Second International Symposium on Logical Foundations of Computer Science (2 nd 1 FCS '92)
Tver, Russia, July 1992,
A. Nerode, M. Taitslin (eds.), Springer LNCS 620, pp. 441 — 451

ON THE EXPRESSIVE POWER OF MODAL LOGICS ON TREES

BERND-HOLGER SCHLINGLOFF

Institut fir Informatik der Technischen Universitit Munchen
Orleansstr. 34, D—81667 Minchen, Germany

Various logical languages are compared regarding their expressive power with respect
to models consisting of finitely bounded branching infinite trees. The basic multimodal
logic with backward- and forward necessity operators is equivalent to restricted first
order logic; by adding the binary temporal operators ”since” and "until” we get the
expressive power of first order logic on trees. Hence (restricted) propositional quantifiers
in temporal logic correspond to (restricted) set quantifiers in predicate logic. Adding
the CTL* path modality "E” to temporal logic gives the expressive power of path logic.
Tree grammar operators give a logic as expressive as weak second order logic, whereas
adding fixed point quantifiers (in the so-called propositional mu-calculus) results in a
logic expressivly equivalent to monadic second order logic on trees.

Keywords: Modal logic, temporal logic, branching time logic, computation tree logic,
CTL*, propositional py—calculus, Ly, definability, expressiveness, expressive complete-
ness, w—tree automata, w—trees, w—tree languages, specification languages

0 Introduction

w—trees arise in various areas of logic and computer science. Therefore there have
been many different approaches to specify sets of w—trees: via first and second order
logic, tree automata, term rewriting systems, and modal and temporal logics. In
this paper we consider logics related to branching time temporal logic. However,
unlike the usual branching time logic, we include several “nexttime” operators into
the logic, one for each successor relation in the tree. In branching time logics the
tree structure is intended to model the nondeterministic behaviour of a program:;
therefore in these logics one can not distinguish different subtrees which look alike.
In many contexts however it is important whether a node has only one child or twin
children. Also the order of the children may be of some interest. We regard as “ref-
erence logic” the predicate logic containing interpreted binary successor predicates
S1,...,58, where 0 < b < w is the branching factor of the underlying tree struc-
tures. The classical papers [Rab69],[Rab70] showed that monadic second order logic
with b successors is as expressive as Rabin tree automata, and that the weak second
order definable tree languages are exactly those which are Buchi tree automaton
and complement Biichi tree automaton definable. Hafer and Thomas [HaTh88]
gave expressive completeness results for branching time logics with respect to path
logic and chain logic with signature (S, 5*). Here we relate the following logics to
predicate logic with signature (51, ..., 5, 5%):

e basic multimodal logic with necessity operators [S;], [S*], [S;], [S*]

e temporal logic with additional binary operators S (since) and # (until)
o temporal logic with (restricted) propositional quantifiers

e directed computation tree logic DCTL* with path modalities £ and A

e extended temporal logic with tree grammar operators

e propositional p—calculus, i.e. multimodal logic with weakest and greatest fixed
point quantifiers

We give a uniform semantics of these logics in terms of second order logic, and
compare their expressive power to certain fragments of monadic second order logic.
It turns out that the first of the above logics corresponds to relativized first order
logic, the second to first order logic, the third to (restricted) set quantification, the
fourth to path logic, the fifth to weak second order, and the last to full monadic
second order logic.

1 Definitions and Results

Definition 1 Let 0 < b < w be a natural number. An w—tree is a prefix closed
subset B C {1,...,b}* of nodes.

A labelled w—tree (B, n) is an w—tree B together with a labelling function n: B —
27 where 27 is a finite powerset alphabet, i.e. P = {p1,...,p,}, and 27 is the set
of all subsets of P.

An w-tree model (B, 7, %) is a labelled w—tree (B, n) and a current node # € B. An
w—tree language is a set of w—tree models.

