Relational Semantics for Modal Logics*

Bernd—Holger Schlingloff Wolfgang Heinle
Institut fir Informatik, Institut fir angewandte Mathematik,
Technische Universitat Minchen, Universitat Bern,
e-mail: schlingl@informatik.tu-muenchen.de e-mail: heinle@iam.unibe.ch
Abstract

In this work we survey the connections between modal logic and relation algebra. We compare
various modal and relational languages for the specification of reactive systems by giving new trans-
lation algorithms between these languages. We then characterize the expressiveness of the languages
algebraically with p-morphisms (or bisimulations). Furthermore, we show how completeness and in-
completeness proofs of modal logic can be transferred to relation algebra, and give a relation algebraic
treatment of modal correspondence theory. We show how our methods can be applied to stronger
languages like those containing derivation rules or fixpoint operators.

1 Introduction

In the design of safety-critical software systems formal semantics and proofs are mandatory. Whereas
for functional systems (computing a certain function) usually denotational semantics and Hoare-style
reasoning is employed, reactive systems (reacting to an environment) mostly are modelled in an automata-
theoretic framework, with a modal or temporal logic proof system. Much of the success of these logics in
the specification and verification of reactive systems is due to their ability to express properties without
explicit use of first-order variables. For example, consider a program defined by the following transition
system:

put
/\
get
get put

In this picture lo, hz and er denote states, and put and get are binary relations between states. Ok is
the set {lo, hi} of states, and ko is {er}. (The program is just for demonstration and does not have any
particular purpose.) Let R = putUget be the transition relation of this program; then e.g. nontermination
from an initial state @ is described by the first-order formula Vy [R*(z,y) — Jz[R(y, 2)]]. Tt can also
be expressed by the multimodal formula [R*]{R}T, which does not contain individual variables z, y.
However, the same virtue is shared by the more expressive relational calculus, which was introduced as a
means to formalize mathematics without variables. In the example, the relational equation R*o—(Rol) =

*This article is a preliminary version of a chapter to appear in the forthcoming handbook “Relational Methods in
Computer Science”, edited by Ch. Brink and G. Schmidt

0 expresses the same condition as above for all . As we will see, relational algebra thus can serve as
a natural semantics for modal logics, resulting in some easy completeness and correspondence results.
Vice versa, in many cases techniques developed for modal logics can be extended to relational algebra,
yielding new insights and opening new areas of interest.

2 Formulas and properties

To begin with, we give definitions of all logical languages used in this chapter, and their respective
translations into one another. Then, we describe how properties, 1.e., classes of semantical structures
for our formulas, can be characterized with relational means. We presuppose elementary knowledge of
relation algebra as described, e.g., in the appendix of [SS89].

2.1 Logics and their Standard Translations

The basic modal logic K is built from propositions and boolean connectives =, V, with an additional
unary connective <, called possibility operator. The necessity operator O can be defined as its dual by
Oy = —|<>—|g0.

A Kripke structure consists of a nonempty set W of ‘worlds’; a binary relation R and a valuation A
from propositions into P(W). Satisfaction of a sentence ¢ in a Kripke strukture (W, R, k) and a world
w € W is defined inductively:

W, R, h,w = p; if w € h(p;).

W, R hywkE (Vi) f W R hywl= @ or W, R h,wl= .

W,R, hywkE - if W, R, h,w £ p.

W,R, h,wkE Opif W, R, h,w' = ¢ for some w' € W with wRw'.

A sentence ¢ is valid in a Kripke structure (W, R, k), it W, R, h,w |= ¢ for all w e W.
To get a complete deductive system for the modal logic K| start with the set of all propositional
tautologies, and add the following axioms and rules:

monotonicity: O(p —) — (Op — O¢)

necessitation: = O

modus ponens: @, (¢ —) F

An alternative choice is to add the following axioms and rule to propositional logic with modus ponens:
normality: OGL — L

additivity: O(e V) — (Op Vv Oy)

replacement: (¢ —) F (Op — OY)

The language of basic modal logic defined above contains besides the boolean connectives only propo-
sitions and one unary modal operator. Propositions are interpreted as unary predicates (subsets) of
worlds, and the diamond operator corresponds to a binary accessibility relation between worlds. How-
ever, already in the above example formula we used the reflexive transitive closure relation R* of R. In
general, we will want to express properties of several relations R, R*, put, get,... Moreover, the restriction
to unary predicates and binary relations sometimes is artificial. Therefore we define the modal language
over an arbitrary algebraic type 7. Function symbols in 7 are called operators; unary operators include
<& and (R), where R is from some index set. Propositions are modal constants, i.e., zero-ary operators.
Modal formulas (of type 7 with variables from V') are defined as terms of type 7 with additional boolean
connectives:

Every v € V is a modal formula,

e | is a modal formula,

e If v and ¢y are modal formulas, then (¢1 — ¢3) is a modal formula,

o if ¢1,...,¢, are modal formulas and A € F, is an n-ary operator, then Ay ..., is a modal
formula.

Variables are denoted by lowercase letters {v,p,q,...}; formulas not containing any variables are called
sentences. Whenever we wish to emphasize the fact that ¢ contains proposition variables we call ¢ an
ariom. Other boolean connectives =, V, A, <« are defined as usual; for every operator A its dual
operator V is given by V1 ..., = A= ... 2p,. The dual of (R) is [R]. The basic modal language
is the set of modal sentences of type {P, O}, where P is the set of propositions. In basic multimodal
formulas the arity of operators is at most one.

To define a semantics for the modal language, there are several choices. The most obvious idea is to
extend the notion of Kripke structure to include n-ary relations:

A standard frame of type 7 consists of a nonempty set W of ‘worlds’, and an interpretation R assigning
to every n-ary operator from 7 an (n + 1)-ary relation on W. A standard model for formulas of type
with variables from V is a standard frame (W, R) of type 7 together with a valuation V assigning to every
variable from V' a subset of W. The model (W, R,V) is said to be based on the frame (W, R). Validity
of a formula ¢ in a standard model (W, R, V) and a world w € W is defined inductively:

W,R,V,wvif weV(v);
W,R,V,wlf L;
W,R,V,w ': (gpl - @2) if WaRaV’w ': ¥1 lmphes WaRaV’w ': P25

W RV, w |E Agi...p, if there exist wy,...,w, € W such that (w,wi,...,w,) € R(A) and
W, R,V ,w; = ¢; foralli=1,... n.

The formula ¢ is valid in the model (W, R, V) if W, R,V,w |= ¢ for all w € W; it is valid in the frame
(W, R) if it is valid in all models (W, R, V) based on (W, R). Note that any sentence is valid in a frame
iff it 1s valid in some model based on that frame.

To get an intuitive understanding of how relations are coded as modal operators, consider a binary
relation R on W. Define for any w’ € W the set (R)(w') = {weWw: (w,w") € R}, and for any ¢ C W,
the set (R)(¢) = U{(R)(w') : w’ € ¢}. Then we have (w,w') € R iff w € (R)(w'); therefore there is
w' € ¢ with (w,w') € Riff there is w’ € ¢ with w € (R)(w'), i.e., iff w € (R)e.

In our example, {(get)({er}) = {er,lo}, and {put)({lo, hi}) = {put)(lo) U (put)(hi) = B U {lo}. Thus
w = {(getYko iff w € {er lo}, and w |= (put)ok iff w = lo. As an example of a valid sentence, consider
(get){get)ko; as an axiom, ({put)p — [put]p) is valid since it is valid for every substitution of p with some
subset of {lo, hi, er}.

Standard frames of type 7 are nothing else than relational structures for the algebraic type 7/, where
in 7’ the arity of all operators is increased by one: 7/(A) = 7(A) + 1. But, relational structures of
type 7' are also the semantical basis for the first and second order language of type 7/. The standard
translation of modal formulas of type 7 with variables from V into predicate logic formulas of type 7’
with proposition variables from V' and one free individual variable z is defined as follows:

ST((p1 — 2)) = (ST(p1) — ST(2));

ST(Agr .. o) T [A(z, 21, ooy) AST(p1)[e/x1] Ao AST (n) [/ 24]]

Here ¢[z/y] denotes the formula derived by simultaneously substituting y and « for all occurrences of
z and y in ¢, respectively. If the highest arity of any operator in ¢ is n, then ST(p) contains one free
variable # and at most n + 1 bound variables {«, z1, ..., 2,}. The number of free individual variables of a
first-order formula is usually called its dimension; hence the standard translation of any modal formula
is one-dimensional. Note that ST'(¢) is a first order formula iff ¢ is a modal sentence; if ¢ contains free
proposition variables then so does ST(). (In this case ¢ represents a monadic 11} ~property.)

