Journal of Applied Non—Classical Logics
Vol. 2 = n°2, pp.157 — 180, Hermes, Paris (1992)

EXPRESSIVE COMPLETENESS OF TEMPORAL LOGIC OF TREES

BERND-HOLGER SCHLINGLOFF
Institut fur Informatik der Technischen Universitdt Minchen
Orleansstr. 34, D—81667 Minchen, Germany

Many temporal and modal logic languages can be regarded as subsets of first order logic,
i.e. the semantics of a temporal logic formula is given as a first order condition on points of
the underlying models (Kripke structures). Often the set of possible models is restricted to
models which are trees. A temporal logic language is (first order) expressively complete, if
for every first order condition for a node of a tree there exists an equivalent temporal formula
which expresses the same condition. In this paper expressive completeness of the temporal
logic language with the set of operators ¢ (until), & (since), and X (k—next) is proved, and

the result is extended to various other tree—like structures.

Keywords: Temporal logic, modal logic, expressive completeness, branching time logic, trees

0 Introduction

During the past decade temporal logic has turned out to be an adequate tool for
expressing properties which depend on the flow of time. The variable—free operator
formalism mostly is more convenient than the usual first or second order logic no-
tation as a means of formalization. However, depending on the structure of time,
not all first order logic statements may be expressible in temporal logic. Kamp[1]
proved that for continuous linear flow of time every first order formula with exactly
one free variable can be translated into the temporal logic language with the op-
erators U (until) and § (since) . Gabbay[2] showed that for arbitrary branching
time no finite set of operators exists to express every first order property. Kozen
and Immerman[3] gave a semantical proof that for b—bounded branching trees (b
finite) there must exist a set of (64 1)—dimensional expressively complete operators.
Hafer and Thomas[4] showed that for binary trees (b = 2) every variable free second
order formula (with second order quantification restricted to path quantifiers) can
be translated into the temporal logic CTL*. In this paper we combine and extend
the above used methods and results to show that for b—bounded branching time
first order logic is expressively equivalent to temporal logic with &,i and special
“nexttime”—operators Xy, ..., X3. These operators allow to count the number of
different successors of a node with the same label. This result can be extended to
ordered trees and to trees with b distinguished successor relations. The proof pro-
ceeds via a so—called two dimensional temporal logic with the operators &, U, Ay
and U!. Though two dimensional formulae can be syntactically transformed into
the one dimensional logic with &, U and A, the two dimensional logic seems to be
of some interest of its own, since it allows the convenient specification of “interval
properties”.

This paper is organized as follows: In section 1, basic definitions and lemmas are
given. In section 2, expressive completeness of the two dimensional logic is proved.
In section 3, a syntactical transformation of two dimensional to one dimensional
formulae is given. In section 4, extensions and limitations of our methods are
discussed.

1 Definitions

Definition 1.1 Let b < w be a finite number. A b—ary tree (N, S} is a set of nodes
N together with a successor relation S C N x A such that

e for every node x there are at most b successor nodes, i.e. nodes y with zSy
e for every node x there is at most one predecessor node, 1.e. a node y with ySz

e there is a root node r without predecessor, such that every node can be reached
in finitely many S—steps from r.

Let St be the transitive and S* be the reflexive and transitive closure of S.

Definition 1.2 Let & = {ap,..., 25} be a set of individual variables and P =
{p1,...,pm} be a set of (monadic) predicate symbols. The language PL"(P, <) of
first order predicate logic wich uses at most the predicate symbols P, free variables
& and has at most quantifier depth n is defined as follows:

o £S*y € PL"(P,SU{x,y}) for every n, P, S.
e pay € PL"(PU{p}, SU{x}) for every n, P, 3.
o L € PL"(P,3) for every n, P, S.

o If Ac PL”I('Pl, %1), B e PL”2('P2, %2), then (A — B) € PLmaX(nl’n2)(P1 U
Pq, I U%z)

o If A€ PL"(P,S) and x € Y, then Jx(A4) € PL" (P, 3\ {z})

Let PL(P,3) = U, PL"(P,9).

We write PL" (P, zq, 1, ...) for PL"(P,{zg,21,...}). The free variables zq, z1, ...
of a formula are also called its parameters.

Additional junctors T,—, A, V, < A, V,V are introduced as abbreviations as usual.
Superfluous brackets are usually omitted.

Definition 1.3 Let A € PL(P,S). A model (also called (Kripke—)structure) $ =
(B,n,&) for A consists of a tree B = (N, S), an interpretation n : P — 2V for the
predicate symbols and an interpretation ¢ : & — A for the free individual variables.
The forcing relation = between models and formulae is defined as usual such that
the relation symbol S* is interpreted as the reflexive and transitive closure of the
successor relation S.