Definition 2 Let & = {1, 2s,...} be a countable set of individual variables and
P =Ap1,. - Pn,q1,9q2, ...} be a countable set of monadic predicate signs. The
monadic second order logic of b successors, SbS | is the smallest set of formulas
such that L. € SbS | p(x) € SbS forallz € 3, peP’, £S;y € SbS forallz,y €S
and 1 < ¢ <b,and if F and F' € SbS | then (F — F’), 3z(F) and 3¢(F) € SbS
for all z € S and q € P'.

An SbS sentence is a SbS formula in which there occurs at most one free individual

variable z and all free predicate signs are among p1, ..., pn.

Other connectives =, A, V, T Vz, Vq are defined as usual, as well as other relations:

Sy = (2S1yV...VaSyy)

2S*y = Vq(q@) AVz123(q(z1) A 21520 — q(22)) — ¢(y)
r=y:— (xS*yAyS*x)

Sty =(zS*y —x=y)

Sy y = (ySix) ete.

Definition 3 The weak second order logic of b successors is defined like SbS | but
with weak quantification 3/ ¢(F') on finite predicates instead of J¢(F). Path logic
contains the additional relation S*, with second order quantification restricted to
path quantifiers F¢(F). A path is a maximal set of nodes which are pairwise
comparable w.r.t. 5* i.e.

Fg(F) : — g (F AYy(qy) — Yz(gz) — yS 2V 25* y)))
First order logic of (Sy,...,S55,5%) is similar, but without any set quantification.

Relativized first order logic uses the relations R € {S;,5*} only immediately after
quantifiers, i.e. in expressions like Jz(z Ry A F') or Ju(yRe A F).

Note that e.g. y(y # = A p(y)) is equivalent to the relativized sentence
V,; ST x325% y(p(»)) vV IyS*x EIzSiy(p(z) \ \/j;éi HZ/S]»_ 2327 S*fz’(p(z”)))

Definition 4 The turnstyle relation M = F gives a truth value to every logical
sentence F' in a model M. Note that zS5;y iff y = = - ¢ for nodes z, y. The w—tree
language defined by F is the set of models M such that M = F.

Example 5 The set of all trees such that on every path through the current node
there are only finitely many nodes labelled p 1s definable by the path logic sentence
o1 =g (gt — Fy(2S7y A g() AV=(5+y A gz) — =)
This set is not definable in weak second order logic.
The set of all trees having only finitely many nodes labelled p below the current

node all of which occur in an even distance from it 1s defined by the weak second
order sentence

py =3¢ (q(l‘) AVy (xS*y — ((p(y) — q) AVz(ySz — (g(y) — —'q(z))))))

This set is not path logic definable.

The set of all trees such that there is a finite branch from the current node on
which exactly one node (but not the last node of this branch) is labelled p can be
defined by the first order sentence

p3 = EIy(xS"’y A=p AFz(zStz AzSTy A p(z))),
where Jz(F(2)) : — EIz(F(z) AYZ (P2 — z = z’))

This set is not definable in restricted first order logic.

Definition 6 The basic multimodal logic is built from propositional variables p € P
with connectives L, (F; — Fy) and (R)F, where R € {S1,...,5,5",57,...,5,,5 }.
Its semantics is given via a translation 7 from modal formulas to predicate logic

formulas:

(L7 =1, (o) =pw), ((F — F) = (FT — F),

(RYF) :=3y(zRy A FT(x := 1))
where F7(x := y) denotes the result of substituting y for every free occurrence of
zin F7. (Whenever this substitution causes name conflicts we assume consistent
renaming of bound variables.)

The necessity operators [R] can be introduced as abbreviations:
[RIF — —(R)—~F with the semantics
([RIF) :==Vy(eRy — F"(x == y))

Fact 7 Modal logic is expressively equivalent to relativized first order logic; i.e.
the translation of a modal formula yields a relativized first order sentence, and for
every relativized first order sentence there exists a modal formula which defines the
same language.

