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Abstract

This paper presents an e�cient model checking algorithm for Petri
nets� It is based on the reduced state space generation where the result
of the evaluation on the full state space and the reduced state space
is identical� This reduction of the state spaces is possible� because ���
the �rings of the transitions are only partially ordered by causality and
a given formula� and �	� the order of �rings of transitions not related
by this partial order is irrelevant for the evaluation of the given for

mula� For the considerable reduction of the state spaces� a linear
time
temporal logic without the next
time operator is used� The concrete
algorithm of the reduced state space generation is shown as well as the
brief sketch of the correctness proof� Finally� some experimental results
are shown to demonstrate the e�ciency of the proposed method�

� Introduction

Petri nets have been widely studied as a formalism for concurrent and dis�
tributed systems� Especially they proved to be appropriate for describing
the behavior of asynchronous circuits�DNS���� which have become recently
of increasing interest because of certain limitations in synchronous circuits�
Once such systems are modeled by Petri nets� they are open to formal veri�
	cation using automated tools� Reachability analysis can be used to check
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certain classes of safety properties� Model checking techniques �CES�� al�
low to check more general classes of properties �represented by temporal
logic formulas� including both safety and liveness requirements�

Unfortunately� even though the number of reachable states is in many
cases 	nite� in most practical systems it is often extremely large� This so
called state explosion problem has been one of the biggest bottlenecks for
the automatic veri	cation of practical systems� Recently� several research
projects to avoid this problem are reported� One approach is symbolic model

checking� in which sets of states are represented symbolically and the set
that satis	es a formula is computed as the 	xpoint of a certain functional�
Implementations of this method with binary decision diagrams �BDDs� suc�
ceed in handling huge number of states �BCD����� However� when the state
space is rather sparse �as it is often the case with models of asynchronous
circuits�� BDD based techniques do not seem to represent the state space ef�
	ciently without pre�analysis or variable re�ordering by hand� In this sense�
this approach is not fully automatic� Another approach to con	ne the state
explosion problem is to use partial orders� These techniques are based on
the fact that not all possible interleavings of concurrent events are relevant
for the properties to be checked� Several methods �God��� McM��� based
on partial orders have been proposed for the e�cient reachability analysis
of Petri nets� In �GW�
�� the trace automaton method of �God��� is ex�
tended for checking properties of extended linear temporal logic on systems
of communicating B�uchi automata� Another method� using stubborn sets�
was developed in �Val��� for the e�cient model checking of linear�time tem�
poral logics on variable�transition systems� Independently� in �YTK�
�� a
similar idea for the zero�reachability problem of time Petri nets has been
presented�

In this work� mainly for the veri	cation of asynchronous circuits� we aim
at the development of an e�cient model checking algorithm for one�safe
Petri nets and linear�time temporal logic �LTL�� The relation between our
and the above mentioned methods is as follows�

� Our loop condition di�ers from the ones found in �Val��� and �GW�
��
resulting in an in many cases smaller state space�

� We focus on only just runs rather than unrestricted runs or general
liveness conditions� because it is suitable to model asynchronous cir�
cuits� This restriction both simpli	es the proof of correctness for our
method and makes the algorithm e�cient�
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� Our algorithm works on�line� i�e� runs are checked for satis	ability
while they are constructed�

� We give a concrete algorithm for a speci	c model of computation and a
	xed logic� We also show how to apply our method to the veri	cation
of asynchronous circuits and give some experimental results�

The rest of this paper is organized as follows� In the next section� de	ni�
tions of Petri nets and their runs are given� In section �� we brie�y introduce
the logic we are using� The partial order model checking algorithm is pre�
sented in section �� Some experimental results are shown in the next section�
and 	nally we summarize our discussion�

� Petri nets

A Petri net N is a tuple N � �P � T � F � s��� where


� P is a 	nite set of places�

�� T is a 	nite set of transitions �P � T � ���

�� F � �P � T � � �T � P � is the �ow relation� and

�� s� � P is the initial state of the net�

For any transition t� �t � fp j �p� t� � Fg� t� � fp j �t� p� � Fg denote the
preset and the postset of t� respectively� For simplicity� we disallow �idle�
transitions t with �t � t��

A state s of N is any subset of P � If p � s� we say that p is occupied�
else p is empty at s�

A transition t is enabled at state s if �t � s �all its input places are
occupied at s�� Otherwise� the transition is disabled�

A state s� is the result of �ring a transition t at a state s �s
t
� s��� if t

is enabled at s and s� � �s	 �t�� t�� s� is a successor state of s �s� s��� if

there exists some t such that s
t
� s�� A run � � �s�s�s� 
 
 
� of N is a 	nite

or in	nite sequence of states si such that s� is the initial state of N � and
for every i si � si��� Note that with this de	nition we adopt the so�called
interleaving view� The parallel execution of two independent transitions t�
and t� �i�e�� ��t�� t���� ��t� � t��� � �� at a state si is modelled by the two

sequences ����si
t�� si��

t�� si������ and ����si
t�� s�i��

t�� si�������
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A state s is reachable if there exists a 	nite run whose last state is s� A
Petri net is one�safe if for all reachable states s and all t � T � �t � s implies
t� � s � �t �i�e�� if t is enabled� then all output places of t which are not
input places of t are empty�� In the sequel a net will always be a one�safe
Petri net� It is very easy to extend our theory to elementary nets� i�e� nets
in which a transition t is enabled at state s i� �t � s and t � �s � �t�

A transition t is said to be continuously enabled in a run �� if there exists
an i such that t is enabled at all states sj of � with j � i� A run � is just
if there is no continuously enabled transition in �� i�e� if for any t and any i
there exists a state sj �j � i� such that t is disabled in sj� Note that every
just run � is maximal� that is� if � is 	nite� then its 	nal state contains no
enabled transitions�

The behavior B�N� of N is the set of all just runs of N �
Here� we add some intuitive explanation about the maximality and the

justice of runs� If we did not to require the maximality of runs� then every
invariance properties of the kind �there exists a run such that every state
satis	es p� would be trivially true or false� depending on whether the initial
state satis	es p or not� Justice means that not only the whole net� but
every parallel component of the net is executed whenever possible� Let�s
consider the net shown in Figure 
 representing that action ��action � and
action ��action 	 are repeatedly activated in independent processes A and
B� respectively� Suppose that the initial state is s� � fa� cg� A run � �
�s�s��

� �i�e� � � �s�s�s�s� 
 
 
�� of the net is not just� where s� � fb� cg�
because t� is continuously enabled in �� Thus� the proposition �action 	 is
eventually activated� always holds also in this net� Since the behavior of
each process is independent� this restriction of runs is also reasonable�

Finally� we�ll show how nets are suitable to model asynchronous or speed
independent circuits� Asynchronous circuits are those which function cor�
rectly assuming arbitrary delays in the components and no delays in the
wires�DNS���� Those circuits can be modeled with nets as follows� Each
wire of the circuits takes two values� � and 
� Thus� it is represented by
two places� either of which is always occupied� A token in those places are
controlled by a component according to the function of the component and
the state of its input wires� Figure � illustrates a net modelling a two in�
put AND gate as an example� In this 	gure� p� and p� represent an input
line of the AND gate� p� and p� represent another input line� and p� and
p� represent an output line� The change of the output value from � to 

is represented by 	ring the transition t�� while the change from 
 to � is
represented by 	ring t� or t�� Although each place has several input�output
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Figure 
� A net representing two independent processes�





transitions� only p� and p� are controlled by t�� t�� and t�� The 	ring of�
for example� t� does not move any token in p� or p�� The justice of runs
completely represent arbitrary delays in the components�
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Figure �� A net modelling a two input AND gate�

� Logic

To obtain an e�cient model checking algorithm� we want to reduce the size
of the state space� using the fact that 	rings of independent transitions are
only partially ordered by causality and a given property� and that the order
of 	rings of transitions not related by this partial order is irrelevant for the
evaluation of the given property� Of course� the result of the evaluation on
both the full state space and the reduced state space must be identical� If
logics have some properties� then this property may hold on considerably
reduced state space� For example� in branching�time temporal logics such
as CTL�CES��� branches in the state space have signi	cant meanings than
in linear�time temporal logics� Thus� in order to preserve the truth of the
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formulas� the reduced state space must keep every branch of the full state
space� but this limits the reduction of the state space� Further� if a formula
includes the next�time operator� then it is rather clear that only the full
state space gives the correct truth of the formula� Therefore� we consider a
linear�time temporal logic without the next�time operator� which is de	ned
formally below�

Let for the rest of this section a net N � �P� T� F� s�� be given� The set
of atomic propositions for N is the set P of places� The formulas of linear
temporal logic �LTL� for N are de	ned inductively as follows�


� Every atomic proposition p � P is a formula�

�� false is a formula� and

�� If �� and �� are formulas� then ��� � ��� and ���U��� are formulas

Additional boolean connectives true� �� � �� and temporal connectives ��
� can be de	ned as usual�

Validity �i�e� ��� i� j� �� of an LTL formula � in a run � � �s�s�s� 
 
 
�
and a state si � � is de	ned by induction on ��


� ��� i� �j� false

�� ��� i� j� p i� p � si for p � P

�� ��� i� j� ��� � ��� i� ��� i� j� �� implies ��� i� j� ��

�� ��� i� j� ���U��� i� there exists j � i such that sj � �� ��� j� j� ���
and for all k� i � k � j� ��� k� j� ��

� is valid in � �� j� �� if ��� �� j� �� � is valid in N �N j� �� if � is valid
in all � � B�N�� � is satis�able in N if N �j� ��� i�e� i� there exists a run
� � B�N� such that � j� ��

Note that our de	nition of the temporal operator U is stuttering invari�

ant� that is� the next�time operator is not de	nable in our logic� and that
we use the so called initial de	nitions of satis	ability and validity�

� Partial order model checking

In this section� we 	rst present an LTL model checking algorithm� and then
show how to generate a reduced state space for the given net and formula�
Let for the rest of this section � be a 	xed LTL formula for the net N �
�P� T� F� s���
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��� LTL model checking algorithm

Suppose that a relation R � �P � �P represents a state space� where �P

denotes the set of all subsets of P � For example� R for a full state space of
N is de	ned as � �s� s�� � R� i� s is reachable from s� and s� s��

The following model checking algorithm of LTL is based on �LP����
Let U� be the set of formulas of the form ���U��� appearing in �� A

guess g is any subset of U�� The intuition behind this de	nition is that a
guess contains exactly those U �formulas which are guessed to be true in a
given state�

Given a state s and a guess g� the truth value of the subformula � of �
in �s� g� �i�e� �s� g�jj	�� can be determined inductively as follows�


� if � � false� then �s� g� � jj	�

�� if � � P � then �s� g�jj	� i� � � s

�� if � � ��� � ���� then �s� g�jj	� i� �s� g�jj	�� implies �s� g�jj	��

�� if � � ���U���� then �s� g�jj	� i� � � g

A guess g is called consistentwith state s� if for every formula � � ���U��� �
U�� the following holds�


� if � � g� then �s� g�jj	�� or �s� g�jj	��

�� if �s� g�jj	��� then � � g

An atom is a pair � � �s� g� such that g is a guess consistent with state s�
The set of initial atoms consists of all atoms � � �s�� g� such that s� is the
initial state of the given net N � and �jj	�� where � is the given formula�
Note that there are at most �jP j 
 �jU�j di�erent atoms for any net N and
formula ��

Let � be an atom� The set of positive future obligation PFO��� � U� is
given by

PFO��� � f� j � � ���U���� �jj	�� � � jj	��g�

The set of negative future obligation NFO��� � U� is given by

NFO��� � f� j � � ���U���� � � jj	�� �jj	��g�

Thus� the positive future obligations of an atom � are all those U �formulas
which are guessed to be true but are not immediately satis	ed by �� and
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the negative future obligations are those U �formulas which are guessed to
be false but cannot be refuted by looking at � alone�

Now� we�ll de	ne an atom graph� on which the model checking algorithm
traverse� by a relation S such that ���� ��� � S� i�


� �� � �s�� g�� and �� � �s�� g�� are atoms� and

�� �s�� s�� � R� and

�� PFO���� � g�� and

�� NFO���� � g� � ��

Let S� be the transitive re�exive closure of S� A nonempty set of atoms
G is said to form a strongly connected component �SCC� if �G�G� � S�� By
abuse of notation we say that ���G� � S� if there exists an �� � G such that
��� ��� � S��

An SCC G is maximal if there do not exist two di�erent atoms ��� ��

such that ���� ��� � S�� ���� ��� � S�� �� � G and �� �� G� Note that for
every atom � there exists exactly one maximal SCC G such that � � G �G
may be f�g��

An SCC G is said to be self�ful�lling if for every atom �� � G and for
every formula � � ���U��� � U� such that ��jj	�� there exists an atom
�� � G such that ��jj	���

A SCC G is called just if there is no continuously enabled transition in
G�

A SCC G is called accepting if it is self�ful	lling and just�

Theorem ��� � Let N be the given net and � be the given LTL formula for
N � � is satis	able by N � i� there exists an initial atom � and an accepting
SCC G such that ���G� � S�� �

Theorem ��� � For any accepting SCC� there exists an accepting maximal
SCC� �

Therefore� in order to 	nd out whether � is satis	able byN it is su�cient
to generate the maximal SCC�s reachable from any initial atom and to check
whether they are accepting� Note that this check can be done on�line� that
is� we can enumerate the maximal SCC�s while constructing the atom graph�
But� for simplicity� we don�t mention more about it here�

The complexity of the LTL model checking is exponential in the size of a
formula�LP���� linear in the size of the state graph�LP���� and exponential
in the size of a net�
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��� Reduced state space generation

Here� we try to generate the reduced state space of a given net with respect
to a given formula on which the LTL model checker still yields the correct
result�

Usually� a given formula contains only a small subset of P � Let P� denote
the smallest subsets of P such that all atomic propositions appearing in �

are contained in P��
We consider a set of enabled transitions whose 	ring orders are relevant

when an enabled transition tf 	res� We call this set the dependent set of tf �
Basically� con�icting transitions with tf should belong to the dependent set
of tf � However� a problem occurs when some of the con�icting transitions
are disabled� In the example of Figure �� although t� is disabled� it may
con�ict with t� when it gets enabled� Thus� we include in the dependent set
the enabled transitions �in this case� t�� that can enable such t�� There is
another class of relevant transitions� If tf a�ects some of P�� the 	ring order
with other transitions that also a�ect some of P� is relevant to evaluate the
given formula� For example� t� a�ects both p� and p� and t	 a�ects p
 in the
net of Figure �� If the given formula is ��p�� p	��p
�� then the 	ring order
between t� and t	 is relevant� We call these transitions that a�ects some
of P� visible� If tf is visible� then other enabled visible transitions should
be included in the dependent set of tf � Further� we have to treat disabled
visible transitions in the same manner as disabled con�icting transitions� In
the same example as above� since a visible transition t� is disabled� t
 that
can enable t� should be included in the dependent set� This consideration
means that we can identify visible transitions with con�icting transitions�
Finally� the dependent set of t� in this case is ft�� t�� t	� t
g�

Now� when we 	re tf � the other transitions in the dependent set of tf
should be 	red� That is� if t� is included in the dependent set of tf � then
the dependent set of t� should also be 	red� In the above example� the
dependent set of t� includes t�� and the dependent set of t
 includes t��
Since no new transitions are introduced by t� and t�� we can obtain a set F
� ft�� t�� t�� t	� t
� t�g starting from t�� F has the property that the dependent
set of any element of F is also in F � We call this F the �rable set of the
considered state� The reduced state space is constructed by 	ring each
transitions in the 	rable set instead of every enabled transition� Note that
the 	rable set of a state depends on the 	rst chosen transition� For example�
if we 	rst choose t�� then the 	rable set is ft�� t�g� Although any 	rable set
works correctly� the smallest 	rable set may generate a small state space�







��
��

��
��u ��

��

��
��

��
��u��

��u

��
��

��
��

��
��u

�

�
���

�
��R

�
���

�

�

�

�
���

�
��R�

�

�

�

�
���

�
��R

t� t�

t�

t� t�t	

t�

t
 t�

p�

p� p�

p�

p�p
 p�

p	

p�

Figure �� An example including disabled visible or disabled con�icting tran�
sitions�

This idea is formally stated below�

De�nition ��� � For any transition t� state s� and set of transitions M � we
de	ne the following sets of transitions�

� choose�M� chooses one element of M by a 	xed rule� For example� we
can choose a smallest�indexed transition� Note that the correctness of
our method does not depend on this function� It only in�uences the
e�ciency�

� necessary�t� s� � ft� j p � choose��P 	 s� � �t�� p � t��g�
necessary�t� s� is a set of transitions which are necessary for the 	ring
of t� If t is enabled in a state s� then necessary�t� s� is empty� and
if t is disabled in s then there exists an empty place p � �t such
that all t� with p � t�� are contained in necessary�t� s�� For example�
necessary�t�� s� � t� in Figure �� where s is the state shown in the
	gure�

� necessary��t� s� is the smallest set M containing t such that for any
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t� �M � necessary�t�� s� �M � If t is enabled� then N��t� s� � ftg� For
example� necessary��t�� s� � ft�� t�g in Figure ��

� enabled�s� � ft j �t � sg
enabled�s� is the set of enabled transitions at s�

� active�t� s� � ft� j t� � necessary��t� s� � enabled�s�g
active�t� s� is the set of enabled transitions in necessary��t� s�� Note
that active�t� s� � ftg� if t is enabled at s�

� visible� � ft j ��t � t�� � P� �� �g
visible� contains all transitions which a�ect places appearing in ��

� con�ict�t� � ft� j �t � �t� �� �g
con�ict�t� is the set of all transitions statically con�icting with t� Note
that t is also in con�ict�t��

� con�ict��t� �

�
con�ict�t� if t �� visible�
con�ict�t� � visible� otherwise

con�ict
��t� is the set of transitions whose 	ring orders with t are ba�

sically relevant for the evaluation of ��

� dependent�t� s� �
�

t��con�ict
�
�t

active�t�� s�

�

Now� let �rable�s� be any set satisfying�


� for any t � �rable�s�� dependent�t� s� � �rable�s�� and

�� for any enabled transition t at s� there exists a state s� such that s �

s�
t�� 
 
 


tn��
� sn � s�� for 
 � i � n� ti � �rable�si�� and t � �rable�s���

Then� the reduced state space is de	ned by the smallest relation R satisfy�
ing �


� �s�� s�� � R� i� for some t� s�
t
� s� and t � �rable�s��� and

�� �s� s�� � R� i� there exist s�� and t such that �s��� s� � R� s
t
� s�� and

t � �rable�s��
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The second requirement for the 	rable sets is necessary to give the
chances for 	ring continuously enabled transitions� For example� let�s con�
sider the net shown in Figure � with a visible transition t� and invisible tran�
sitions t� and t�� Let s� � fa� bg �the initial state�� s� � fa� dg� s� � fb� cg�
and s� � fc� dg� Without the second requirement� its reduced state space
may be

�s�� s�� � R

�s�� s�� � R�

because it is possible that the 	rable sets are �rable�s�� � ft�g and �rable�s��
� ft�g� Since t� is continuously enabled� this reduced state space does not
yield the same result as the full state space in the evaluation of� for example�
�c� From the second requirement� the 	rable set of� for example� s� must be
ft�� t�g� and this generates the correct reduced state space�
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Figure �� An example of a net�

Figure � shows one implementation of our partial order model checking
algorithm in the on�line style� Note that dependent��t� s� is the smallest set
M containing t such that for any t� � M � dependent�t� s� � M � The second
requirement for the 	rable sets is implemented by extending the 	rable set
when continuously enabled transitions are found at the root of a SCC� It
uses the algorithm to 	nd SCC�s in �AHU����

Finally� we mention how to handle unrestricted runs� Again� consider
the net shown in Figure � with a visible transition t� and invisible transitions
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procedure PartialOrderModelChecking�atom a�
var dfnumber� sum� new� succ�
if �table�a � unde�ned� f

dfnumber �� state number���
table�a �� dfnumber�
push�stack� a��
t �� �some transition enabled at a�s��
sum �� fg�
repeat

new �� dependent
��t�a�s� � sum�

sum �� sum � new�
succ �� fa� j a��hs��g�i is a consistent atom�

a�s
t
�a��s� for some t� newg

for all �a� � succ� do f
PartialOrderModelChecking�a���
table�s �� min�table�a� table�a���

g
if �table�a � dfnumber� �� a is the root of an SCC ��
SCC �� fg�
required �� ful�lled �� fg�
disabled �� fg�
repeat

b �� pop�stack��
push�SCC� b��
required �� required �f�pUq�j b jj��pUq�g�
ful�lled �� ful�lled �f�pUq�j b jj�qg�
disabled �� disabled �ft j t is disabled in b�sg�

until �b � a��
if �required � ful�lled� and �disabled � ft j t�Tg�
return with success� �� f is satis�able by N ��

cont enabled �� ft j t�Tg� disabled�
while SCC �� � f

b �� pop �SCC��
if �cont enabled � sum� f
then table�b �� MAXINT�
else push �stack� b��

g
t �� �some transition in �cont enabled � sum���
g

until �cont enabled � sum��
g

end of procedure

Figure �� Partial order model checking algorithm�
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t� and t�� Unlike the previous example�

�s�� s�� � R

�s�� s�� � R

�s�� s�� � R

is also a possible reduced state space� This can be obtained by choosing t�
instead of t� at s� to compute �rable�s��� Note that from this reduced state
space� a non�just run �s�s��� can not be extracted� Hence� for example� ��c�
which is satis	able by unrestricted runs� is not considered to be satis	ed by
this reduced state space� Therefore� for example� the following additional
requirement for the stubborn sets is necessary for �Val����

If there exists an enabled invisible transition at a state s� then
�rable�s� should contain an enabled invisible transition�

By this requirement� even if we choose t� at s� in the above example�
�rable�s�� contains an enabled invisible transition t�� This results in the
reduced state space with a non�just run �s�s��

��
It is clear that this additional requirement makes the 	rable set bigger�

and so generates bigger reduced state space� However� note that we don�t
have to consider non�just runs to model asynchronous circuits� because ar�
bitrary delays in the components of asynchronous circuits can be modeled
by the property of just runs where every enabled transition will eventually
	re unless it is disabled�

��� Correctness of the partial order model checking

Once a reduced state space is generated as shown in the previous subsection�
we can obtain the correct result by running the LTL model checker shown in
��
 on this reduced state space� In this subsection� we show only the sketch
of the correctness proof of this partial order model checking�

In order to show that our method is correct� that is� the truth of a given
formula on both the full state space and the reduced state space is identical�
it is su�cient to show �

P�� For any just run � of a net N � there exists a just run � represented by
the reduced state space such that the same set of visible transitions
	re in � and �� and that the 	ring order of those visible transition in
both � and � is identical�

P�� The reverse direction of P� holds�






It is rather apparent that the set of runs represented by the reduced
state space is a subset of the behavior B�N�� Hence� P� holds� In the rest
of this subsection� we try to prove P��

First� the formal de	nition of runs represented by the reduced state space
will be shown� Let G�N��� denote the reduced state space ofN with respect
to ��

De�nition ��� � In the 	rst visit to a state s� if t is chosen from enabled
transitions at s by the algorithm shown in Figure �� then