Additional relations =, #, St .S are introduced as abbreviations via x = y if £5*y A
yS*r,x A yif —x =y, Sty if eS*y Az £y, Sy if STy A —=Fz(xSTz A 25T y).
We write (B, 5, ag, a1, ...} E @@, 21, .0, if & = {xg, 21, ...} and &(zg) = ao, £(x1) =
ai, Often we name nodes with the same letters z, y,... as variables and let £ be
the i1dentity function.

Languages on a finite signature (P, <) with finite quantifier depth are essentially
finite:

Lemma 1.4 For every n, P, < there is a finite set # C PL"(P, <) such that every
formula from PL" (P, <) is equivalent to a formula from 6.

The proof of this lemma is standard and can e.g. be found in [3].

Definition 1.5 Let O = {(’)gil), .. .,OS”} be a set of operators O; with arities ;
and P = {p1,...,pm} be a set of propositional variables. The language TL(O,P)
of temporal logic is defined by

o If p € P, then p € TL(O,P)

L € TL(O,P)

If A, B € TL(O,P), then (A — B) € TL(O,P)

If 0 € 0 and Ay, ..., 4; € TL(O, P), then Oj(Ay, ..., A;) € TL(O,P).
The semantics of TL(O,P) is given by the semantics of the operators:

Definition 1.6 Let for every i—ary Operator O € O a formula po € PL(P,)
(its table) be given. Then a translation 7 : TL(O,P) — PL(P, zy) can be defined
by

;)" = pi@
L) =

B)T =(A) = (B)

(
(
(A
(O5(A1,..., ADY = 9o (L] (a,)7(w0/,), - P/ (A7 (v0/,)

Here Pk(?/)/ "(%0/,) means that every occurrence of p; with parameter y is re-

placed by the formula (Ag)7, where the parameter y of py, is substituted for the free
variable xg of (A;)7. When substituting inside the scope of a quantification bound
variables may have to be renamed.

Note that L(%0/,) = 1

Example 1.7 Let the operators U (until), S (since), and A} (k-next) be defined
by the following tables:

ey = y[xoSTy Aprap AVz(zo STz A 25Ty — pao)]
ps = y[ySTao Aprap AVz(ySTz A zStag — pa))]
e =y, o N [0Sy Aprn AN (v £ y5)]

The table of A} defines an operator for every k between 1 and b; whenever we write
TL(..., X3) we mean that all operators A7, ..., Xy are present.

The Aj—operators allow to count the number of different successors of xy with
the same label; e.g.

(p AS(Xap, 1)) = p@o) A EIy[yS"‘ 2o A (Xap)T (%0 /) AVz(ySTz A28t g — J_(Vﬁo/z))]

= pwo A Jy[ySzo A i, y2(ySyr AySys Ayt £ y2 A pwn A pwyo)]
= p@o) Ay, 1 [ySzo A ySyr Ayr # xo A pyp)]

means that besides xy there is another successor of xy’s predecessor which satifies
p. Similarly
S(X1p, LYA (p — S(Xap, L))

means that there is another successor of xg’s predecessor which satisfies p.

Note that A;1(A) can be defined as U (A, L). Similarly we write Y(A4) for S(A, 1).

Let F' € TL(O,P) and $ = (B, n,a). Validity of F in $ is defined by $ | F if
$=F7. € TL(O,P) is equivalent to ¢ € PL(P,) if for every § = (B, 7, a) it
holds that § = F iff $ = ¢.

So by definition, for every formula ' € TL(O, P) there exists an equivalent formula
¢r € PL(P,zg). Expressive completeness means the existence of a translation in
the opposite direction:

Definition 1.8 A set of operators O is expressively (or functional) complete, if for
every formula ¢ € PL(P, z) there exists a formula F, € TL(O,P) equivalent to

®.

A famous result in this context is Kamps Theorem][1]:
Theorem 1.9 If b = 1, then {U/,S} is expressively complete.
Gabbay[2] sharpened this result by proving:

Theorem 1.10 If b = 1, then for every formula of TL(U,S,P) there exists an
equivalent boolean combination of formulae from TL(U,P) and TL(S, P).

Hence for b = 1, {U} is expressively complete, if we restrict all quantifiers Jy to
nodes y with z9S*y.