So for example the formula corresponding to y(y # « A p(y)) can be written as
VilSi)(S™)p VA(ST) VST V V2 (i) (57)p)-

Definition 8 Temporal logic is obtained from multimodal logic by adding the new
two place connectives U (until) and S (since) with the semantics
(U(Fl, Fz))T = EIy(xS"’y ANFT(x =y AVz(2STz A 2STy — Fl(x = z)))
(S(Fl, Fz))T = EIy(yS"’a: ANFT (= AVz(ySTz A zSte — Fl(x = z)))

In temporal logic e.g. the third language of example 5 can be characterized by
U(p ANU(—p,—p), —p). The operators (S*) resp. {S*) as well as (S) and all {S;) are
expressible with U, § and {(S;):

(S)p = pVU(p,T)

(S)p = pvS(p,T)

(S)p = U(p, L)

(Sitp = () A{S7)T)
Also the two place connectives i and S can be replaced by the one place connectives
which are defined by the sentence 3 of example 5 and its converse.

It is immediate that the translation of a temporal formula yields a first order

sentence. The converse of this inclusion also holds:

Theorem 9 To every first order sentence there exists a temporal formula which
defines the same w—tree language.

The proof of this result is rather intricate and involves difficult transformations on
both the predicate logic and the temporal logic side. It relies heavily on the fact that
the underlying structures are trees, i.e. for every node there is a unique predecessor
node. As a corollary we get that first order logic with only the S* relation (without
specialized successor relations S;) is expressively equivalent to the temporal logic
with operators U, S, and {(kx S), where

((k*xSYF)" = Fyr, ..., yu N\ (2 Sy A /\Z»#k ¥ £ yr A FT(xp).
Definition 10 (Restricted) quantified temporal logic is obtained by adding propo-

sitional quantifiers 3¢ resp. 3/ ¢ or 3¢ to the temporal logic language. Its translation

is defined by
(EIq(F)) = Jq(F7),
and similarly for 3/ and 3*.

Obviously the translation of a temporal formula with quantification 3 (34, 3°) gives
a sentence of monadic second order logic (weak second order logic, path logic).
Theorem 9 also gives the induction basis for the other direction:

Fact 11 For every monadic second order (weak second order, path) logic sentence
there 1s an appropriate quantified temporal logic formula.

As examples the languages ¢1 and ¢s can be defined by
p1 = VPglg — (S) g A [ST](g — —p)))
e = (g A ISP — @) A g = [ST70) A (=g — [S10)))

We note that the operators U and S (and hence all other operators considered
so far) can be expressed with (weak) propositional quantifiers and modalities (U},
(S7):

() = Yl — (UNV{(ST)a A F))

UF, Fr) — (g A0Ng — (S)(F1V P A g)))

S(F, Fo) = Fq(g AU (g — ViASTE Y Fa A g)))
Therefore these modalities form a minimal basis for (weak) quantified temporal
logic. In path quantified temporal logic however & and S are not dispensable!
(The situation is similar to predicate logic, where S* is definable from S by weak
quantification but not by path quantification.)

Definition 12 Directed computation tree logic, DCTL*, is the logic which arises
by adding the “path modality” F to temporal logic. £'F means that there 1s a path
through the current node on which the linear time formula F* holds. The semantics
can be given as follows:

(EF) :=Fq(qx) AS§(FT))
where §(F7) is obtained from F'” by replacing every first order quantification Jy(F"’)
not in the scope of another path quantifier with Jy(g(y) A F').

The well-known logic CTL* [CES83, EH83] is the subset of DCTL* using only U
and F, i.e. without § and (S;).
If A:= —=F- denotes the dual modality to £, then e.g.

1 — A5
From the semantics it is clear that DCTL* i1s at most as expressive as path logic.
The following theorem is due to [HaTh88]:

Theorem 13 For every DCTL* formula there is a path logic sentence defining the
same language.

By transformation of path quantified temporal logic formulae we obtain a proof of
this theorem as a consequence of theorem 9.