As an example for the standard translation, we calculate ST'({get){get)ko)

= Jay [get(x, x1) A ST({getYko)[x/x1]]

= Jay [get(x, 21) A Ty [get(x, 21) A (ST (ko)[x /1)) [/ >1]]
= Jay [get(x, 21) A (Fug [get(x, 1) A ko(z1)])[x/21]]

= Jay [get(x, x1) A T [get(zy,) A ko(z)]]

Validity of a modal formula ¢ in a standard model (W, R, V) and world w could have been defined as
validity of the predicate logic formula ST () in the relational structure (W, R) with first order assignment
¢ : x — w and second order assignment V. Of course this new definition for the semantics matches the
old one, i1.e.,

A
A

WRV,wkEe if (WR),q,VEST(p), whereg:z— w.

The above standard translation maps modal sentences into first order formulas, and modal axioms into a
restricted class of second order formulas. However, there is another formalism in between modal logic and
predicate logic, which is equally well suited to serve as semantics for the modal language: the relational
calculus.

Since in general we are working with relations of different arities, we have to extend the underlying
relation algebra appropriately. There are several approaches to do so.

In the first approach, which is followed e.g. in [BBS92], boolean algebras and relation algebras are
combined into Peirce algebras, that is, two sorted algebras of type (B, A, {),7), where B is a boolean
algebra, A is a relation algebra, {) is a mapping A x B — B and 7 is a cylindrification mapping B — A
such that

Any formula of the basic multimodal language can be regarded as a term of a Peirce algebra, consisting of
a boolean algebra built from propositions and a relation algebra built from unary operators. Of course,
Peirce algebras provide a much richer algebraic structure than modal formulas, since they include a
relation type with operations on operators. However, since complementation of relations is present, the
representation problem for Peirce algebras is undecidable.

Peirce algebras can be mapped into ordinary relation algebras by identifying each element a of the
boolean algebra with a right ideal element (@ o 1) of the relation algebra. This is also the approach to a
relational semantics followed, e.g., in [Orl88]. To extend this approach to n-ary operators, we extend the
dimension of any relation or predicate to the maximum dimension of any relation in the signature.

The projection T;(R) of an (n 4 1)-ary relation R onto its é-th component (0 < ¢ < n) is defined by

II;(R) 2 {(xo, .y 2n) I, oy Un [R5, 91, -y Un)]}

For a binary relation R we have Ig(R) = {(zo,%1) : Jp1 [R(zo,41)]} = Rol, and 1 (R) = {(xg,#1) :
Jyy [R(z1,11)]} = (Rol)” =1aR.

Using these operations, a relational translation RT of modal formulas into relation algebraic terms
can be defined. If ¢ is a modal formula of type 7 with variables from V', then RT(¢) is a term of type 7"
with variables from V', where 7"/ contains boolean operations, unary projections II;, and for every modal
operator A a relation constant A.

RT(v) = To(v) for every proposition variable from V;
0

>

=)

bl

(
(L)
RT((p1 — ¢2)) = RT(¢1) < RT(p2);

RT(Agy...0n) = Mo(A AT (RT (1)) A ... AL (RT(¢,)))

For the basic (multi)modal language we have
RT(P) =TIy(P) = P o1 for any proposition P, and
RT(Op1) = Mo (O AT (RT(91)) = (OA(RT(p1) 01)") o1 =0 RT (1)

In the last transformation we used the fact that RT(¢) is a right ideal relation, i.e. RT(¢) = RT(p) o 1,
which is proved by induction on ¢. Thus this relational translation conforms with cylindrification by
right ideals.

The relational translation of the necessity operator O becomes

RT(Bp1) = RT(=Om¢1) = RT(p1)\O~

where \ denotes right residuation of relations. For the above example formula we have RT'({get){get)ko) =
get o get o koo 1.

A model for terms of type 7" with projections Ilg, ..., II,, assigns an (n + 1)-ary relation to every
operator and proposition variable. Validity of a term RT(yp) in a model M and worlds wy, ..., w, is
defined inductively according to the above clause for the projection operation. Now any standard model
M can be extended to a model M" for terms of type 7" by setting, for an m-ary connective A (where
m < n),

RNA) = {(x0, .y 20) 1 (R0, oy T) € R(A)},

and similar for v € V. (E.g., ko becomes the binary relation {(er,lo), (er, hi), (er, er)}.) Then it is an
easy exercise to prove that M | ¢ iff M = RT(p). Thus the above relational translation preserves
satisfiability. Moreover, since RT(¢) = Io(RT(y)), we conclude: If M"” = RT(p) for all M which are
extensions of some standard model, then M = RT(yp) for all models M. Hence the translation is also
validity-preserving: = ¢ iff |E RT(p).

The third approach to a relational semantics for modal logics uses an algebra of n-ary operations for
n-ary operators. The set of modal formulas with operators from 7 and variables from V' can be seen as
the term algebra of type 7U{V, —, 0} generated by V. A modal algebra or boolean algebra with operators
is any relational structure (A, Vv, —, 0, 7) for this type, such that (A4, V, —,0) forms a boolean algebra, and
every operator A € 7 of arity n > 0 is normal and additive, i.e. satisfies

A(p1y .0, ..,pp) =0 and

A(pla o Pi \/p;a apn) = A(pla <oy Piy apn) V A(pla "'ap;'a apn)

As usual, a relational expression is called valid in the algebra, if it is (equal to) the unit element 1. A
term ¢ containing free relation variables v is valid in A, if ¢{v/R]) = 1 for all substitutions of variables
with elements of A.

An ultrafilter on a modal algebra is any maximal nontrivial meet-closed upset, i.e., a subset u of A
satisfying

pEuor —p € uforeach p € A,
0¢&u,

if p,q € uthen pAq € u, and
if p€wuandp<gqthen q € u.

A subset u of A is said to have the finite intersection property, if for any finite subset {p1,...,pn} C u
it holds that p1 A ... A p, # 0. Any such subset can be extended to an ultrafilter of A by repeatedly
adding either p or —p for each p € A. (Note that for uncountable A the axiom of choice is needed in this
construction.) In particular, for any atom a of A there is exactly one ultrafilter « containing a, namely
u= {p:a < p}. Now the ultrafilters of a modal algebra can serve as atoms of another algebra: consider
the powerset algebra on the set Uy of ultrafilters of A. According to a fundamental result of Stone[Sto36],
the function o : A — P(Uy4), mapping every p € A to o(p) = {uely:peul,is aboolean embedding.
That is, o(p V q) = o(p) Uo(q), o(—p) = —c(p), and o(0) = §. The definition of ¢ can be extended such
that it assigns an (n + 1)-ary relation o(A) on Uy to every n-ary operator A:

(D) £ {(tg,...;ttn) 1 p1 EUL Ao APp € Uy — A(p1, ..., Pn) € Ug}

Dually, we have (V) (ug, ..., un) iff V(p1, ..., 0n) € ug — p1 € U1 V...V pp € uy,. Again, o(A) can be re-
garded as an n-ary operator on P(U4) in the usual way; o(A) (21, ...24) = {ug : Jug, ... uy [A(ugy .oy tn) A
U1 €21 A Aup € 2,]}. Jonsson and Tarski[JT50] proved that this definition yields a modal homomor-
phism from (A4,V,—,0,7) into (P(Ua),U,—, 0, 0(7)):

o(A(p1; - n)) = o (D) (p1), -, o (pn))-

Hence every modal algebra is isomorphic to a subalgebra of a powerset algebra. As a corollary, any term
valid in A is valid in its ultrafilter algebra. Furthermore, if A is finite, then ¢ constitutes an isomorphism.
This representation theorem is fundamental to modal duality theory.

Let us try to illustrate the ultrafilter construction with our example program and 7 = {ok, ko, (put)}.
The modal algebra A contains at least the elements {0, 1, ok, ko}. Other elements of A can be constructed
as lo = (put)ok, el = koVlo, and hi = —el, and eh = koVhi. A validates the following terms: lo < (put)hi,
hi < {put)ko, and ko < [put](0). Therefore A can be pictured as follows:

The ultrafilters of A are u;, = {lo, ok, el, 1}, ue, = {ko,el,eh,1}, and up; = {hi, ok, eh,1}. The
representation function o is obvious: it maps e.g. lo — {u;,} and ok — {ug,, up; }. It is easy to see that
this map defines a modal isomorphism. Note that for the type 7 = {0k, ko, (R}}, no additional elements
besides {0, 1, ok, ko} are generated; lo and hi cannot be distinguished in this language.

Consider the special case that the boolean algebra (4, V, -, 0) is a relation algebra, providing additional
operators o, 7 and id. That is, we regard relations as objects rather than transitions between objects. As
usual we write o and ~ in infix and postfix notation and assume that the axioms of relational algebra are

valid. Tt is easy to verify from these axioms that o and = are normal and additive, so (A,V,—,0,0,7 ,id, 7)
is indeed a modal algebra. We call such a structure a modal relation algebra.

Under which conditions can the operators from 7 be represented in the relation algebra? A relational
representation p of the n-ary operator A is any relational expression p(A) containing n variables such that
forall ay, ..., an, € A we have A(ay, ..., a,) = p(A)(ay, ..., an). According to this definition, propositions (0-
ary operators) must be represented by their denotation in the algebra. In general, most binary operators
will not admit a relational representation.