The above definition of 7 throws every temporal formula onto a predicate logic for-
mula with monadic predicate symbols P and one free variable zy. A two dimensional
temporal logic i1s defined by operator tables using P as dyadic predicate symbols and
two free variables xq, #1. The appropriate translation function for two dimensional
operators is defined by

(O3 (A1 AD)T = 9o (P00 (417 (0,1 [y y,) PO 0 (07 (70,1 g)
In the following example a two dimensional redefinition of the operators i/, S and
A, 1s given and a new operator U! is defined:

Example 1.11
o = Ely[xoS"'y Az S*yVySta) Apiwy,) AVz(zgSTz A zSTy — pacz, xl))]
eu = Jy[roSTy Apry, w AVz(zeStz A 25ty — paz, p)]
s = ylySteo Aprwy, ap AVz(ySTz A 25T ey — pacz,)]
=Ty, ue N [20SY AN (0 # 95) A1, yo)]

So e.g. the translation of U(p, q— Ul(r, 5)) becomes:
U(p, q—U\(r, 5))TE Ely[xoS"'y Apay,p A Vz<x05+z AzSty — (q(z, Y — Ul(r, s)7 (%o, fl/z’y))>]

= Ely[xoS"'y Apw, p AVz{woSTz A zSTy Aqez,p —
— 3y [25TY A(yS Y VY STy) Ar,p AV (28T AL STY — s)] >]

Definition 1.12 Let O be a set of two dimensional operators. The projection F'*
of a TL(O,P)formula F is the PL(P, z¢)-formula obtained by replacing in F'"
every dyadic predicate pwi, y2) by pwy), and every occurrence of the free variable
z1 by g. A TL(O,P)—formula F is valid in a model $ = (B, 5, a) if its projection
F?* is valid in 8. Again F is equivalent to F’ if F' and F’ are valid in the same
models.

So the meaning of the above formula U(p, q — Ul(r, 5)) i1s: There is a p-labelled
node y such that on the path from xg to y for every g—labelled node z there is an
r—labelled node y' on this path to y or beyond y such that between z and ¥y’ the
predicate s holds.

The difference to the one dimensional formula U(p, q—U(r, 5)) can be graphically
illustrated as in figure 1.

U(p,q — UNr, s)) U(p,q — U(r,s))

Figure 1: The difference between U— and U!-operator

Hence the operator ! can be seen as a kind of “path operator” which looks
only in a given direction. The definitions of all of the other operators from example
1.11 are tailored to this intended meaning: A U defines a new direction, & leaves
the given direction unchanged, while A} eliminates the direction without defining
a new one.

The reader may ask why in definition 1.11 the same operator symbols were
chosen as in example 1.7. The reason can be found in the following lemma:

Lemma 1.13 For F' € TL(U!, S, U, X, P) define Foredim ¢ TL(S,U, Xy, P) as
the result of eliminating every exclamation mark from F'.

If in F' every occurrence of a U!-operator inside the scope of a U— or S—operator
O is in the scope of an Ap—operator which is also inside the scope of O, then F
is equivalent to Fo7¢%™m Especially formulae without #/!-operators inside of &~ or
S—-operators and formulae with no U! at all are equivalent to their one dimensional
counterparts.

Proof: If there are no U!-operators in F'| the proof is immediate from the
definition. If a U!-operator in F' satisfies the above condition, then either the first
and second parameter are the same variable (if #! is inside of A}), or the second
parameter is constantly z; (if ¢! is nested inside of U!). Since in the one dimensional
interpretation x; is identified with x¢, the additional condition x1.5*yVyS* 1 in the
definition of U! is in both cases satisfied whenever an appropriate y can be found.
So U! is equivalent to U.

O

2 Two dimensional expressive completeness

The following proof is close to the proof by Hafer and Thomas[4]. Let P be fixed
for this section, and 6™ = {¥1@p),...,Yr@p} be the finite set of formulae of
PL"(P,xy) guaranteed by lemma 1.4. Let 7" = {p11,...,P1k, P21, .-, Dok | be
b * k new predicate symbols not in P, and P* =P UT".

Definition 2.1 Let B = (N, S) be a tree and np: P — 2V be an interpretation for
P. Then the n—augmentation 5" is the extension of 1 to domain P”, which satisfies
the following condition for all p;; € 7" and all a € N:

(B,n",a) F pijeo iff (B,n,a) Iy, ..y /\ [20Syu A (yp # yv) A bjww)
BFEV

This means that p;; € 7" is true in a node a if ?; € " is true in at least ¢
successors of a. If § = (B,n,£) is a model for PL(P, <), then the n—augmented
model $" = (B, n™,¢) is a model for PL(P", 3).

Definition 2.2 Let $" = (B, n", ao, . .., ax) be an n-augmented model. The bough free

n—augmented model is $" = (B,n", ag,...,ax). Here B consists only of those nodes
a of B for which aS*a; for some a; € {ao, ..., ax}, the successor relation .S on nodes
is restricted appropriately, and 5" is 5™ with appropriately restricted range.

