payload container as a tank �with adapter�
for LH� LOX propellent� then we are able to
bring a complete �lled	up high performance
rocket stage to orbit �of about 
�� tons mass��

The spacecraft has to depart from the earth with a velocity of v� � ��� km s� and�
since the vehicle moves with a velocity of �� m s on a ��� km low earth orbit�
it has to raise its velocity by more than �
� m s �equation �	��� Two �cargo
shuttles� are necessary for the injection of the mission� Both vehicles are launched on
April �nd ��
� either simultaneously or with a short time interval in between �liquid
hydrogen is not storable for an extended time period�� In space the two stages are
connected with the Mars spacecraft in a way that the �ight con�guration becomes a
two stage rocket with an initial mass of approximately ��� tons� The �rst stage of the
vehicle� ignited at the right moment� increases the velocity by 
�

 m s and brings
the spacecraft on an elliptic orbit around the earth� With %v � ���� m s� the sec	
ond stage has enough capacity to bring the spacecraft on its way to Venus and Mars�
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Mission execution� The mission is launched on April �nd ��
 on a Venus	Mars
swingby trajectory� For nearly a year the crew lives in the return cabin and the com	
mand module of the lander� their �two room apartment� has just a volume of 
� m��
Video entertainment� physical training and other activities serve as a way of passing
the time� During the time of the �ight to planet Venus the spacecraft approaches
the sun as close as ��� AU� thermal control is provided via a super	isolation on the
surface of the heat shield� Finally� on April th ��
�� the spacecraft arrives at Mars�
The crew checks out all subsystems of the spacecraft� In case of a serious malfunction
the mission is terminated and the spacecraft returns back to the Earth directly with
a propulsive maneuver at Mars� However� the spacecraft executes an aerocapture
maneuver when all systems work normally and attains a circular orbit at ��� km
altitude above the surface� The large heat shield has a diameter of �� m� its ballistic
factor ���� m� ton� is high enough that the heat load of the braking maneuver can
be emitted �radiation cooling�� The heat shield is still usable when the spacecraft
arrives at an altitude of ��� km above the surface of Mars� where it establishes circu	
lar velocity with a small impulse provided by its maneuver engines �%v � �� m s��
Then the crew moves into the Mars lander� the vehicle separates from the capsule
and initiates the aerodynamic landing with a small retro	thrust� The heat load of the
landing maneuver is lower than the heat load of the aerocapture maneuver� because
the smaller mass �only the lander� increases the ballistic factor for the aerobraking
maneuver �
�� m� ton�� Approximately one kilometer above the surface the vehicle
falls with a velocity of ��� m s� The crew ignites the engine of the lander� drops the
heat shield and selects an appropriate place for the touch down on the surface of Mars�

The astronauts stay for  days on the surface of Mars� during this time interval they
live in the command module of the lander� but they get out of the vehicle to visit the
surroundings of the landing area and to collect sample material� On April 
�th ��
�
the crew ignites the engine of the lander a second time for the return �ight to orbit�
The touch down on the surface with rocket propulsion has consumed not more than
� tons of the propellent of the lander �equivalent to a %v capability of ��� m s��
The ascent requires a %v capability of ��
� m s� and with the remaining � tons of
propellent the lander is able to reach orbit and to perform a rendezvous maneuver
with the orbiter� Then the crew discharges the empty rocket stage of the lander
�however� the command module of the lander remains docked on the return cabin��
The Mars spacecraft is smaller now because the heat shield and the rocket stage of
the lander are missing �	�� tons�� When we assume that from the initial � tons of
consumables � tons su�ce for the return �ight �	� tons�� then the spacecraft weights
all together �� tons after the preparation for return� 
� tons of storable propellent
provide a %v capacity of ��� km s to depart from the orbit� The spacecraft waits
on orbit for the right time to ignite its engines for the return �ight� 
�� days later�
on October �� ��
�� it approaches the earth� The crew separates the service module
and the command module of the lander from the return cabin and discharges the rest
of the consumables� Finally the return cabin �� tons� enters the earth�s atmosphere�
either to perform a direct landing maneuver �with parachute watering on the ocean�
or an aerocapture maneuver �with docking on the international space station��
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Example 	���c� The timeline for the Venus�Mars project study shows the chronological
order of the most important events of the mission� The Mars spacecraft is launched
about two months before the actual starting day and assembled in space� then the
spacecraft is brought on a Venus�Mars swingby trajectory by two upper stages of the
cargo shuttle� Mars is encountered after a �ight time of nearly one year� then the
crew stays for one week on Mars� The return �ight back to the Earth lasts ��	 days�

3 + 2

return to
orbit
(day 378)

departure
for the Earth
(day 378)

departure for Venus (day 0)

swingby
at Venus
(day 163)

aerocapture
at Mars arrival
(day 370)

Mars entry
and landing
(day 371)

Earth reentry and
landing (day 576)

Earth
arrival
(day 575)

launch of the mission:
58 t spacecraft (day -60)
2*100 t stages (day 0)
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Mission cost� Our Mars mission has to be compared with other big space projects
in order to estimate the costs� The comparison suggests that this mission is probably
not more expensive but cheaper than the American Apollo project and the inter	
national space station ISS� the components which have to be constructed for the
Mars mission are the �return cabin�� the �service module� and the �lander� �these
components are in size and function similar to the devices of the Apollo project��
only the �heat shield� for landing on Mars needs a completely new development�
However� it is not necessary to build a large space launcher like America�s Saturn	��
the development of the cargo shuttle is certainly much cheaper �actually it requires
just the development of a tank� the engines are available�� The launch of our Mars
mission requires three shuttle �ights and two cargo shuttle �ights� a mass of ��� tons
has to be transported to a low earth orbit �and� in contrast to the space station ISS�
this initial mass in low earth orbit consists mainly of propellent and consumables��
Taking everything together we may conclude that the manned Mars mission is not
necessarily more expensive than the Apollo project or the international space station�

Objective of the mission� The search for extraterrestrial life is certainly the most
important reason for astronautical activities in deep space� Naturally� we do not
expect to �nd an alien on Mars like the �martian� in the picture below� however�
it is indeed possible that the material on the surface of Mars contains fossils� Even
the discovery of fossil microorganisms would
be an extraordinarily exciting result of the
mission that would help �nding an answer to
the fundamental question about the origin of
life� Some parts of the surface of Mars were
apparently covered with water in a former
period of its existence� and maybe the planet
has lost its water in the consequence of a
cosmic catastrophe� Today the surface of the
Earth would be quite similar to the surface of
Mars when the Earth had lost all its water�
for example at the end of the age of the
dinosaurs �about �� to � million years ago��
An unmanned space probe would probably not
be able to discover the bones of the dinosaurs�

Political environment for a manned Mars mission� The technological basis for
a manned Mars mission is already available for many years �such a mission could be
performed either in the way that has been outlined in this book or in another way��
Despite of its possibility the mission will not be performed within the next decades�
the political basis that was present during the time of the American Apollo project
�the �cold war�� is not present anymore� Even though we are happy that the cold war
is over we regret that the political basis for scienti�c space activities has turned out
to be so bad without it� Now we are looking forward to a peaceful political situation
with a better environment for a manned Mars mission and� during that time� it is
the important task for space engineers to show to the public how easy it would be�
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�� Low Thrust

The expression �low thrust� refers to a variety of quite di�erent propulsion concepts�
They all have in common that the propulsion energy comes from the sun �or occasion	
ally from a nuclear power generator� anyway the energy is not stored in chemical form
in the propellent�� and that the engines are too weak to propel heavy space launchers�
Low thrust propulsion is limited to the application in satellites and space probes�
Today� low thrust propulsion systems �resistojets� arcjets� ion	engines� magneto	
electric plasma thrusters� and solar sails� live still in the shadow� but actually they
o�er a great potential for future astronautics� the reason is that the working �uid
�propellent� is used with a higher e�ciency when the energy comes from outside�
Thus� when these unconventional engines are applied to satellite station keeping�
they have the capability to increase the service life of earth satellites substantially�
or� when they are applied as the main propulsion system to deep space probes�
they can make planetary missions possible which are too di�cult for conventional
chemical propulsion� The ninth chapter of this book treats the great potential of low
thrust propulsion and the di�cult problems which are inherently involved with it�

There exists a variety of electric thrusters which utilize di�erent working principles�
the di�erent working principles involve operational advantages and disadvantages�
All these thrusters require electric energy� in space provided by large solar arrays or
by radio	isotope generators� We will have a look at available thrusters and power
supply systems in the �rst section of this chapter� Engines and power supply sys	
tem necessary to propel an electric space probe are usually heavy in comparison
with the overall propellent mass� and this leads to some apparently paradox e�ects�
the theory of rocket propulsion applied to the optimization of electrically propelled
space missions demonstrates that the staging principle deviates substantially from
what we might expect knowing conventional rocket engines� The second section of
this chapter analyzes the correct application of the staging principle for a �comet nu	
cleus sample return� mission and for a �multi asteroid rendezvous and �yby� mission�
Finally� the third section of this chapter treats the optimization of sailcraft propulsion�
a small spacecraft� equipped with huge lightweight re�ectors� could also utilize exclu	
sively the pressure of sunlight as a propulsive force� the great advantage is that such
a solar sailcraft would not require any propellent to perform its planetary mission�

The fundamental textbook on electric propulsion systems was written by E�Stuhlinger
��Ion Propulsion for Space Flight�� McGraw	Hill Book Company� New York� 
�����
however� also the books of R�G�Jahn ��Physics of Electric Propulsion�� McGraw	
Hill Book Company� New York� 
���� and G�P� Brewer ��Ion Propulsion Technology
and Applications�� Gordon and Breach Science Publishers� New York� 
��� are rec	
ommendable� Considerable advances have been attained since the time when these
books were published� documented for example in many proceedings and papers
of the annual �AIAA DGLR JSASS International Electric Propulsion Conference��
The technology of solar space sailing is summarized in the book of J�L�Wright
��Space Sailing�� Gordon and Breach Science Publishers� Philadelphia� 
�����
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	��� Low Thrust Propulsion Systems

Theoretically� there are many di�erent ways how we can utilize the energy of the
sun or the energy of a nuclear power generator for space propulsion� However� let us
now concentrate our attention on really practicable ways� considerable industrial ef	
forts have already been made in developing several di�erent types of electric engines�
and also the use of solar sails for some deep space missions seems to be promising�

����� Thermo�electric Engines

Working principle� Conventional chemical engines transform the heat energy that
is released by the combustion of propellent via an expansion process in the rocket
nozzle into kinetic energy� The hotter the combustion process the more kinetic energy
can be generated� The idea is now to put more energy with a resistor or a light arc
into the combustion chamber in order to improve the exhaust velocity of the engine�
assuming that there is enough electric energy available in the spacecraft� Thermo	
electric engines work like conventional chemical rocket engines� the only exception
is that now electricity heats up the gas in the chamber� Expansion and exhaustion
take place in a conventional hypersonic nozzle� It can be the case that the propellent
contains no chemical energy and electricity is the only energy source� but it can also
be the case that the propellent contains chemical energy and the combustion gas is
additionally heated up by electricity� In practice� these engines can be used for station
keeping of earth satellites �switching the energy for broadcasting every now and then
for short time periods to the thrusters�� Promising is also the application in manned
spacecraft utilizing waste water or carbon dioxide as propellent for control maneuvers�

Resistojets� The use of an electric resistor is the easiest way to utilize electric energy
for space propulsion� the energy is simply transferred to the working �uid via direct
contact with an electrically heated coil of wire� Special high	temperature metal alloys
�rhenium� platinum� molybdenum or tungsten� allow surface temperatures of maybe
up to �����C� The exhaust velocity of the engine is a square root function of the
speci�c chamber enthalpy� and� considering that the chamber temperature is limited�
hydrogen gas with its low molecular mass would be the best propellent for a resistojet�
However� other propellents are usually preferred because it is too di�cult to store
hydrogen in space� The use of a monopropellent �such as hydrazine� reduces the
demand for electric energy� because the chemical reaction of the monopropellent
provides additional heat energy� In practice it has been tried to improve the speci�c
impulse of small hydrazine thrusters� for example from ��� seconds to ��� seconds�
The problem is that the resistor has to be heated before the thrusting and that the hot
decomposed gas has to stay for a certain time interval in contact with the resistor�
Electric energy is anyway not cheap in space� the e�ciency of resistojets ranges
between ��� and ���� depending on the propellent� on the pulsing time and on some
other construction details� Resistojets have been developed for thrust levels between

� mN and �� mN� some versions have already �own in several experimental satellites�
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Arcjets� A light arc is the alternative to a resistor for heating up the chamber gas�
A light arc that �ickers between the cathode �located in the center of the chamber�
and the anode �the coaxial ring	shaped entry region of the hypersonic nozzle� trans	
fers the electric energy directly to the chamber gas� Direct heating of the gas avoids
the temperature limitation imposed by the melting point of the resistor material
�the temperatures in a light arc range between 
�����C and ������C�� However�
the temperature of arcjet electrodes is limited to about ����C� when the electrode
material is tungsten alloy with boron nitride as insulator� and in practice the arcjet
introduces some other even more di�cult problems� just a minor percentage of the
gas experiences direct arc heating� the other part is heated indirectly by mixing with
the hot gas� by heat radiation from the arc and by contact with the hot electrodes�
The e�ciency of an arcjet is usually low �below ����� heat energy radiated to space
and electric energy necessary to ionize the gas is lost for propulsion�

Arcjets need comparatively high electric currents which cause heavy conductors be	
tween the current transformer and the thruster� and the ignition of the arc requires
other voltages and other currents than the steady state operation� The ignition of
the arc is very destructive for the thruster� pulsed mode operation is di�cult because
the erosion of the electrodes is much higher �up to 
�� times� when the thruster is op	
erated in pulsed mode� Experimental thrusters have been developed which combine
good performance �
��� seconds speci�c impulse� with high e�ciency �between ���
and ����� but the erosion is not acceptable then� Practical arcjet designs resemble
the construction of resistojets� hydrazine monopropellent is catalytically decomposed
inside a small gas generator and then conveyed to a tiny thrust chamber where a light
arc �or a resistor� transforms the electricity into heat� For example� a small 
�� mN
hydrazine arcjet thruster �named HAJ
� for satellite stabilization is o�ered by the
German space industry� the model is speci�ed to operate with a speci�c impulse
of ��� seconds at a power consumption of ��� W and a chamber pressure of 
� bar�
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����� Ion Engines

Working principle� Ion engines use an electric �eld to accelerate the propellent�
an ionized gas with an extremely low density �typical propellents for ion engines
are mercury� xenon or cesium�� In practice there are three di�erent ways how ion
thrusters can generate ions from the propellent� �rst� by the bombardment of the
gas with energetic electrons� second� by direct contact of the gas with a hot metal
electrode� and third� by the stimulation of a plasma with a radio	frequency �eld�
The positively charged ions are extracted from the ionization chamber and accelerated
in an electric �eld between two �or three� screen grids� Finally� a sub	assembly emits
electrons to the ion beam� to neutralize it and to prevent a charging of the spacecraft�

The ion thrusters operate with thrust levels between 
� mN and ��� mN� typically�
with electric e�ciencies between �� and ���� The lower thrust versions are usually
designed for earth satellite station keeping and the stronger versions for deep space
missions� Typical speci�c impulses range between ���� seconds and ���� seconds�
The working principle would make it possible to generate easily even higher speci�c
impulses �simply by increasing the grid voltage�� but then power consumption gets
usually too high for the desired thrust level� Thrusters� power supply systems and
electric converters are now heavy components of the propulsion system� compared
with the weight of the propellent� Ion engines are the most promising low thrust
propulsion systems� however� they su�er the problem of a deterioration with the op	
eration time and have a limited lifespan� Experimental thrusters have �own several
times on satellite platforms with the main objective to demonstrate the desired service
lifespan �desired are at least two years of constant operation�� and America�s elec	
trically propelled �Deep Space 
� probe �ew by comet Borelly on September ��� ���
�

Electron bombardment thrusters� Most existing ion engines belong to the sub	
class of electron bombardment thrusters� also called Kaufman thrusters �named after
H�R�Kaufman who developed in 
��� the �rst operational engine�� The propellent�
usually liquid mercury or xenon� is vaporized and conveyed to the ionization chamber
where it is electrically activated to form a very low density plasma ������
 torr��
The ionization is initiated by the collision of high energetic �primary� electrons with
neutral gas atoms� The electrons come either from a thermal �lament or from a hot
cathode discharge chamber� An electric current in a coil surrounding the chamber es	
tablishes a magnetic �eld in order to in�uence the motion of the electrons and thus to
increase the probability of ionization by impact� lower energetic secondary electrons
�byproducts of the ionization� contribute with about ��� to the ion production�
It is desired that the plasma is nearly completely ionized �accumulation of neutral
atoms can cause arcing and voltage breakdown� and that the plasma contains just
singly charged ions� A strong electric �eld between the grid electrodes at the exit of
the ionization chamber extracts the positively charged ions from the plasma and keeps
the electrons in the chamber� The ions enter the �eld through the holes in the grids
and accelerate by running through a potential between the grids �
��� V to ���� V��
The neutralizer device� another electron source� feeds electrons into the exhaust beam�
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Ion engines have a limited service life�
a small number of the ions extracted
from the plasma is not expelled but
hits the grids and causes an erosion
of the grids ��spluttering��� This
constant ion bombardment can be di	
minished by an appropriate �ion optic�
�electro	magnetic �elds�� However� an	
alytical and computational models for
analyzing the quite complicated mo	
tion of the ions are still not really
accurate� and thus the best extrac	
tor geometry with low spluttering rate
must be determined by expensive long	
time experiments� Special advanced
grid materials can be a key to success
�metal or conductive �ber material��
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Today� the inert gas xenon is the preferred propellent for ion engines� Other inert
gases have also been tested� but their suitability is not as good� Xenon has a high
atomic mass �
�
�� g mol� and a comparatively low ionization potential �
��
 eV��
and the exhaust plumes are not dangerous for the spacecraft �xenon cannot chemically
react with surfaces or pollute instruments�� The gas can be stored in its liquid phase
in pressurized tanks �or close to the critical state� ��� kg m� at �� bar and ���C�
a heater must be available to avoid freezing at lower temperatures�� The source
substance for production is air �xenon is a minor constituent of the atmosphere��
but the production process is quite expensive� Earlier versions of ion thrusters used
mercury vapor as propellent �atomic mass ����� g mol� ionization potential 
��� eV��
Mercury is a liquid metal and several thousand times cheaper than xenon� but this
propellent was abandoned because it was considered as dangerous for the spacecraft�
Other early versions experimented with cesium vapor �atomic mass 
���� g mol� suit	
able because of its low ionization potential ��� eV�� but this propellent ignites with
air and reacts explosively with water and thus it is even more dangerous than mercury�

Ion contact thrusters� Ions can also be produced directly by the contact of mercury
or cesium vapor with a hot tungsten electrode ��Langmuir	e�ect��� So	called ion
contact thrusters �or Stuhlinger thrusters� work similar like other ion engines� except
for using a di�erent ionization method� low pressure mercury or cesium vapor �ows
through a hot porous tungsten ionizer which ionizes over ��� of the atoms� For
contact ionization the metal tungsten must be hotter than a certain temperature
�for example hotter than 

���C�� but in practice higher ionization potentials are
selected to avoid the presence of neutral atoms which cause an erosion of the thruster�
Heat radiation from the hot ionizer reduces the electric e�ciency of the thruster�
Experimental ion contact thrusters have been developed for di�erent thrust levels�
but it is apparently di�cult to obtain a reasonable service life for this type of thruster�
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Radio�frequency ion thrusters� In contrast to Kaufman thrusters and Stuhlinger
thrusters which use hot electrodes for the initiation and activation of the plasma�
the RIT	engine �or Loeb	thruster� uses an electromagnetic �eld with a frequency
between ��� kHz and 
 MHz� The induction coil for the �eld is placed around the
ionization chamber� The stimulation of the gas with a radio frequency �eld requires
more energy but it avoids the lifespan problems of the electrodes and allows the gen	
eration of a plasma with a higher density� The thrusters RIT 
�� RIT 
� and RIT ��
�the numbers refer to the chamber diameter� have been developed in a coopera	
tion between the ESA� the German space industry and the university of Giessen�
the thruster RIT	
� with 
� mN thrust �for satellite station keeping� was tested in

��� on board of the retrievable European experimental satellite platform EURECA�

Presently� the RIT	
� device is o�ered to satellite manufacturers� speci�ed for 
� mN
thrust� ��� W electric power consumption and ���� seconds speci�c impulse� Thus�
the mass �ow rate amounts only 
�� mg per hour �xenon is used as propellent��
The thruster weighs 
�� kg and is with a nozzle diameter of 
� cm not really small�
Until now practical problems have prevented the application in commercial satellites
�incompatibilities in the electric interfaces� electro	magnetic interference problems�
reliability concerns and so on�� even though a reasonable lifetime has been experimen	
tally demonstrated and the low propellent consumption rate is certainly appreciated�

Example ���� The �gure demonstrates the working principle of the RIT radiofrequency
ion thrusters� xenon vapor is fed to ionization chamber and activated by a radiofre�
quency �eld� A system of three grids with di�erent voltages extracts the positively
charged ions and keeps the electrons in the chamber� The ions are then accelerated
by an electric �eld ���� V�� A neutralizer �cathode heater� feeds �nally electrons to the
ion beam in order to neutralize it and to prevent a space charge behind the spacecraft�
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Field emission electric propulsion� So	called FEEP systems fall also into the
category of electrostatic ion thrusters� however� their method of ion creation di�ers
substantially from the ionization method of other ion engines� FEEP systems extract
ions directly from the liquid phase of a conductive propellent by the action of a strong
electric �eld �stronger than � kV�� Under the in�uence of the strong electric �eld�
the free surface of a liquid conductor is distorted into a series of �Taylor cones�� and
ions depart from the tip of the cones apparently without intermediate gaseous phase�

The ion emitter is a needle with an extremely thin capillary tube inside �� 
� �m��
In order to create more ions for higher thrust� an array of stacked needles can be used�
or even better� the emitter is a wedge	shaped metal plate with a thin slit in its blade�

In a practical European design �a de	
velopment in the French and Italian
space industry� sponsored by ESA�
the emitter is made of two perfectly
polished metal blades �molybde	
num� tightly clamped together� one
of which is polluted with sputter	
deposited metal spots �nickel� in
order to give the desired slit width
��double knife edges� with a length
of � cm and a slit width of 
�
 �m��
Capillary forces drive the liquid pro	
pellent through the slit� � kV be	
tween the front end of the emitter
and the accelerator electrode extract
and accelerate the ions� Then� as in
all ion engines� the ion beam is dis	
charged by a neutralizer device� to
prevent that charged particles are
later attracted by the spacecraft�
The device develops ��� mN thrust�
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The liquid metal cesium is the favorable propellent for the FEEP thruster� because it
has an excellent wetting capability� a low ionization potential and a high atomic mass�
The advantages of FEEP thrusters in comparison with other ion engines are the sim	
ple construction and a comparatively high electric power e�ciency� A disadvantage
is that the electric �eld for ion creation must be strong �high voltages are necessary��
The high accelerator voltage gives the FEEP thruster a high speci�c impulse but
it requires also comparatively much electric power per unit of thrust �for example
�� W mN for a speci�c impulse of ���� s�� Even though several emitters can readily
be clustered to form a stronger thruster� the demand for electric energy becomes ex	
cessive then� For satellite station keeping the FEEP thruster can be superior to other
ion engines because it can instantaneously be switched on and o�� precise attitude
maneuvers with extremely low thrust are typical applications for FEEP thrusters�
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����� Magneto�plasma Dynamic Thrusters

Working principle� In contrast to ion engines which use an electric �eld for the
acceleration of charged propellent� MPD thrusters use magnetic forces that act on a
neutral plasma� A gas becomes an electrically conductive plasma when about 
��
of its atoms are ionized� even though the plasma is still an essentially neutral gas
�it contains ions� electrons and neutral molecules�� Now an electric current can run
through the plasma� and when the current carrying conductor is exposed to a mag	
netic �eld� the �Lorentz	force� �named after H�A�Lorentz� 
���	
���� appears which
accelerates the conductive plasma �the Lorentz	force is proportional to current in	
tensity and magnetic �ux density� it aims in a direction rectangular to the current
and rectangular to the magnetic �eld�� The �Hall	e�ect� �E�H�Hall� 
���	
���� is
the phenomenon that inside a magnetic �eld an electric potential can be measured
between the side walls of an electric conductor� as the consequence of magnetism�
The magnetic �eld can be �self induced�� referring to the fact that a current carrying
conductor itself creates a magnetic �eld� The physical driving mechanism that pro	
pels magneto	plasma dynamic MPD thrusters is therefore under some aspects the
same as the driving mechanism of conventional electro	motors� electromagnetism�
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The MPD thrusters constitute another important class of electric engines� and� since
about 
���� a wide variety of di�erent types has been examined in conceptual studies�
laboratory models� or industrial developments� Many universities and space agencies
all over the word are presently experimenting with di�erent concepts� Names and
classi�cation are quite confusing� Some thrusters operate in pulsed mode utilizing
solid propellent� others operate in steady state� several types have �own successfully
on American and Russian satellites� All these thrusters have in common that they
generate thrust using a magnetic �eld that acts on a neutral plasma� Even though
many thrusters have not reached the state of an advanced development jet� their op	
eration principle is quite promising� while ion engines must use heavy ions and large
beam widths because the charged particles in the electric �eld repel each other mutu	
ally� MPD thrusters can use light weight propellent particles and o�er the principal
advantage of a high speci�c impulse in combination with a high thrust capability
�provided that a su�cient amount of electric energy is available in the spacecraft��
Let us now have a look at those MPD thruster types which have been used for the
station keeping of satellites� or which at least have undergone a concrete development�
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MPD�arcjets� A thermal arcjet which incorporates a strong magnetic �eld into the
nozzle for accelerating the working �uid is theoretically the easiest way to realize
a �magneto	plasma	dynamic thruster� or �Lorentz	force accelerator�� Similar to a
thermal arcjet� the MPD	arcjet creates a plasma �a hot electrically activated gas� by
burning a light arc between the cathode in the center of the thrust chamber and the
coaxial ring	shaped anode� However� this time the annular anode is placed at the exit
of the hypersonic nozzle� It does not contribute much to the generation of thrust when
the gas �ow is heated in the divergent part of the nozzle� but there the gas is an electri	
cally conductive plasma� and the current that runs from the anode to the central cath	
ode is surrounded by a circular magnetic �eld �as every current carrying conductor��
The Lorentz force� as the result of the interaction of the magnetic �eld with the cur	
rent in the plasma� accelerates the plasma and contributes to the thrust generation�
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Example ���� The �self induced MPD thruster� uses exclusively its own arc current
for the generation of the magnetic �eld� while the �applied �eld MPD thruster�
uses an electromagetic coil or a permanent magnet to form a magnetic nozzle�
The Lorentz force� always rectangular with the magnetic �eld lines and the direction
of the current� causes several e�ects on the motion of the hot plasma �such as a
direct acceleration� a Hall e�ect acceleration� a circular and radial motion� indirect
heating by friction and so on�� MPD�arcjets are today in the state of development�
the analysis of the quite complex interaction of the magnetic �eld with the current
carrying plasma requires empirical knowledge and extensive computer programs�

MPD	arcjets have not been used in any spacecraft until now� but worldwide there is
an ambitious research on this thruster type� because theoretically the concept allows
high thrust densities �small engines with high thrust and low fuel consumption��
Practical problems with this thruster type are excessive erosion of the hot electrodes
and a comparatively low power e�ciency� However� high thrust in combination with
sparing fuel consumption is always at the expense of an enormous demand for power�
Due to the non	availability of large power plants in space� it can be the case that
high thrust MPD thrusters continue to be the space propulsion of the future�
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Solid pulsed plasma thrusters� In practice� the operation principle of the solid
propellent plasma thruster is more promising for building a satellite control thruster
for extremely small maneuvers� The �pulsed plasma thruster� uses electric power to
ablate and electromagnetically accelerate molecules from a block of solid propellent�
The propellent bar �usually te�on� polytetra�ourethylene� is essentially a part of the
thruster itself and the �feed system� is very simple� a spring presses the front face of
the propellent bar against the retaining lips between two electrodes� The spring feed
mechanism is the only moving part of the thruster� A capacitor discharge� ignited
by a spark� provides during a short time interval �microseconds� the current for the
light arc �kiloamperes� between the two electrodes� When the light arc strikes it
ablates several molecular layers of the propellent bar� the ablation products include a
variety of �uorocarbons� such as HF� F�� CF� CF� and CF� �all corrosive� toxic and
cancer causing species�� The plasma is then accelerated by the Lorentz force� in the
simplest form established by an applied magnetic �eld between two �rail electrodes��
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However� also a self	induced magnetic �eld is able to accelerate the plasma� in case one
rail electrode surrounds the other one �the pulsed coaxial ablative plasma cannon��
The thruster can be �red several times per second producing a quasi steady thrust
force� provided that the capacitor is constantly recharged by the power supply system
of the spacecraft� The ability to create with a variable frequency many small impulses
makes the solid pulsed plasma thruster ideal for some high precision pointing mission�

Even though the solid pulsed plasma thrusters has experienced a quite long develop	
ment history �since 
���� early models have �own successfully on Russian and since

�� on American satellites�� the analytical understanding of its operation is very em	
pirical and sophisticated computer programs are still missing� It was expected that
propellent exhaust particles would pollute solar cells and instruments� but the expe	
rience has shown that this problem is not serious �nevertheless liquid xenon has also
been tried as propellent�� Today� some advanced concepts can nearly compete with
the performance of ion thrusters �speci�c impulses between ��� and 
��� seconds�
thrusts between ��� mN and 

�� mN� and power levels between �� W and 
�� W��
but the electrical e�ciency of the pulsed plasma thrusters is in any case quite poor�
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Hall thrusters� The main component of this thruster type is a cylindrical chamber
with a central spike� formed by a coaxial ring	shaped channel� Chamber and spike are
made of ferromagnetic material� the annular channel is made of an electric insulating
material� Chamber and spike incorporate electromagnets which establish a magnetic
�eld with radial direction across the annular channel� The annular channel incorpo	
rates at its bottom the anode� a hollow ring with a channel for the propellent inside�
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The propellent �usually xenon� can depart from the anode through small ori�ces and
enter the annular channel� The hollow cathode� a thermal �lament electron emitter�
is an external device� During the operation about ��� of the propellent �ows to the
anode and �� to the cathode� When during the operation a current �ows through
the plasma between the cathode and the anode� the lighter electrons travel from the
cathode to the anode� while some heavier ions travel from the anode to the cathode�
Now we might expect that most of the current is carried by the lighter electrons� but
the same lightness makes it di�cult for them to cross the magnetic �eld� the hall
e�ect causes an azimuthal motion of the electrons� it forces them to move in spirals
around the axis� Some of the electrons manage to hit the anode anyway and keep the
current running� but most of them are trapped in a fast circular motion inside the
annular channel� Thus� the magnetic �eld acts as an impedance to the electron �ow
and prevents the current from shorting� On their way the electrons collide with the
propellent atoms and create ions� The surplus of electrons in the channel generates
a strong electric �eld �about 
�� V cm� that attracts ions from the anode region�
The ions are much heavier than the electrons� their motion is not much a�ected by
the magnetic �eld� and thus the ions accelerate in the electric �eld� On their way
they pick up electrons from the surplus in the channel or from the cathode emitter�
and an essentially neutral plasma leaves the channel with a velocity of 
� to �� km s�
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The Hall	e�ect thruster was originally invented during the 
���s in the United States�
but later it was abandoned there� It was then perfected in the Soviet Union and
applied many times in Russian satellites for attitude and orbit control purposes�
Therefore this thruster is today the electric space engine with the highest state of de	
velopment� presently the western space community tries to re	adopted this propulsion
concept� The Hall	thruster �or Russian plasma thruster� is actually an ion engine
because it uses an electric �eld for the acceleration of charged ions� but the electro	
magnetic �Hall	e�ect� plays a key role in the operation principle� Like ion engines
the Hall	thruster uses inert gas as propellent �xenon or krypton�� but it avoids ero	
sion problem of screen grids and operates with more convenient voltages and currents�

Russia developed several thrusters with similar performance �speci�c impulses from

��� seconds to ���� seconds� for di�erent power levels �between ���kW and ��� kW��
The demonstrated e�ciency of about ��� and the long service life �over ���� hours�
make these thrusters suitable for satellite control and for interplanetary missions�

����	 Electric Energy Sources

Batteries� Electric propulsion systems consume comparatively much electric energy�
a typical consumption rate for an ion engine is for example �� W for every milliNew	
ton thrust over a period of 
���� hours� Let us start the enumeration of space power
systems with a type that is apparently not appropriate to supply electric propulsion
systems with energy� the chemical battery� Today�s state of the art are rechargeable
lithium carbon cells ��secondary batteries� for ���� discharge recharge cycles�� they
can store 
 kWh in 
� kg cell weight� equivalent to � Wh kg �silver	cadmium accu	
mulators can store about �� Wh kg�� The capacity of non	rechargeable �primary�
batteries is about �ve to ten times better� for example lithium cells with a weight
of just 

� grams are speci�ed to deliver 

 Ah at ��� V� equivalent to ��� Wh kg�
The performance depends on the temperature� batteries for space applications can
operate at low temperatures �down to 	���C�� they have a self discharge of less than
�� per year �the self discharge depends also on the ambient temperature� for example
it amounts �� per year for 	���C� �� per year for !�
�C and �� per year for !��C��

This is obviously not enough energy for long time propulsion� however� during short
time periods secondary batteries can provide su�ciently energy� for example when
the orbiting spacecraft travels through the shadow of the earth and the sunlight is not
available �during a solar eclipse�� Primary batteries are not an option� because their
energy storing capacity is simply too small� We should bear in mind that otherwise
primary batteries would be the ideal energy supply system for spacecraft� they are
small� cheap� extremely reliable� shock resistant� not dangerous� need no orientation
or deployment procedure� do not deteriorate in a radiation environment� they can
deliver much power during short time intervals �high peak power levels�� they do not
disturb sensors or transmitters or cause any other interference with the spacecraft�
Primary batteries are often not considered in astronautical engineering� even though
they are actually the ideal power source when the demand for electric energy is small�
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Fuel cells� Fuel cells are another type of primary batteries� They transform the
energy generated by a chemical reaction �for example the oxygen	hydrogen reaction
or the oxygen	methane reaction� with a remarkable e�ciency of typically ��� di	
rectly into electric energy� Since they deliver drinking water as �waste product��
fuel cells have been used several times for manned missions� particularly with the
intention to support solar cells �to cover peak loads�� The fuel cells of the American
Apollo spacecraft consumed ���� kg oxygen and ����� kg hydrogen for every kWh�
equivalent to ��� kWh kg �Apollo 
� has shown that the application of fuel cells is
not always unproblematic�� Liquid hydrogen cannot be stored in a spacecraft for a
longer time period� thus another fuel has to be used� for example the combination of
liquid methane and liquid oxygen with a smaller energy content of about � kWh kg�
Even though this is about seven times more capacity in comparison with the best con	
ventional battery� it is still not enough power for an electrically propelled spacecraft�

Radioisotope generators� A nuclear process can liberate much more energy
per unit of mass than a chemical process� Radioisotope thermoelectric generators
��RTGs�� transform the heat generated by the decay of radioactive material with ap	
propriate half	life �plutonium ���� with thermoelectric converters into electric power�
either by using the �Seeback	e�ect� �a current is created between two junctions of
di�erent metal at di�erent temperatures� or by using the �Langmuir	e�ect� �a hot
tungsten electrode emits electrons which are then captured by a cooled collector elec	
trode�� These devices cannot be switched on and o�� but they deliver electric power
for decades� typically 
�� W for a weight of �� kg �the power diminishes slightly in
time� about �� in � years� due to a decay of the radioactive material�� The electric
e�ciency of RTGs ranges between �� and 
��� thus the unconverted heat must
be discharged into space �utilizing heat pipes and radiators�� but the device works
without movable components� The additional heat can also be an advantage for a
spacecraft that travels at a great distance from the sun� where the low temperatures
provide a working problem for electronics�

RTG�s operated successfully on American and Russian spacecraft� on earth satellites�
on planetary spacecraft and even on the moon� All missions into deep space which
went further away from sun than Mars used RTGs� so did Pioneer� Voyager� Ulysses�
Galileo� Cassini and the Viking Mars landers� RTGs have indeed a fantastic perfor	
mance� but their use involves two serious problems� �rst� non	acceptance of nuclear
power by the taxpaying public� and second� very often in practice� the non	availability
of the appropriate nuclear material� The material plutonium ��� �half	life �� years�
used in RTGs is not to same as the Plutonium ��� of nuclear bombs� but it is a
byproduct of a certain bomb production �some touch of Plutonium ��� exists also in
minerals�� Like all Plutonium derivatives it is extremely toxic� and in case of a launch
failure danger to man cannot be excluded completely� Careful attention has to be
paid that a space probe with an RTG on board will not collide with the earth on its
interplanetary trajectory� As substitutes there are not many elements available which
have the appropriate half	life period of about 
�� years� For shorter half	life periods
the power decays too fast� for longer half	life periods the generated heat is insu�cient�
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Photo�voltaic generators� Radioisotope generators are well suitable as power
providers for electrically propelled spacecraft� but more often than not photo	voltaic
generators are better� Large solar arrays are the best electric power systems for
spacecraft which do not travel too far away from the sun� Soon after their invention
�about �� years ago� photo	voltaic solar cells were used on the �rst operational
earth satellites� even though that time their performance was poor in comparison
with today� Solar cells have been constantly improved regarding e�ciency� weight�

mechanical �exibility and radiation re	
sistance� and the rapid development is
still going on� Reference values today
are 
�� to ��� e�ciency and a speci�c
weight of �� W kg� typically� A reduc	
tion of the speci�c weight by the factor
two or even three seems to be possible
in the near future� The disadvantage
of solar arrays in comparison with ra	
dioisotope generators is the demand
for an always correct orientation with
respect to the direction of the sunlight�

The sun provides at a distance of 
 AU a light �ux of 
���� kW m�� thus depending
on the e�ciency� an area of � to � m� �weighing �� kg� is required for every kiloWatt
electric power� Many photo	voltaic converters� thin �exible semiconductors with a cell
area of about � times � cm� for ��� V and 
�� mW� are integrated on the solar arrays
�occasionally for lower power requirements also directly on the spacecraft�s body��
either connected in series for more volts or parallel for higher currents� The automatic
deployment of solar arrays in space is not uncritical and the mechanism increases
the weight of the system �large solar arrays are folded during the launch procedure��

For more power larger solar arrays are necessary� The intensity of the sunlight di	
minishes inversely proportional to the square of the distance of the spacecraft from
the sun� but the e�ciency of solar cells improves when it gets colder� the expo	
nent that characterizes the power degradation is not exactly � but approximately 
�
�but solar cells refuse to work completely below a certain very cold temperature��
Solar silicon cells have been developed for low intensity and low temperature condi	
tions which would still work at Pluto�s distance from the sun� When the spacecraft
gets close to the sun� the solar arrays have to be turned away from the direction of the
maximum intensity� otherwise the direct sunlight would destroy the sensitive cells�
The energy which is not converted must be conducted away from the cells and radi	
ated into space in order to keep the operation temperature in the limits� Radioactivity
deteriorates solar cells and can even destroy them� a typical overperformance of ���
is given to the solar cells of earth satellites in order to cope with their degradation in
time� Solar cells get damaged when a spacecraft passes the van	Allen radiation belt
of the earth �or the radiation environment of another planet�� and for many deep
space missions it is still necessary to develop improved radiation resisting solar cells�
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����
 Solar Sails

Sunlight pressure� An area that is exposed to light �and other electromagetic ra	
diation� experiences a so	called light	pressure �discovered in 
��� by L�Boltzmann��
We can readily compute the sunlight pressure on an illuminated area when we equate
the incident light �ux �on earth 
��� W m�� with the jet power �the expression
S � c	�� the thrust S in Newton and the velocity of light c � ������ � 
�� m s��
The result is a pressure of exactly ������ � 
��� N m�� assuming that the entire �ux
is transformed into pressure �total rectangular re�ection� no heating�� In space the
so	called �solar wind� acts additionally on the illuminated area� a plasma consisting
of protons� electrons and some helium ions� but the pressure of this particle radiation
is negligibly small� the solar wind has at the distance of the earth an average velocity
of ������ m s and a density of approximately 
�� �
���� kg m�� thus the e�ect of the
proton bombardment is about 
��� times smaller than the e�ect of the light pressure�

Sailcraft propulsion� The direct sunlight creates at the distance of the earth a pres	
sure of about � � 
��� N m� on a re�ecting area� We are always excited by the idea
that we might get something for free� a spacecraft equipped with huge light	weight re	
�ectors could maybe utilize this pressure and generate a propulsive force directly from
the sunlight without consuming any propellent� This great advantage would make
it possible that the sailcraft could reach any planet from an orbit around the earth�
and� when it is required� also return back to the earth without additional equipment�

Let us assume that a thrust acceleration of maybe 
�� of the solar gravitation is
su�cient for an interplanetary mission� then the thrust acceleration at the distance
of the earth �r � 
�� � 
��� m� would be ��
 � ��	r������ mm s�� and every square
meter of the spacecraft must not be heavier than 
��� grams �approximately the
weight of a letter�� This seems to be possible for small probes� for example� a sailcraft
with a mass of only 
�� kg would then require sails with an entire area of ���� m��
The sailcraft could be a small payload in the middle of the crossing of four booms
which deploy huge re�ectors with a total size of �
 times �
 meters� It is not allowed

to scale up these values proportionally
for larger spacecraft� because the bending
moments in the booms increase propor	
tional to the square of the boom length�
and the payload is not a surface speci�c
load but concentrated on the center of
the vehicle� The deployment of such frag	
ile structures in space and the control of
their attitude is certainly di�cult but ap	
parently not impossible� The deployment
must occur at an orbital altitude where
the remainder of drag will not cause a
substantial deceleration of the lightweight
vehicle� about ���� km above the surface�
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	��� Electrically Propelled Missions