Call a unary operator < associative if O(p o g) = O(p) o ¢. Then < is associative if and only if O(p)
is represented by R o p, where R = <(id) is an element of A.

Every associative operator is conjugated: If O(p) = Rop, then O(p)Ag=0 — pA<OT(q) =0 for
O (g) = R oq.

In the modal encoding of relations as operators we defined for any binary relation R an operator (R)
by requiring for all x,y € W that x € (R)(y) iff (#,y) € R. Call a unary operator < in a modal relation
algebra A internal, if there exists a relation R € A such that for all points z,y € A we have # < O(y) iff
zoy~ < R. (Recall that a point is any element y # 0 with y = yo 1 and yo y~ < id.)

Any associative operator is internal. For, if y is a point, then for all = it holds that < R oy iff
xoy~ < R. Proof: Let + < Roy. Then xoy~ < Royoy™, which implies x oy~ < R since y 1s a point.
To prove the other direction, we note that for any point y, it holds that 1oy = 1oy o1 = 1. Therefore
(Roy)V(—Roy) =1, which can be written as A —(Roy) <z A(—R) oy by boolean transformations.
Assuming zoy™ < R, or, equivalently, t A(—R)oy = 0, we have z A—(Roy) = 0, showing that z < Roy.
To sum up, < is internal if for all y which are points, G(y) = Roy.

Any relational representation p of all modal operators in 7 induces a translation PT” of modal formulas
into relation algebraic terms. Since in general PT7”(¢) is not a right ideal, we call the translation purely
relational.

PT?(P) = P for any proposition or variable P, and

PT?(Op) = O o PT?(p) for associative operators.

2.2 Algebraic Characterizations of Definability

Any formula ¢ defines the set of models or frames ¢ with ¢ = ¢. Can the class of models or frames
defined by a given formula be characterized with algebraic means?
We introduced several languages which can be compared with respect to definability:

e MS: basic multimodal sentences of type 7,

e ML: basic multimodal formulas (with propositional variables),

e RA: the language of variable-free relation algebraic terms,

e gRA: the language of relation algebraic terms with relation variables,
e [, : first order predicate logic of type 7/

e ¢L, : universal monadic second order logic of type 7’.

Standard translations like those of Section 2.1 establish a syntactic containment between these languages

as follows:
L, — q[fo

I

RA—— gRA

|

MS — ML

As we will see, all of the above inclusions are proper.

Since in no formula from MS, RA, or L, proposition variables apppear, with these formalisms there
is no difference between definability of frame classes or model classes: A class K of frames is defined by,
e.g., a modal sentence ¢ iff the class M(K) of all models based on K is defined by . Thus, we only have
to consider definability of classes of frames.

A first characterization of the expressivity of modal sentences can be given as follows: precisely those
classes are definable which are defined by first order sentences elementary equivalent (i.e., equivalent for
all first-order sentences) to the standard translation of a modal sentence.

Equivalence to standard translations of modal sentences, however, can also be formulated without the
notion of elementary equivalence. For frames ¢ = (W, R), ¢' = (W', R') and x € W, y € W', we say that
(¢9,2) and (¢', y) are modally equivalent ((g,2) =ums (¢',v)), if g, 2 |E ¢ iff ¢, y = ¢ for all modal sentences
@. A function f: W — W' between frames ¢ = (W, R) and ¢’ = (W', R’) is called a p-morphism[Seg71],
if for all A € 7 and all g € W, yo € W’ such that f(z¢) = yo we have

For all #y,..,2z, € W with R(A&)(wg,21,...,2,) there are y1,..,y, € W’ such that
R/(A)(y()ayla ayn) and f(xl) =Y for 1 S ? S n;

For all w1,...yn € W' with R'(A)(yo,¥1,...,4n) there are zy,...2, € W such that
R(A) o, 21, ..., 2y) and f(a;) = y; for 1 < i< n;

A frame ¢’ is called a p—morphic image of g¢, if there is a p—morphism f : W — W’. We write g — ¢’
or (g,) J, (¢',y) if ¢’ is a p-morphic image of ¢ with f(z) = y. For the basic monomodal language,
(g.2) > (¢,) iff

Rof=foR, and

g,z = Piff ¢,y = P for all propositions P.

In computer science, bistmulations are a concept which often replace p—morphisms. Bisimulations are
equivalence relations satisfying the same conditions as above (i.e., instead of requiring f to be a function
with f(z;) = yi, for a bisimulation we require f to be an equivalence relation with f(z;,y;)). Thus
p—morphism can be seen as special bisimulations. Vice versa, if f is a bisimulation between g and ¢,
then the function mapping any x in the domain of f to the equivalence class of some bisimilar v’ is a
p—morphism.

Now, p—morphisms are precisely those homomorphisms which preserve modal equivalence: If (¢,) —
(¢',y), then (g,2) =us (¢, y). This can be easily shown by induction on the structure of ¢.

For any set ® of modal formulas, we write g,z | ® if ¢,z = ¢ for all ¢ € &. Note that g, 2 | ® only
if g, 2 = ®, for all finite &, C &. A frame ¢ = (W, R) for the basic modal language is modally saturated
if for all z € W and all sets ® of modal formulas the following holds: there is a y € W with R(z,y) and
¢,y = ®iff g,z = (RYA\ g for all finite &, C ®. The frame g is image finite if for all z € W the set
{y : R(z,y)} is finite. All finite frames are image finite; all image finite frames are modally saturated.

Let g, and ¢’ be modally saturated frames such that (g,«) and (¢’,y) are modally equivalent. Then
there is a p—morphism (g, #) — (¢',y). This can be proved by an indirect argument: let (g, z) =us (¢',),
and assume that not (g, z) < (¢, 2'). That is, for any morphism f : # — 2’ we can find y or ¢/ such that

i: R(x,y) and for all ¢ with R'(2',y') is ¥ # f(y), or

ii: R'(¢',y') and for all y with R(z,y) is ¢ # f(y).
We derive a contradiction from case i, case i being essentially symmetric. Assume that for any 3 with
R'(«',y') we have y' # f(y). Then by induction hypothesis for any such y' there is a sentence ¢,
with ¢’y = ¢y, but g,y £ ¢,. Now, let © = {—=¢y + R'(«',y')}. Per construction ¢,y = @, and
thus for every finite &, C ® we have g,z |= (R) A ®,. Furthermore, for any ¢ with R/(«',y’) it holds

that ¢/, v/ £ @, since ¢',y | ¢y, and —p,s € ®. By modal saturation, there is a finite ®, C & with
g, &' = (R) \®,, in contradiction to the assumption.

We have shown that modally saturated frames can be characterized “up to p—morphism” by modal
sentences. The restriction to modally saturated frames reflects the finiteness of the language; it provides
a compactness argument, which could be dropped if modal languages contained infinite conjunctions.
Another way to arrive at an exact algebraic characterization of modal sentences is to weaken the notion
of p—morphism:

A partial p-morphism is a partial function which is a p-morphism on its domain. Let ¢ = (W, R) and
¢ = (W', R’) be frames. Then (¢',2') is a finitely p—morphic image of (g,), if there is a sequence (F),)
of sets of partial p—morphisms (g, z) < (¢’, #’) such that

for any f € Fpy1, and zy, ..., 2, € W such that zy € dom(f) and R(A)(zo, ..., z,) for some A € 1,
there is an f’ € F), such that domf C domj’, ranf C ranf’ and z, ..., x, € domf’, and

for any f € Fy41, and yo,...,yn € W such that yg € ranf and R(A)(yo, ..., yn) for some A € 1,
there is an f’ € F), such that domf C domj’, ranf C ranf’ and vy, ...,y, € ranjf’.

If (g, z) is a finitely p—morphic image of (¢’, #), then it can be shown by induction on the nesting of
modal operators, that for any sentence ¢ it holds that ¢, 2 = ¢ iff ¢/, 2" |E ¢. Vice versa, if (¢, x) and
(¢',z") are modally equivalent, then we can construct a sequence of sets of partial p-morphisms with
extending domains and ranges, asserting that (¢’, ') is a finitely p-morphic image of (g,).

The above idea can be transformed into an algorithm that checks whether two finite frames are
modally equivalent: Start with all mappings — 2’ such that x and =’ satisfy the same propositions, and
systematically try to extend this mapping for all worlds reachable from any world in the domain or range
of any already constructed mapping. Upon termination this algorithms delivers a partial p—morphism
from the strongly connected component containing x, or a modal sentence distinguishing the two frames.
Many computer aided verification systems incorporate an algorithm for checking bisimulation equivalence
which is based on this method.

Using the notion of p—morphism, [Ben89] gives a characterization of definability of basic multimodal
sentences relative to first order logic: Any L,—formula is invariant for p—morphisms iff it is equivalent to
(the standard translation of) a modal sentence.