The close connection between automata theory and logic is well known. Therefore
one could as well think about specification languages which consist of a mixture of
logical formulas with transition graphs. Wolper [Wol83] was the first to incorpo-
rate grammar operators into (linear time) temporal logic, and Muller, Saoudi and
Schupp [MSS88] suggested to add operators based on alternating tree automata into
branching time logic. Whereas these automata have an acceptance condition which
is any Borel set, Wolpers original grammar operators do not refer to any acceptance
condition. We therefore want to investigate the expressive power of tree grammar
operators based on b-branching transition systems (without acceptance condition)
in propositional logic.

To simplify things we give a labelling for the the nodes of the transition systems
rather than for the arcs; this is not a loss of generality, since we allow a finite set of
initial states.

Definition 14 A transition system I' = (3, II, A) is a set of states ¥ = {q1,...,qn, %, [},
a set of initial states A C X, and a transition relation II C X2+,

The state f labels “nonexisting nodes”. If we only considered full trees state f
would be unneccessary. State ¢ will later on mean that a node exists but no further
condition is imposed on this ¢—labelled node. This state is included, because we
only want to deal with total transition systems (from every state there is at least
one transition leading from that state). States ¢ and f together are intended to
complete the system; we always assume {t, f}*+! C II.

Let (B,n,xzg) be a tree model and let £ : {1,...,b}* — X be a function from
nodes to states such that £(z) = f iff « € B for all € {1,...,6}*. Then
(B,n, x0,&) is generated by the transition system T, if

o £(xg) €A
o (&(x),&(x-1),... &z b)) €Nl for all . € {1,...,b}*.

Hence our transition systems generate trees in both directions, upward and down-
ward. This —in spite of being more ‘natural’— will be necessary to express the
pasttime operators & and (S;) via transition systems.

For example let b = 2 and let T'; be the grammar with

= {(fafaf)a(tafaf)a(fataf)a(fafat)a(tataf)a(tafat)a(fatat)a(tatat)a
(taQIat)a (taqlaf)a (tataql)a (tafa ql)a (Q1afa f)a (qlaQIaf)a (qlafa ql)a (Q1aQ1aq1)}~

This grammar can be graphically represented as follows:

I~

y
-

"

I'; generates all trees in which all nodes below the current node are labelled by ¢;.

1

(o)
A

e ()

With A = {q;} T'> generates all trees in which the current node has a Sj—successor
node labelled ¢o; with A = {¢2} T'» generates all trees on which either the current
node is the root or it has a S;—predecessor labelled ¢ .

F3Z

\ZJ

(0) ()
~ TS S\

If A = {q1} then T's generates all trees on which there is either an infinite branch
labelled g5 starting in the current node, or a finite branch starting in ¢; and ending
in ¢3 such that all nodes in between are labelled ¢s.

Every transition system I' represents a grammar operator in the following sense: If
q1, ..., qn are all states except ¢, f of I and if py, ..., p, are propositional variables,
then T'(p1,...,pn) defines the set of all trees (B,n,) such that there is a £ for
which (B, n, z,§) is generated by T', and for all y € B with &(y) = ¢; is pi € n(y).

Definition 15 Extended temporal logic is built from propositional variables p € P
with boolean connectives L, (F; — Fy) and T'(Fy,. .., F,,), where T' is any transition
system with state set {q1,...,¢n, 1, f}.

The semantics —informally described above— can also be given via a translation
into monadic second order logic:

(F(Fl, : ..,Fn))T := dqq, . ..,qn,t(\/qu (A

Yy Vi ((0) V 1) A Ny ~(ai() A g5())) A
Yy N\i(aiy) — F (@ = y)A
Yy, ur, - (N ySive V —32(ySiz) —

Visrsr,oment(s' @) A S A A i)

The first line of this sentence states that the current node is labelled by some initial
state, the second line says that every node is labelled by exactly one state, the
third line tells us that a node labelled ¢; satisfies F}, and the last lines describe
the transition relation. The disjunction ranges over all b—tuples (s, s1,...,s;) € I,
where s(y;) stands for s;(y;), if 5; & {¢t, f}, and t'(y) := T, and f'(y)) := —ySiy;
(resp. f'(y) := L).