Let us return to electric propulsion� Presently the stabilization of earth satellites is
considered as the main application for electric engines� but interplanetary missions
with an extremely high demand for propulsion energy are actually more interesting�

����� Optimization of the Propulsion System

Electric propulsion for satellites� An electric propulsion system consumes pro	
pellent sparingly� the propellent mass� necessary to comply with a certain velocity
requirement %v � is very small in comparison with a chemical propulsion system� but
thrusters and power supply system are now comparatively heavy� The advantage of a
low fuel consumption plays a role in the mass balance only when the demand for veloc	
ity %v is very high� Conventional earth satellites have today a typical service of eight
years �after which the electronic equipment is out of date anyway�� and the overall
%v requirement for position stabilization accumulated in this time interval �typically

��� m s� is simply too small to make the application of electric propulsion sensible�
However� this result will change in favor of electric propulsion when the desired ser	
vice life of earth satellites increases or when the weight of the thrusters decreases�
More %v capacity is required when the launch vehicle transports the satellite only
to a low earth orbit� then an upper stage is not necessary and the satellite integrated
propulsion system performs the initial positioning maneuver� The transport of a
satellite from low earth orbit to geostationary position with the thrust of an electric
propulsion system is a theoretical option but it is not advisable for two main reasons�
�rst� the mission takes too much time for a commercial satellite service �additionally
one year or more�� second� the �ight through the van Allen radiation belt is quite
destructive for solar cells and other parts of the electronics� Until today these prob	
lems have obstructed the application of electric propulsion in commercial satellites�
It seems to be more promising to use electric engines in scienti�c deep space probes�

The optimal exhaust velocity� Ion engines operate with exhaust velocities which
are about ten times higher than the exhaust velocities of chemical engines� for example
between �� km s and �� km s� The higher the exhaust velocity the more electric
power is required� The exhaust velocity is a function of the grid voltage� usually it
is constant for a certain engine �on request it would also be possible to construct
ion engines with variable exhaust velocity�� In order to �nd the optimal exhaust
velocity for a certain mission we make now use of a simple model� Therefore we
consider the spacecraft as composed of �ve sub	masses� the payload� the thrusters�
the power supply system� the propellent and the tank� The payload� essentially the
instrumentation of the probe and the structure which belongs to the instrumentation�
is not a function of the other sub	masses� The thruster mass �and the concerning part
of the structure� is a linear function of the thrust� the mass of the power supply system
is a linear function of the power of the jet� The mass of the tank is approximately a lin	
ear function of the propellent mass which is determined by the Ciolkovskij equation�
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In the second chapter of this book we have already used a similar model in order to
analyze the performance of a chemical rocket stage� That time we used the expression
Mignition for the initial mass of the stage� then we related all sub	masses �except
for the payload mass� to the initial mass of the stage� and then we calculated the
�mass ratio� of the rocket stage �the important factor R � Mpayload	Mingnition��
The same procedure applied to the electrically propelled rocket stage yields now�

Mignition � Mpayload !Mthrusters !Mpowersupply !Mtank !Mpropellent ��� 
�

Mburnout � Mignition �Mpropellent ��� ��

with� Mthrusters � Cthrusters � s �Mignition ��� ��

Mpowersupply � Cpowersupply � ��� s c �Mignition ��� ��

Mtank � Ctank �Mpropellent ��� ��

Mpropellent � �
� e�%v	c� �Mignition ��� ��

TermMpayload is the mass of the instrumentation� it is given by the scienti�c objective
of the mission and it is not a function of the other subsystems when the initial mass of
the spacecraft is predetermined� The other subsystems depend in a linear manner on
the initial mass of the spacecraft� a bigger spacecraft requires proportional to its size
more engines� more power and more propellent� Furthermore� the engine mass is a
linear function of the initial thrust acceleration s � cm	Mignition� and the mass of the
power supply system is a linear function of the jet power mc�	� � ��� s c Mignition

�m is the mass �ow rate and c the e�ective exhaust velocity�� We insert the equations
��	�� to ��	�� into ��	
� and transform� The result is the following relationship�

R �
Mpayload

Mignition
� �
 ! Ctank� � e�%v	c � s �Cthrusters !

c

�
Cpowersupply�� Ctank

��� �
The result is slightly di�erent from the result for a chemical engine� now a power
system is present with a mass fraction depending linearly on the exhaust velocity c�
Di�erentiation �R	�c � � brings us the conditional equation for the optimal ex	
haust velocity c� It is a transcendental equation that can be solved iteratively� thus�

c �

s
� �
 ! Ctank�

s Cpowersupply
�%v � e�%v	c

��� ��

The plot on the left shows that the opti	
mal exhaust velocity c of an electrically
propelled spacecraft is approximately a
square root function of the mission ve	
locity requirement %v � assuming the
values Ctank � ��
 �
�� tank weight��
s � 
	���� N kg �or ���� � 
��� m s��
and Cpowersupply � ���� kg W �this cor	
responds to solar arrays with �� W kg
and thrusters with an e�ciency of �����

optimal c �%v� in m s
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����� Low Thrust Earth Escape

The escape spiral� There are two ways how an electrically propelled deep space
probe can enter the interplanetary transfer orbit� either the spacecraft is inserted di	
rectly by the chemical propulsion of the upper stage of the launch vehicle� or it uses
its own propulsion system to spiral up from a low earth orbit� Let us now analyze the
option of low thrust escape� in comparison with direct insertion it o�ers the advantage
of the better e�ciency of electric propulsion� but it involves the disadvantage of an ex	
tended mission time �and the undesirable prevail time in the van Allen radiation belt��
To �nd out the expense of time and propellent of the low thrust earth escape mission
we have to integrate the equations of motion numerically �the derivation of these
di�erential equations is explained in detail in the chapter four of this book�� Thus�

r

�
v

�	r�
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�

�coast arc

*u �
v�
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!
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M
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*v � � u v
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!
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M
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*� �
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u

v
��� ��

The plane motion is de�ned by the polar coordinates r and � �radius and path angle
with pole at the center of the earth� and the velocity components u � *r �vertical� and
v � r *� �horizontal�� The trajectory is controlled by the thrust angle � and the mass
�ow rate m �M is the mass of the spacecraft and c the constant exhaust velocity��
Symbol � represents the gravitational constant of the earth� �� � ������
��� m� s��
A control programme is called �tangential thrust� when the thrust vector is aligned
with the velocity vector� tan� � u	v� Tangential thrusting lets the mechanical
energy and the angular momentum of the orbit grow simultaneously �the vertical

velocity u remains small most of the time� the propulsive power is dE	dt � �v � �S �
with the mechanical energy on orbitE� the
thrust vector �S and the velocity vector �v ��
Thus� a simple steering programme with
tangential thrust all the time is nearly
an optimum escape strategy �actually� the
really optimum escape strategy requires
tangential thrust only at the �nal time��
tangential thrust maximizes the increase
of the mechanical energy of the orbit at
every instant of the entire �ight time�
and it is easy to integrate the trajectory
even when the thrust is extremely low�
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Constant thrusting� A spacecraft that orbits with a velocity of v � �� m s
at an altitude of ��� km above the earth �rearth � ��� km� requires a %v capacity
of ���� m s to enter with a single impulsive maneuver a parabolic escape trajectory�
Initially the %v requirement remains nearly constant when we start to reduce the

thrust level of the maneuver� but it grows
considerably when we reduce the thrust
acceleration s � cm	M below 
 m s��
However� the %v requirement does also
not grow without limits when the thrust
level gets really low �below 
 mm s���
but it remains always below a certain value
�the circular velocity of the initial orbit��
The time interval of the escape maneuver
of a space probe equipped with electric en	
gines last about one year �s � ��� mm s���
The numerical simulation of the trajectory
shows that the spiral deforms considerably
shortly before the spacecraft has reached
the parabolic escape velocity� In order to
avoid that the spacecraft collides with the
earth� it is necessary to replace the tan	
gential thrust programme �nally by more
sophisticated navigation strategy�
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Coast arcs� A thrust acceleration s � ��� mm s� and an exhaust velocity c � �����
m s are typical values for an electrically propelled spacecraft� several thousand orbital

revolutions are necessary before the probe
reaches the parabolic escape velocity�
It is possible to reduce the %v require	
ment of the mission at the expense of
more mission time %t� The �gures on
the left assume that the thrust is switched
o� always when the spacecraft travels
through a certain sector of the escape spi	
ral �determined by the angle �coast arc��
Suspending the thrust �m � �� every or	
bital revolution in a certain sector makes
the escape spiral more eccentric and re	
duces greatly the gravitational losses� The
computed plots show irregular behaviour
because the duration of the last coast arc
�immediately before the spacecraft reaches
escape velocity� has a main in�uence on
%v and %t� For a short mission time it is
advisable that we omit the last coast arcs�
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Hyperbolic insertion� In practice however� it is probably better that we insert the
electrically propelled spacecraft directly with the upper stage of the launcher into the
interplanetary transfer orbit� This avoids a long prevail time in the radiation belts
of the earth and reduces the mission time by approximately one year� The question
arises how fast the spacecraft should depart from the earth at the beginning of its
mission� the electric propulsion of the probe is much more e�cient than the chemical
propulsion of the upper stage� but the propellent of the upper stage is very e�ciently
used because it is expended near the gravitational center� The chapter four of this
book explains why� the mechanical energy of the escape orbit with respect to the
gravitational center remains constant� and thus the hyperbolic escape velocity v�
�far away from the earth� is much higher than the velocity %vsuperparabolic �what the
upper stage has to expend for changing from parabolic escape velocity to hyperbolic
escape velocity�� The energy relationship is responsible for the following equation�

%vsuperparabolic �
q
v�� ! v�parabolic � vparabolic

� cchemical � ln�Minitial	Mfinal� ��� 
��

The right hand side of the equation above is the Ciolkovskij equation applied to
the maneuver that brings the vehicle form parabolic velocity to hyperbolic velocity�
Minitial is the mass of the spacecraft before the maneuver and Mfinal the mass after
the maneuver� The index �chemical� in the expression for the exhaust velocity c
indicates that the upper stage of the launcher performs the maneuver� To estab	
lishes the same velocity v� with the help of electric propulsion we have to switch the
propulsion system on when the probe has already left the gravitational in�uence of the
earth and moves on a parabolic escape orbit� The Ciolkovskij equation becomes then�

v� � celectrical � ln �Minitial	Mfinal� ��� 

�

When the velocity v� is small� the use of chemical propulsion is preferable� the non	
linear energy relationship ��	
�� shows that we get a small hyperbolic escape velocity
v� nearly for free� without expending much propulsion �the parabolic escape veloc	
ity on a circular orbit ��� km above the surface of the earth amounts 

�
� m s��
However� when the velocity v� is not small� the use of electric propulsion is preferable
because its e�ciency is higher �celectrical is typically ten times higher than cchemical��
The optimal injection velocity is determined by the margin when the electric propul	
sion starts to become better than the chemical propulsion� To �nd it we can assume
that the ratio Minitial	Mfinal must be approximately the same for both maneuvers�

�cchemical	celectrical� � v� �
q
v�� ! v�parabolic � vparabolic

or�
v� �

� �cchemical	celectrical�


� �cchemical	celectrical��
� vparabolic � �

cchemical
celectrical

� vparabolic ��� 
��

The parabolic escape velocity is approximately 

 km s� and when the exhaust ve	
locity of the electric propulsion system is ten times better than the exhaust velocity
of the chemical engine of the upper stage� the optimal hyperbolic escape speed is
���� m s� Actually it is better to select a value slightly above this margin� because�
in contrast to electric propulsion� chemical propulsion adds no time to the mission�



LOW THRUST 	��

����� The Comet Nucleus Sample Return Mission

The staging principle for electric propulsion� We have already analyzed the
staging principle for conventional chemical rockets at the beginning of the second
chapter of this book� When a chemical rocket accelerates to a high �nal velocity�
the staging principle is applied to get rid of super�uous tank weight� essentially�
The tank of an electrically propelled spacecraft is small and its weight is not impor	
tant in comparison with the other components of the propulsion system� and thus the
staging principle is apparently not sensible in electric propulsion� This is� however�
not true for high energetic missions �like the comet nucleus sample return mission��

To analyze the staging principle for electric propulsion we assume that the optimal
exhaust velocity c for a certain mission is determined and that the thrust acceleration
s cannot become smaller than a certain limit� With these assumptions it is possible
to replace in equation ��	� the expression s�Cthrusters ! ��� c Cpowersupply� by
the single constant Cengine � Mengine	Mignition� The constant Cengine describes the
weight of the thrusters� the power supply system� the cables� converters� structure and
thermal control system which belong to the electric propulsion system� Then we have�

R �
Mpayload

Mignition
� �
 ! Ctank� � e�%v	c � Cengine � Ctank ��� 
��

Now the relationship is valid for both� electrical and chemical propulsion� however
the actual value of the constant Cengine is quite di�erent� The ignition mass of the
second stage is exactly the payload mass of the �rst stage� and� assuming that the
stages operate with the same kind of propulsion system and that the %v requirement
of the mission is distributed in equal portions among both stages� we can denote�

R �
Mpayload

Mignition
�

�
�
 ! Ctank� � e�%v	��c� � Cengine � Ctank

��
��� 
��

Equation ��	
�� is valid for the two stage vehicle� Let us evaluate these equations for
chemical and an electric propulsion� assuming that Ctank � ��
 in both cases but that
Cengine � ���� for the chemical rocket stage and Cengine � ���� for the electric stage�
The plots compare single stage vehicles � N � 
 � with two stage vehicles � N � � ��

ratio R�%v� for the chemical rocket ratio R�%v� for the electric rocket
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The plots on the preceding page show that in case of a high energetic mission the
staging principle is also sensible for electrically propelled spacecraft� The reason�
however� is not the same as the reason for staging conventional chemical rockets� Here
the mass of the strong rocket engine is usually small in comparison with the other
components of the chemical stage �particularly in comparison with the propellent
mass�� but this is not the case for an electrically propelled spacecraft� the thrust
acceleration cannot be lowered under a certain level because the mission must be
accomplished in a reasonable time interval� and the electric engines and the power
supply system are now heavy components of the spacecraft� When the spacecraft
has expended a certain amount of propellent it is sensible to discharge thruster mass
and solar cells with the intention to reduce the thrust acceleration� The staging of an
electrically propelled mission should always be considered when the propellent load
for the single stage con�guration would be about ��� of the total spacecraft mass�
For example� this condition is ful�lled for the comet nucleus sample return mission�

Example ��
a� A scienti�c �comet�nucleus�sample�return� mission can make use of
�solar electric propulsion� to visit the �near earth comet� Finlay
�orbital elements� a � 
��� AU� b � ����� AU� � � �����
�� � � 
����� � �
���	�� �p � 
�
���

�� perihel date� �th of May ����� distance rp � 
���� AU��
The spacecraft weights ���	 kg and is equipped with ion engines� c � 
��� m�s�
m�
����r���
 mg�s �initial thrust acceleration s � ����� mm�s���
The launch of the mission is assumed to take place on August ��th ����� when
a launcher injects the spacecraft with a hyperbolic excess velocity of � km�s into
interplanetary space� Comet Finlay is encountered six years later� on August ��th �����
The %v requirement for the mission is ��	�� m�s �propellent consumption� ���� kg��
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Mission alternatives� Comets consist of the �original material� of the solar system�
probably it is only a sort of dirty snow� but the actual composition is very interesting�
the material is obviously identical or very similar to the material which was present
at the beginning of the existence of our solar system� It would be very interesting if
we had samples of the material to analyze it in laboratories� The %v requirement
for the comet nucleus sample return mission is with about �� km s extremely high
�
� km s for the outward journey and 
� km s for the return trip�� but an electrically
propelled spacecraft equipped with ion engines has the capability to perform such a
mission� After having been injected into the interplanetary transfer orbit the space	
craft deploys its solar arrays� ignites the electric engines and travels to the comet�
At arrival the spacecraft enters an orbit around the comet and releases a sub	probe
��lander�� for collecting the sample material� Now there are two possibilities how the
material can be brought back to the earth� either the lander performs a rendezvous
with the orbiter before the orbiter returns to the earth� or the lander is equipped
with its own electric propulsion system and returns autonomously back to the earth�

Example ��
b� Immediately after the arrival at the comet Finlay a �sub�probe� is
released from the spacecraft to land and collect sample material� While the �bus�
stays on an orbit around the comet and continues the observations� the sub�probe
starts a week after the arrival from the surface of the comet and returns back to the
earth �it departs on August ��nd� ���� and arrives at the earth ���� days later��
When the probe arrives at earth on November ��nd� ����� a reentry capsule with
the sample material is separated to perform a re�entry with parabolic entry speed�
The sub�probe weights �	� kg and is equipped with its own electric propulsion unit�
c � 
��� m�s� m������r���
 mg�s �initial thrust acceleration s � ����	 mm�s���
%v requirement for the return �ight is �
�� km�s �propellent consumption ��� kg��
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Let us now compare the two mission alternatives a little more in detail� In any case a
re	entry capsule with a parachute is necessary to bring the sample material to the sur	
face of the earth� Such a system has never been constructed� maybe it weights ��� kg
for �� kg of material� We have also hardly more than an idea what instrumentation
is necessary for the mission� A planetary spacecraft needs in any case a complicated
control system� computer� transmitter and receiver� equipment for navigation� ther	
mal control� and so on� and it would also be nice to have on board some contingency
for scienti�c experiments and a wide angle camera� Let us assume that the instrumen	
tation of the planetary spacecraft weights ��� kg �including structure and equipment
necessary to support the payload�� This is certainly not accurate� but without a
detailed study we have no better information on the weight of the instrumentation�

The construction of the sub	probe that is released to land on the comet and collect
sample material is not easy� The vehicle requires also a complex navigation system�
with transceiver� camera� electric energy supply system and so on� and� in case this
is required� also the capability to perform a rendezvous and docking maneuver with
the orbiting spacecraft ��bus��� The subprobe is discharged after it has transferred
the material to the bus� Again� in the absence of better data� let us assume that the
subprobe weights ��� kg� To avoid the risky rendezvous maneuver on the orbit around
the comet� we can alternatively equip the subprobe with an own electric propulsion
system �solar arrays� thrusters� propellent and tank� and let the subprobe return to
the earth while the bus continues to orbit around the comet� Concept 
� the return
of the bus� represents the single stage vehicle� concept �� the return of the subprobe�
represents the two stage vehicle� The electric propulsion system weighs about ���
of the initial stage mass �Cengine � ������ propellent tanks weigh about 
�� of their
�lling capacity �Ctank � ��
�� When we assume that the exhaust velocity c of the
thrusters is c � �� km s� we can use the Ciolkovskij equation ��	�� to calculate a
propellent mass fraction of �� for a %v requirement of approximately 
� km s�

outbound� concept � ����� kg� concept � ����� kg�

bus subprobe bus subprobe

instrumentation �� kg �� kg �� kg �� kg

propulsion system ���� kg ���� kg ��� kg

propellent ���� kg � ���	 kg ���� kg ��� kg

tank ��� kg ��� kg �� kg

re�entry capsule ��� kg ��� kg

homebound� bus ��
� kg� subprobe ��	�	 kg�

instrumentation �� kg �� kg

propulsion system ���� kg ��� kg

propellent ���	 kg ��� kg

tank ��� kg �� kg

re�entry capsule ��� kg ��� kg

sample material �� kg �� kg
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The table on the previous page shows that in the considered case the initial mass of
the two stage con�guration is with ���� kg slightly better than the initial mass of the
single stage con�guration ����� kg�� This advantage� however� is negligibly small in
comparison with the advantage that the rendezvous and docking maneuver between
the two spacecraft is avoided� The comet nucleus sample return mission should use an
autonomous return voyage of the electrically propelled subprobe� because this alter	
native improves greatly the probability that the di�cult mission is �nally successful�

����	 The Multi Asteroid Rendezvous Mission

Mission objective� The Multi	Asteroid	Rendezvous and Flyby Mission is the other
big future project where electric propulsion could demonstrate its fantastic capability�

Example ��a� Bright and special� the main belt asteroid �Vesta is the �rst target for
the example design of a solar electric propulsion multi asteroid rendezvous mission�
With a diameter of about ��� km the object is visible by the naked eye� and the
Hubble Space Telescope detected even some craters on its surface� A suitable launch
window exists practically every year� January ��th ���
 is appropriate for the example
mission �Vesta�s orbit has a low eccentricity�� The probe weighs ��� kg when it
departs from the earth with a parabolic escape speed� it weighs ��� kg when it arrives
at Vesta on April 
rd� ���� �%v ����� m�s� %t� ���� days�� The ion engines
of the probe develop a thrust of ���� N �c � 
��� m�s� m � ����� � r���
 kg�day��
Trajectory computation and control functions are explained in chapter �ve of this book�
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These asteroids �or strictly speaking planetoids�� smaller celestial bodies with a few
dozen kilometers diameter� are interesting for the same reason as comets� they con	
sist also of the original material of the solar system� Several thousand asteroids
encircle the sun between the orbit of Mars and the orbit of Jupiter� a classi�cation is
necessary because albedo and spectrum of these �main belt asteroids� are di�erent�
A spacecraft equipped with ion engines could visit one particularly interesting object�
establish an orbit around it and examine it for a certain time interval ��rendezvous���
Then� since the spacecraft stays in the asteroid main belt anyway� it can travel on
to the next interesting object nearby� In case another asteroid comes close to the
interplanetary transfer trajectory of the spacecraft� the trajectory can be deformed
in a way that the probe �ies past this asteroid and takes some photos ���yby���
The mission is continued until �nally the spacecraft has expended all its propellent�

The staging principle� In the multi asteroid mission the high %v capability of
electric propulsion is utilized to visit several objects� now the optimization objective
is not a maximization of the scienti�c payload anymore� as usual� but a maximization
of the number of target objects� This optimization criterion has a staging principle
as a consequence which is quite di�erent from the well	known payload maximization
principle and which is seemingly paradox at the �rst glance� Under certain circum	
stances it is sensible to inject with the same launcher several electrically propelled
probes into interplanetary space� A distribution of the mission among several in	
dependent probes can increase the number of targets and reduce the mission time
and the mission costs� To analyze the staging principle we make again use of the
simple model described by the equations ��	
� to ��	��� and again we assume that
the speci�c weight of the electric propulsion system is predetermined �equation �	
���
This time� however� we take into consideration that several spacecraft �numberN� are
launched together with the same launch vehicle� The equations take then the form of�

Mspacecraft � Mlaunchercapacity	N ��� 
��

� Minstrumentation !Mengine !Mtank !Mpropellent

with� Mlaunchercapacity � predetermined ��� 
��

Minstrumentation � predetermined ��� 
�

Mengine � Cengine �Mspacecraft ��� 
��

Mtank � Ctank �Mpropellent ��� 
��

Mpropellent � �
� e�%v	c� �Mspacecraft ��� ���

Let us consider now that the launch vehicle for the mission is prede�ned and that its
capacity for the injection of a spacecraft on an interplanetary transfer orbit is given�
thus that the expression Mlaunchercapacity is not a variable� The mass of the instru	
mentation of the spacecraft Minstrumentation is exclusively de�ned by its purpose�
the instrumentation mass is not a function of the mass of the propulsion system or the
capacity of the launcher� For an electrically propelled spacecraft the constant Cengine
is approximately ���� the constant Ctank is approximately 
��� The propellent
mass required for a certain mission %v is determined by the Ciolkovskij equation�
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Our intention is now to �nd to a given launcher capacity and a given spacecraft instru	
mentation the %v capacity of every individual probe and the %v capacity of all probes
together as a function of the probe numberN � Therefore we introduce the factorQ as�

Q �
Minstrumentation

Mlaunchercapacity
�

Minstrumentation

N �Mspacecraft
��� �
�

FactorQ is the instrumentation mass related to the launcher capacity� this value must
be much smaller than 
 �for example Q � 
	
� when the instrumentation weighs ���
kg and the launcher capacity is ���� kg�� and as agreed� this value is predetermined
for a certain mission and not open for optimization� Now we insert the equations
��	
�� to ��	��� into the equation ��	
�� and transform the result using Q� Thus�

%v

c
� � ln


N � Q! Cengine ! Ctank

 ! Ctank

�
��� ���

The left hand side of the equation
above is the %v capacity of one
spacecraft� divided by the exhaust
velocity c of its propulsion system�
When we plot the overall �ight per	
formance of all spacecraft together
N �%v	c as function of the number
N with Q as parameter �assuming
Cengine � ���� and Ctank � ��
��
we can observe that there exist
a maximum for the overall �ight
performance that depends on N �
the integer number of probes�

value N �%v	c as function of N

Q�����

Q�����

Q����

Q����

1

1

2

0
2 3 4 5 6 N

The smaller the value Q the more probes are necessary for the N �%v	c maximum�
The physical interpretation of this e�ect is that a single spacecraft carries a lot of
propellent ine�ciently from one asteroid to another one� Let us now use the equation
��	��� to estimate for a certain mission the number of targets and the mission time t�
Therefore we have to consider that the %v requirement and the �ight time require	
ment as well are di�erent for the �rst target and for the other following targets�

%v � %vfirst target !%vother targets

%t � %tfirst target !%tother targets

with� %vfirst target � 
� km	s� %vother targets � � km	s per target

%tfirst target � � years� %tother targets � � years per target

These numbers are �typical values� and not at all accurate� they are the result of
many experimental trajectory computations� and they will only help us to �gure out
the consequences of the equation ��	��� for a certain example mission� Maybe it is not
necessary that we equip the spacecraft with many instruments� and when the capacity
of a satellite launcher is large in comparison with the size of this instrumentation�
then it can be better to send several spacecraft on their way to study many asteroids�
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For example� when the instrumentation weighs ��� kg and a launcher with the ca	
pacity of ���� kg is selected for the mission� then Q � ��
 and the optimal spacecraft
number is N � �� The value c � �� km s is a typical value for the exhaust veloc	
ity of electric engines� The following table shows the evaluation of the equation ��	����

spacecraft number N � � 
 

individual %v capacity �km�s� ���� ���
 ��� ����

overall %v capacity �km�s� ���� �� ��� ���

number of target objects ��������� ��������� 
�������� � ������
mission duration %t �years� ��� 
��� �� 
��� ��� 
��� ��� 
�

We can learn from the table that the distribution of the mission among several space	
craft reduces the available %v capacity of every spacecraft� as it can be expected for
a �xed instrumentation mass and a �xed launcher capacity� However� the overall
%v capacity of all spacecraft together can increase when several spacecraft are used�
and this can have the consequence that the multi	asteroid	mission can visit more
target objects� Several parallel operating spacecraft reduce in any case the overall
mission time� and the probability of a total failure of the mission is also reduced
with more than one spacecraft� The results of the comparison depend much on the
underlying assumptions� important is here the ratio Q of instrumentation mass and
launcher capacity� the bigger the launch vehicle the more spacecraft should be used�

Mission costs� Now some people might expect that the multi asteroid mission would
become more expensive when several small spacecraft are launched together with
the same launcher� in comparison with a mission that uses only one big spacecraft�
This is� however� not necessarily true� The decisive aspect is the capacity of the
launch vehicle� obviously a reduction of the project costs is possible simply by using
a smaller space launcher� However� when a decision concerning the launcher for the
mission has been made� then a distribution of the launcher capacity among several
small spacecraft does not raise the mission costs� the mass that is injected into
interplanetary space is essentially the same� and the production of several identical
smaller probes is maybe even cheaper than the production of a single big spacecraft�

Interplanetary low thrust transfer trajectories� When the launcher capacity
is small� however� for example only ��� kg for a parabolic earth escape mission� then
the �optimal� probe number is N � 
� A small electrically propelled spacecraft with
an instrumentation mass of ��� kg might then consist of the following subsystems�

scienti�c payload and wide angle camera� �� kg

transceiver with memory and parabolic antenna� �� kg

attitude control system and navigation computer� �� kg

main structure� tank and thermal control system� �� kg

electric engines assembly �for example ten RIT ���� ��� kg

solar arrays for � kW power �at � AU distance�� ��� kg

xenon propellent� 
�� kg
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Radiofrequency ion engines of the German RIT	
� type weigh � kg� they develop
a thrust of 
� mN� and operate with an exhaust velocity of �� km s and consume
��� W electric power �the mass �ow rate is then � micrograms per second only��
For an interplanetary mission it is sensible to increase the exhaust velocity slightly� for
example to ����� m s� and we can calculate a %v capacity of 
��� km s for the probe�

Asteroid �	Vesta is the most interesting candidate for an asteroid mission and thus
it should be the �rst target� The transfer trajectory from the earth to Vesta con	
sumes about 

�� km s of the %v capacity of the spacecraft� When the spacecraft
approaches this object it establishes an orbit around the asteroid and stays there for
some time �in order to take photos and execute experiments�� The relative velocity
is small on an orbit around Vesta� about 
� to 
�� m s� depending on the altitude�
Now the spacecraft has a %v capacity of about ��� km s left over for a second ren	
dezvous with another asteroid from the catalogue�

Example ��b� The solar electric propulsion example spacecraft continues its mission
with a departure from �Vesta on May 
rd ����� asteroid ��Irene is a possible
candidate for the next rendezvous� The transfer trajectory to Irene consists of three
thrust arcs separated by two coast arcs� the transfer consumes �� kg propellent
and Irene is encountered on June ��nd ����� Trajectory computation and control
functions are explained in chapter �ve of this book� The switch function K� positive at
the �nal instant of the trajectory� indicates that a longer �ight time would reduce the
fuel consumption� but K is nearly zero during the �rst two thrusting periods� and this
indicates that an extension of the �ight time would also require a later departure date�
A longer �ight time with the same departure date leads to a non�optimal trajectory�
then the incorrect course of K is negative during thrust arcs and positive during coast
arcs �and a later departure is not advisable because of the long transfer time��
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Example ��c� The solar electric propulsion example spacecraft can also target the
main belt asteroid ���Europa in order to continue the mission after the exploration
of Vesta� The alternative transfer trajectory consists of two thrust arcs separated by
a single coast arc� the transfer costs �� kg propellent and Europa is encountered on
December 	th ����� Now the switch function K is clearly positive at the beginning
and at the end of the trajectory� the positive switch function at the �nal instant
indicates that arriving later can save propellent� the positive switch function at the
initial instant indicates that departing earlier would also save propellent� However�
when an earlier departure is not possible� a delay of the arrival time is also not
desirable� in any case the propellent saving is low and �ight time is already very long�

K

K

alternative mission from Vesta to Europa
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However� there are many candidates because the catalogue contains more than �����
objects� even when the search for the consecutive target is restricted to the ����
candidates with accurately known orbital elements� Trajectory simulation is very
important to determine which objects are in an appropriate position� For example�
when the spacecraft stays on orbit around Vesta in the beginning of May of the year
��
 and the search is concentrated only upon the �rst 
�� objects of the catalogue�
then the following four main belt asteroids seem to be in an appropriate position�

asteroid �	Metis 
�	Irene ��	Proserpina ��	Europa

%v �m s� �
� ��
 ��
� ����
%t �days� ��� 

�� 
��� 
�
�

The orbital elements of the asteroid Vesta and the four possible candidates for a
consecutive rendezvous are listed in a table in the �rst chapter of this book� and
how to calculate the optimal transfer trajectories is explained in the chapter �ve�
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	��� Solar Sailing

Sailing in the radiation of the sun is the other exotic �low thrust� propulsion concept
and like solar electric propulsion� it promises a great potential for future astronautics�
Photon	radiation from the sun generates on earth a pressure of about ��
�
��� N m��
A spacecraft that is equipped with huge light	weight re�ectors could utilize this sun	
light pressure and generate a propulsive force within the magnitude of maybe 
��
of the solar gravity� equivalent to a thrust acceleration of ��
 � ��	r������ mm s�

at a distance of 
 AU �
 astronomical unit � 
�� � 
��� m�� Naturally� the control
of extremely light structures and their deployment in space is di�cult� but the solar
sails do not consume propellent� This only great advantage makes it possible that
the sailcraft can reach any planetary destination from an orbit around the earth�
and� when it is required� also return back to the earth without additional equipment�

����� Earth Escape with Solar Sails

Thrust vector of a sailcraft� When we analyze the thrust vector of a solar sailcraft
we realize that now the thrust magnitude is a function of the actual thrust direction�
We get the maximal thrust force when the sail area is exposed to the full sunlight�
and this is obviously the case when the normal vector of the sail area is aligned with
the direction of the sunbeams� Term " is the angle between the sunbeams and the
normal vector� and we resolve the normal vector using another angle called #� Thus�

"

#

�

�

�s

1

3

2

�s � s � cos� "
�
 cos "

cos # sin "
sin # sin "

�
A ��� ���

� s � �sin� cos ��� �
�
 sin� cos �

cos� cos �
sin �

�
A

For this notation we use a coordinate system that contains the ecliptic in its 
	�	plane�
the 
	direction is always aligned with the direction of the sunbeams� The sails cannot
generate a thrust force in the negative 
	direction� the thrust force vanishes when
the normal vector is perpendicular to the sunbeam direction� We assume that the
thrust acceleration �s is aligned with the normal vector of the sails� Its magnitude
is proportional to the exposed area �the �number of photons� which hit the sails�
and proportional to the change of the linear momentum of the impacting photons�
The constant s characterizes the maximum thrust acceleration when the thrust vector
is aligned with the direction of the sunbeams� When the thrust vector is inclined�
however� the thrust is smaller and s must be multiplied two times by the factor cos "�
Alternatively we could also use the thrust angles � and �� but particularly in the
calculation of sailcraft escape trajectories the angles " and # are better conditioned�
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Equations of motion� The equations of motion for the earth escape trajectory of
a sailcraft take a simple form when we established them using a moving geocentric
coordinate system� the 
	axis is always aligned with the sunbeams and the �	axis
is the normal vector of the ecliptic� The coordinate system rotates slowly on the
�	axis with the angular velocity �orbit� ���� year or 
���
�
��
 rad s� We cannot
neglect this slow rotation because the �ight time of a sailcraft on an earth escape
trajectory can last several years� However� we may ignore the gravitational force of
the sun which acts in a direction opposite to the sunbeams� because the gravity of
the sun is neutralized by a counteracting centrifugal force with the same magnitude�
Let �r be the vector that locates the sailcraft with respect to the earth� When we
di�erentiate �r to �nd the velocity of the sailcraft �v we have to observe the laws for
vector di�erentiation in a rotating coordinate system� The second total time deriva	
tive of the location vector is the acceleration vector with respect to inertial space�

�r

�orbit

1

3

2

inertial
line

sailcraft

ecliptic
earth

sun

�r �

�
x
y
z

�
A ��� ���

*�r �

�
 *x� y �orbit

*y ! x �orbit
*z

�
A

��r �

�
 �x� � *y �orbit � x ��

orbit

�y ! � *x �orbit � y ��
orbit

�z

�
A

The equations of motion follow when we equate the acceleration ��r of the location with
the accelerations of gravity and thrust �we ignore the drag deceleration and assume
that the travel starts from an orbit around the earth with a high altitude� for example
���� km above the surface of the earth�� The earth attracts the sailcraft with a force
that is inversely proportional to the square of distance �r� where the gravitational
constant is �� � ��������� �
��� m� s�� Then� in order to get the vector of the grav	
itational acceleration� we multiply the magnitude of the gravitational acceleration
with the inverted direction of the unit vector that locates the sailcraft with respect
to the center of the earth� Finally we can write down the equations of motion as��
 �x� � *y�orbit � x��

orbit

�y ! � *x�orbit � y��
orbit

�z

�
A � � ��p

x� ! y� ! z�
�

�
x
y
z

�
A! s cos� "

�
 cos "

cos # sin "
sin # sin "

�
A

��� ���

Equation ��	��� is the vector form of the equations of motion for the earth escape
trajectory of a sailcraft� �orbit is the angular velocity of the earth orbit around the sun�
When we want we can neglect the terms x��

orbit and y��
orbit� but we better consider

the terms �� *y�orbit and !� *x�orbit� they describe the e�ects caused by the rotation
of the coordinate system and� at a velocity of � km s� for example� their values are
with ��� mm s� greater than the thrust acceleration of the sailcraft �� ��� mm s���
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A nearly optimum sailcraft escape strategy� The next step is that we �nd
a steering programme that brings the sailcraft in a minimal time from a low earth
orbit to interplanetary space� Remember that a tangential thrusting programme pro	
vides a good �but suboptimal� solution to the problem of low thrust earth escape�
However� for sailcraft the thrust magnitude is a function of the thrust direction� and
therefore we must replace the tangential thrusting programme by another navigation
strategy� The intention is to let the mechanical energy of the sailcraft grow rapidly�
A fundamental law of mechanics states that the change in time of the speci�c en	
ergy e of the orbit is the dot vector product of velocity and thrust acceleration� thus�

*e � *�r � �s � s cos� " � �� *x� y �orbit� cos "! � *y ! x �orbit� cos # sin "! *z sin # sin "
�

��� ���
Now we want to control the thrust direction in a way that the orbit accepts at any
instant the maximum increase of mechanical energy� We know that such a steering
strategy is actually not the real optimum� but the principle leads to a nearly optimum
escape trajectory that can easily be integrated by a numerical integration procedure
�and we can say that in any case the calculated trajectory complies with the reality�
however� a more sophisticated control strategy would bring us even better results��

Let us �rst consider the control of the thrust angle #� When we restrict the angle " as
� 
 " 
 ��� for a unique determination of the thrust direction� the angle # may as	
sume any value between �� and ����� Since sin " is then always positive� the following
control of the angle # maximizes the growing of the mechanical energy e of the orbit�

sin # �
*zp

� *y ! x �orbit�� ! *z�
� cos # �

*y ! x �orbitp
� *y ! x �orbit�� ! *z�

��� ��

Derivation of a corresponding law to control the angle " requires more complicated
transformations� because the thrust magnitude is now a function of this angle �the
factor cos� "�� When we form � *e	�" � � and divide the result by cos� "� then we �nd
a quadratic equation for tan "� Fortunately� since the angle " is positive by de�nition�
the quadratic equation has just one positive solution� The result is�

tan " �
��� *x� y �orbit� !

p
�� *x� y �orbit�� ! �� *y ! x �orbit�� ! � *z�

�
p
� *y ! x �orbit�� ! *z�

��� ���

This equation serves for the numerical integration of the sailcraft escape trajectory�

Initial altitude and inclination� The optimization objective for a sailcraft escape
trajectory is the minimization of the �ight time� and we may conclude that a control
strategy is nearly the optimum when it increases the mechanical energy rapidly�
However� the mission duration of the earth escape maneuver is obviously also a
function of the altitude r of the initial orbit and its inclination �� The change of
energy which is necessary to escape from a circular low earth orbit into interplanetary
space is given by the expression %e � ��	r� this states trivially that %e gets smaller
for greater values of r� The inclination � between initial orbit and the ecliptic has
an in�uence on the time the sails can push the spacecraft into the favorable direction�
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Let us �rst consider the altitude r of the initial orbit� A space station orbit would
allow that astronauts deploy the fragile structures of the solar sails� Unfortunately�

the drag deceleration of the
rest of the atmosphere is still
too high on a low earth orbit�
a typical value for the aero	
dynamic pressure on a circu	
lar orbit at ��� km altitude is
��
��� N m� �about twice the
value of the light pressure��
The sail deployment must
take place automatically at a
considerably higher altitude�

�
r

It is obviously advantageous to avoid �ight phases with a solar eclipse or with a motion
in a direction towards the sun� because during these �ight phases the sails cannot ac	
celerate the sailcraft� However� the earth encircles the sun� and even when we choose
an initial orbit with the sunbeams perpendicular to the orbital plane� the sun comes
every year twice into an unfavourable position �the sailcraft needs several years to
escape from the earth�� We have to select a high inclination angle � to ensure that
at least initially the sailcraft is always exposed to the sunlight� for example � � ����

Example ���� A spacecraft propelled by
large solar sails can depart for a planetary
destination from an orbit around the earth�
however� it is necessary that the initial orbit
where the travel starts from is comparatively
high� For example� the drag of the rest of
the atmosphere is negligible at an altitude
of ��� km above the surface of the earth�
The inclination of the initial orbit has not a
signi�cant in�uence on the escape time� but
the sailcraft should constantly be exposed to
the sunlight during the initial �ight phase�.91.0 .8 .7 .6 .5 .4 .3 .2 [mm/s²]
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Let us choose a circular orbit at an altitude of ���� km above the surface with an incli	
nation of ��� as a basis for the departure of the sailcraft� To escape from this orbit the
sailcraft needs about ten months� assuming that extremely light weight sails develop a
maximal thrust force that is equivalent to 
�� of the solar gravity �s����� mm s���
However� when we assume a more realistic value for the thrust acceleration� for
example s���
� mm s� only �four times smaller�� then the sailcraft needs more
than three years to escape� The actual problem is that the sailcraft has to assume
the appropriate orientation with respect to the sunlight during the entire mission�
and this means that the vehicle must rotate on its axis while it orbits around the earth�
The attitude control system must constantly establish and keep the right orientation
�either by the application of gyroscopic actuators or by a shift of the center of mass��
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����� Sailing in Interplanetary Space

Equations of motion� In interplanetary space the sailcraft demonstrates a better
performance than on earth orbit� the travel to other planets needs time anyway� and
the sails can take advantage of the long mission duration to accelerate the sailcraft�
However� the thrust acceleration s of the sails diminishes inversely proportional to the
square of the distance r from the sun� the factor is �r�	r�

� with r��
 AU� The thrust
is also a nonlinear function of the inclination of the sails with respect to the inci	
dent light �equation �	���� Let us concentrate our attention only on the plane motion�

r

�
v

�	r�

�s

u

�

The equations of motion for the plane
sailcraft trajectory can be written as�
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The derivation of the equations of motion is explained in the chapter four of this book�
The trajectory is controlled by an appropriate time function for the thrust angle �
�with � 
 � 
 