As an example we prove that the term R™ o R < R, or, equivalently, the first-order sentence F :
Vaeyz [R(x,y) A R(x,z) — R(y, z)] cannot be expressed by a modal sentence. We give two frames g =
(W, R) and ¢’ = (W', R') such that g is the p-morphic pre-image of ¢’, and ¢’ satisfies E, but ¢ does not.
Let W = {a,b,¢,d, e} with R = {(a,b),(a,c),(b,¢),(c,b), (be),(c,d),(d,e),(e,d)}, and W' = {1,2,3}
with R = {(1,2),(1,3), (2,3),(3,2)}. The mapping f given by a — 1,6 — 2, ¢ — 3, d — 2, ¢ — 3
is the required p—morphism ¢ — ¢’. However, even though the validity of F is not preserved under
p—morphic pre—images, it can be proved that it is preserved under p—morphic images; that is, if g,z = E
and (g,2) — (¢',y), then ¢',y = F.

In the case of modal formulas with propositional variables, axioms essentially are Ili—sentences. For
this language the theorem above could be used to characterize definability of sets of models; however,
axioms usually are used to define classes of frames. Although axioms in general are not invariant under
p-morphisms, they are preserved: If (g,2) — (¢',y) and g,2 |= ¢, then ¢', y | ¢.

Further invariances are for generated subframes, disjoint unions, and ultrafilter expansions:

Let ¢ = (W, R) be a standard frame for the basic multimodal language, and S be the reflexive
transitive closure of | J{R(R) : (R) € 7}. For any world # € W, the generated subframe g, = (W3, Ry) of
g is defined by W, = {y : S(x,y)}, and Ry (R) = R,, where R, is the restriction of R to W, x W,. It is
easy to see that any modal formula is valid in a frame only if it is true in all of its generated subframes.

As a sideline, invariance of first order sentences under generated subframes can be characterized
itself. This was was shown by Goldblatt and Feferman: Ezistentially restricted L£,~formulas are built
from propositions and negated propositions using conjunction, disjunction, universal quantification and
restricted existential quantification of the form Jy[R(z,y) A ...]. (Note that any modal sentence is an
existentially restricted £,—formula using only restricted universal quantification.) An L, sentence is
preserved under generated subframes iff it is equivalent to an existentially restricted £, sentence.

The disjoint union of two frames g = (W,, R,) and h = (Wj, Rp) is the frame g+h = (W,UWp, R 411),

where W,UW), is the disjoint union of W, and W}, and Ryin(R)(x,y) iff Ry(R)(z,y) or Ru(R)(z,y).
Modal formulas are invariant under disjoint unions: g+ h | ¢ iff g = ¢ and h = .

Recalling the construction of the ultrafilter extension from 6.1.1, we can characterize definability of
modal axioms with respect to first order logic. Let K be a frame class which is closed under elementary
equivalence. Then K is definable by a modal formula iff K is closed under generated subframes, disjoint
unions, and p—morphic images, and the complement of K is closed under ultrafilter extensions.

This theorem can be used to disprove modal definability. For example, there 1s no basic modal formula
defining all frames with R = 1. It is immediate, that the disjoint union of the universal relations of two
frames ¢ and h is not universal in the frame g+ h. Another example of a relational property which 1s not
definable by any modal axiom is irreflexivity: R < —Id. This can be shown using preservation of modal
formulas by p-morphisms: The frame ({a}, {(a,a)}) is a reflexive p-morphic image of the frame (w, S),
where w is the set of natural numbers, S is the successor relation (irreflexive), and f(i) = a for all i € w.

The above definability considerations can be extended from modal logic to relational or predicate
logic. Whereas “modal equivalence” can be checked by means of (partial) p-morphisms, in first order
logic elementary equivalence can be checked by means of partial isomorphisms. Let g = (W, R) and
¢ = (W' R’) be frames. A partial function f : ¢ — ¢’ is called a partial isomorphism, if

f is injective, i.e., g = #q iff f(xo) = f(#1), and
R(R)(xo, ..., xn) iff R'(R)(f(x0),..., f(zn))

Two frames g, g’ are called finitely isomorphic, if there is a sequence (Fy,) of sets of partial isomorphisms
..
g — ¢ with:

for f € Frop1 and & € W there is an f' € F,, with f' D f and « € dom{’;
for f € Fr,p1 and y € W’ there is an f' € F,, with f' D f and y € ranf’.

Compared to partial p—morphisms, partial isomorphisms yield a stronger condition on f, as they ad-
ditionally require R'(R)(f(x0), ..., f(zn)) — R(R)(xo, ..., #,). Finite isomorphisms are to elementary
equivalence what finite p—morphisms are to modal equivalence: Fraissé proved that two frames satisfy
the same first-order formulas iff they are finitely isomorphic. Van Benthem and Doets use this theorem
to show that a class K of models is definable by a first order sentence iff there exists an n such that K is
invariant for finite isomorphisms of level n.

For relation algebras we mention another approach to characterize its expressivity: As we have seen,
the standard translation of a basic multimodal formula yields a first order formula with at most two
individual variables. Similarly, the calculus of relations can be understood as a proper subformalism of
first order logic. Every relation algebraic term ¢ can be translated into an £, formula ST(¢) with two free
variables xg, 1 and one bounded variable. Thus this term is valid in a frame iff the universal closure of
the translation is valid in this frame: ¢ |= ¢ iff ¢ = Vg, 21 [ST(¢)]. We say that RA is contained in the
3—variable fragment of L,.

As an example, (Q A S o R7)o R < @ can be translated into
Vl‘o, 1 [31‘2 [Q(l‘o, l‘z) A E'l‘l [S(l‘o, l‘l) A R(l‘z, l‘l)] A R(l‘z, l‘l) — Q(l‘o, l‘l)]]

Givant and Tarski[GT87] showed that also the converse direction is true: For every L,—sentence
with at most three variables there 1s an equivalent variable-free relation algebraic term. Put differently,
relation algebra is expressively complete with respect to the 3—variable fragment of £,. (To be more
specific, relation algebra is expressively complete w.r.t. the 3—variable fragment of £, with at most two
free individual variables.) As the proof of this theorem is constructive, an algorithm may be given which
computes the relation algebraic translation of any 3—variable formula.

From this theorem, an algebraic characterization of definability with relational terms can be developed
by defining a suitable restricted version of finite isomorphisms. Additionally, this theorem can be used to
show non-definability of certain properties in relation algebra. For example consider the first order frame
property X X: Va,y, z,u[Q(x,y) A R(x,z) A S(x,u) — Fo[T(y,v) ANU(z,v) A V(u,v)]] Tt can be shown
that X X needs at least four individual variables, so it cannot be expressed in RA. However, it can be

defined in ¢ RA with the following axiom: Vp,¢[Ro —(U o —p)ASo—(Vo—p)— —(Qo—(To(pAq))).

These matters will be pursued further in Section 3.2.

3 Modal Logic as Relational Algebra

In this section we regard modal formulas as a special class of relational terms. First we present some
well-known modal completeness and incompleteness results with implications for the relational language;
then we describe how some modal axioms can be translated into variable—free relational terms.

3.1 Completeness and Incompleteness

Whereas in the previous section we focussed on the definitional power of modal formulas, in this section
we will describe their deductive capabilities.

Let any type 7 and set of variables V' be given. Formally, a modal logic £ is any set of modal
formulas closed under propositional tautologies;, modus pones, normality, additivity, replacement, and
substitution of formulas for propositional variables. The smallest modal logic i1s K; the largest logic is
the one containing L, which consists of all formulas. If X is any set of formulas, then £(X) denotes the
smallest logic containing X.

This definition allows us to identify a logic £(X) with its axioms X: For a formula ¢, a set & of
sentences and a set X of axioms, we write ® lxgo, if ¢ € L, where L is the smallest logic with @UX C L.
If @ is empty, it is omitted; also X is omitted whenever no confusion can arise. Note that in contrast to
predicate logic, modal logic does not provide a deduction theorem: From ® U {¢} F ¢ we are not allowed
to conclude ® F (¢ — o).

To prove ¢ ngo one has to give a derivation of ¢ from the assumptions @, 1.e., a sequence of formulas
such that the last element of this sequence is ¢, and every element of this sequence is either from @, or
a substitution instance of an axiom from X, or the substitution instance of the consequence of a rule,
where all premisses of the rule for this substitution appear already in the derivation.

As an example, let us derive monotonicity in K. First, we note that the rule of replacement of provably
equivalent subformulas (Repl: (p — ¢q) F (¢(p) — ¢(¢))) is admissible, i.e., does not increase the
number of derivable formulas. We proceed as follows:
(Omg — O=pV Omg) (

(Omg — O(=pV —q)) (
(O=g — O(=p V(P A —g))) (2,Repl)
(O=g — O=p V O(p A=) (
(2O=p A O=g — O(=(p — 9))) (
6. (B(p — ¢) — (Bp — Og) (5,taut)

A formula ¢ follows from a set @ of sentences in a class G of standard frames or models (® I p), if ¢ is

QU W N =

valid in every frame or model of G which validates all 1 € ®. X is called correct for G, if ||E ¢ whenever
lxgo. Note that since any deduction can use only finitely many premisses, X is correct for G iff for all @
it holds that @ [} ¢ whenever ® F.