�rable
��	� � dependent

��t� 	��

If the i�th extension of the 	rable set at s occurs and t is chosen from the
continuously enabled transitions� then

�rable
i�	� � dependent

��t� 	�	
i���
j��

�rable
j�	��

If the i�th extension of the 	rable set at s does not occur� then

�rable
i�	� � ��

�

Note that

�rable�s� �
m�
j��

�rable
i�s��

where m is the number of the extension of the 	rable set at s�

De�nition ��� � � � �s�s�s� 
 
 
� is a run extracted from G�N���� if


� s� is the initial state of N � and

�� for all i � �� �si� si��� � G�N���� and

�� if � is 	nite and sn is the last state� then there is no enabled transition
at sn� and

�� for any state s appearing in �� the state transition �s
t�
i mod �m���

� s��
occurs from the i�th appearance of s in �� where for � � j � m�
t�j � �rablej�s�� and m is the number of the extensions of the 	rable
set at s�




�

�

The above � means that if s appears in	nitely often in a run � extracted
from G�N���� then � should be intuitively

�s� 
 
 
s
t��� s�� 
 
 
s

t��� s�� 
 
 
s
t�m� s�m 
 
 
s

t��� s�� 
 
 
��

It is necessary that at least one transition in each �rablej�	� �� � j � m�
	res in order to make � just� Since for di�erent j and k� transitions in
�rablej�	� and �rablek�	� are concurrent� we only consider one 	ring order
among those transitions�

Then� we introduce a new notion called i�transitions because �


� It is necessary to distinguish two or more di�erent 	rings of the same
transition in a run� and

�� It simpli	es the proof to have the information about the number of
	rings of the transitions that belong to con�ict

��t��

De�nition ��� � An i�transition 
 is �t� N�� where t is a transition �name�
and N � f�t�� n�� j t� � con�ict��t�� n� is the number of 	rings of the tran�
sition t�g� �

From the above de	nition� it is rather easy to see the following statements
hold�


� An i�transition 	res at most once in a run�

�� If any i�transition that 	res in a run � 	res also in another run �� then
the 	ring order of transitions that 	re in � is the same as that of ��

To prove P�� we de	ne a notion present and a relation � between two
runs� Let pre�xk��� denote the pre	x of length k of ��

De�nition ��	 � In the last state of pre�xk���� 
 � �t� N� is said to be
present� if for all �ti� ni� � N � ti 	res exactly ni times in pre�xk���� �

This presentness is precisely de	ned on the pre	x of a run� However� for
simplicity� we sometimes say assuming a particular run � that 
 is present
in a state of �� Let present �M� s� � f
 j 
 � �t� N�� t �M � 
 is present at
sg� where M is a set of transitions and s is a state�




�

De�nition ��
 � Let � and � be a run� � � �� if any i�transition that 	res
in � 	res also in �� �

Then� we can prove the following three lemmas�

Lemma ��� � For any just run � of N � there exists a run � extracted from
G�N��� such that � � ��
�Sketch of proof� The proof is by induction on the length k of the pre	x of ��
The case k � 
 is trivial� Suppose that pre�xk��� � �� We show that at least
one i�transition in present ��rable�sk�� sk� 	res also in �� where sk is the last
state of pre�xk���� Let 
� � �t�� N�� � present ��rable�sk�� sk�� If 
� 	res in
�� then we are done� Otherwise� since all i�transitions in pre�xk��� 	res in ��
some i�transition� say 
� � �t�� N��� corresponding to con�ict��t�� must 	re
in �� If 
� is present and enabled at sk� then t� must be in �rable�sk�� So� we
are done� Otherwise� since again all i�transitions in pre�xk��� 	res in �� some
i�transition� say 
� � �t�� N��� corresponding to active�t�� sk� must 	re in ��
We can consider that 
� to be a new 
�� and repeat the above consideration�
Since 
� 	res before 
� in �� we can 	nally 	nd an i�transition 
 � �t� N�
such that 
 	res in �� and that 
 is present and enabled at sk� So� we are
done� �

Lemma ��� � Let � be any just run of N � If � be a run extracted from
G�N��� such that � � �� then � is just�
�Sketch of proof� If � is 	nite� then � is just� Otherwise� suppose a transition
t is continuously enabled from sa in �� Since the number of states are 	nite�
there exists a root s of a SCC such that s appears in � in	nitely often� and
that t is enabled in the SCC� From the requirement � of De	nition ���� for
some j� t will eventually be included in �rablej�s�� Since � � � and � is
just� t will 	re or be disabled� This contradicts the hypothesis� �

Lemma ��� � Let � be any just run of N � If � be a run extracted from
G�N��� such that � � �� then for all 
 that 	res in �� 
 	res also in ��
�Sketch of proof� Suppose that there exists an i�transition that 	res in ��
but not 	re in �� Without loss of generality� we can assume that 
 is the
	rst such i�transition in �� Suppose that the 	rings of 
�� 
�� 
 
 
� 
n enable

 in �� From the hypothesis� 
�� 
�� 
 
 
� 
n 	re also in �� From this and
� � �� 
 is enabled in �� Since � is just from Lemma ��� and again � � ��

 will eventually 	re in �� �

From Lemma ��
 and Lemma ���� we have proven P�� hence� the cor�
rectness of our method�




�

� Experimental results

In order to demonstrate the e�ciency of our method� we show some exper�
imental results in this section� As examples� we use nets that model some
control parts of an asynchronous processor�UHN���� Table 
 shows the sizes
of those nets�

Table 
� Size of example nets�
N� N� N� N�

� of places 
�� 
�� ��� ���

� of transitions 

� 

� 
�� 
��

For the model checking� we also use very simple LTL formulas like �

���m req � �m reqUreg data��

We don�t mention the detail of the veri	cation� but show only the perfor�
mance of the partial order model checking comparing with that of the total
order model checking� Table � shows the number of atoms generated for the
model checking and CPU times for each net� The program is coded in C
language� The CPU times were measured on a �� Mips workstation� N� and
N� seem to have less concurrency� Thus� although the reduced state �atom�
space is smaller than the full state �atom� space� the partial order model
checking is ine�cient due to its overhead� On the other hand� N� and N�

seem to have much concurrency� Therefore� the partial order model checking
is much more e�cient than the total order model checking� One clear ad�
vantage of our approach is that it is fully automatic� while the disadvantage
is that the state space generation is necessary for each formula�

� Conclusion

Mainly for the veri	cation of asynchronous circuits� we have developed the
concrete algorithm for the partial order model checking of one�safe Petri
nets and a linear�time temporal logic without the next�time operator� The
partial order model checking basically consists of the reduced state space
generation and the conventional LTL model checking� The reduced state
space generation is based on the fact that the 	rings of the transitions are



��

Table �� Performance of the model checking algorithms�

Total order MC N� N� N� N�

� of atoms ��� 

��� 
���
 �� �������

CPU time �sec� ��� ���� 
���� �� 
�� min�

�Total order MC could not 	nish N� by lack of memory�

Partial order MC N� N� N� N�

� of atoms ���� ���� �� 
����

CPU time �sec� 

�� ���
 ��� 
����

only partially ordered by causality and a given formula� and that the order
of 	rings of transitions not related by this partial order is irrelevant for
the evaluation of the given formula� Further� we handle only just runs�
because �
� it is suitable to model asynchronous circuits� and ��� it makes
the method e�cient� Unfortunately� The partial order model checking does
not improve the worst case time complexity� since it is possible that there
is no concurrency in the given net� in which case the reduced state space
may be the same as the full state space� However� the experimental results
demonstrate that the partial order model checking is sometimes much more
e�cient than the conventional �total order� model checking�

We are now trying to verify control parts of an asynchronous processor
using this presented method� This method can also be extended very easily
to the partial order model checking for time Petri nets and a real�time logic�
which is suitable for the veri	cation of real�time systems� This is another
research project that we are devoted to�
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