����� r and � are polar coordinates� u and v velocity components�

Example ���� The innermost planet
Mercury is the most attractive target for
a rendezvous mission of a solar sailcraft�
because the thrust of the sails increases
when the sailcraft comes close to the sun�
The interplanetary transfer trajectory to Mercury requires a �ight time of �� days�
assuming that the sails develop a maximumacceleration equivalent to �� of the gravity
of the sun �s � ����
 mm�s��� The plots show the thrust angle control function
��t� for the trajectory of a sailcraft that moves in minimum time from a circular
orbit at � AU �Earth� to another coplanar circular orbit at ��
	� AU �Mercury��

the sailcraft on its way to Mercury
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Sailcraft trajectory optimization� It is easy to integrate the sailcraft trajectory
numerically when the thrust angle time function ��t� is well	known �equation �	����
However� the mission should be performed in a minimal time interval and the trajec	
tory must satisfy certain �nal conditions� and the concerning time function for the an	
gle � is usually not well	known� The appropriate tool for the optimization of sailcraft
trajectories is the Hamilton	Lagrange theory �also called �calculus of variations���
The application of this mathematical method transforms the nonlinear optimiza	
tion problem into the numerical solution of a �two	point	boundary	value� problem�

The application of the Hamilton Lagrange theory is not quoted here but demon	
strated in the chapter �ve of this book for various trajectory optimization problems�

Example ���� Since the e!ciency of solar sails decreases badly far away from the sun�
the sailcraft can utilize one or two near sun passages to travel to the outer planets�
A single �solar�photonic assist� maneuver provides su!cient energy to �yby planet
Jupiter or a main belt asteroid� a double �solar�photonic assist� maneuver accelerates
the sailcraft to a hyperbolic velocity �v� � ��� km�s�� A sailcraft that departs from

the earth with a maximum thrust acceleration of s � ���	�� mm�s� ��� of the solar
gravity� can leave the solar system with a comparatively high escape velocity after
having entered twice the extremely unfriendly thermal environment near the sun�

single solar photonic assist trajectory
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����� The Sailcraft on an Earth�Return Trajectory

Gravity swingbys� The mission of a sailcraft to a distant planet improves greatly
when we include a gravity swingby maneuver� and therefore the departure planet is
the most attractive candidate� Assume that the sailcraft has already left the sphere
of gravity in�uence of the earth and now� however� instead of heading for the distant
planet� the sailcraft re	targets the earth for a gravity assist maneuver� During a time
period of roughly 
�� years the sails are e�ective to deform the earth return orbit�
By this the sails do not put energy into the trajectory but they amplify the velocity
of the sailcraft in relation to the earth �the orbital period of the return orbit remains
approximately one year�� The capacity of solar sails to deform the elliptic return or	
bit is much better than their capacity to increase the heliocentric energy of the orbit�
When the spacecraft returns to the earth after some time it executes a gravity swingby
maneuver which increases the heliocentric energy of the trajectory considerably�

Example ��	� The sailcraft uses its sails to
deform the earth return trajectory� and a
gravity assist maneuver that follows increases
the energy of the orbit � s � ��
�� mm�s��
v�� ��� m�s� %t� ��� days ��

the sailcraft on an earth-return trajectory
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The example above demonstrates the principle� now we can equip the sailcraft with
smaller sails� a maximum thrust acceleration of ���� of the solar gravity su�ces to
execute the maneuver �only s���
�� mm s� at 
 AU�� The sailcraft escapes from
the earth with a parabolic speed and drifts later in �near earth space� with a small
relative velocity� During the drifting period of ��� days the sailcraft uses its sails
to deviate the heliocentric orbit� the optimization objective is the maximization of
the relative �yby velocity at the earth encounter that follows� Then the sailcraft
approaches our planet with a relative velocity of u� �
�� m s� �coming directly from
the sun for an observer on the earth� and passes the earth at an altitude of �
�� km�
The gravity turns the relative velocity in a direction parallel with the heliocentric
velocity of the earth �de�ection angle ����� either in the same direction for a journey
to Mars or in the opposite direction to reduce the velocity for a journey to Venus
�it depends on the side where the sailcraft passes the earth whether the relative
velocity must be added to or subtracted from the heliocentric velocity of the earth��
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Journeys to the outer planets� A gravity swingby maneuver at the earth can
utilize the relative velocity of the sailcraft at earth encounter� and a relative velocity
of �
�� m s su�ces for a mission to Mars� The sailcraft can also execute the swingby
maneuver in a way that it reduces the heliocentric energy of the orbit� and enter
the near sun space with the intention to perform a �solar	photonic assist maneuver��
However� when the objective is an ampli�cation of the heliocentric energy of the orbit�
the best alternative is that the sailcraft utilizes the swingby maneuver to re	target
the earth once more on another earth return trajectory for another swingby maneuver�

The second earth swingby maneuver� which takes place about two or three years after
the �rst swingby maneuver� puts enough energy into the trajectory for a mission to
a main belt asteroid or to planet Jupiter� The method of repeatedly returning to the
earth for a gravity swingby maneuver can be continued� however� the �ight time on
the earth return orbit becomes long while the energy of the orbit grows� When the
sailcraft should �yby a far distant planet like Neptune or Pluto� a third earth gravity
assist maneuver on a �ve	year �or six	year� earth return trajectory becomes necessary�

Solar sails in comparison with gravitational maneuvering� We have seen that
the return for a gravity swingby maneuver at the earth can greatly improve the ma	
neuvering capability of a sailcraft in interplanetary space� However� when we intend
to incorporate also other planets like Mars and Venus into a sailcraft trajectory� then
the main disadvantage of the sail propulsion concept becomes obvious� a spacecraft
that is capable to �yby Mars coming from the earth can use exclusively the gravity of
the planets� For most missions which are interesting in practice the sails are not nec	
essary at all� Thus� in order to be an attractive propulsion concept� the sailcraft must
at least save the propellent that is usually required for the interplanetary injection�
and this means that it must depart from a low earth orbit to interplanetary space�
The departure from a low earth orbit involves an automatic deployment procedure�
a long prevail time in the radiation belt of the earth and many attitude maneuvers�
Until today no realistic attempt has been made to realize an interplanetary sailcraft�
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��� Reentry Maneuvers

What we call an atmospheric reentry maneuver is the return of a spacecraft back from
space down to the surface of the earth� This return �ight capability with a soft landing
on the surface is only occasionally necessary for unmanned spacecraft� however� it is
an essential premise in manned space �ight� It became obvious that on principle such
a recovery was feasible when the extraterrestrial nature of meteorites was recognized�
During the second world war Germany developed the �rst operational space rocket�
the V� missile� The V� climbed on a suborbital trajectory up to space and returned�
Even when its �payload� �a bomb� did not explode� the impact of the vehicle with an
enormous kinetic energy caused a big crater in the terrain� Later Russia and America
experimented the recovery of spacecraft� �rst unmanned and then manned vehicles�
On August 
�th� 
���� sea divers recovered parts of the American Discovery 
�
satellite from the ground of the Paci�c Ocean near Hawaii� and on April 
�th� 
��
�
the Russian Vostok spacecraft returned from orbit with Yuri Gagarin on board�
Today� return of America�s space shuttles and Russia�s capsules seems to be routine�
but the accident of the Space Shuttle Columbia has demonstrated that the maneuver
is still dangerous� Forces which act on a reentry vehicle are strong� and not every	
thing what happens in the �ow �eld around a reentry vehicle is actually well	known�
Many thermodynamic phenomena do still resist a numerical computation� The design
of a reentry vehicle is an iterative process� it relies on inaccurate computations� wind
channel experiments and on the comparison of the results with measurements from
test �ights� It is normal that in some �ight phases the computed loads deviate more
than by factor two from the values which are then encountered during the real mission�

A body that returns from space must dissipate on its reentry trajectory an enormous
amount of kinetic energy� An essential part of the heat load must be transferred to
the air �ow that surrounds the body� otherwise the body would melt and vaporize�
Therefore the reentry vehicle must be a blunt body� the vehicle should not have a
slender fuselage or wings with sharp leading edges exposed to the incident air �ow�
This fundamental design law for reentry vehicles was �rst recognized and stud	
ied by H�J Allen ��Hypersonic Flight and the Re	Entry Problem�� and J�A�Fay
and F�R�Riddell ��Theory of Stagnation Point Heat Transfer in Dissociated Air���
both articles were published in the Journal of the Aeronautical Sciences� Vol���� 
����
In this chapter we will discuss the thermodynamic phenomena that can be encoun	
tered in the di�erent �ow regimes on a reentry trajectory� However� we will not
study the way how to solve the complicated partial di�erential equations which de	
scribe the �ow �eld around a reentry vehicle� Computational �uid dynamics applied
to reentry vehicles you can �nd� for example� in the text books of J�D�Anderson
��Hypersonic and High Temperature Gas Dynamics�� McGraw	Hill� New York� 
����
and H�Oertel ��Aerothermodynamic�� Springer Verlag� Berlin Heidelberg� 
�����
Flight mechanics and attitude stabilization during the reentry maneuver is treated in
the comprehensive book of F�J�Regan and S�M�Anandakrishnan ��Dynamics of Atmo	
spheric Re	Entry�� AIAA Education Series� Washington DC� 
����� The numerical
results demonstrated in this book were generated using special computer programs�
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����� High�Speed Gasdynamics

Gasdynamics is a comparatively new �eld of mechanics� particularly when we consider
the numerical computation of complicated three dimensional �ow �elds� The analysis
of the �ow �eld that surrounds a reentering space vehicle involves some e�ects which
make the problem even more complicated� the energies involved are extraordinarily
high so that we cannot treat the gas as a �perfect gas� anymore� Chemical reactions
take place and �real gas� e�ects have to be taken into consideration� The speed on a
reentry trajectory ranges� for example� from Mach � down to zero� and the ambient
density ranges from vacuum to the normal ground level pressure� The wide range
of di�erent velocities and di�erent densities makes it necessary that we divide the
trajectory into sections with quite di�erent conditions for the analysis of the �ow �eld�

������ Flow Regimes

Free molecular �ow regime� Consider a spacecraft that moves on a circular low
earth orbit� The reentry maneuver is initiated with a small retro	thrust� During the
initial descent the vehicle gets more and more into contact with gas molecules of the
upper atmosphere� The vehicle is quite fast and the atmosphere is extremely thin�
Collisions take place between gas molecules and the surface of the vehicle� however�
the �mean free path length� of the rare�ed gas is actually much longer than the
length of the vehicle� Thus� collisions of gas particles re�ected from the surface of
the vehicle with gas molecules from the �free �ow� take place far behind the vehicle�
and essentially these collisions do not in�uence the �ow �eld in the near vicinity
of the vehicle� The �ow �eld in the vicinity of the reentry vehicle is dominated by
particle	surface collisions� and the incident �ow can be treated as a collisionless �ow�
A small part of the hot gas that surrounds the vehicle is ionized� the ionization makes
the air to an electrically conductive plasma and prevents transmission of radio signals
to and from the vehicle �for the US	Space Shuttle� the �� minutes �radio blackout�
begins at an altitude of 
�� km and lasts until an altitude of approximately ���� km��

Transition from free molecular to continuum �ow regime� At an altitude of
about �� km above the surface of the earth the vehicle enters the transition regime�
The vehicle moves extremely fast with a speed of about Mach � and the gas density
is low� Mutual interactions between gas particles take place� these interactions start
to form a shock wave at a distance of about 
� free path lengths in front of the vehicle
�however� the characteristic phenomenon of a bow shock is not really present now��
The compression of the air behind the shock wave causes an enormous increase of
the gas temperature� and real gas e�ects occur� essential portions of the energy
liberated in the collisions between gas molecules stimulate molecular vibrations� break
molecules into atoms and activate chemical reactions� The �ow �eld in front of the
vehicle is not in equilibrium� because interactions between gas particles with exchange
of energy are rare and the gas velocity is extraordinarily high�
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At the opposite �rear� side of the vehicle the gas �ow expands rapidly� Lighter atoms
congregate behind protecting surfaces� they form a stagnation region with frozen
chemical equilibrium nearly as hot as the stagnation region in front of the vehicle�
A shear layer separates the hot rear stagnation region from the cold outer �ow �eld�
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Continuum �ow regime� The regime begins with a velocity of about � km s or
Mach 
� at an altitude of about � km above the surface of the earth� Now the
mean free path length of the gas particle motion is short enough so that the �ow �eld
can be treated as a �continuum�� considering the state of the gas �velocity� density�
temperature� chemical composition and so on� at every location in the �ow �eld�
but ignoring that actually the gas consists of individual particles with individual
behaviour� The characteristic bow shock wave is present in front of leading edges
of wings and in front of the nose of the fuselage �at a distance of about �� to 
��
of the nose radius�� The gas experiences a considerable increase in temperature and
density when it travels through the shock wave� however� the stagnation point is not
as hot as it would be in comparison with the compression of a perfect gas� Real gas
e�ects absorb essential parts of the energy �about ���� depending on the velocity��
The vibrational modes of the oxygen and nitrogen molecules are excited� the gas is
partly dissociated and chemical reactions take place �which form nitrogen monoxide
molecules�� Behind the bow shock wave the gas comes to its equilibrium only in a
small region near the stagnation point� at other locations the velocity is so extraor	
dinarily high and the density so low that the gas remains in a non	equilibrium state�
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Frictional e�ects in the gas �ow form the boundary layer behind the bow shock wave�
The boundary layer is a thin layer attached to the walls of the vehicle� Its thickness is
essentially a function of the Mach number and the wall temperature� it equals zero at
the stagnation point and grows approximately proportional to the square root of the
distance from the stagnation point� The gas velocity at the inner edge of the boundary
layer corresponds to the velocity of the vehicle� the velocity at the outer edge corre	
sponds to almost ��� of the undisturbed �freestream� velocity� The temperature pro	
�le in the boundary layer is dominated by the thermal and catalytic behaviour of the
surface material of the vehicle �its in�uence on chemical reactions� as well as its heat
conductivity and radiation coe�cient�� The heat �ux from the gas �ow to the walls in	
creases considerably when the boundary layer changes form �laminar� to �turbulent��
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bow shock
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Such a transition can be expected at an altitude of about �� km� and it is advisable
to design the vehicle in a way that the transition from laminar to turbulent takes
place at an altitude where the maximum heat �ux has already been passed through�
The turbulent boundary layer is much thicker than the laminar layer� The transition
begins at the rear end of the vehicle and moves to the front while the vehicle descends�
Shock waves from other parts of the vehicle cause hot spots when they interact with
the boundary layer� for example such a situation is present on the surface of wings
which intersect the cone that is formed by the bow shock of the nose of the vehicle�

Perfect gas �ow regime� The real gas e�ects disappear when the vehicle decel	
erates from hypersonic to supersonic velocity� Air dissociation� chemical reactions
and the vibrational modes of the molecules play no signi�cant role anymore at �ight
altitudes below �� km and velocities below Mach �� The temperature in the stag	
nation point is now cold enough so that the air may be considered as a perfect gas�
The gas in the boundary layer at the side walls of the vehicle�s fuselage is now in
equilibrium� The dynamic pressure is the dominant load for the vehicle in the super	
sonic �ight regime� The �ow �eld changes once more when the vehicle crosses the
sonic point during the deceleration from supersonic to subsonic speed� the bow shock
moves forward and gets more detached from the nose of the vehicle� and the cone
angle grows� When the vehicle moves with the velocity of sound� weak shock waves
accept nearly rectangular cone angles before they �nally disappear� When the vehi	
cle moves slower than Mach ���� it can also be ignored that the air is compressible�
In case the vehicle is a capsule it can now deploy its parachutes� In case the vehicle
is a space shuttle� it can now establish the �nal glide slope for the landing approach�
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������ Aero�Thermodynamic Phenomena

Translational� rotational and vibrational excitation of molecules� Let us
now discuss the real gas phenomena which appear in a hypersonic �ow �eld and
which make the accurate computation of the �ow �eld so di�cult� The so	called
�inner energy� of a gas is a thermodynamic state variable� it is actually the sum of
the energies of all the gas particles� For a perfect gas the inner energy is exclusively a
function of the temperature� for a real gas it is also a function of the pressure� Single	
atomic molecules �inert gases� for example� can just accept kinetic energy in form
of translational velocity� Double	atomic molecules however� for example nitrogen N�

or oxygen O�� can also accept kinetic energy in form of rotation� The probability
that after an impact a gas molecule accepts rotational energy is described by the
Boltzmann distribution� considering the physical e�ect that the molecules can accept
continuous portions of translational energy but only discrete portions of rotational
energy �quantum physics�� When the gas gets hot� impacts between the particles ex	
cite also molecular vibrations� where again energy is transferred in form of quantized
portions� To excite the vibrational modes at the normal ambient pressure of 
 bar�
for example� oxygen must be hotter than ��� K and nitrogen hotter than ��� K�

We say that the gas is in its �thermodynamic equilibrium� when the distribution of
the inner energy among translational� rotational and vibrational form corresponds
to the Boltzmann distribution �or Maxwell distribution�� To come to this state the
gas requires a �nite time interval� called relaxation time �the gas needs a su�cient
number of impacts between the gas molecules�� In the upper layers of the atmosphere
the gas density is extraordinarily low� Impacts between the gas molecules are seldom
in the rare�ed gas� and consequently the gas is not in its thermodynamic equilibrium
state at many locations in the �ow �eld that surrounds the reentry vehicle�

Dissociation� The collisions start to break the molecules apart when the temper	
ature grows �for example above ���� K for oxygen and above ���� K for nitrogen��
and the gas changes its chemical composition� It consists now of more particles� and
the new single	atomic molecules can just accept kinetic energy in form of transla	
tional velocity� The concentration of atomic nitrogen N and atomic oxygen O in the
hot gas is mainly a function of the temperature but also a function of the pressure�
the concentration increases with growing temperature and with dropping pressure�
Oxygen is nearly completely dissociated at temperatures higher than ���� K� nitrogen
is nearly completely dissociated at temperatures above ���� K�

Ionization� The production of electrons and positively charged ions plays not a
signi�cant role in the absorption of energy on a reentry trajectory� however� it is
responsible for the radio transmission blackout� Atomic oxygen and atomic nitrogen
get ionized at high temperatures and low densities� but most of the ionization of the
hot air is the consequence of the generation of ions from nitrogen monoxide �NO	��
However� only a small part of the nitrogen monoxide gas ionizes �approximately 
���
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Chemical reactions� The earth�s atmosphere consists mainly of �� nitrogen N��
�
� oxygen O� �and about 
� other gases�� This composition does nearly not change
with the altitude� However� chemical reactions take place in the hot air that sur	
rounds a reentering space vehicle� the molecules break apart and nitrogen monoxide
is formed� Neglecting an insigni�cant amount of other species� the plasma in the �ow
�eld around the vehicle can be considered as composed of seven major constituents�
N�� O�� N� O� NO� NO	 and electrons e�� Then the chemical reactions respon	
sible for the gas composition can be described by the following set of equations�
The term X is used to specify always a di�erent member of the seven species� Thus�

N� !X �� N!N! X

O� !X �� O!O!X

N� !O �� NO! N

O� !N �� NO!O

NO!X �� N!O! X

N!O �� NO	 ! e�

The �rst two equations describe the dissociation of nitrogen and oxygen� the third
and fourth equation describe the generation of nitrogen monoxide� the �fth equation
describes the dissociation and the sixth equation the ionization of nitrogen monoxide�
The last equation does nearly not contribute to the energy balance of the reactions�
however� it should be considered in order to determine the ionization state of the gas�

When a reversible chemical reaction is in its equilibrium� an �equilibrium constant�
can be devised that relates the partial pressures of the participants of the reaction
�the actual value of this equilibrium constant depends sensitively on the temperature��
Together with the principle of the conservation of matter �no atomic species gets lost
during the reaction� the equilibrium constant enables us to compute the equilibrium
composition of the gas as a function of temperature and pressure� Once we have
found the composition of the gas we can readily calculate the �heat of reaction��
The heat of reaction follows from the �heat of formation� �tabulated in textbooks�
and from the concentration of all the species which participate in the reaction�
Knowing the heat of reaction we know �nally the amount of energy that must be
transferred to the gas in order to reach the corresponding thermochemical state�

The chemical non�equilibrium� It is comparatively easy to compute the equilib	
rium composition of hot air as a function of temperature and pressure �the computa	
tion requires only the solution of a nonlinear equation system�� In textbooks on aero	
thermodynamics we �nd the molar composition of the air as a function of the temper	
ature plotted for several di�erent pressure levels� However� the problem gets much
more complicated when also the velocity of the chemical reactions must be considered�
These reactions are fast but they require �nite time intervals� The velocity of the
air in a �ow �eld surrounding a reentry vehicle is so extremely high that often the
chemical reactions do not reach at all positions in the �eld the equilibrium state�
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The velocity of a reversible chemical reaction depends on the temperature and on the
concentration of the participants� At the beginning the reaction proceeds rapidly to	
wards the equilibrium state� but when it gets near to the equilibrium it slows down�
The individual values of the rate coe�cients for reversible reactions can be deter	
mined experimentally �and sometimes theoretically�� However� many of these values
are not accurately known for gas under extraordinary conditions� and thus the compu	
tation of a reentry �ow �eld depends usually on simpli�ed chemical reaction models�

Shock waves and expansion waves� A shock wave is a phenomenon that occurs
in every supersonic �ow �eld� In the supersonic �ow �eld that surrounds a reentering
space vehicle a distinct �bow shock wave� can be observed� a cone with rounded tip�
The thermodynamic change in state is usually considered as a rectangular shock wave
in the rounded front section immediately in front of the nose of the vehicle� and as an
oblique shock wave in the conic section� The shock wave increases instantaneously
the thermodynamic state variables temperature� pressure and density� while the
energy �or total temperature� of the gas remains constant� The entropy grows when
the gas travels through the shock wave� indicating that total pressure �or stagnation

pressure� is lost in the shock wave�
and that only an instantaneous com	
pression is possible �and not an in	
stantaneous expansion�� Behind the
vehicle the gas expands rapidly� how	
ever� in contrast to the compression
the expansion of the gas is a con	
tinuous function and� essentially� the
entropy remains constant� Tempera	
ture� pressure and density drop while
the gas velocity increases� The mag	
nitude of the thermodynamic change
in state depends mainly on the Mach
number of the incident air �ow�

expansion

bow
shock

oblique
pressure shock

rectangular
pressure shock

When in the supersonic �ow regime the air is considered as a perfect gas� then the
thermodynamic state of the gas immediately behind a rectangular shock wave can be
readily calculated from the state of the gas before the shock wave �its temperature�
pressure� density and velocity�� The concerning relationships are not quoted here�
they can be written exclusively as functions of the Mach number of the incident
�ow and the ratio of the speci�c heats of the gas �� The behaviour of the gas
that travels through an oblique shock wave can be calculated in a similar manner�
Then the velocity vector is resolved into two components� one of which is parallel with
the shock wave and the other one is rectangular� The parallel component remains
unchanged when the gas travels through the shock wave� and for the rectangular
component of the incident velocity the relationships for a rectangular pressure shock
are valid� When the air is considered as a perfect gas� it is also possible to calculate the
thermodynamic situation for every location in the expanding �ow �eld analytically�
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Even though the shock wave itself is not a �real gas e�ect�� the appearance of the
shock in a hypersonic �ow �eld �where real gas e�ects are considered� is di�erent
from the appearance in a supersonic �ow �eld �where real gas e�ects are ignored��
For example� for the velocity Mach 
� and � � 
�� we can calculate a factor ��� for
the temperature raise of a perfect gas that �ows through a rectangular shock wave�
However� the stagnation point temperature is actually much colder than 
���� K�
The equations valid for shock waves have to be modi�ed in order to consider the real
gas e�ects� and in the hypersonic �ow regime the relationships are more complicated�

Boundary layers and heat transfer� Temperature pro�le and thickness of the
boundary layer are both considerably in�uenced by the properties of the wall material
�its surface roughness and chemistry�� Inside the boundary layer the hot compressed
air accepts heat input from the outer �ow �eld by friction� and thus the tempera	
ture in the boundary layer can be hotter than in the outer �freestream� �ow �eld�
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The hot gas transfers heat to the skin of the vehicle via convection and conduction�
In case the wall material acts as a catalyst� the recombination of dissociated molecules
means an additional heat load for the walls� The skin of the reentry vehicle� however�
is usually much colder than the gas in the boundary layer �or in the stagnation point��
energy is discharged from the walls to outside in form of heat radiation and to inside
in form of heat conduction� sometimes the walls are also cooled by the ablation of
wall material� Today� the heat transfer models used for the calculation of reentry
�ow �elds are hardly more than a rough estimate� The problem is complicated by
the fact that the results of the calculations� the surface temperatures� in�uence the
temperature pro�le in the boundary layer� its thickness and therefore the complete
�ow �eld �the unknown wall temperature is a boundary condition for the �ow �eld��
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������ Computation of Flow Fields

Dimensionless numbers in aerodynamics� In order to assess the validity of wind
channel experiments or computer simulations� experimental and computational aero	
dynamics make use of dimensionless numbers� The intention is to determine whether
two di�erent �ow �elds are �similar� �or comparable� regarding certain aspects�
in practice whether experimental or computational results comply with the reality�
The problem is that it is usually not possible to achieve comparability of two dif	
ferent �ow �elds under all the important aspects� the experiments depend usually
on the assumption that at least only one characteristic aspect of the experimental
�ow �eld is similar to the reality� Three of these numbers play a role in reentry vehi	
cle aerodynamics� the Knudsen number� the Mach number and the Reynolds number�

The Knudsen number relates the �mean free path length between particle collisions�
to the �characteristic length of the vehicle�� This number is used to determine what
kind of �ow regime is present when the vehicle descends through the upper layers
of the atmosphere� a free molecular �ow regime can be expected when the Knud	
sen number is greater than 
�� and a continuum �ow regime can be expected when
the Knudsen number is smaller than ���
� In between the transition regime is present�

The Mach number is the ratio of the �actual velocity� to the �local velocity of sound��
Two di�erent �ow �elds are comparable regarding the gas compressibility when the
Mach number of the �ow is the same� The occurrence and form of shock waves de	
pends sensitively on the Mach number� shock waves can occur only in supersonic �elds
where the Mach number is greater than 
� Shock waves cannot occur in subsonic �ow
�elds where the Mach number is smaller than 
� except for the �transsonic� situation
when the vehicle moves nearly with sonic speed and when the actual velocity at some
locations is greater than the velocity of sound� The compressibility of the air can be
neglected at velocities smaller than Mach ���� and real gas e�ects have to be consid	
ered in the hypersonic regime when the Mach number is greater than �� The Mach
number is the most important parameter for supersonic wind channel experiments�

The Reynolds number relates in the �ow �eld �inert forces� to �viscous forces��
this number is used to determine whether a boundary layer is laminar or turbulent�
It is assumed that the transition from laminar to turbulent takes place at the moment
when the Reynolds number accepts a certain value� called critical Reynolds number�
The critical Reynolds number in a compressible boundary layer is in�uenced by many
factors �for example by the shape and size of the vehicle� surface roughness and
temperature�� however� the theory for the unstable transition from laminar to tur	
bulent is today not satisfactorily developed and thus the critical Reynolds number
has to be determined experimentally� The Reynolds number in�uences the aerody	
namic drag of a vehicle and is therefore the most important key parameter for sub	
sonic wind channel experiments� Wind channel experiments where both� Reynolds
number and Mach number� comply with the reality are not state of the art yet�
but such experiments would be very helpful in developing new economical aeroplanes�
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Computation of the free molecular �ow regime� Methods of the so	called
�kinetic gas theory� are used to evaluate the �ow �eld in the free molecular regime
�and in the transition regime�� the gas is considered as composed of many individ	
ual particles� each particle has its individual position� velocity and energetic state�
energy and linear momentum are exchanged between the particles via mutual colli	
sions and impacts on surfaces� The Boltzmann equation can be used to describe the
spatial distribution of the particles and the change of this distribution with respect
to the time and the location� However� �nding a solution to the Boltzmann equation
is numerically very di�cult and actually just possible in certain simpli�ed situations�
Thus� the �ow �eld in the free molecular regime is often evaluated using more direct
methods� for example via the individual calculation of trajectories for a great num	
ber of representative particles� The occurrence �and the e�ect� of collisions between
particles is either directly calculated or assumed with the help of statistical models�

Computation of the continuum �ow regime� A simpli�cation of the Boltzmann
equation is possible when the gas can be treated as a continuum� and the result of this
simpli�cation is the so	called Navier Stokes equation� The Navier	Stokes equation is
valid for the evaluation of �ow �elds with friction but without shock waves� however� it
still su�ers the disadvantage that numerical solutions are only exceptionally possible�
The Navier	Stokes equation can further be simpli�ed when the friction is neglected�
and the result is the so	called Euler equation for frictionless continuous �ow �elds�
The Euler equation can be solved numerically by standard computer programs
�under certain conditions it is even possible to solve the Euler equation analytically�
for example for the motion of a perfect gas in a plane or axisymmetric �ow �eld��
Therefore� a �ow �eld that contains shock waves and boundary layer friction can
be intersected and solved� provided that the thickness of the boundary layers and
the orientation of the shock waves is well	known� The problem is that exactly this
information is not present at the beginning of the simulations� because �nding this
information is the main result of the computations� The �nal result should be the
accurate pressure and heat load for every location on the surface of the vehicle�
but the iterative numerical solution process can be cumbersome and costly� and
the quality of the simulation results depends much on the underlying models for the
thermodynamic behaviour of the gas and the catalytic behaviour of the wall material�

Newton�s approximation� The costly numerical simulation is often not done in
preliminary design studies� usually approximation methods are used for the determi	
nation of the aerodynamic coe�cients� The most important methods is the Newton
method� postulated by Sir Isaac Newton for the calculation of forces on bodies in
incompressible �ow �elds� It assumes simply that the moving �uid particles hit the
surfaces of an obstacle all with the same freestream velocity vector� and that then the
linear momentum of a �uid particle associated with the velocity component normal
to a surface is transferred to the obstacle� while the linear momentum associated with
the velocity component tangential to the surface remains unchanged� The change of
momentum corresponds to a pressure force� and the aerodynamic coe�cients can be
found by an integration of all pressure forces along the entire surface of the obstacle�
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The results of the Newton theory comply quite good with the reality� particularly for
supersonic �ight with high velocity� However� the Newton theory fails in the subsonic
velocity regime for which it was initially postulated� because it ignores the random
motion of the gas particles �responsible for the static pressure and thus for the forces
on shadowed surfaces at the rear end of the vehicle�� The Newton theory can be
modi�ed to take the in�uence of the Mach number under consideration ��modi�ed
Newton theory��� Beside the Newton method� there exist other impact methods
useful for the preliminary aerodynamic design of reentry vehicles� which are based
on experimental data in combination with empirical and theoretical knowledge�

�����	 Aerodynamic Loads

Aerodynamic forces and moments� Let us now consider a certain position on
the reentry trajectory of a vehicle that returns from space� The vehicle experiences
at all locations of its surface normal and tangential forces caused by the air �ow�
The static e�ect of all these small forces is equivalent to the e�ect of a single strong
force that acts on a certain point of application� called the �center of pressure��
The equivalent aerodynamic force can be resolved into two rectangular components�
the one parallel with the incident air �ow is called drag� the other one is called lift�

Let us change the attitude of the vehicle is such a way that the lift force vanishes�
For example� in case the vehicle has a body with an axis of symmetry� the lift force
vanishes when the symmetry axis is exactly parallel with the direction of the incident
�ow� but the lift force appears when we turn the vehicle so that the vehicle�s axis is
inclined with respect to the incident �ow� The angle between the axis and the air
�ow is called � ��angle of attack��� It is obvious that even for slender bodies the
drag does not disappear when � � �� however� the drag will accept a minimum then�
Experience shows that for small angles of attack the lift force L is approximately a
linear function of �� and the drag force D is a nonlinear �quadratic� function of ��
Experience shows also that the aerodynamic forces lift and drag are approximately
proportional to the dynamic pressure� de�ned as Q � �

�w
�� where w is the velocity

of the incident wind and  the density of the atmosphere at the actual �ight altitude�

Thus� we can write for the aerodynamic
forces lift and drag the following equations�

L �



�
 w� �CL	 � �� A �
�� 
�

D �



�
 w� �CD� ! CD	 � ��� A �
�� ��

L

D

M

�

w

Term A is a reference area used to make the aerodynamic coe�cients dimensionless�
The three coe�cients CL	� CD� and CD	 are only approximately constants�
particularly� when a wide range of di�erent velocities is considered� a considerable
dependency of these coe�cients on the Mach number is noticeable�
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Example ����� The aerodynamic behaviour of a winged vehicle can be estimated
during the preliminary design phase with approximation methods based on theoretical
and empirical knowledge� The �gures show some of the results of a design study
for a winged space glider� performed with the computer program Aerocad� center of
pressure� normal force coe!cient and pitching moment coe!cient as function of the
Mach number in the supersonic �ight regime�
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By de�nition the aerodynamic force causes no torque in the center of pressure� and�
also by de�nition� the gravitational force causes no torque in the center of mass�
The center of mass is the point of application for gravity and for inert forces� and we
can conclude that the aerodynamic force may not cause a torque in the center of mass
unless it is our intention to change the attitude of the vehicle� Therefore it is nec	
essary that the line of action of the aerodynamic force runs through center of mass�
�at the moment lift� drag and gravitation are the only forces that act on the vehicle��

However� when the vehicle�s orientation deviates slightly from the nominal attitude�
the line of action of the aerodynamic force does not run through the center of mass
anymore� and the aerodynamic force causes a torque in the center of mass �the
center of pressure is usually not coincident with the center of mass�� For stability
it is required that the aerodynamic torque is a retaining moment� this means that
the torque must turn the vehicle back to its nominal attitude �where it disappears��
It can easily be veri�ed that the aerodynamic torque is only then a retaining moment
when the center of pressure is always located behind the center of mass� Then we
can shift lift and drag to the center of mass and consider the aerodynamic torque as�

M �



�
 w� CM	 � ��� �nominal� A R �
�� ��

Equation �
�	�� assumes that the aerodynamic moment M with respect to the
center of mass is a linear function of the deviation of the angle � from the nominal
�trimmed� value �nominal �and proportional to dynamic pressure Q � �

�w
���

Term A is a reference area and R a reference distance �the actual location of the
center of pressure is not constant but changes with the value of the angle of attack ���
For aerodynamic stability the pitching moment coe�cient CM	 with respect to the
center of mass must be a quantity that accepts under all conditions a negative sign�
When the vehicle is a capsule� its center of mass must be placed close to the heat shield
in order to ensure su�cient aerodynamic stability� The heat shield itself is usually a
heavy component of the vehicle �it has a mass fraction of 
�� to 
��� typically�� but
a part of the material ablates during the main braking phase� When the vehicle is a
glider� large control surfaces are necessary because the vehicle has to trim during the
initial entry phase great angles of attack ��nominal between ��� to ���� for example��

The aerodynamic coe�cients CL	� CD�� CD	 and CM	 �equations 
�	
 to 
�	��
vary their actual values substantially during the di�erent �ight phases on the reentry
trajectory� The accurate evaluation of these coe�cients is one of the main objectives
of the di�cult computation of the �ow �eld that surrounds a reentering space vehicle�

Heat �ux in the aerodynamic stagnation point� The other main objective of
the numerical simulation is the attempt to calculate the heat load for all locations on
the surface� However� as we have seen� due to a missing accuracy of chemical models�
the results of these simulations are usually uncertain� Considering that the drag
force is approximately proportional to the square of the incident wind velocity w��
we can expect that the power associated with the deceleration will be proportional
to the expression w� �power is the scalar vector product of force and velocity��
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Frequently used in preliminary design studies is a simpli�ed equation for the heat �ux
in the stagnation point� This relationship is the result of early works on the reentry
problem� it is based on the solution of the Navier	Stokes equation for the stagnation
point streamline in the boundary layer and it considers the heat transfer from the hot
reacting gas to the walls of the vehicle� The solution is then greatly simpli�ed in order
to come to a practically useful result� It can be shown that the stagnation point heat
�ux is inversely proportional to the square root of the radius of the �spherical� �nose�
of the vehicle� This demands that the vehicle must be a blunt body and that wings
and �ns must have well	rounded leading edges� Assuming a nose radius of one meter�
for example� the heat �ux transferred from the gas to the nose is approximately�

*q � 
��� � 
��
 p w� �
�� ��

Term *q is the speci�c heat �ux in the aerodynamic stagnation point in kW m�

�provided that the wind velocity w is speci�ed in m s and the air density in kg m���
The equation �
�	�� is not at all accurate� it can also be found in literature denoted
as *q � 
����
��
pw�� or with the term

p
w���� and a completely di�erent constant�

����� Reentry Trajectories

We have seen that the accurate computation of the �ow �eld that surrounds a reentry
vehicle is very di�cult� In comparison� the computation of reentry trajectories is easy�
The theory distinguishes between ballistic reentry and gliding reentry trajectories�

������ Ballistic Reentry

The ballistic factor� A trajectory with vanishing lift is called a ballistic trajectory�
Let us �rst study ballistic reentry maneuvers where the angle of attack � equals zero�
The entire in�uence of the vehicle on the maneuver is then characterized by a single
value� the important factor CD� � A	M �the drag coe�cient at zero angle of attack
CD� multiplied by the reference area A and divided by the mass M of the vehicle��
We will designate the symbol B to this factor and call it �ballistic factor�� Therefore�

B � CD� �A	M �
�� ��

Note that often in other literature the reciprocal value is called �ballistic factor��

The density of the atmosphere� The atmospheric density  is known to be ap	
proximately an exponentially declining function of the altitude� It can be denoted as�

 � � � e��r �Rearth�	hscale �
�� ��

In this �barometric representation� �r�Rearth� is the �ight altitude above sea	level
�Rearth � ��� km�� term � � 
���� kg m� is the density at sea	level� and
hscale � ��� m is the atmospheric scale height� Equation �
�	�� is only an approxi	
mation� for accurate computations the barometric representation has to be replaced
by a better model �for example� the density can be speci�ed in the form of a table��
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Straight line entry� Let us now concentrate the attention on a simpli�ed scenario�
the direct entry on a straight line� The intention is not to replace an accurate
computer solution but to �nd some analytical relationships� Therefore it is necessary
that we de�ne the underlying assumptions clearly� here the ballistic entry into the
atmosphere takes place above a �at non	rotating earth� the air density is given as
a function of the altitude �coordinate y� by the barometric representation �
�	��
�no use is made of the range coordinate x�� and the gravitational force is neglected�
Drag �
�	�� is the only force that acts on the vehicle� and consequently the trajectory
is a straight line� Term B �equation 
�	�� is used as the ballistic factor of the vehicle�
Incident wind w and vehicle velocity v have the same value but opposite directions�
and� making use of the entry angle �entry � the velocity components can be written as�

x

y

B
�v

�entry

*x � v cos�entry

*y � �v sin�entry �
�� ��
v �

p
*x� ! *y� � w

�

The drag deceleration is then�

*v � �B �
�

e��y	hscale� v�

�
�� ��

In order to integrate this equation we divide it by the vertical velocity component *y
�equation 
�	�� replacing the time coordinate t by the altitude coordinate y� Thus�

dv

dy
�

B �
� sin�entry

e��y	hscale� v � � dv

v
�

B �
� sin�entry

e��y	hscale� dy
�
�� ��

Integration of the equation �
�	�� yields the velocity v as a function of the altitude�

v�y� � ventry � e

�
�B � hscale
� sin�entry

e��y	hscale�
�

�
�� 
��

Term ventry is the velocity at in�nite altitude �y ���� Note that the argument of the
exponential function �in square brackets� is a linear function of the air density �y��

Maximum deceleration� The next point in question is the maximum deceleration
and the altitude where the maximum occurs� We insert �
�	
�� into �
�	�� to �nd�

*v�y� �
�B � v

�
entry

�
� e

�
�B � hscale

sin�entry
e��y	hscale� � y

hscale

�
�
�� 

�

The maximum deceleration takes place where the di�erential d *v	dy vanishes� to �nd
this point we di�erentiate the expression in square brackets and put the result to zero�
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The equation that de�nes the altitude y� *vmax� of the maximum deceleration is then�

e��y	hscale� � sin�entry
B � hscale

or transformed� y� *vmax� � hscale � ln B � hscale
sin�entry

�
�� 
��

This inserted into the equation �
�	�� yields v� *vmax� � ventry � e���� � ����� �ventry�
indicating that the maximum deceleration occurs at about ��� of the entry speed�
To calculate the actual value of *vmax we use the result �
�	
�� for the equation �
�	���

*vmax � � sin �entry � v�entry
�e � hscale �
�� 
��

For example� for �entry � ��� ventry � �� km s and hscale � �� km we can calculate
a maximum deceleration of *vmax � ���� m s�� Surprisingly this value is only a func	
tion of the entry conditions �speed and angle�� the ballistic factor B has no in�uence�

Maximum heat �ux� The next point in question is the maximum heat �ux and
the altitude where the vehicle experiences the maximum heat �ux� To �nd it we have
to insert the velocity �
�	
�� into the equation �
�	��� considering that w � v�y��

*q � 
��� � 
��
 p� v�entry � e

�
�� B � hscale

� sin�entry
e��y	hscale� � y

� hscale

�
�
�� 
��

Term *q is speci�c stagnation point heat �ux at the �unit nose� �with 
 meter radius��
The maximum heat �ux takes place where the di�erential d *q	dy vanishes� therefore�

e��y	hscale� � sin�entry
� B � hscale

or�
y� *qmax� � hscale � ln � B � hscale

sin�entry
�
�� 
��

This inserted into the equation �
�	
�� yields v� *qmax� � ventry �e���� � ������ventry�
and we can observe that maximum heating occurs earlier than maximum deceleration�
The altitude di�erence is hscale �ln �� or approximately one scale height �ln � � 
������

y� *qmax�� y� *vmax� � hscale �
�
ln

� B�hscale
sin�entry

� ln
B�hscale
sin�entry

	
�
�� 
��

Finally we use the maximum heating altitude �
�	
�� for the equation �
�	
�� to �nd�

*qmax � 
��� � 
��
 v�entry �
r

sin�entry
�e B � hscale �
�� 
�

Obviously� the maximum heat �ux *qmax is not independent of the ballistic factor B�
in contrast to the maximum deceleration *vmax� The heat �ux has a direct in�uence
on the surface temperature� Since the heat �ux is smaller for vehicles with a large
B factor� we may conclude that increasing the drag coe�cient reduces the surface
temperatures� A large heat shield is obviously desirable for a ballistic reentry vehicle�
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Integral heat �ux� The actual heat �ux *q is the important quantity which deter	
mines the surface temperatures� However� the integral heat �ux during the entire ma	
neuver� q �

R
*q dt� is the other important quantity� it determines the total heat load

for the reentry vehicle� and thus size and capacity of its thermal protection system�
In order to integrate the conditional equation �
�	�� we divide it by the velocity
component *y and replace again the time coordinate t by the altitude coordinate y�
Then we insert the velocity v according to the equation �
�	
��� The result is�

dq

dy
�
�
��� � 
��
 p� v�entry

sin�entry
� e

� �y
� hscale

�
� e

�
�B � hscale

sin�entry
e��y	hscale�

�

�
�� 
��

We can transform �
�	
�� into a more convenient representation by introducing z� as�

z��y� �

�
B � hscale
sin�entry

e��y	hscale�
� �

� � ln
ventry

v

	
�
�� 
��

Hence �zdz � �z� �dy	hscale � and� replacing the terms y and dy in equation �
�	
��
by the corresponding functions of the new variables z and dz� the equation becomes�

dq � 
��� � 
��
 � v�entry
s

hscale
B sin�entry

� � e�z�dz �
�� ���

The expression
R
e�z�dz is well	known in the mathematical �eld of error calculations

�it is the Gaussian error distribution�� and
p
�	� is the value of the integral in the

range between z � � and z � �� This integral expression accepts the value
p
�	�

when we integrate the equation �
�	���� because the boundaries for the integration
are �space level� �where z � � for y ��� and �ground level� �z � � for v � ���
Then we can write the integral stagnation point heat �ux on the reentry trajectory as�

q � 
��� � 
��
 � v�entry
s

hscale �

B sin�entry
�
�� �
�

Two items are remarkable when we consider this result� �rst� as well as the maximum
heat �ux *q the integral heat �ux q diminishes when we increase the ballistic factor B
�enlarge the speci�c size of the vehicle�� Second� in contrast to the maximum heat �ux
that grows with �entry � the integral heat �ux gets smaller when we increase this angle�
Descending faster means higher temperatures� but the entire heating is smaller then�

Uncertainty of the impact point� In practice there is another reason that can
make steeper descends interesting� the accurate predictability of the range variable x�
When a ballistic reentry capsule returns from orbit� its �nal impact location can only
be determined with a typical precision of ��� km� for example� The atmosphere is
a thin gas layer above the surface of the earth� and the air density is an exponential
function of the altitude� Usually it would be desirable to know the landing �or wa	
tering� area with a high accuracy before the reentry maneuver is initiated� but small
uncertainties in the climate can cause a substantial deviation of the landing location�
The predictability of the landing area improves when a steeper descent is performed�
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When we want to simulate the ballistic reentry maneuver in order to analyze the pre	
cision of the impact point� the model of the straight line entry is not accurate enough�
For example� we can assume that the reentry takes place in the equatorial plane of
the central gravitational �eld of the earth� and we can write the equations of motion
using polar coordinates r and �� Velocity components are vertical u and horizontal v�
however� since the earth rotates once a day with the angular velocity �earth� the
components of the incident wind are vertical ��u� and horizontal �r�earth�v�� Thus�

*u �
v�

r
� �

r�
� �r�B

�
u
p
u� ! �v � r�earth��

*v � � uv

r
� �r�B

�
�v � r�earth�

p
u� ! �v � r�earth��

*r � u

*� �
v

r
�
�� ���

Term � is the gravitational constant of the earth �� � ��������� � 
��� m� s���
When we integrate the equation system �
�	��� using a numerical standard routine�
we can easily change the atmospheric density �r�� the ballistic factor B or the initial
conditions� in order to check the in�uence of these modi�cations on the landing area�

Example ����� The �gure shows some results of reentry simulations for a ballistic
micro�g experiment capsule �the Brazilian project �Sara�� ballistic factor 
��� m��t��
The landing area deviates from its nominal location by a distance of about 
�� km
��at entry� or by a distance of about �� km �steep entry�� assuming that the capsule
returns from a circular equatorial orbit at 
�� km altitude and the retro impulse was
�red with a small inaccuracy �only � m�s in the velocity and only �� in the direction��
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.
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Quasi ballistic reentry trajectories� The use of a small lift force during certain
time intervals of the maneuver can greatly reduce the maximum heat �ux and the
maximum deceleration as well� Reentry capsules can usually generate a small lift
force� either by using control surfaces ��ns� or by shifting the center of mass away
from the symmetry axis� Since the vehicle is still extremely fast during the time
periods of the maximum loads� a small control force su�ces to control the descent
velocity u� The substantial deceleration is performed at an altitude of about �� km�

Example ���
� The �gures show the numerical results for the stagnation point heat
�ux *q �normalized to a nose radius of one meter� and for the drag deceleration d�
assuming that an �Apollo�type� capsule returns on a parabolic trajectory from the
moon or from a low earth orbit at 
�� km altitude� The capsule has a ballistic factor
of B � ��� m��t and can generate some lift �lift to drag ratio � ��
�� Note that the
vehicle uses this lift during the initial phase of the lunar return reentry maneuver to
create a force downwards �� � ����� in order to neutralize the earth centrifugal force�
The heat load is much higher for a lunar return than for a return from low earth orbit�
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������ Gliding Reentry

Trajectory optimization� The problem in trajectory optimization is the determi	
nation of appropriate control functions� and� as we have seen in other chapters of this
book� the Hamilton	Lagrange theory �or calculus of variations� is usually the right
tool for doing this� However� the Hamilton	Lagrange theory is quite complicated� and
fortunately its application is not necessary for the optimization of reentry trajectories�
Reentry trajectory optimization is not a problem of the Hamilton	Lagrange theory�

To understand these circumstances we have to look at two important equations�
the one for the drag �
�	�� and the other one for the stagnation point heat �ux �
�	���
When we divide the equation �
�	�� by the equation �
�	��� then we �nd the stagna	
tion point heat �ux related to the drag deceleration of the vehicle� The relationship is�

dq

dv
� *q

D	M
�

��� � 
��� � 
��
� wp
 �CD� ! CD	 � ��� A �
�� ���

Since drag is the dominant force during the reentry maneuver� the time derivative of
the velocity dv	dt accepts approximately the same value as the drag deceleration d
�d � D	M�� Term dq in the equation �
�	��� is the amount of heating which the ther	
mal protection system has to stand in order to reduce the velocity of the vehicle by dv �
Integration of the quantity dq yields the integral heat �ux q of the whole maneuver�
Obviously it is important that we minimize the total heat �ux� When we look at the
right hand side of the equation �
�	��� we see that we can in�uence two quantities in
order to minimize q during the essential braking phase� we can brake at a low altitude
where the air density  is high� and we can brake with a large the angle of attack ��
Term A in equation �
�	��� is the constant reference area and w the wind velocity�

When we look a second time at the two important equations �
�	�� and �
�	���
we see that both� the actual heat �ux *q and the actual drag deceleration d � D	M �
increase sensitively when we brake at a lower �ight altitude� The actual heat �ux de	
termines the surface temperatures� the actual drag deceleration determines the struc	
tural loads for the vehicle� We cannot select a �ight altitude for the essential braking
phase where an extremely high stagnation point temperature would burn the thermal
protection system� or where an extremely high deceleration would break the fragile
structure of the vehicle� Thus� we must select the braking altitude as low as possible�
but still high enough so that surface temperatures and structural loads are bearable�

Reentry �ight phases� Under these conditions the optimal control of a reentry
trajectory is entirely determined� The trajectory must consist of the following phases�

Initially� in order to pass the higher layers of the atmosphere as quickly as possible�
the reentry vehicle enters the atmosphere with maximum lift and maximum drag�
In the upper atmosphere the deceleration is not signi�cant but the heating is high�
The entry angle �entry must be selected in a way that the vertical velocity u is very
small at the moment when the stagnation point temperature reaches its maximum�



REENTRY MANEUVERS 	��

The stagnation point temperature may not increase anymore in the �ight phase that
begins now� the phase of the �ight with maximum stagnation point temperature�
The vehicle �ies still with the maximum angle of attack� but the lift force is not used
to let the vehicle climb but to let the vehicle �y a curve� The descent velocity u is ex	
clusively controlled by an appropriate adjustment of the banking angle� and it is con	
trolled in a way that the stagnation point heat �ux remains approximately constant�

The drag deceleration grows while the vehicle descends at the limitation imposed by
the maximum stagnation point heating rate� The phase of maximum deceleration
begins at the moment when deceleration of the vehicle reaches its allowed limitation�
The descent velocity is reduced once more in order to keep the dynamic pressure
approximately constant� The angle of attack can now be reduced if the landing site
is far distant from the ground track of the orbit �if the vehicle must have a large cross
range capability�� The heating rate *q reduces rapidly while the vehicle descends at
the limitation imposed by the maximum deceleration� The �ight phase ends when the
reentry vehicle �ies with a velocity where the heating rate is not signi�cant anymore�

Now the vehicle is slow enough to enter the �nal �ight phase� When the vehicle is a
space shuttle it can now open ventilation holes to cool the hot inner structure and es	
tablish the glide slope for the landing site approach� When the vehicle is a capsule it
can now discharge the heat shield and start with the parachute deployment sequence�

The type of heat protection system determines the altitude of the braking maneuver�
surface temperatures are lower at higher altitudes but all together more heat is trans	
ferred to the vehicle� Space shuttles use tiles as heat protection system and discharge
heat mainly in the form of radiation� capsules use heat shields and discharge heat
mainly in the form of material ablation� Consequently� space shuttles begin the es	
sential deceleration phase at higher altitudes than capsules� because low surface tem	
peratures are more important than the entire heat load� Capsules decelerate at lower
altitudes because the entire heat load is more important than the surface temperature�

Banking the vehicle makes it possible to obtain a �cross	range capability� for landing
areas distant from the geographical ground track of the orbit� A substantial cross
range demands during the essential braking phase a constant banking to one side�
When the desired cross range is smaller� the vehicle must be banked alternately
to one side and the other� To reach the maximum cross range distance the angle
of attack must be reduced slightly �at the expense of a higher total heating rate��

Equations of motion� Let us now write down the equations of motion for a reen	
tering space glider �the derivations of these equations is demonstrated in the chapter
four of this book�� These second order di�erential equations for the powered motion
in the atmosphere are essentially the same for all �ying objects� for space gliders
we can ignore the thrust force and assume that the mass of the vehicle is constant�
However� for accurate numerical computations we cannot ignore that the earth is
rotating and that the atmosphere is carried along with the rotation of the earth�
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The equations of motion which we use here are based on a moving coordinate system�
The origin is placed on the center of the earth� but the attitude of the system turns
with the displacement of the vehicle� the 
	axis aims always at the vehicle� and the
�	axis is always aligned with the inertial velocity vector of the vehicle �inertial means
in relation to a non	rotating earth�� The actual position of the vehicle with respect
to the North pole and the earth equator is then determined by the three Euler angles
�� � and �� We use the symbol r ��radius�� to specify the �ight altitude �r � ���
km at the surface of the earth� and the inertial velocity components u �vertical�
and v �horizontal�� The earth rotates on the South	North axis once a day with the
angular velocity �earth� The incident wind velocity is the di�erence of the inertial
velocity of the atmosphere and the inertial velocity of the vehicle�

�w �

�
w�

w�

w�

�
A �

�
 �u

r �earth cos�� v
�r �earth sin� cos�

�
A

w �
q
w�
� ! w�

� ! w�
� �
�� ���

Drag deceleration �d and lift acceleration �l are functions of the incident wind w �
the air density  and the angle of attack �� The aerodynamic drag coe�cient is
CD � CD� ! CD	 � �� and the lift coe�cient is CL � CL	 � �� Therefore�

�d �

�
 d�
d�
d�

�
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Term � is the banking angle� A is a reference area and M the mass of the vehicle�
Like always� � is the gravitational constant� The equations of motion are then�
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These di�erential equations can easily be be integrated numerically using a standard
integration routine� provided that the control functions for � and � are well	known�
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Control of the initial entry phase� During the initial reentry phase the nose of
the vehicle is up and the angle of attack is high� The control functions for the vehicle
are then � � maximum and � � �� The magnitude of the de	orbiting maneuver
has to be adjusted in a way that the descent velocity is small at the end of this phase�

Control of the essential braking phase� When the maximum heating has been
reached the vehicle is banked to one side with the intention to control the descent
velocity� The descent velocity is very small during this phase� and neglecting u and its
time derivative *u we can follow the so	called �equilibrium glide condition� from the
�rst equation of the system �
�	��� The result is a condition for the banking angle ��

cos � �
�
v�

r
� �

r�

	
	

�
 CL	� A

�M
ww�

	
�
�� ���

Note that also the third component of
the incident wind vector is negligibly
small �w� � ��� and that the vehicle
must have a su�cient lifting capability
to satisfy the condition �
�	���� How	
ever� it is usually possible to satisfy this
condition also when the lift coe�cient
CL	 is very small� because the cen	
trifugal acceleration v�	r neutralizes a
part of the gravitational acceleration
�	r� and the velocity of the incident
wind w is high� Space gliders perform
reentry maneuvers with high banking
angles �� � ����� gliders have consider	
able cross range capabilities �the cross
range distance can be reduced by bank	
ing the vehicle several times alternately
to both sides�� In contrast capsules
have nearly no cross range capability�

typical � oscillation �shuttle reentry�
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During the essential braking phase� the descent velocity u of the vehicle must be
controlled in order to keep initially the heat �ux *q � 
��� � 
��
 p w� and later
the aerodynamic pressure Q � �

�w
� approximately constant� Both quantities are

mainly functions of the incident wind velocity w and the air density � Therefore�

d *q�w � �

dt
�

� *q

�w
� *w !

� *q

�
� * � � � u � ��wCD A

M
hscale �
�� ���

dQ�w � �

dt
�

�Q

�w
� *w !

�Q

�
� * � � � u � �wCD A

M
hscale �
�� ���

�Note that * � �u	hscale and *w � �Q CDA	M �� Thus� the descent velocity u has
to be reduced approximately by the factor � when the vehicle transits from the phase
with maximum temperature to the phase with the maximum dynamic pressure�
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Example ���� The �gures show some
numerical results of the reentry trajec�
tory simulations for a small space glider
�un�nished European project �Hermes���
In order to land in Toulouse �France�
after returning from the orbit of the
Space Station �altitude ��� km� inclina�
tion �	����� the vehicle must have a �	��
km cross range capability and a lift to
drag ratio of about ��

 �ballistic factor

B � �� m��t�� Restrictions concerning
the loads for the carrying structure and
the thermal protection system of the ve�
hicle demand that the drag deceleration
d remains below ��	� m�s� during the
whole maneuver� and the heat �ux *q
�normalized to a nose radius of � meter�

remains always below �� kW�m��

The European small space glider project
was not successful� One reason was that
leading edges of wings are exposed to ex�
cessive heating rates during the reentry
mission� and at this time it was too dif�
�cult to protect the small carrying inner
wing structure from severe thermal loads�
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������ Control and Navigation

Aerodynamic surfaces� We have seen that the objective in �nding an optimized
space glider reentry trajectory is simply to bring the vehicle safely down to the surface
of the earth� Therefore the vehicle has to �y through a certain tight entry corridor� as
low as possible� but not exceeding the thermal and the mechanical load limitations�
After the essential braking maneuver the glider must land on a prede�ned airport�
Like an aircraft it is equipped with aerodynamic control surfaces� in oder to be able
to control the braking maneuver and to perform the precise terminal navigation�

Example ����a� During the initial phase of the reentry �ight the attitude of the
American Space Shuttle is controlled by the orbital maneuvering system �thrusters at
the nose and at the aft end of the vehicle�� However� when the vehicle senses at an
altitude of approximately ��� km the aerodynamic pressure of the atmosphere� the
attitude control is performed by steering seven aerodynamic control surfaces� Four of
them are on the trailing edges of the wings� called �elevons� because they combine
the e�ects of elevators and ailerons on conventional airplanes� De�ecting the four
elevons up and down causes the shuttle to pitch up and down� de�ecting the elevons
of one wing up while the elevons on the other wing are down causes the vehicle to roll�
The �fth aerodynamic control surface is called �body �ap�� it supports the wing elevons
during pitch maneuvers and protects the three main engines from thermal loads�
The sixth and seventh control surfaces are the two �rudder�speed brake panels� located
parallel on the trailing edge of the vertical stabilizer� Yaw control is provided by
de�ecting both control surfaces simultaneously right or left� opening the surfaces like a
book by de�ecting them simultaneously to both sides increases the drag of the vehicle�

combined rudder ( 27.1°) /
speed brake (max. spread angle: 98.6°)

inboard / outboard right elevons
(up 40°, down 25°)

body flap (up 15.7°, down 26.6°)

outboard / inboard
left elevons

orbital maneuvering system
with aft reaction jets and

three main engines (SSME)

two maneuver engines (OMS)

+

pitch

roll

yaw
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Guidance during the braking maneuver� On orbit the reentry maneuver of the
glider is initiated by �ring a small retro	impulse� Immediately after this the attitude
control system establishes a vanishing banking angle �� � �� and a high angle of at	
tack �� � ��� to ����� and the vehicle waits for the aerodynamic surfaces to become
e�ective� At the moment when aerodynamic pressure is sensed �altitude �
�� km��
the control is handed over the aerodynamic control surfaces and the orbital maneu	
vering system is deactivated� The reentry navigation begins� During the following
aerodynamic braking phase the control surfaces keep a predetermined time function
for the angle of attack � �for example � can be kept constantly ���� or � decreases
slowly from ��� to ����� The navigation is exclusively performed by an appropriate
control of the banking angle �� The temperature control phase begins when the
vehicle senses the maximum permissible surface temperature� the drag control
phase begins later when the vehicle senses the maximum deceleration� The vehicle
executes roll maneuvers and adjusts the banking angle� �rst for a constant heating
rate and then for a constant deceleration rate �for example� during the essential
braking phase the vehicle banks initially with � � ��� and �nally with � � �����
A larger banking angle means a steeper descent and therefore a higher energy dissipa	
tion rate� conversely� a smaller banking angle means a smaller energy dissipation rate�
The cross range distance is measured while the vehicle decelerates� and when the
actual cross range distance exceeds a certain computer	loaded value� the vehicle per	
forms a roll maneuver in the opposite direction in order to reverse the banking angle�

Terminal guidance for the �nal landing maneuver� The essential braking phase
is �nished when the glider enters the transition phase to terminal approach� During
the transition phase the angle of attack is substantially reduced �until � � 
��� and
the banking angle � is turned until the vehicle has an upright attitude for gliding�
The radio transmission blackout is over and the navigation system of the vehicle is
now able to receive signal from terrestrial navigation stations� The glider can accu	
rately measure its position and �nd out whether it must still dissipate excess energy
�this can be done either by �ying a certain �S	curve� or by utilizing the speed brakes��
In case of the American space shuttle� the �terminal area energy management guid	
ance� begins at ����� feet altitude with a speed of ���� feet per second� The Shuttle
attains subsonic velocity �ying at an altitude of approximately ����� feet� when the
vehicle is still �� nautical miles distant from the landing site� The �approach and land	
ing guidance� begins at an altitude of 
���� feet with an airspeed of ����
� knots�
��� nautical miles distant from the airport� The vehicle is then aligned with the cen	
terline of the runway and guided to descend with a ��� glide slope �seven times more
than the approach glide slope of a civil jet airplane� aiming at a point ���� nautical
miles in front of the runway� It descends now with a rate of 
���� ft minute� about
twenty times the sink rate of an airliner during a standard instrument approach�
A �pre	�are� maneuver is executed at an altitude of 
�� ft above ground in order
to reduce the sink rate to � ft s and to attain a glide slope of 
���� At ��� ft altitude
the landing gear is deployed and the speedbrakes are adjusted� the runway threshold
is crossed at 
�� ft� The Shuttle �ares once more and touches down with a speed of

�� to 
�� knots� ca����� ft past the threshold of the runway �total length 
����ft��
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Example ����b� The American Space Shuttle is famous for landing like an airliner�
however� in one important aspect the comparison fails completely� The Shuttle is
not equipped with jet engines� and thus it has to land safely like a glider on the
�rst attempt� Precise navigation performed by the �TAEM��system ensures that the
vehicle reaches the landing area� and then the landing maneuver is guided by the
automatic �A�L��system� Since the gliding properties of the Shuttle are quite bad
compared with a conventional jet airplane� the Space Shuttle descends with a much
steeper glide slope and �ies much faster when it approaches the runway of the airport�
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preflare and
gear down
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flight paths
through
approach
window