Any set of formulas X is correct for the set G(X) of frames in which all elements of X are valid: ngo
implies |2 .

The converse direction of this statement is called the completeness problem: X is called complete for
Gif ||E w implies I—Xgo. X is strongly complete for G if for all @, if ||E ¢ then @ I—Xgo. In contrast
to the correctness statement, the two notions of completeness do not coincide: there are axiom systems
complete for a certain class of models, but not strongly complete. The situation is the same as in more
expressive languages like predicate logic or relational calculus: Some (classes of) models can be described
by an infinite set of formulas, but not by any finite subset thereof.

The minimal logic K is strongly complete for the class G of all standard models, i.e., @ |- @ iff & F .
The proof follows the so—called Henkin/Hasenjager construction and is completely analogous to the proof

of the representation theorem for boolean algebras sketched in 6.1.1: A set ¥ of formulas is inconsistent
with ®, if there is a finite subset {¢1,...,%,} C ¥ such that & - (¢1 A ... A, — L). To prove strong
completeness, we have to show that every formula consistent with @ is satisfiable in a model validating
®. For, if ® |- ¢, then no model validating ® satisfies {—¢}; therefore {—p} is inconsistent with @,
hence @ - . (Without loss of generality, we can assume here ® to be consistent with itself, or else ® - ¢
holds). Lindenbaum’s extension lemma states that any set of formulas consistent with & can be extended
to a maximal consistent set including ® (by repeatedly adding ¢ or =), respectively).

The quotient algebra of modal formulas with respect to provable equivalence 1s called the Lindenbaum
algebra, named LINDA in [DP90]. Maximal consistent sets are ultrafilters in this algebra. Now we
define the analogon of the ultrafilter algebra: The canonical model for & is (W, R,V), where W is the
set of maximal consistent sets which include &, R(A) 2 {(wo, c;wn) 1 p1 € W1 A APy € Wy —
A(p1y..yPn) € wo}, and V(v) = {w : v € w}. The fundamental ‘truth’ or ‘killing’ lemma states
that for any formula ¢ and maximal consistent set w it holds that ¢ € w iff W, R, V,w |E . In the
inductive step for this lemma, we have to show that Ayi...p, € w if W,R,V,w E Api...0n. The
4f” direction being a direct consequence of the definition, assume that Ag;..., € w. We have to find
maximal consistent sets wi,...,w, such that (w,wy,...,w,) € R(A) and ¢; € w; for i < n. Since
F(Apr..on AV 1y — (Al A1)pa..on) V oo V (Ap1.pn—1(pn A), for every Vb .40, in
w there exists some k such that Agy...(¢r A ¢¥g)...pn is in w. Fix an enumeration (j) of all formulas
V1.4, in w, and define n sequences u; of consistent sets u; ; such that AV uyj... \/ uy; is in w for
all j. Let wu;q 2 @i, and u; j41 2 u;; Uy if 4 =k, or else u; 541 2 ui ;. (In the basic monomodal
language, u1; is just {1} U {¢; : Oy; € w}.) Let w; be any maximal consistent extension of u;;. Then
(w, w1, ..., wn) € R(A), since for formulas ¢, ..., the assumptions ¢; € w; and not Agy, ..., ¢, € wy
lead to a contradiction. Thus we have achieved our goal of constructing a model for any consistent set.

In fact, we have shown that any set of formulas is strongly complete for its canonical model. To show
that a set of formulas is complete for a set G of models, a useful strategy is to show that the canonical
model belongs to GG, or, that the canonical model can be transformed into a model belonging to G. Such
transformations include the unfolding of models into trees, and the collapse of the model with respect to
bisimulation equivalence.

Note that the completeness proof can be improved: It is not necessary that maximal consistent
sets are maximal in the space of all formulas; it is sufficient to consider maximality with respect to all
subformulas of the given consistent set. This idea can be used to transform the above completeness proof
into a decision algorithm: For any formula, there are only finitely many different subformulas, and hence
only finitely many sets of subformulas. Call such a set w of subformulas locally mazimal consistent, if

for any subformula v, either) € w or =% € w, and
1 & w, and
(1 — ¢g) € wiff =0 € w or Y2 € w.

There are two approaches to deciding whether a given formula ¢ is satisfiable: The first, ‘local’ algorithm,
is tableaux-based. We start with the set of all locally maximal consistent sets containing ¢ and try to
systematically extend one of these to a model. Given a locally maximal consistent set w, we construct
for any formula Ap;...p, € w as successors all n—tuples of locally maximal consistent sets (wy...w,)
which arise in the completeness proof. If there are no such successors, then w is unsatisfiable and we
backtrack; otherwise we proceed to extend the successors. Since there are only finitely many locally
maximal consistent sets, the process stabilizes. Either all initial nodes are unsatisfiable, or we have
constructed a model for the formula.

The second, ‘global’” algorithm for testing satisfiability starts with the set W of all locally maximal
consistent sets and the set of all n + 1-tuples for any n-ary operator. It then iteratively deletes ‘bad arcs’

and ‘bad nodes’ until stabilization is reached. Bad arcs are tuples (w,ws, ..., wy,) such that w contains
V1...40,, but for all i < n it is not the case that v; € w;. Bad nodes w contain a formula Apy...p,,
but there does no longer exist a tuple (w, wy,...,w,) with ¢; € w; for all ¢ < n. The given formula is

satisfiable iff upon termination there is a node left in which it is contained.

These two algorithms can be extended to yield more general algorithms for relational structures.

We proved completeness with respect to sets of models. However, axioms are usually used to define
sets of frames. Thus we are looking for completeness statements of the kind “||S ¢ implies ngo”, where
G is a class of frames. We know that P iff ¢ is valid in the set G(Subst(X)) of all models satisfying
all substitution instances (of propositional variables with formulas) of X. But, this set is much bigger
than the set G(X) of all models based on some frame for X, because the latter models have to satisfy all
substitution instances of X, where variables are substituted with subsets of worlds. Since in general not
all subsets of worlds are described by sentences, we can not infer that validity in all frames for X implies
derivability from X. In fact, there is a finite axiom set X and formula ¢ such that the question whether

[[£) » is Bl -hard (and thus not recursively enumerable):

Consider our example program as the state transition diagram of a counter machine, which increments
and decrements its counter with every put and get operation, respectively. We show how this machine
can be coded by a finite set of formulas, such that every model of these formulas describes the sequence
of memory states of a complete run.

Let 7 = {hi, lo, er, put, get, eoq, (X, {(F),(M)}. The operator (X} will be used to describe the exe-
cution steps of the program in time, the operator (F') to denote the transitive closure of (X}, and the
operator (M) to access the content of the memory. As we will see in the next section, the following
axioms describe that X and M are functional (X~ o X < id and M~ o M < id), form a half-grid
(MoX < X oM), and that F is the transitive closure of X:

(X)p = [X]p, (M)p —[M]p
(M)(X)p — (XN(M)p
(Xp Vv (XNF)p —(F)p, [Fllp— [X]p) — ((X]p — [Fp)

Using these relations, we will fix the propositions such that
the number of M*—successors in any world labelled eog is the value of the counter,
every world is labelled hi,lo, or er, according to the machine state it denotes,
every world is labelled put or get, according to which action is executed next.

So, here are the relevant sentences:

put increases the length of the counter by one:

(pul AM]L — (X} (M)[M]L)

get decreases the length of the counter by one:

((M)(get A[M]L) — (X)[M]L)

Every world is exactly one of {put, get} and {hi,lo, er}:
(put xor get) A (hi xor lo xor er)

All worlds reachable by M™ have the same marking:
(P — [M]P) for P € {put, get, hi, lo, er}

eoq propagates only in one dimension:

(eoqg — [X]eoq), [M]—eoq
Transitions:
(lo A put — [X]hi) (hi A get — [X]lo),

(lo A get — [X]er),’ (hi A put — [X]er),
(er A get — [X]er), (er A put — [X]1)

For a conditional transition like “from er go to lo if counter is zero” we could use the sentence (er A eog A
[M]L — [X]lo). For a multiple counter machine, we can use a similar encoding with several memory
access functions (M;). Now there is a computation in which such a machine reaches a certain state (say,
hi) infinitely often from its initial state iff the sentence (lo A eog A [M]L A [F{F)hi) is satisfiable in a
model validating all of the above axioms and sentences. Of course, for our example machine, we easily
see that the formula is satisfiable; for all single counter machines this recurrence problem is decidable.
But, for multiple counter machines the problem is ¥} complete, therefore also the problem whether any
sentence follows from a set of axioms is X1 hard. Recall that axioms are monadic II}-properties, so the
problem is in X1 as well.