For 8" = (B, n", z,y), B must have one of the three forms indicated in figure 2.

r r r
Yy T z
20 21
x y T Yy

Figure 2: Three possible cases of bough free models for formulae with two parame-
ters

The bough free n—augmented model contains all the information of the original
model:

Lemma 2.3 Let & = {xg,...,21}. For every formula @i @, ...,z € PL"(P,)
there is a formula pq g, ..., 25 € PL"(P",) such that for every model $ it holds

that $ = o1 iff §" £ @

The proof can be found in [6]. It is obtained by an appropriate version of the
so—called Ehrenfeucht—Fraissé—game.

Definition 2.4 Let the restriction lFe®1] of a formula ¢ € PL(P", xg,21) to
[0, z1] be the formula obtained by replacing every quantifier Jy(...) in ¢ by Jy(zoStyA
ySta A L.

The relevant nodes ag, . . ., ax with respect to nodes by, ..., b; of a bough free model
are bg,...,b; as well as the root and all branching nodes (with more than one
successor). Let {ag,...,ar} be the relevant nodes of a bough free model. Then
there are exactly k tuples T = {¢1,...,¢;} such that ¢; = [a;,, a;,] and a;,STay,

and no other relevant node lies in between a;, and a;,. Note that the set of nodes
between a;, and a;, is linearly ordered by S™.

The following lemma is an extension of theorem 1 (p. 48) from Kampl[1] for the
non linear case. A similar lemma can be found in Gabbay, Pnueli, Shelah, Stavi[5].
It shows that formulae of first order logic, speaking about bough free models, can be
mapped onto formulae speaking about the points and linear parts which constitute
this model.

Lemma 2.5 Let & = {ag,...,2}. For every formula ¢ € PL"SP”,S) there is
a quantifier free formula ¢ € PL°(P?,S) and k formulae 1/)5“’“ e Ef”’xl] €
PL"(P", xq,z1) such that for all bough free models §" = (B, 7", ag, ..., a) with
relevant nodes {ao, ..., ax} it holds that

<Ba77naa0a~~~aak>':§0 iff <Ba77naa0a~~~aak>':’l/) and

(B, 4o, a5,) | o for all ¢; = [aj,, a;,] € T
The proof of this lemma can be found in [6]. Tt is again done by the Ehrenfeucht—
Fraissé-game. Note that lemma 2.5 depends on the fact that the underlying struc-
tures are trees; the argument is not valid for general structures.

For the proof of the following theorem we only need a special case of the above
lemma.

Theorem 2.6 {U! S, U, X} is expressively complete.

Proof: We show by induction on n: for every ¢ € PL"(P, x) there is a formula
F, € TLU!, S,U, Xy, P) such that for every 8, $ E ¢ iff § = Fi,.

Case n = 0 is trivial (p@) becomes p, L becomes L, — becomes —). Since both
languages are closed under boolean combinations, it suffices in the inductive step
to consider ¢ = Jyt(z,y with ¢ € PL™(P, z,y).
¢ 1s equivalent to the disjunction ¢1 V @2 V @3, where

p1= FyFr(rootay A rS*y A yS*x A Y@, p)
o= JyIr(roota A rS*x A 2S*y A,)
p3= JyTrzzozi(rootam ArS*z A zSzg A zSz1 Az # za A zpS* e A 1S*y A,)

Here root(r) means =Jy(yS™ r). These cases correspond to the three cases of figure
2.

For ¢1, using lemma 2.3 and lemma 2.5, we can find formulae ¢, y, m = ¥y @ A
Py @ Aapy (), Ylrvla y, and 97Ny, ©), such that for every model $ = (B, 7, z,y, r)

and corresponding bough free n—augmented model $" = (B, 77”, z,y,7),
(B,n,z,y,7) | rootm ArS*y AyS*e A,y iff

(B, ", z,y,r) Eroota ArS*y AyS* e A g A hyap A and

such that for every $ = (B, 9, z,y,r)
$ E rootr ArS*y AyS*e A,y iff

(B,n",y) E#iiw and

existence is guaranteed according to the induction hypothesis. If we replace in le
every occurrence of an augmenting variable p;; € 77 by &;F}, and call the result

model $.

The same considerations yield that s can be split such that
(B,n,z,y,7) Eroota ArS*z AzSty A v,y iff

bay’s theorems. But now, in Fbs every U—operator inside the scope of another
U—-operator has to be replaced by a U!-operator. This is necessary because we want
to interpret the resulting formula not in $ but in $, to make all /—operators “point
in the same direction”. Finally the augmenting variables have to be replaced as
before to yield the formulae Fy; and Faa. If Fa stands for (Fay A Faz), then again
we obtain § |= ¢, iff § = Fb.