TAEM terminal area energy management interface
(25 km flight altitude, 5:32 minutes before landing)

A/L approach and landing interface
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heading
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����� Thermal Protection Systems

A returning space vehicle is exposed to high thermal loads on its reentry trajectory�
We have seen the heat �ux in the aerodynamic stagnation point of the nose or the
leading edges of wings is mainly a function of the velocity� the �ight altitude and the
radius of the exposed surface� The greater the radius the lower the stagnation point
temperature� A large space shuttle is usually decelerated at high altitudes and pro	
tected with a reusable heat protection system that consists of a hot structure at the
nose and at the leading edges of the wings� tiles �or shingles� at the highly stressed
bottom surfaces and an insulation at the lower stressed back surface� A space capsule
is usually decelerated at lower altitudes and protected with an ablative heat shield�

������ High Temperature Materials for the Reusable Space Shuttle

The load carrying aluminum substructure� The carrying structure of a space
vehicle is primarily made of light metal �aluminum alloy� or graphite epoxy� materials
which loose their strength at temperatures above 
��� Celsius� typically� The surface
temperatures during the reentry maneuver are much higher �for example at the nose
of the American Space Shuttle they reach values as high as 
���� Celsius�� and thus
the carrying structure must be protected against the excessive heating�

Fiber reinforced composites� The nose and the leading edges of the wings are
made of carbon �bers imbedded in a matrix of carbonized phenolic resin material�
A special production process transforms the outer layers of these �reinforced carbon
carbon� panels into a silicon	carbide coating that protects the carbon �bers from
oxidation� Parts made of this material are highly resistant to fatigue loading and
can operate between temperatures of 	
�
� Celsius �in space� and !
���� Celsius
�during reentry�� Today ceramic materials as matrix for the carbon �bers �or for
silicon carbide �bers� play a key role in the development of new materials for hot
structures� These ��ber reinforced ceramic composites� allow the realization of
lightweight load carrying structures for short time operation up to temperatures of

���� Celsius� for longtime operation up to maybe 
���� Celsius�

Tiles� The tiles for the protection of the bottom surface of the American Space
Shuttle consist of special glass �bers that became rigid by a ceramic bonding
process� They are coated with a thin black glass layer� Tiles for upper parts of the
surface consist essentially of the same material� but they have a white color because
aluminum oxide was added during the coating process for a better moisture resistance�
The tiles with a typical area of 
� times 
� centimeters are manufactured with
di�erent shapes and di�erent densities to protect the individual locations on the
surface� the thickness varies from ��� cm to 
� cm� The volume speci�c weight of the
tiles is comparatively low� because only a small part of the volume contains material
�most of the volume is void�� The tiles can stand temperatures up to 
���� Celsius�
but they are fragile �sensitive to deformations and vibrations�� and a �exible stress
insulation is necessary between the tiles and the carrying structure of the Shuttle�
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Missing tiles on the lower surface of the left wing �which broke o� during the launch
procedure when they were impacted by a piece of ice from the external tank� caused
later during the reentry maneuver the fatal accident of the Space Shuttle Columbia�

Nomex felt surface insulation� About ��� of the surface of a space shuttle are
not exposed to the incident air �ow and therefore not excessively heated during
the reentry maneuver� The surfaces are parts of the back fuselage� parts of the
upper wings and the side fuselage that is located in the shadow of the wings�
These lower stressed areas are exposed only to temperatures below �
� Celsius�
they are protected by the so	called �coated Nomex felt reusable surface insulation��
a textile layer with a thickness between ��� and 
 cm bonded to the surface of the
shuttle by a silicon adhesive �the �Nomex� felt is a double layer cross	lapped aramid
�ber web� pressed� sewn� and thermally stabilized during the production process��

Example ����� The Thermal Protection System TPS of the American Space Shuttle is
a layer of special heat resisting material bonded over the carrying inner structure of the
vehicle� Material and thickness of the layer depend on the local heat �ux conditions�
The TPS weights 	��� kg �later reduced to ��� kg� and protects an area of ���� m��

RCC reinforced carbon-carbon, 38.0 m , 1697.3 kg
(nose cap, leading edges of the wings)

RCC

RCC

RCC

HRSI high-temperature reusable surface insulation, 479.7 m , 4412.6 kg
(front fuselage, bottom fuselage and bottom wing surfaces, leading edge of the vertical stabilizer)

LRSI low-temperature reusable surface insulation, 254.6 m , 1014.2 kg
(crew cabin, parts of the upper wings and side fuselage, the vertical fin and control surfaces)

FRSI coated Nomex felt reusable surface insulation, 332.7 m , 532.1 kg
(back part of the side fuselage, aft control thruster pods, payload bay doors)

metal or glass
(cabin windows, attatchments for the control surfaces)

HRSI

HRSI

HRSI

HRSI

LRSI
LRSI

LRSI

FRSI

LRSI

LRSI

metal

FRSIglass

2

2

2

2
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������ Heat Shields

The ablative heat shield� The classical heat shield is essentially a honeycomb
structure �lled with phenolic resin� reinforced with �bers �carbon� glass or asbestos��

The thickness of the shield is not con	
stant for all locations on the surface�
but it depends on the local heat �ux�
For example� the thickness of the heat
shield of the retired American Apollo
capsule varied from ��� cm to �� cm�
resulting in an area speci�c mass of ��
kg m�� Cooling mechanism is the dis	
charge of energy in the form of heat ra	
diation to outside� heat conduction to
inside �so	called �capacitive cooling���
and in form of chemical decomposition�
evaporation and ablation of material�

oxidation

evaporation

carbonization

degradation

ablative
material

adhesive

metal
structure

radiative
cooling

ablative
cooling

capacitive
cooling

The in�atable heat shield� We have seen that the ballistic factor B plays a key
role in the design of heat protection system� The actual heat �ux *q �equation 
�	
�
and the integral heat �ux q �equation 
�	�
� diminish when B grows� indicating that
it is advisable to use a heat shield with a large diameter �however� the maximum
deceleration is essentially not a function of B�� When the heat shield is large enough�
radiation cooling su�ces to discharge the incident heat load to outside� An in�atable
heat shield could be the best solution� since a large solid heat shield is heavy and does
usually not �t in the payload bay of a conventional space launcher� The manned Mars
mission might be an application for in�atable heat shields� to provide heat protection
during aerocapture and landing on Mars� and during the reentry maneuver on earth�

Weight of heat protection systems� The American Space Shuttle has obviously
not satis�ed the high expectations during its development phase regarding opera	
tional safety and low costs� Even though the Space Shuttle is an fantastic tool for
manned space activities on a large scale� it is quite expensive and not free of failures�
Several times it has been tried to develop a smaller winged reentry vehicle �for exam	
ple Dynasoar� Hermes and Hope�� another reason that these projects were unsuccess	
ful is that heat protection problems increase when the size of the vehicle is reduced�
The American Space Shuttle system will be phased out in some years �or probably im	
mediately when another fatal accident occurs�� and� due to the low budget situation
in the present time� the new American manned return vehicle may be again a capsule�

vehicle mass thermal protection system

Mercury �return from LEO� 

� kg 
�� kg 
����
Apollo �parabolic reentry� ���� kg ��� kg 
���
US	Space Shuttle ����� kg ��� kg 
����
European Hermes �never made� 
���� kg 

�� kg ����
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List of Symbols

Greek letters�

� The angle of attack �equation �	���� The angle � describes together with
the banking angle � the attitude of the launch vehicle with respect to the
direction of the incident wind� In chapter � the same symbol � is used to
determine the angle between the actual �ow direction of a gas molecule
and the centerline of the nozzle �equation �	

���

� The banking angle �equation �	���� The angle � describes together with
the angle of attack � the attitude of the launch vehicle with respect to the
incident wind� The �nose� of the vehicle is �up� for � � �� full banking to
one side means � � �����

� The gravitational constant �equation 
	� or �	
��� The individual
gravitational constant of a celestial body is universal gravitational constant
�� � ���� � 
���� m� �kg s�� multiplied with the mass of the body�

� The thrust angle out of the �ight plane �equation �	���� We use the thrust
angles � �in �ight plane� and � �out of �ight plane� to resolve the thrust
vector into a component notation of the moving coordinate system� For a
unique determination � is limited to ���� and � is limited to �
����

% Generally a di�erence between two similar values� For example� we use
the symbol %x to describe a displacement or %r to describe the di�erence
between two orbital altitudes�

%v The velocity requirement �equation �	� or �	�� The capability of the
rocket propulsion system� determined by the Ciolcovskij equation �	� must
comply with the velocity requirement for a certain mission� determined by
the calculation of the concerning trajectory�

%t Generally a time interval� for example the �ight time between two locations
on a conic orbit �equations �	� to �	����

� The numerical eccentricity of a conic orbit �equation �	�� or �	���� The
dimensionless quantity � is always positive� frequently used as an �orbital
element� to determine the type of conic orbit� � � � for a circular orbit�
� � 
 for an elliptic orbit� � � 
 for a parabolic orbit and � � 
 for a
hyperbolic orbit�

� The expansion ratio �equation �	���� � characterizes the geometry of the
rocket nozzle� it is the exit area of the nozzle divided by the throat area�

# The thrust angle of a solar sailcraft �equation �	���� For the computation
of sailcraft trajectories it can be advantageous to determine the thrust
direction with respect to the sunbeams� using the angles " and #�
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� The right running characteristic �equation �	
���� The characteristics �
and � are curves in a two	dimensional �or axisymmetric� �ow �eld� where
partial derivatives can be composed to total derivatives�

� Kepler�s eccentric anomaly� important for the calculation of the �ight time
on a conic orbit �equation �	����

� The Euler angle that characterizes the orbital inclination �the �inclination
angle�� equation �	��� The actual attitude of a coordinate system �or a
rigid body� with respect to reference attitude is determined by a set of
three angles� very often used are the Euler angles �� �� ��

� The Cardan angle that characterizes the geographical latitude ��latitude
angle�� equation �	��� The actual attitude of a coordinate system �or a
rigid body� with respect to reference attitude is determined by a set of
three angles� very often used are the Euler angles �� �� � or the Cardan
angles �� � � � �

" The thrust angle of a solar sailcraft �equation �	���� For the computation
of sailcraft trajectories it can be advantageous to determine the thrust
direction with respect to the sunbeams� using the angles " and #� Angle
iota is the inclination of the sail area�

� The ratio of the speci�c heats and also the exponent for an isentropic
change in state �equation �	�
 or �	���� The value � �between 
�
 and 
��
for the �re gases in a rocket chamber� is a typical propellent characteristic�
it depends mainly on the number of atoms in the gas molecules�

 Generally a multiplier� very often a Lagrange multiplier �equation �	��� A
Lagrange multiplier has usually an index that indicates the state variable
to which the multiplier belongs�

� Generally a multiplier� This term is used with three di�erent meanings in
three di�erent chapters� In chapter � �Rocket Propulsion� term � is used
as the angle between the �ow direction and the characteristic curves� thus
it is the �Mach angle� in case of an isentropic �ow �eld �equation �	
�
��
In chapter � �Orbit Optimization� the term � is used as a Lagrange
multiplier that is adjoined to a restriction in equation form �equation �	�
or �	
��� Finally� in chapter  �Launcher Dynamics� term � is used as an
oscillation frequency �equation 	�� or 	

���

� This term is used with two di�erent meanings in two di�erent chapters�
In chapter � �Rocket Propulsion� term ���� is the �Prandtl	Meyer��
angle for the computation of a �ow �eld �equation �	
���� In chapter
 �Launcher Dynamics�� however� the term � is used as an oscillation
frequency �equation 	�� or 	

���
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� The left running characteristic �equation �	
���� The characteristics �
and � are curves in a two	dimensional �or axisymmetric� �ow �eld� where
partial derivatives can be composed to total derivatives�

� The number for the circumference of a circle� � � ��
�
���������������

 Generally the density� usually the density of the atmosphere �equation

	
��� for example � � 
���� kg m� is the standard density at sea	level�
In chapter �  is the density of the gas in a rocket thrust chamber�


 Generally a length or or distance �equations 
	�� �	�
 or �	
 for example��

� This symbol de�nes an angle only important for the �ight time calculation
on a conic orbit using the Lambert theorem �equations �	�� to �	����

� The thrust angle in the �ight plane �equation �	���� We use the thrust
angles � �in �ight plane� and � �out of �ight plane� to resolve the thrust
vector into a component notation of the moving coordinate system�

�entry The entry angle of the ballistic maneuver �equation 
�	��

� One of the three Euler angles �equation �	��� The actual attitude with
respect to reference attitude is generally determined by a set of three
angles� the Euler angles �� �� � are very often used for this� � becomes
the path angle in case of a plane trajectory� then it is a �polar coordinate�
that determines together with the distance r the position of the spacecraft
�equation �	����

! The thrust deviation angle� the angle between the actual thrust direction
and the centerline of the launch vehicle �equations 	�� to 	����

� The Euler angle that determines the orientation of the line of nodes �the
�node angle�� equation �	��� The actual attitude of a coordinate system
�or a rigid body� with respect to reference attitude is determined by a set
of three angles� very often used are the Euler angles �� �� ��

� The Cardan angle � that determines the geographical longitude ��longitude
angle�� equation �	��� The actual attitude of a coordinate system �or a
rigid body� with respect to reference attitude is determined by a set of
three angles� very often used are the Euler angles �� �� � or the Cardan
angles �� � � � �

� The angular velocity� In orbital mechanics the angular velocity is important
to calculate the attitude of the rotating coordinate system �see equation
�	�� In attitude mechanics � is important to determine the motion of the
body �equation �	����

� The rotation angle � �
R
�dt and also the Cardan angle that determines

the rotation on the body �xed 
	axis �equation �	���
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Calligraphic letters�

A�B� C The diagonal elements of the matrix of inertia � �equation �	���� they
de�ne the moments of inertia of a rigid body that rotates on the 
	axis
�A�� on the �	axis �B� and on the �	axis �C��

D� E �F The o�	diagonal elements of the matrix of inertia � �equation �	����

�F Term F with an arrow on top symbolizes a general force �equation �	�� F
is also the shear force that acts on a cross	sectional area �equation 	
����

G The objective function �equation �	

��

H The Hamilton function or Hamiltonian �equation �	� or �	���

� The matrix of inertia of a rigid body �equation �	���� or� in case of a
simple rotation� just the moment of inertia for the rotation on this axis
�equation 	���� The index indicates the reference point� for example M
means �with respect to the center of mass��

I The vector function that contains numerical integrations �equation �	����

J A functional� function of the �nal conditions �equation �	
���

K The switch function �equations �	��� �	��� �	 or 	
���

M The molecular mass of the gas in gram mol �equation �	����

�M A general torque� often used with a vector arrow on top �equations �	���
M can also be the a disturbing torque that acts on a launcher �equation
	��� or the bending moment inside the vehicle �equation 	
���� When
M	 is used with the index �� then it is the unit aerodynamic torque�
related to the the angle of attack � �equation 	����

N The normal force that acts on a cross	sectional area inside the launcher
�equation 	
�
��

Q The instrumentation mass of an electrically propelled space probe related
to the capacity of the launch vehicle �equation �	�
��

	 The individual gas constant� 	 is the universal gas constant 	� � ��
���
J kmol K divided by the mean molecular mass M �equation 
	� or �	����

R The payload mass of a rocket stage �or space launcher� related to the
ignition mass of the vehicle �equation �	
� or �	
���

S� S The entropy of the gas in the thrust chamber �equation �	�� and �	����

U� V� W The elements of the velocity vector of a �owing gas molecule inside the
thrust chamber �equation �	

���
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Roman letters�

a In chapter � �Rocket Propulsion�� the speed of sound �equation �	��� in
all other chapters� the major semiaxis of the elliptic orbit �equation �	����

A Generally an area� for example the reference area for the aerodynamic
coe�cients �equations �	�� and �	��� or the duct area �equation �	�� or
�	
����

b The minor semiaxis of the elliptic orbit �equation �	����

B The ballistic factor of a re	entering space vehicle� with the dimension
m� kg �equation 
�	���

c The e�ective exhaust velocity� the velocity of the exhausted gases with
respect to the �nal area of the rocket nozzle �equation �	� or �	����
In chapter � the term c is also used to determine the actual velocity
of a certain gas molecule inside the rocket nozzle before the exhaustion
�equation �	

���

cp� cv The speci�c heats at constant pressure or at constant volume �equation
�	�� or equations �	��� �	���

C Generally a constant� Terms C are often used throughout the entire book�
but usually these di�erent constants are characterized by an individual
index� For example� the aerodynamic coe�cients for lift and drag are
called CL and CD �equations �	�� and �	���

d� D The drag deceleration d and the drag force D� sometimes with a vector
array on top when the vector property is important �equations �	��� 	�
�
	�� or 
�	���

e� E Generally the energy E or the speci�c �mass related� energy e� Term E is
used for the inner energy of a gas �equation �	�� and �	���� as well as for
the mechanical energy on an orbit �equation �	��� or the kinetic energy of
a spinning satellite �equation �	����

EI The �exural sti�ness �equation 	
����

e The Euler number� e� ��
���
������������

f The derivatives of the state variables �equation �	
��

g Functions that determine the constrains �equation �	���

g The gravitational acceleration �equation 
	� or �	
���

G The gain factor �equation 	��� G	 is the gain factor that belongs to the
rotation angle and G �	 is the gain factor that belongs to the rotation rate�
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h� H In chapter � the chamber enthalpy H or the speci�c �mass related�
enthalpy h �equation �	�� or �	����

h� H The speci�c �mass related� angular momentum h of the orbiting spacecraft
with respect to the gravitational center �equation �	���� or the total
angular momentum H of a spinning satellite with respect to the reference
point that is given as the index �equation �	��� For example� HM is the
angular momentum with respect to the center of mass of the satellite�

hscale The atmospheric scale height �equation 
	
��� for the standard conditions
on the surface of the earth approximately ����
 km�

Ispecific The speci�c impulse �equation �	���

J � J� The Jacobi integral for a spacecraft that coasts in the gravitational �eld of
two celestial bodies �equation �	
��� J� is the value of the Jacobi integral
at a certain position with �zero relative velocity��

J�� J���� The dimensionless quantities which take into consideration that the
gravitational �eld of a real celestial body has not exactly a spherical form
�equation 
	��� For example� J� characterizes the oblateness of the body�

k The oscillation mode �equation 	
�
��

K�T � The chemical equilibrium constant �equation �	�
��

l� L The lift acceleration l and the lift force L� with a vector array on top when
the vector property is important �equations �	��� 	��� or 
�	
��

m The mass �ow rate of the rocket engine �the rate of expenditure of
propellent� equation �	
��

M Generally a mass� for example the actual rocket mass �equation �	��� M
is also the mass of a planet �equation 
	
�� or� with an appropriate index�
M is also used to symbolize the mass of an engine or launcher subsystem
�for example the payload mass� the propellent mass or the nozzle mass��

Mach The Mach number� quotient of velocity and sonic speed �equation �	���

n The amount of substance of a constituent of the �re gas in the combustion
chamber �equations �	���

N The number of stages of a launch vehicle �equation �	
�� or the navigation
coe�cients �equations 	�� 	���

p Generally the pressure� for example the actual pressure of the gas in the
thrust chamber �equation �	��� or the actual air pressure �equation 
	���

P An abbreviation ��primer�� according to the de�nition ��	��� or the primer
vector �equation �	�
��



LIST OF SYMBOLS 	��

q The speci�c �mass related� heat that enters the hot �owing gas in the
rocket nozzle �equation �	���� or the speci�c �area related� aerodynamic
stagnation point heat load that the re	entering space vehicle experiences
on its entry trajectory �equation 
�	���

q The control variables �equation �	
��

Q The aerodynamic stagnation point pressure �equation 	����

r The distance between the gravitational center and the space vehicle� or�
using a vector arrow on top� the vector that locates the space vehicle in
relation to the gravitational center �equation �	
��

R Generally a displacement or a distance ��radius��� individualized by
its index� For example Rearth is the equatorial radius of the earth�
approximately ��� km� The radius of gyration is determined by the
symbol R�� or� with reference to the principal body axis frame� by RA�
RB and RC �equation �	�� and �	����

s� S The thrust acceleration s and the thrust force S� sometimes with a vector
arrow on top �equation �	� or �	����

t� T The time coordinate t and the orbital period T �equation �	����

T In chapter � the temperature of the gas in the thrust chamber�

u� v The components of the velocity vector in 
	direction u and in �	direction
v with respect to the moving coordinate system� The component in
�	direction equals zero by de�nition �equation �	
��

v The velocity� often with a vector arrow on top �equation �	
��

�V The linear momentum vector �equation �	���

v The chamber volume �equation �	����

w The velocity of the incident wind in relation to the moving vehicle
�equation �	����

W The mechanical work stored in form of potential energy �equation �	
��

x� X Generally a variable or a vector �with an arrow on top�� The elements of
the vector �x are x�� x� and x� are used to locate a mass element with
respect to the center of a Carthesian coordinate system �equation �	�
��

x� y� z The three axes of a general Carthesian coordinate system� The coordinate
x aims usually in a horizontal �or axial� direction� the coordinate y aims
in vertical �or radial� direction�
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