However, there is a notion of completeness for frame consequences, which is inspired by the algebraic
approach. Even though not every modal algebra is isomorphic to its ultrafilter algebra, modal algebras
can be regarded as models in their own right. This viewpoint gives rise to a semantics more general than
standard semantics:

A general frame is a structure (W, R, B), where (W, R) is a standard frame, and B is a domain for
quantification: a modal subalgebra of the powerset algebra on W. That is, B is a set of subsets of W
closed under boolean operations as well as under modal operators: If py,...,p, € B, then Ap;...p, € B,
where again Apy...pp = {#o € W : Jzq..0, [R(A) (20, ..., &n) A € pi, 1 < i < n]}. A model (W,R,V) is
based on a general frame (W, R, B), if V(v) € B for every propositional variable v. An axiom ¢ is valid in
a general frame ¢, if it is valid in all models based on g. Note that there are many more general frames
than standard frames satisfying a given axiom; in fact, standard frames can be seen as the special case
of general frames where B = P(WW).

For every consistent set of modal formulas there is a nontrivial modal algebra. Using this algebra as
domain for quantification, we can construct for every consistent set X of axioms a general frame validating

all elements from X. Hence |2 ¢ iff lxgo, where G is the class of all general frames validating all elements
of X. This idea can even be extended to yield completeness results for more expressive formalisms like
relational terms with variables or ©1 formulas.

3.2 Second-order to First-order

Standard translations of modal axioms can be regarded as universal second order formulas. We say that
a modal axiom corresponds to some monadic I} frame property. Sometimes, such a property can be
expressed by a first order sentence. Vice versa, first order logic is a proper extension of the language of
modal sentences; however, in some cases a first order formula which has no equivalent modal sentence
can be described by a modal axiom. The important questions are: given a modal axiom, does it define a
first-order property? And: given a first order property, is there a modal axiom describing 1t7? In general,
the complexity of these questions is not known. Thus, none of the methods for deriving first-order
correspondences can be proved complete, they are proved relatively complete w.r.t. each other.

In this section we give a brief survey of the existing theory on modal correspondences, and investigate
first order definability in relation algebras with propositional variables.

Consider the modal axiom U: (Op — Op)), which we met several times in the previous sections. Tt
defines the first-order property of functionality, i.e., Yayz [R(x, y)AR(», z) — y = z]. This correspondence
can be established as follows: Assume a frame g for U such that R(x,y) for some 2, and a valuation
assigning {y} to p. Then x satisfies Op. Hence every z with Rz must satisfy p. But, given the choice
of p, we see that z must be equal to y, establishing functionality. Now, assume a functional frame and
a valuation for p which validates the antecedent of U in #. Thus, we have a successor y of x in p.
Functionality establishes that y is the only successor of , hence all successors of z are in p, establishing
validity of U. This proof displays the role of the proposition variables: they can be used as a kind of
register for a certain individual variable.

U can also be defined by the relation algebraic sentence R~ o R < id. This can be shown with the
relational translation of modal formulas from Section 2.1: U is translated into Rop < —(R o —p), which
is equivalent to (R o —p) A (Rop) = 0, which is conRo Rop A —p = 0, or, equivalently, R~ o Rop < p.
Since the relation variable p can be substituted with any relation, this is equivalent to R~ o R < id.

Incompleteness of modal axioms w.r.t. standard frames can be obtained easily by certain correspon-

dences:
(OCp — Op) 4
(O(Op — p) — Op) w
O(O-pV Op) M

As we shall see, 4 corresponds to transitivity (R o R < R), every standard frame satisfying W must be
irreflexive, and 4 and M imply the existence of certain reflexive worlds. So, there is no standard frame
satisfying all of the above axioms, that is, their conjunction defines the first order frame property L.
Nevertheless, the axioms are satisfiable in the general frame having the natural numbers as worlds, the
usual 7 <”-relation as accessibility relation and the boolean algebra of finite and cofinite sets as domain
for quantification. Hence L cannot be derivable from 4, M and W.

For a systematical approach to first order correspondences attention is restricted to those axioms for
which the standard semantics is appropriate, that is, which are complete w.r.t. the property they define.
Let ¢ be a modal axiom corresponding to the first order sentence €. Then ¢ is canonical if the canonical
frame for ¢ satisfies €.

Normal modal logics, constructed from canonical axioms ¢ (with modus ponens and replacement as
the only rules) are complete: the canonical frame for ¢ invalidates any formula which is not derivable
from . If ¢ is canonical, the canonical frame is an e—frame, thus ¢ is complete for €.

Examples of non-canonical axioms are W and M. A detailed account on canonicity and corre-
spondence can be found in [Gol88]. A very wide class of canonical axioms, which has a direct syn-
tactical characterization, are the Sahlquist azioms: conjunctions of formulas of the following kind:
(W(p1,...,pr) — @(p1, ..., Pk)), where is positive in all of its arguments, and ¢ is built from sequences
[Ri]...[R;] p; and T and L, using only conjunction and existential modalities.

Sahlqvist correspondences can be calculated automatically, see e.g. [0S95] for a detailed presentation.
In this section we follow an alternative approach of second order quantifier elimination using certain
extensionality priciples. The canonical frame satisfies the following two conditions:

x=y < Yp[ply) < p(z)]

R(z,y) — Yplp(y) — Jy[R(z,y) A py)]] Extg

the latter one being developed from the definition of the accessibility relation in the canonical frame.
This idea is generalized into the following second order axiom system C:

2> All first order tautologies;
it: A — Vp[A], if p is not free in A;
fii: v =y < Vplp(y) = p(x)];

iv: Vp[A] — A[p/n], for n any standard translation of a modal formula;

<

Vp[ST(p — [RIR™)p)] and Vp[ST(p — [R-)(R)p)] for all (R) € 7

vi: Yp [ST([R™]p — ¢)] = ST(p)[p(2)/R(z,)] (¢ positive in p)

The axiom Ezir mentioned above 1s an instantiation of item vz in this list.
The correspondence problem in terms of C reduces to whether for a first order sentence ¢ and a modal
axiom ¢,

FC e — Vpi..pn [ST ()]

An induction on deductions in C shows that C is correct for canonical frames. Thus, for any C—derivable
equivalence of the type above, ¢ corresponds to ¢, and ¢ is canonical and hence complete for €. The
system C is relatively complete: C proves all Sahlgvist correspondences[Hei95].

We now consider modal correspondences in a relation algebraic environment. To be conservative
w.r.t. the treatment given above, we assume relation algebras with operators, where all O—operators are
internal, that is, represented by the term R o p for some element R of the relation algebra. Internal
operators are residuated, thus continuous and conjugated.

Let (A, 7) be arelation algebra A with internal operators (R). An relation algebraic term ¢ containing
free variables v was defined to be valid in A, if {[v/R]) = 1 for all substitutions of variables with relations
from A. However, we can define a weaker notion of validity by allowing only substitutions of variables
with right ideal elements of A. Let ¢RA, denote an internal ¢ RA with variables from the subalgebra of
right ideal elements of A, and ¢RA, an internal ¢ RA with quantification on all of A.

Furthermore there are several possibilities as to which terms are allowed as internal representation of
operators:

conservative internal ¢RA: only relation constants R, S, 1, id, ... are allowed for operators;
liberal internal g RA: every variable-free relation algebraic term is allowed as an operator.

The expressivity of liberal ¢ RAs is considerably stronger than that of conservative ones, as here for
instance irreflexivity is defined by (R A id)p — L. We will come back to this point in Section 4.

Now, we consider the correspondence problem for ¢ RA,. Compared to ¢4, , here we have additional
structure on the algebra of the variables. In ¢RRA,, the following quantifier elimination principle holds:

VplQop— Rop] iff Q<R qep

The proof 1s immediate: from right to left it is monotonicity of the relational product; the other direction
1s achieved by specialization of p to the identity relation id. An immediate consequence is the modal
correspondent to the relational product:

(QYR)p — (S)p if QoR=S5

Even in liberal ¢RA,, gep can be derived only under additional assumptions, such as the point-axiom.
Many common modal first order correspondences can be obtained from qep. For instance, reflexivity
(id — R) translates into T: p — (R)p, and transitivity (Ro R < R) becomes 4: (R}{(R)p — (R)p. We
already gave a derivation of the corresponding axiom U for functionality. In Section 3.1 we defined the
property that M and X form a half grid (M o X < X o M). By qep, this is equivalent to (M (X }p —
(X) (M)p.

Conjugated operators reflect relational converses via the Prior-McTaggart axiom PMcT: (p —
[QI{R)p ARI{Q)p) iff @ = R~ The proof is an easy relation algebraic deduction: Let (p — [Q (R)p),
or equivalently @ o —(Sop) < —p. Thus we get @~ op < Rop, and with gep: @~ < R. Symmetrically,
the second axiom gives R~ < @, together: @~ = R.