A similar argument reduces @3 with
B,n,x,y,r 2, 20,21 rootMATrS* 2 AzSz0 AN2Sz1 ANzg £ 21 ANzpS*x Az1 Sy A
n

W,y
to w31—¢34, where

with P33 = 3221(2’520 AzSz1 Nz 3& 21 N P31 A @32(2’1))

F35, as well as the augmenting variables in F31, F3o and F34. The resulting formulae
P31, F32 and Fs4 can be combined to yield the intended formula F3 as follows: Every
occurrence of ¢ in Fsy is replaced by Y F51 A Y1 F30 A (F32 — Y X2F33). (Compare
this formula with the one after example 1.71)

Summarizing the achieved translations we have for every model $:

$':g0 iff $'3301\/g02\/g03 iff $':F1\/F2\/F3

3 One dimensional expressive completeness

Though the operator U! is rather easy to understand, from a theoretical viewpoint
it seems not satisfying to have only a two dimensional expressively complete logic.

In this section we therefore show how to eliminate the U !-operator from formulae
by syntactical transformations.

Lemma 3.1 Let F = (B; AUYC, D)) V (B, A=UNC, D)), and
End,= B, /\—|Bz/\L{[(Bl A By NCAU(A, By A B2)) V (AA(CV DAUC, D)), By A By AD
Ends= ~Bi A By AUJ (B A By A=C A~D AU(A, By A Ba))V
V(AA=CA (=D V-U(C,D))), Bi A Bs A ﬁc}
Iny =B A (C\/D\/S(Bz /\C,Bz))
Aty =B ABs A (C\/S(Bz ANC, Bz))

Iny = By A (~CV S(B1 A=C A=D, By))
Aty = BiA=By A (-CA=DV S(B1 A—=CA=D, By))

Then we have:
|:U(A,F) — U(A\/End1 \/Endz\/
vV [Bl A _'Bz /\U [(Inl A Endl) vV (Atz A <End2\/
\/U[(Atl A Endl) vV (Atz A Endz), IIl1 vV Atz vV IH2 vV At1]>) ; Inl]] vV
Y [ﬁBl A By AU [(Inz A Ends) V (Aty A (EndyV
\/U[(Atl A Endl) vV (Atz A Endz), III1 vV Atz vV IH2 vV At1]>) ; IHQ]:| ;
By A By)

Proof: Consider the following abbreviations:

3
i

=
=
=

o
=
>
S5

By A =By AU[Ing A Endy,Ing], By A Bs)
—B1 A By AU[Ins A Enda, Ins), By A Bs)
By A =By ANU[Aty A Ends, Iny], By A Bs)

= B1 A By AU[At1 A Endy, Ins], By A Bs)
Fyi= u(31 A =By AU[Ats AU((Aty A Endy) V (

=
=
Il
N
e N e N

Atz /\Endz),
IIl1 vV Atz vV IH2 vV At1>, Inl] ; Bl A Bz)
F5QE U(—|Bl A Bz /\L{[At1 /\U((At1 A Endl) vV (Atz A Endz),

IIl1 vV Atz vV IH2 vV At1>, Inz] ; Bl A Bz)

For every branch for which ¢ (A, F') holds there must be a node #; below zy with A
valid in 21 and for all nodes y in between the formula F" holds. The following cases
arise:

(1) For all these y it holds that By A By and therefore also F.

(2.1) There is exactly one y1, in which By A= Bj holds, for all other y it holds that
By A Bs.

(2.2) There is exactly one y1, in which =B A Bs holds, for all other y it holds that
By A Bs.

(3.1) There are several nodes y1,ya,..., in which By A =Bz holds, and no z with
—=B1 A Bs.

(3.2) There are several nodes zy, z3..., in which =By A By holds, and no y with
By A=Bs.

(4.1) There are several nodes y1, ya,..., in which By A= B> holds, and exactly one z
with =By A By, where z lies below y1,ys,

(4.2) There are several nodes z, za,..., in which =By A Bs holds, and exactly one y
with B; A = Bs, where y lies below z1, 29,

(5.1) There are several nodes ¥y, ya,..., in which By A =By holds, and several nodes
21,29, ...,1n which =By A Bs holds, where y; lies above z7.

(5.2) There are several nodes y1, ya,..., in which By A =By holds, and several nodes
21, 29,..., in which =B; A By holds, where z; lies above y;.

Let us consider the sequence of nodes between zg and x; in each of these cases to
show that these cases correspond exactly to the formulae Fi—Fys:

Case (1) is obvious: Up to A4 holds By A By and therefore in this case F is valid.