It is easy to verify that all temporal operators introduced so far are expressible in
extended temporal logic, hence extended temporal logic is at least as expressive as
temporal logic.

Extended temporal logic formulas are related to the subtree automata defined in
[VaWo86]. There it is shown that any subtree automaton can be simulated by a
Bichi automaton and hence subtree automata are at most as expressive as existen-
tial quantified weak second order sentences. A similar statement holds for extended
temporal logic: For every transition system [' there is a dual transition system
IV which generates all trees different from trees generated by T'. Since this differ-
ence appears in finite distance from the current node, the complement language of
T(F, ..., Fy) can be characterized with weak quantifiers. A recent construction by
Arnold and Niwinsky [ArNi] can be used to prove also the converse direction; hence

Theorem 16 Extended temporal logic i1s as expressive as weak second order logic.

The last modal logic for tree languages we look at is the so—called propositional
p—calculus of [Koz82, KP83]. Already classical finite automata can be regarded as
generating least fixed points of linear recursion equations. In multimodal logic the
following recursion equations are valid:

[S*]F < F A[S][S*]F

u(Fl,Fz) — <S>(F1 \/F2 /\u(Fl,Fz))
(compare also the definition of & in weak quantified temporal logic!). Therefore
[S*]F is the greatest fixed point of the equation ¢ — F A [S]q, and U(Fy, Fa) is
the least fixed point of the equation ¢ — (S)(Fy V Fa A q). Here a point is a set of
nodes, and the lattice ordering is the subset relation. This can be written as

[S*]F — vq(F A[S]q)

U(F1, Fa) = pg((S)(F1V Fa A q))
The formal description 1s given by the following

Definition 17 The propositional p—calculus is obtained from modal logic with

modalities (S;), (ST} by adding fixed point quantification vq. pq(F) is defined
as —vq' (- F (¢ := —~¢"). The semantics of vq(F) is
(va()" = 3q(q@) AVylqy) — FT(x = p))

E.g. the language ¢1 from example 5 can be written as

pr = pg([S*)(p — 9))
and @, as

@y — pq(((S*)p — [S1(=p A [S]9))

Sometimes the propositional p—calculus is defined with multiple fixed point equa-
tions vqy...¢n(F1, ..., Fy). This does not increase the expressive power, since every
formula with multiple fixed points can be reduced to a single fixed point formula.
(The reduction procedure resembles of the construction of a regular expression from
a finite automaton.)

Clearly every extended temporal logic formula corresponds to a p—calculus for-
mula, since grammar operators define (multiple) greatest fixed points of transition
systems. Niwinsky [Niw88] extended a construction of Park [Par81] to tree models
and shows that also the liveness condition of Rabin tree automata can be expressed
by an appropriate nesting of greatest and least fixed points. We can apply a similar
construction to the calculus defined here; hence by the above reduction and Rabins
theorem we know

Theorem 18 The propositional p—calculus is as expressive as monadic second or-
der logic.

2 Summary

In our research we have obtained the following hierarchy of logics on trees:

Restricted first order logic (S;, S*, JyRx)
= Multimodal logic ({S;), {(S*}, (S;), {S*))

First order logic (S;, S*
= Temporal logic (U, S,

,)
(Si)

/\

Path logic (S;, S*, 3y, Fq)

= Path quantified temporal logic Weak second order logic (S;, 3y, 3 q)
(U,8,(57),Fq) = Weak quantified temporal logic

= Directed computation tree logic ((U),(S7),37q) = Extended temporal logic (T)
U,S,(57), E)