Next, we prove a generic correspondence scheme X:

Q7 oV <SoU™ iff (V)[Ulp—I[QNS)p .

By qep we have Q= oV < SoU ™ iff (Q7 W V)p — (S){U ")p. This formula is equivalent to the required
axiom.
The following correspondences can be proved by instanciating ¢, V', S, and U in X with appropriate

relations:

1. id<R p— (R)p T
2. RoR<R (R){R)p— (R)p 4
3. R- =R p— [RI(R)p B
4. R~ oR<id (R)p — [R]p U
5. R-oR<R (R)[R]p — [R]p E
6. R-oR<S (R)[Slp — [Rlp

7. R oR<RVR- [RI([R]p — ¢) V [RI([Rlg — p) Lem
8. R-oR<idVSVR (R)p — [Rl(pV (R)pV (S)p)

9. R“oR<RoR~ (R)[Rlp — [RI(R)p G
10. R“oR<QoQ~ (R)[Qlp — [RI{Q)p

11. R oR<idVRVR~VRoR~ (R)(p A [R]p) — [Rl(pV (R)p)

12. id<RoR~ [Rlp — (R)p D
13. idVSVR<RoR~ [RlpV (R)[R]pV (S)[R]p — (R)p

14. R~ o(RA—(R™)) <R (R)[R]lp — ¢) vV [R]([R]qg — p) F
15. R7o(RA=(R7)) <R (R)[R]p— (p — [R]p) R
16. Qo(RA-S)<U (@Q){R)pA=(S)p) — (U)p Y

We give a proof of Y. The variable-free version is obtained by substitution of p with id, and the other
direction is proved by the following relational derivation:

1. —(Sop)opT <=5 (ax)

2. RopA—(Sop)<(R /\—(SOp)Opv)o(p/\Rvo—(Sop))
3. RopA—(Sop)<(RA—(Sop)opT)op (2)

4. RopA—(Sop) < (R/\ —S)op (1,3))
5. Qo(RA=5S)<U (ass)
6. Qo(RN=S)op<Uop (5,qep)
7. Qo(RopA—(Sop)<Uop (4,6)

Using the same methods, we can derive correspondences even for richer modal languages such as liberal
qRA,; with universal or difference operators. Even though completeness may be lost, correctness is
guaranteed: we can derive only correspondences which are valid in all standard frames. This is because
qep with quantification over right-ideals is correct for standard frames and can be proved in relation
algebras with point-axiom.

4 Relational Algebra as Modal Logic

In the previous section we reviewed modal logics per se and scetched the impact of the results for more
expressive formalisms. Now we try to extend the modal language according to the guidelines given in
the relational approach. First we extend the semantics by the use operators with a fixed interpretation,
and the syntax by admitting several kinds of deduction rules. Then we allow also recursive definitions of
operators and relations.

4.1 Extensions of the Modal Language

As we have seen, various relational concepts like the universal relation cannot be characterized in modal
logic. Thus we can try to extend the latter with these concepts. Doing so, we have to be careful to
preserve the advantages we gained by using a restricted language (e.g., decidability).

A first obvious idea is to include special operators (L} (universal operator) or (D) (difference operator)
into the type 7, with additional semantic clauses:

e W, R, V,w = (L)p iff there exists w’ € W such that W, R, V, v’ = ¢
e WR,V,z = (D) iff there exists w’ # w € W such that W, R, V, v’ = ¢

These operators were investigated in [Gor90] and [Rij93]. To get an impression of their defining power,
consider the following examples:

({(LY{R)T) corresponds to R # @, which is undefinable in basic modal logic,
([L][R]p — p) corresponds to id < R~ o R, or, equivalently, to (R™)T,
({L)p < pV{(D)p), thus (L) is definable from (D),

({R)p — (D)p) corresponds to irreflexivity R N Id = (), and

RN Id# () has no correspondent axiom even with {D)—operator.

A relation algebra is called simple, if it satisfies the Tarski—rule: R#0 /1o Rol=1. Similarly,
we can extend the expressivity of the modal language by admitting modal derivation rules as a means
of specification. A standard rule p : ¢ / ¢ consists of two modal formulas ¢ and ¢ and closes the set
of formulas of logic £ under the condition: For any substitution Swubst of propositional variables with
formulas, Subst(v) is in £ implies that Subst(y) is in L. E.g., the rule p — (R)p / p — (S)p allows to
derive (S)T from (R)T.

A modal sequent rule([Kap87]) p : ¢1,...;¥n / @1, ..., ¢m imposes the condition: Subst(y1) € £ and
.. and Subst(¢,) € L, implies Subst(y1) € L or ... or Subst(pn,) € L. Since modal logic is an extension
of propositional logic, Subst(i1) € £ and Subst(y2) € L iff Subst(1 A2) € L. Thus rules with a finite
set of antecedents {1, ..., ¢} are equivalent to rules with a single antecedent (¢1 A...At,). Any axiom
can be regarded a standard rule with antecedent T, and every standard rule can be regarded a sequent
rule with one consequent.

Let X be a set of (axioms or) rules. The formula ¢ is derivable from a set ® of formulas in the system
X (P ngo), if there is a derwation tree for . This 1s a finite tree of formulas, such that every leaf in this
tree is ¢, and every node of this tree is either from ®, or one of the n children of a node # which are
substitution instances of a consequence of a rule, such that all antecedents of this rule occur above x in
the tree.

We define a (sequent) rule p : ¢1,...,¢n / ©1, ..., om to be derivable in X (pr), if there is a derivation
tree with leafs from {1, ..., om} from the assumptions {1, ...,¢,}. For standard rules Hy / ¢ iff
{v} ngo. Note the difference to Ixuwgo, which 1s ¥ ngo for the set ¥ of substitution instances of !

A (sequent) rule p: b1, ..., [@1, ..., pm is valid in an class of models G (||S p), if for any g € G we
have that g =47 and ... and ¢ |= v, implies g |= 1 or ... or ¢ = ¢y,. It is valid in a class of frames, if
it is valid in every model based on that class.

Thus “ /7 is interpreted as global consequence relation: ||Z 1) / ¢ iff for any frame g of G with g = o
also g |= ¢ holds; this in turn is true iff for all ®, if & [}« then ® || . Thus |[[$ 4 / ¢ and G D G’

imply HEI ¥ / . The rule of replacement is valid in the class of all frames. A standard rule ¢ / ¢ is
called locally valid in a class of frames G, if ¢ is valid in every world of every model of G in which 1 1is

valid. Tt is easy to see that 1 / ¢ is locally valid in G iff || (¢ —). Thus, with local validity there
1s no difference in definability between axioms and standard rules. Furthermore, there are frames locally
invalidating the rule of replacement, enforcing yet another interpretation for this rule. ¢ 1s called a global

frame consequence of ¥ in G (||£ ¢ => @), if |E « implies || ¢. Clearly, we have |E o => o if [S 4 / ¢
if |I° ¢ — ¢.
Some observations about definability with rules are:

Op / p corresponds to id < R~ o R, [R]p / p is equivalent to (R™)T,

the (L)—operator is undefinable with standard rules: R = 1 has no correspondent standard rule,

with (L)-operator, every rule p = ¢¥1,...,%n / ¢1,...,¢m is equivalent to ([L]y1 A ... A [L]¢, —
[Lle1 V...V [L]em),

(pV[R]q) / p,q corresponds to R =1 and is complete for this condition on models,
(D) is not definable from (L} even with rules.

In summary, standard rules give only a limited access to universal and converse relation, sequent rules
and (L)—operator are alternative choices to reason about a universal relation in modal logic, whereas the
(D)-operator is a further step towards more general logics.

Nevertheless, standard rules can be used to give simple correspondences for certain second order
properties relevant to computer science, such as terminality, discreteness, and transitive closure. We
develop axioms for these properties from intuitive rule characterizations.

A paths in a frame is a sequence of R—successors of any world for the given accessibility relation R.
A frame is called termenal if it contains no infinite paths. Any terminal image finite frame is finite by
Konigs lemma. Finite frames may contain infinite paths: if R contains a world x such that R(z,), this
trivial loop gives rise to an infinite path. A frame is called strongly terminalif in every infinite path each
two neighbors are different. (This notion could be generalized to finite loops of arbitrary fixed length.)