Case (2.1): Assume that in y; the formula By A =By AUN(C, D) is valid. Then
the node z required by U!(C, D) in which C holds, lies in between y; and x;, or
z =z, or £15T z. Therefore one of the pictures from figure 3 fits:

o @ o @ o @
B1, By By, By
Y1 @<— By, B, Y1 @<— By, B, Y1 @
By, By, D D
. @<= By, By, C By, Bs,D 1 @<=A,D
By, B D
z) T @-— A rn=z2@+—AC 2 @+—(

Figure 3: Three possible cases for z

Note that U (By A Ba A C AU(A, By A By), By A Bs A D) does not require the
node in which A4 holds to be identical with ;. This formula is also true if z 1s
on the path from y; to some z} with Aw@)). In this case we can consider the path
zo, ...,) instead of g, ...,z for the evaluation of U(A, F).

10

Therefore under the assumption of case (2.1) in y; the formula End; resp. in g the

formula ¢ (Endy, By A By) holds iff there is a branch with (A, F').

Case (2.2): If in y; the formula =By A Bo A—U!(C, D) holds, we get by symmetry
Ends).

Case (3.1): Every chain of nodes between ¢ and z; with By A =B; ends in a
yo, such that the subtree below yy looks like in case (2.1), i.e. also End; g holds.
We consider the path between zy and yg. If the nodes, in which B; A —=Bs holds,

are yi, Y2, ..., we have the following situation (with root to the left):
B B By By
Bz _|Bz Bz _|Bz Bz _‘BZ
l l ... End1
—@ L @ L *—@ o—
%0 y—~—1 y————1 S W
T D C T D C T
Uu\(c, D) Uu\(c, D) Uu\(c, D)

Now we have to describe the sequence of events between y; and yy. On one hand
for every node y with y; STy and yS*yo such that neither C' nor D holds in y there
must be a former node (closer to the root) in which C'A By was true, and since this
node B; was true. On the other hand, if for every such y between y; and yy the
formula C'vVDVS(Ba AC, By) is true, then at each =By also U!(C, D) holds: End; o)
guarantees, that U/!(C, D) is valid in yg. Suppose there were a y; with ~U!(C, D).
Then either =U!(C, T) holds in y; (which is impossible, because U!(C, T) has to
hold in yp), or = B2 AUN(=C A =D, =C') holds in y;. Therefore there would be a
y with =C' A =D A 8(=By,=("), hence also a y with =(C' v DV 8(B;y A C, B2)),
which is a contradiction. We can conclude that in this case U (B; A =Ba AU(Ing A
Endl,Inl), Bl A Bz) holds.

Case (3.2) is similar, we get U (= By A Ba AU(Ing A Enda, Ing), By A Bs).

Case (4.1) differs from (3.1) in that in yy not End; but Ends holds and therefore
=U!(C, D). This means that the last #!(C, D) has to be finished before yg or at latest
in yo, and therefore S(Ba A C, Bs) or C' holds in yy. Thus we have (Ats A Ends) in
Yo, B1 A Ba AU(Aty A Enda, Ing) in y; and Fyy in .

Case (4.2) again is similar to (4.1). Endis valid in yg, therefore also U!(C, D),
thus for the last y; such that =/!1(C, D) there must be a node between y; and yo
(including), in which (=C'A=D) holds, and after that no =By occurs. This is what
1s expressed by Atwyo).

Case (5.1): Here we have a chain, beginning with 1, followed by y2, ys, ...,
and zi, 29, ..., arbitrarily shuffled. For all y between y; and z; the formula In;
holds, in z; the formula Ats holds, after that up to the last element of the chain
Iny V Aty V Ing V At is satisfied. The chain ends with a yg such that (At; AEndy),

or with a zg such that (Ats AEnds). This situation is described by the formula F;.
Case (5.2) again is similar to (5.1).

Since (1)-(5.2) cover all possible cases, we have

11

|:L{(A,F) — F1\/F21\/Fzz\/Fgl\/F32VF41\/F42\/F51\/F52.

This is what was to be proved.
O

Note that on the right hand side of the equation of lemma 3.1 no U!-operator
occurs. This, together with the following lemma, gives a basis for eliminating all
U!-operators in a formula.

Lemma 3.2 The following equivalences are valid:

(i) S(AAUNC,D),BVUC,D)) — S(A, D)A{(CVDAU(C, D)V
VS[C' AS(A, D),CV DV =8(=B,=C)| A (=8(=B,~C)V (C'V DAUC, D)))
(ii) S(AA-U(C, D), BVUIC,D)) — S(A,BA-C)A(=CA(=DV-UNC, D))V
VS[~C A=DAS(A, BA-C),CVDVS(AV(BAC),B)|A
AS(B AC,B)V(CV DAUNC, D))
(iii) S(A AU!(C, D), BV -U(C, D)) — S(A,BAD)A(CV DAU(C, D))V
VS[CAS(A, BAD),~CVS(AV BA=CA=D,B)|A
AS(BA=CA=D,B)V (=CA(=DV-UNC, D))))
(iv) S(A A -UNC, D), BV -UNC, D)) — =S(=B AUNC, D), ~AVU(C, D))A
[S(ﬂ(] A=DAS(A,~C), TYV (S(A, ~C) A (~C A (=D V ~UN(C, D))))]