_—

Monadic second order logic (S;, Iy, 3¢)
= Quantified temporal logic ((U), (S;), 3¢)
= Propositional p—calculus ({S;), (57), vq)

References

[ArNi] A. ArNoLD, D. NIWINSKY: Fized point characterization of weak monadic second order
logic of trees; preprint, (Okt.18,1990)

[CES83] E.M. CLARKE, E.A. EMERSON, A.P. SisTLA: Awutomatic Verification of Finite—State
Concurrent Systems Using Temporal Logic Specifications; in: Proc. 10" ACM POPL,
pp.117-126; Austin (1983).
reappeared in: ACM Trans. Prog. Lang. & Syst. 8,2 pp.244-263 (1986).

[C1e90] R. CLEAVELAND: Tableau—Based Model Checking in the Propositional Mu—Calculus; Acta
Informatica 27, pp.725—747; (1990)

[EH83] E.A. EMERSON, J.Y. HALPERN: “Sometimes” and “Not Never” Rewisited: On Branching
versus Linear Time (preliminary report); in: Proc. 10t" ACM POPL, pp.127-140; Austin
(1983).
reappeared in: JACM 33,1 pp.151-178 (1986).

[HaTh88] T. HArFER, W. THOMAS: Computation Tree Logic CTL* and Path Quantifiers in the
Monadic Theory of the Binary Tree; in: T. Ottmann (ed.): ICALP 1987, Springer LNCS
267, (1988).
Short version of T. Hafer: On the Ezpressive Completeness of CTL*, Bericht Nr. 123,
Schriften zur Informatik, RWTH Aachen, (Dez. 1986).

[Heu89] U. HEUTER: Zur Klassifizierung regulirer Baumsprachen; Dissertation, RWTH Aachen,
(1989).

[Koz82] D. KozEN: Results on the Propositional u—Calculus; 9th ICALP, LNCS | pp. 348-359,
(1983).

[KP83] D. KozeN, R. PARIKH: A Decision Procedure for the Propositional p—Caleulus; Logics of
Programs, LNCS 164, pp. 313-325, (1983).

[MSS88] D. MULLER, A. SaouDi, P. SCHUPP: Alternating Automata Give a Simple Evplanation
of Why Most Temporal and Dynamic Logics Are Decidable in Exponential Time; in: Proc.
3rd IEEE Symp. on Logic in Computer Science; pp. 422-427 (1988).

[Niw88] D. NiwINsKY: Fized Points vs. Infinite Generation; 37 IEEE LICS, pp. 402-409, (1988).

[Par81] D. PARK: Concurrency an Automata on Infinite Sequences; 5t" GI Conf. on TCS, LNCS
104, pp. 167-183, (1981).

[Rab69] M.O. RaBIN: Decidability of Second-Order Theories and Automata on Infinite Trees;
Trans. AMS 141, pp.1-35; (1969).

[Rab70] M.O. RABIN: Weakly Definable Relations and Special Automata; in: Y. Bar—Hillel (ed.):
Mathematical Logic and Foundations of Set Theory, pp.1-23; North—Holland, Amsterdam
(1970).

[Sch90] B.-H. SCHLINGLOFF: Zur temporalen Logik von Bdumen; Dissertation, Institut fiir Infor-
matik der Technischen Universitat Miinchen, Report TUM-19012; (1990).

[SE89] R. STREETT, E. A. EMERSON: An Automata Theoretic Decision Procedure for the Propo-
sttional Mu—Calculus; Information and Computation 81, pp.249-264; (1989).

[VaWo86] M. VARDI, P. WOLPER: Automata—Theoretic Technigues for Modal Logics of Programs;
Journ. of Comp. and Syst. Sci. 32, pp. 183-221 (1986).

[Tak86] M. TakaHasHI: The Greatest Fized—Points and Ratinal Omega—Tree Languages; TCS
44, pp.259-274, (1986).

[Wol83] P. WoLPER: Temporal Logic Can Be More Expressive; Information and Control 56, pp.
72-99, (1983).