The existence of infinite paths is expressed by the following second-order sentence:

Ip [Fx [p(x) A (Vy [p(y) — 32 [R(y, 2) A p(2)]))]]
Thus the frame g is terminal if the negation of that sentence holds:
Vp[Vy[p(y) — 32 [R(y, 2) A p(2)]] = Ve [-p(2)]]
This can be written in ¢RA, as follows:
(p<Cp)/ p=0 (LR)

Tts dual version is the so-called Lob-rule: (Op — p) / p.
Terminality implies irreflexivity ((R A id) o p = 0):

1. (idANR)op=(idoid AR)op (ax)
2. (ldANR)yop < (idANR)o(idAR)op (1)

3. (idANR)yop< Ro(idAR)op (2

4. (IdANR)op=10 (LR,3)

With transitivity, (LR) is equivalent to the already mentioned axiom W: O(0Op — p) — Op
A frame contains an infinite path without trivial loops, if

Ap [Fz [p(e) A (Ve [p(x) — 3y [R(z, y) A —p(y) A3z [R(y, 2) Ap(2)]ID]]

Again, strong terminality can be described by the negation of this sentence, which can be translated into
the following rule :

p<O(=pACp) /p=0 (Grz)

An equivalent modal formula is the Grzegorczyk-axiom O(O(p — Op) — p) < Op

Every transitive standard frame for (Grz) is antisymmetrical (R A R~ < id). Antisymmetry can be
derived in ¢RA, from 4 and (Grz) with point-axiom. Using a nonrepresentable relation algebra, it can
be shown that antisymmetry can not be derived from 4 and (Grz) alone. So, the relational K4(Grz)
based on gRA, is incomplete. However, antisymmetry can not be formulated as a modal formula. In
fact, the modal K4(Grz) is complete.

Terminality is related to discreteness. A total-linear irreflexive frame is called Dedekind-discrete if it
satisfies the following condition:

Vp (3 [p(x)] A 3z [p(2)]) AV, y [p(e) A —ply) — Rz, y)]) —
Fuw [p(u) A =p(w) A =TFv [R(u, v) A R(v, w)]]]

This is defined in relation algebra with the following rule:
(lop)A(lo(=p))=1, po—p <R/p o—(RoR)o—p=1

A path p (on a linear frame) is unbounded, if every successor of any point in p has a successor which
again is in p: p — [R]{R)p. A frame g is called path-discrete, if every infinite path is unbounded. So,
path-discreteness is defined by the following pair of rules (ZR):

p<(R)p/p<[RKR)p, p<(R7)p/p<[RTIR)p

In irreflexive, linear frames, these rules are equivalent to Dedekind-discreteness.

Let g be an irreflexive transitive standard frame. Then g has greatest lower bounds in every w € W
iff ¢ validates the first rule (ZR), and, dually, g has smallest upper bounds in every w € W iff it satisfies
the second one.

Changing the basic notion of path to paths without trivial loops allows us to generalize Dedekind-
discreteness to reflexive (transitive, linear) frames as well:

A linear frame is strongly path-discrete, iff it satisfies the following Dummet rules (DumR):

p < (R)(=pA(R)p) / p < [RI(R)p ,
p<A(R7)(=pA(R7)p) /p<[RTIR)p

Again, with transitivity (DumR) is equivalent to the following axiom:

([RI([R](p — [R]p) — p) A (R)[R]p) — [R]p

So, any linear frame g has greatest lower bounds iff it satisfies this axiom. Let R be the nezi-step relation
of a program, and R* its reflexive transitive closure . If R is functional, then R* satisfies (DumR).

4.2 Dynamic and Fixpoint Logic

We have seen that Peirce algebras extend modal algebras by admitting arbitrary operations on the oper-
ators. However, Peirce algebras do not provide a Kleene star for transitive closure of relations, which is a
very important concept in computer science. To avoid undecidability caused by the nonrepresentability
of relation algebras, in dynamic logic we start with a relation semilattice, i.e., we disallow complement
and intersection of relations. A Kleene algebra is a relation semilattice A augmented with an additional
operator * : A — A, such that

RoS"oT =sup,RoS"oT,

where S° = id and St = S05?, and the supremum is with respect to the lattice order of A. A dynamic
algebrais a Peirce algebra (B, A, {),7), where A is a Kleene algebra instead of a relation algebra, satisfying
the following equality:
(R*)p = supn (R")p,
where the supremum is with respect to the lattice order in B.
Standard models for modal logics can be extended to standard models for dynamic algebras by defining
R* to be the reflexive transitive closure of R. A proof similar to the completeness proof sketched in Section
2.1 shows that every dynamic algebra is representable in a standard model. Hence propositional dynamic
logic is complete; the following axioms and rule, in addition to K, give a complete deductive basis (see,

e.g.,[Koz82)):

RV S)p — ((R)pV{S)p)
RoS)p < (R)(S)p
pT)e = (PN q)

(
(
{
(B7)p = (pV (R){R")p)

(Ryp—p/(R)p—p

The last axiom and rule in this list are called recursion aziom and induction rule, respectively. To give
a relational interpretation, the recursion axiom forces R* to be any reflexive transitive relation containing
R, and the induction rule determines R* to be the smallest such relation: Let S be any relation with
id< S R<Sand SoS<S. Then RoS <SoS5, hence RoS <S. Assuming that from R o p we can
derive R* o p < p, we can infer R* o § < S. Since id < 5, we have R* oid < R* 0.5, which gives R* < S.

Even with Kleene star, there are some properties of programs not expressible in dynamic logic. For
example, our introductory example formula [R*]{R) expresses that every execution of the program is
nonterminating, its complement being the property that some execution halts. To assert that every
computation halts, we extend the basic modal logic with recursive definitions of operators. By the above
axioms, (R*) is defined to be the smallest operator (F') satisfying (F')p — (pV (R)}{F)p) for all p.
(R*)p is the least fizpoint of the function f mapping every ¢ onto (pV (R }q). We introduce a propositional
quantification y for least fixpoints and write ((R*)p — pq[pV (R)q]).

Formally, the p—calculus can be seen as a sublanguage of monadic second order logic, via the standard
translation:

ST (uqlel) = Vq [Vy[ST(0)[x/y] — q(y)] — q(x)]

The property that every execution of a program terminates can be formulated in the propositional
p—calculus as pq[[R]T]: The standard translation of this sentence amounts to Vq[¢(2) — Jy[g(y) A
Vz[R(y,z) — —q(2)]]]. Substituting for ¢ the set of states of any complete execution sequence, we see
that this sequence must be terminal.

All known program logics which are decidable can be embedded in the propositional p—calculus.
Moreover, this calculus itself is decidable and was recently shown to be complete by [Wal95]. The
relevant recursion axiom and induction rule are:

ela/ralel]l — pqle]

ela/pl —p / nale] —p

The propositional p-calculus is particularly useful for automatic program verification: Given a u—
calculus specification formula, and a model describing (the executions of) the program, we can give
simple algorithms for testing whether the specification is satisfied by the program. This model checking
problem has received much attention, and several elaborate data structures for the representation of
relational models have been developed, see e.g. [BCMD+90].

References

[BBS92] C. Brink, K. Britz, R. Schmidt: Peirce algebras; Max-Planck-Institut fir Informatik, Saarbrcken,
Report MPI-1-92-229 (1992)

[BCMD490] J. Burch, E. Clarke, K. McMillan, D. Dill, L. Hwang: Symbolic model checking, 10?° states and
beyond, 5th LICS (1990)

[Ben&9] J. van Benthem: Notes on modal definability; NDJFL 30(1):20-35 (1989)

[DPI0] B. Davey, H. Priestley: Introduction to Lattices and Order; Cambridge Univ. Press (1990)

[Gol88] R. Goldblatt: Logics of Time and Computation; CSLI lecture notes 7, Stanford (1988)

[Gor90] V. Goranko: Modal definability in enriched languages; NDJFL 31(1):81-105 (1990)

[GT87T] S. Givant, A. Tarski: A Formalization of Set Theory without Variables; AMS Quarterly
Coll. Pub. 41, Providence, R.I. (1987)

[Hei95] W. Heinle, Expressivity and Definability in Extended Modal Languages; Verlag Shaker, Aachen
(1995)

[JT50] B. Jonsson, A. Tarski: Boolean Algebras with operators; Trans AMS, pp.891-839 (1950)

[Kap87] B. Kapron: Modal sequents and definability; JSL 52(3):756-762 (1987)

[Koz82] D. Kozen: Results on the propositional p-calculus; in: Proc. 9th ICALP, LNCS 140 (1982)

[Or188]

[Rij93]
[SegT1]
[0S95]

[SS89]
[Sto36]
[Wal95]

E. Orlowska: Relational interpretation of modal logics; in: Andreka, Monk, Nemeti (eds): Algebraic
Logic, North Holland (1991)

M. de Rijke: Extending Modal Logic; ILLC Diss. Series 93-4, Univ. of Amsterdam (1993)
K. Segerberg: An essay in classical modal logic; Technical report, Dept. of Phil., Uppsala (1971)

H.-J. Ohlbach, R. Schmidt: Functional translation and second-order frame properties of modal
logics, Rep. MPI-1-95-2-002, Max-Planck-Inst., Stuttgart (1995)

G. Schmidt, T. Stroéhlein: Relationen und Graphen; Springer (1989)
M. Stone: The theory of representations for Boolean algebras; Trans AMS 40, pp.37-111 (1936)

I. Walukiewicz: Completeness of Kozens axiomatization of the propositional pg-calculus; LICS
(1995)