Proof: These formulae are derived from Gabbay[7]. As an example we prove
(iii):
The formula requires that for the current node # there exists a former node y with
yStx such that (A AUNC, D)), i.e. there is a z such that C'z) and Vi(yStTt A
tS*tz — D). There are two possibilities for z:
1) ®S*z. Then between y and # U!(C, D) holds and thus also B, therefore S(4, BA
D)y A{CV DAUNC, D)) is true.
2) zSTz. Then we have the following situation:

-C -C
A D ¢ B -C-D B -C' =D
—@ ® @ @ @ o0 —
Y z x
B AUNC, D) BV -UNC, D)

In the area, in which BV —=U!(C, D) holds, S(4, B) VS(BA-CA-D,B)V-C
is valid. The argument is the same as used in lemma 3.1. In 2z it holds that
S(B A—C A =D, B), if the last =U!(C, D) was finished before x, or ~C' A =D, if it
ended in z, or ~C' A =U(C, D), if it will end beyond x.

Exactly this situation is expressed by the above disjunction (iii).
O

Note that in these formulae on the right hand side there is no U! inside of an S
(the first conjunct of equation (iv) has to be replaced by the corresponding term
via equation (i) to get this form). (i)—(iv) therefore can be used to pull out every
formula U!(C, D) which occurs inside an S—operator.

Theorem 3.3 For every formula F' € TL(U!, S, U, P) there is an equivalent for-
mula F’, in which no !-operator occurs inside a i or S.

12

Proof: is done by induction on the number of different subformulae ¢#!(C, D)
inside any i, § in F', and for every number by subinduction on the depth of nesting
of a particular formula #!(C, D) inside of S.

Let Fy and Fy be boolean combinations of formulae with ¢!(C, D), such that C' and
D contain no U!—operator. Then F; and I can be rewritten using conjunctive and
disjunctive form as

o= (A AUNC, D))V (A2 A-UNC, D)) and
Fy — (Bi VUNC, D) A (B2 V-UNC, D))
Therefore
S(Fy, Fs) — S[(A1 AUNC, DY)V (A2 A=UNC, D)), (B VUNC, D)) A (B2 V-UNC, D)]
= S[AL ANUNC, D), By VUNC, D) AS[AL AUNC, D), By vV =UI(C, D)V
VS[A2 A=UNC, D), By VUNC, D) AS[Axs A =UN(C, D), BaV ~U(C, D)]

To each of these four S—formulae the corresponding equivalence from lemma 3.2
can be applied to yield a formula with the same subformulae and a lower nesting of

U inside S.

If U! occurs inside a U, we can replace every direct occurrence of U!(C, D) in Fy
in U(Fy, Fa) by U(C, D), because of the following equivalence:

= U (AL NUNC, D)V AsA—UN(C, D), Fy) — U(ALNU(C, DIV AsA—~U(C, D), F)

Thus the only remaining case are U!-operators in the second argument of a U—
operator. Since every such formula can be written as U (A, F1), the occurrences of
UN(C, D) can be eliminated using equation 3.1.

O

As a corollary of theorem 3.3 we get (using lemma 1.13)

Theorem 3.4 For every formula F' € TL(U!, S, U, P) there is an equivalent for-
mula F' € TL(S,U,P).

Clearly this theorem generalises if the Ay—operators are added. Therefore with
theorem 2.6 we can conclude

Theorem 3.5 {U,S, X} } is expressively complete.

4 Extensions

In this section we want to investigate on which structures other than the so far
considered tree models our method of proving expressive completeness extends.

4.1 Ordered and arc—labelled trees

Definition 4.1 An ordered tree B = (NS, D) consists of a set of nodes V| a
successor relation S and an additional ordering relation I on nodes with the same
predecessor, such that

o (N,5S) is a tree according to definition 1.1

e D is a linear (irreflexive) order on the successor nodes of each node

13

Definition 4.2 An arc—labelled tree B = (N, 51,...,.5,) consists of a set of nodes
N together with b distinguished successor relations Sy, ..., S, such that

e cach S; is functional, i.e. for every « there 1s at most one y with z.S;y
o (N,5) is a tree according to definition 1.1, where Sy if zS1y V...V zS;y.

The first order language on ordered and arc—labelled trees uses predicates St, D and
St .51,...,5, respectively. Equality is in both cases definable. It is rather easy to
see that these languages have the same expressive power as the first order language
with the predicate S* and the additional monadic predicates A @), ..., Ay and
Bi@), ..., By, respectively, where

Ap @ ifEIyl,...,yk[/\u<k(yuDyu+1)/\yka] and

By @) if Jy[ySe].
Therefore for every formula of this language we can find an appropriate tempo-
ral formula with the operators S,U, Xy and Ay, ... Ay or By, ..., By, respectively.
These new operators are “O—ary operators”, i.e. temporal constants. Thus this set
of operators is expressively complete for ordered and arc—labelled trees, respectively.

We can define “ordinary” unary modal operators A’ and By, ..., B} via

par = Jy(yDwo Apr)

B, = Hy(yskl‘o /\pl(y))
The B} —operators are similar to the inverse (k)-operators of propositional dynamic
logic PDL. On one hand, the A’~ and B} —operators can be defined using Aj and
B, respectively, as follows:

A'A = oy (A AVXL(= AR A A))

BgA — (BZ A yA)
(Remember that 1A = U (A4, L) and YA = S(A, L).) On the other hand, we can
define Ay and By by A’ and Bj:

Ap & AA . AT (k times A")

By, — B.T.

Besides that A can be defined via A’ and via Bj:

XA = Xy (ANA(ANA().) (k times A)
XA =Vp (X1(Buy ANA)YA A X (B, A A))

where the latter disjunction is over all permutations P of k different y;. Therefore
we have

Theorem 4.3 {S,U, A’} is expressively complete for ordered trees.
{S8,U,BY, ..., B} is expressively complete for arc-labelled trees.

4.2 Unbounded branching trees

It is rather easy to see that no finite set of operators can be expressively complete
if we give no upper bound on the branching degree of the nodes. Every operator
uses only a fixed number of bound variables, whereas the statement “node xy has
at least & different successors” requires k different variable names. But the above
proofs also hold if we allow an infinite set of operators:

Theorem 4.4 {S,U}TU{X}; | k < w} is expressively complete for unbounded (< w)
branching trees.

{S,UYU{B}, | k < w} is expressively complete for unbounded branching labelled
trees.

14

4.3 Arborescences

Definition 4.5 An arborescence (A, S) is a set of nodes A" together with an ir-
reflexive successor relation S C N x A, such that the following holds:

e For every node there are at most b successors
e For every node there are at most b predecessors

e For every two different nodes there is a unique finite path connecting them,
i.e. for mg # 1 there is exactly one sequence (yo, 41, ..., yn) such that zy =
Yo, €1 = yn and for every p < n holds y,Syus1 or Yut1Sy,, and for all v # p

holds ¥, # yu.

(The third condition implies that there is no loop from 2y to zg). Symmetry tells
us that we can construct a two dimensional logic with operators {U!, S, U, S, Xy,
Vi } which is expressively complete for arborescences. But the separating equations,
which allowed us to eliminate U! from under U, S fail to hold: they rely on the fact
that the set of nodes y with yS*z is linearly ordered. We therefore leave it as
an open question whether there 1s a one dimensional complete set of operators for
arborescences.

References

[1] J.AW. Kamp: Tense Logic and the Theory of Linear Order; Dissertation,
University of California, Los Angeles (1968).

[2] D.M. GABBAY: Ezpressive Functional Completeness in Tense Logic; in: U.
Ménnich (ed.): Aspects of Philosophical Logic; pp.91-117 Reidel, Dordrecht
(1981).

[3] N. IMMERMAN, D. KozeN: Definability with Bounded Number of Bound
Variables; in: Proc. 2"* IEEE LICS, pp.236-244; Edinburgh (1987). Reap-
peared in: Information and Computation 83; pp.121-139 (1989).

[4] T. Harer, W. THomMmaS: Computation Tree Logic CTL* and Path Quanti-
fiers in the Monadic Theory of the Binary Tree; in: T. Ottmann (ed.): ICALP
1987, Springer LNCS 267, (1988). Short version of T. Hafer: On the Ez-
pressive Completeness of CTL*, Bericht Nr. 123, Schriften zur Informatik,
RWTH Aachen, (Dez. 1986).

[6] D. GaBBAY, A. PNUELI, S. SHELAH, J. STAVI: On the Temporal Analysis
of Fairness; in: Proc. 7" ACM POPL, pp.163-173; Las Vegas (1980).

[6] B.-H. SCHLINGLOFF: Zur temporalen Logik von Bdumen; Dissertation, Insti-
tut fur Informatik der Technischen Universitat Munchen, Report TUM-19012;
(1990).

[7] D. GaBBAY: The Declarative Past and Imperative Future: Executable Tem-
poral Logic for Interactive Systems; in: B.Baniegbal et al. (eds), Temporal
logic in Specification, Springer LNCS 398, pp.431-448 (1989).

15

