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Abstract

In this work we survey the connections between modal logic and relation algebra� We compare
various modal and relational languages for the speci	cation of reactive systems by giving new trans�
lation algorithms between these languages� We then characterize the expressiveness of the languages
algebraically with p�morphisms 
or bisimulations�� Furthermore� we show how completeness and in�
completeness proofs of modal logic can be transferred to relation algebra� and give a relation algebraic
treatment of modal correspondence theory� We show how our methods can be applied to stronger
languages like those containing derivation rules or 	xpoint operators�

� Introduction

In the design of safety�critical software systems formal semantics and proofs are mandatory� Whereas
for functional systems �computing a certain function� usually denotational semantics and Hoare�style
reasoning is employed� reactive systems �reacting to an environment� mostly are modelled in an automata�
theoretic framework� with a modal or temporal logic proof system� Much of the success of these logics in
the speci�cation and veri�cation of reactive systems is due to their ability to express properties without
explicit use of �rst�order variables� For example� consider a program de�ned by the following transition
system�

lo hi

er

put

get

get put

lo hi

er

put

get

get put

ok

koget

In this picture lo� hi and er denote states� and put and get are binary relations between states� Ok is
the set flo� hig of states� and ko is ferg� �The program is just for demonstration and does not have any

particular purpose�� Let R
�
	 put�get be the transition relation of this program
 then e�g� nontermination

from an initial state x is described by the �rst�order formula �y �R��x� y� � �z �R�y� z���� It can also
be expressed by the multimodal formula �R��hR i�� which does not contain individual variables x� y�
However� the same virtue is shared by the more expressive relational calculus� which was introduced as a
means to formalize mathematics without variables� In the example� the relational equation R����R�� 	

�This article is a preliminary version of a chapter to appear in the forthcoming handbook �Relational Methods in

Computer Science�� edited by Ch� Brink and G� Schmidt

�



� expresses the same condition as above for all x� As we will see� relational algebra thus can serve as
a natural semantics for modal logics� resulting in some easy completeness and correspondence results�
Vice versa� in many cases techniques developed for modal logics can be extended to relational algebra�
yielding new insights and opening new areas of interest�

� Formulas and properties

To begin with� we give de�nitions of all logical languages used in this chapter� and their respective
translations into one another� Then� we describe how properties� i�e�� classes of semantical structures
for our formulas� can be characterized with relational means� We presuppose elementary knowledge of
relation algebra as described� e�g�� in the appendix of �SS����

��� Logics and their Standard Translations

The basic modal logic K is built from propositions and boolean connectives 	� 
� with an additional
unary connective �� called possibility operator� The necessity operator � can be de�ned as its dual by
�� 	 	�	��

A Kripke structure consists of a nonempty set W of �worlds�� a binary relation R and a valuation h
from propositions into P�W �� Satisfaction of a sentence � in a Kripke strukture �W�R� h� and a world
w � W is de�ned inductively�

W�R� h�w j	 pi if w � h�pi��

W�R� h�w j	 �� 
 �� if W�R� h�w j	 � or W�R� h�w j	 ��

W�R� h�w j	 	� if W�R� h�w �j	 ��

W�R� h�w j	 �� if W�R� h�w� j	 � for some w� �W with wRw��

A sentence � is valid in a Kripke structure �W�R� h�� if W�R� h�w j	 � for all w �W �
To get a complete deductive system for the modal logic K� start with the set of all propositional

tautologies� and add the following axioms and rules�

monotonicity� ���� �� � ���� ���

necessitation� �  ��

modus ponens� �� ��� ��  �

An alternative choice is to add the following axioms and rule to propositional logic with modus ponens�

normality� �� � �

additivity� ��� 
 �� � ��� 
���

replacement� �� � ��  ��� � ���

The language of basic modal logic de�ned above contains besides the boolean connectives only propo�
sitions and one unary modal operator� Propositions are interpreted as unary predicates �subsets� of
worlds� and the diamond operator corresponds to a binary accessibility relation between worlds� How�
ever� already in the above example formula we used the re�exive transitive closure relation R� of R� In
general� we will want to express properties of several relations R� R�� put � get ���� Moreover� the restriction
to unary predicates and binary relations sometimes is arti�cial� Therefore we de�ne the modal language
over an arbitrary algebraic type � � Function symbols in � are called operators
 unary operators include
� and hR i� where R is from some index set� Propositions are modal constants� i�e�� zero�ary operators�
Modal formulas �of type � with variables from V � are de�ned as terms of type � with additional boolean
connectives�



� Every v � V is a modal formula�

� � is a modal formula�

� If �� and �� are modal formulas� then ��� � ��� is a modal formula�

� if ��� � � � � �n are modal formulas and � � F� is an n�ary operator� then ��� � � ��n is a modal
formula�

Variables are denoted by lowercase letters fv� p� q� ���g
 formulas not containing any variables are called
sentences� Whenever we wish to emphasize the fact that � contains proposition variables we call � an
axiom� Other boolean connectives 	� 
� �� � are de�ned as usual
 for every operator � its dual

operator � is given by ��� � � ��n
�
	 	�	�� � � �	�n� The dual of hR i is �R �� The basic modal language

is the set of modal sentences of type fP��g� where P is the set of propositions� In basic multimodal

formulas the arity of operators is at most one�
To de�ne a semantics for the modal language� there are several choices� The most obvious idea is to

extend the notion of Kripke structure to include n�ary relations�
A standard frame of type � consists of a nonempty set W of �worlds�� and an interpretation R assigning

to every n�ary operator from � an �n � ��ary relation on W � A standard model for formulas of type �
with variables from V is a standard frame �W�R� of type � together with a valuation V assigning to every
variable from V a subset of W � The model �W�R�V� is said to be based on the frame �W�R�� Validity
of a formula � in a standard model �W�R�V� and a world w �W is de�ned inductively�

W�R�V� w j	 v if w � V�v�


W�R�V� w �j	 �


W�R�V� w j	 ��� � ��� if W�R�V� w j	 �� implies W�R�V� w j	 ��


W�R�V� w j	 ��� � � � �n if there exist w�� ���� wn � W such that �w�w�� ���� wn� � R��� and
W�R�V� wi j	 �i for all i 	 � ���� n�

The formula � is valid in the model �W�R�V� if W�R�V� w j	 � for all w � W 
 it is valid in the frame
�W�R� if it is valid in all models �W�R�V� based on �W�R�� Note that any sentence is valid in a frame
i� it is valid in some model based on that frame�

To get an intuitive understanding of how relations are coded as modal operators� consider a binary

relation R on W � De�ne for any w� �W the set hR i�w��
�
	 fw � W � �w�w�� � Rg� and for any � � W �

the set hR i���
�
	
S
fhR i�w�� � w� � �g� Then we have �w�w�� � R i� w � hR i�w��
 therefore there is

w� � � with �w�w�� � R i� there is w� � � with w � hR i�w��� i�e�� i� w � hR i��
In our example� hgeti�ferg� 	 fer � log� and hput i�flo� hig� 	 hput i�lo� � hput i�hi� 	 � � flog� Thus

w j	 hgetiko i� w � fer � log� and w j	 hputiok i� w 	 lo� As an example of a valid sentence� consider
hgetihgetiko
 as an axiom� �hputip� �put �p� is valid since it is valid for every substitution of p with some
subset of flo� hi� erg�

Standard frames of type � are nothing else than relational structures for the algebraic type � �� where

in � � the arity of all operators is increased by one� � ����
�
	 � ��� � � But� relational structures of

type � � are also the semantical basis for the �rst and second order language of type � �� The standard

translation of modal formulas of type � with variables from V into predicate logic formulas of type � �

with proposition variables from V and one free individual variable x is de�ned as follows�

ST �v�
�
	 v�x�


ST ���
�
	 �x �	 x�


ST ���� � ����
�
	 �ST ����� ST �����


ST ���� � � � �n�
�
	 �x����xn ���x� x�� ���� xn� � ST �����x�x��� � � �� ST ��n��x�xn��



Here ��x�y� denotes the formula derived by simultaneously substituting y and x for all occurrences of
x and y in �� respectively� If the highest arity of any operator in � is n� then ST ��� contains one free
variable x and at most n� bound variables fx� x�� ���� xng� The number of free individual variables of a
�rst�order formula is usually called its dimension
 hence the standard translation of any modal formula
is one�dimensional� Note that ST ��� is a �rst order formula i� � is a modal sentence
 if � contains free
proposition variables then so does ST ���� �In this case � represents a monadic ��

��property��
As an example for the standard translation� we calculate ST �hget ihgetiko�

	 �x� �get�x� x�� � ST �hget iko��x�x���
	 �x� �get�x� x�� � ��x� �get�x� x�� � �ST �ko��x�x������x�x���
	 �x� �get�x� x�� � ��x� �get�x� x�� � ko�x�����x�x���
	 �x� �get�x� x�� � �x �get�x�� x� � ko�x���

Validity of a modal formula � in a standard model �W�R�V� and world w could have been de�ned as
validity of the predicate logic formula ST ��� in the relational structure �W�R� with �rst order assignment
g � x �� w and second order assignment V� Of course this new de�nition for the semantics matches the
old one� i�e��

W�R�V� w j	 � i� �W�R�� g�V j	 ST ���� where g � x �� w�

The above standard translation maps modal sentences into �rst order formulas� and modal axioms into a
restricted class of second order formulas� However� there is another formalism in between modal logic and
predicate logic� which is equally well suited to serve as semantics for the modal language� the relational
calculus�

Since in general we are working with relations of di�erent arities� we have to extend the underlying
relation algebra appropriately� There are several approaches to do so�

In the �rst approach� which is followed e�g� in �BBS���� boolean algebras and relation algebras are
combined into Peirce algebras� that is� two sorted algebras of type �B�A� h i� ��� where B is a boolean
algebra� A is a relation algebra� h i is a mapping A�B � B and � is a cylindri�cation mapping B � A
such that

� hri�a 
 b� 	 hria 
 hrib

� hr 
 sia 	 hria 
 hsia

� hrihsia 	 hr � sia

� hidia 	 a

� h�ia 	 �

� hr�i��hria� � �a

� ha�i 	 a

� �hri�� 	 r � 

Any formula of the basic multimodal language can be regarded as a term of a Peirce algebra� consisting of
a boolean algebra built from propositions and a relation algebra built from unary operators� Of course�
Peirce algebras provide a much richer algebraic structure than modal formulas� since they include a
relation type with operations on operators� However� since complementation of relations is present� the
representation problem for Peirce algebras is undecidable�

Peirce algebras can be mapped into ordinary relation algebras by identifying each element a of the
boolean algebra with a right ideal element �a � � of the relation algebra� This is also the approach to a
relational semantics followed� e�g�� in �Orl���� To extend this approach to n�ary operators� we extend the
dimension of any relation or predicate to the maximum dimension of any relation in the signature�

The projection �i�R� of an �n� ��ary relation R onto its i�th component �� � i � n� is de�ned by

�i�R�
�
	 f�x�� ���� xn� � �y�� ���� yn �R�xi� y�� ���� yn��g



For a binary relation R we have ���R� 	 f�x�� x�� � �y� �R�x�� y���g 	 R � � and ���R� 	 f�x�� x�� �
�y� �R�x�� y���g 	 �R � �� 	  � R�

Using these operations� a relational translation RT of modal formulas into relation algebraic terms
can be de�ned� If � is a modal formula of type � with variables from V � then RT ��� is a term of type � ��

with variables from V � where � �� contains boolean operations� unary projections �i� and for every modal
operator � a relation constant ��

RT �v�
�
	 ���v� for every proposition variable from V 


RT ���
�
	 �


RT ���� � ����
�
	 RT ���� � RT ����


RT ���� � � � �n�
�
	 ��������RT ����� � � � ���n�RT ��n���

For the basic �multi�modal language we have

RT �P � 	 ���P � 	 P �  for any proposition P � and

RT ����� 	 ���� ����RT ����� 	 �� � �RT ���� � ��� �  	 � �RT ����

In the last transformation we used the fact that RT ��� is a right ideal relation� i�e� RT ��� 	 RT ��� � �
which is proved by induction on �� Thus this relational translation conforms with cylindri�cation by
right ideals�

The relational translation of the necessity operator � becomes

RT ����� 	 RT �	�	��� 	 RT ����n��

where n denotes right residuation of relations� For the above example formulawe haveRT �hget ihgetiko� 	
get � get � ko � �

A model for terms of type � �� with projections ��� �����n assigns an �n � ��ary relation to every
operator and proposition variable� Validity of a term RT ��� in a model M and worlds w�� ���� wn is
de�ned inductively according to the above clause for the projection operation� Now any standard model
M can be extended to a model M �� for terms of type � �� by setting� for an m�ary connective � �where
m � n��

R�����
�
	 f�x�� ���� xn� � �x�� ���� xm� � R���g�

and similar for v � V� �E�g�� ko becomes the binary relation f�er � lo�� �er� hi�� �er � er�g�� Then it is an
easy exercise to prove that M j	 � i� M �� j	 RT ���� Thus the above relational translation preserves
satis�ability� Moreover� since RT ��� 	 ���RT ����� we conclude� If M �� j	 RT ��� for all M �� which are
extensions of some standard model� then M j	 RT ��� for all models M � Hence the translation is also
validity�preserving� j	 � i� j	 RT ����

The third approach to a relational semantics for modal logics uses an algebra of n�ary operations for
n�ary operators� The set of modal formulas with operators from � and variables from V can be seen as
the term algebra of type � �f
��� �g generated by V � A modal algebra or boolean algebra with operators

is any relational structure �A�
��� �� � � for this type� such that �A�
��� �� forms a boolean algebra� and
every operator � � � of arity n � � is normal and additive� i�e� satis�es

��p�� ���� �� ���� pn� 	 � and

��p�� ���� pi 
 p�i� ���� pn� 	 ��p�� ���� pi� ���� pn� 
��p�� ���� p�i� ���� pn��

As usual� a relational expression is called valid in the algebra� if it is �equal to� the unit element � A
term t containing free relation variables v is valid in A� if t�v�R�� 	  for all substitutions of variables
with elements of A�

An ultra�lter on a modal algebra is any maximal nontrivial meet�closed upset� i�e�� a subset u of A
satisfying



p � u or �p � u for each p � A�

� �� u�

if p� q � u then p � q � u� and

if p � u and p � q then q � u�

A subset u of A is said to have the �nite intersection property� if for any �nite subset fp�� ���� png � u
it holds that p� � ��� � pn �	 �� Any such subset can be extended to an ultra�lter of A by repeatedly
adding either p or �p for each p � A� �Note that for uncountable A the axiom of choice is needed in this
construction�� In particular� for any atom a of A there is exactly one ultra�lter u containing a� namely

u
�
	 fp � a � pg� Now the ultra�lters of a modal algebra can serve as atoms of another algebra� consider

the powerset algebra on the set UA of ultra�lters of A� According to a fundamental result of Stone�Sto����

the function 	 � A� P�UA�� mapping every p � A to 	�p�
�
	 fu � UA � p � ug� is a boolean embedding�

That is� 	�p 
 q� 	 	�p� � 	�q�� 	��p� 	 �	�p�� and 	��� 	 �� The de�nition of 	 can be extended such
that it assigns an �n� ��ary relation 	��� on UA to every n�ary operator ��

	���
�
	 f�u�� ���� un� � p� � u� � ���� pn � un ���p�� ���� pn� � u�g

Dually� we have 	����u�� ���� un� i� ��p�� ���� pn� � u� � p� � u� 
 ���
 pn � un� Again� 	��� can be re�

garded as an n�ary operator on P�UA� in the usual way
 	����x�� ���xn�
�
	 fu� � �u�� ���� un ���u�� ���� un��

u� � x� � ���� un � xn�g� J�onsson and Tarski�JT��� proved that this de�nition yields a modal homomor�
phism from �A�
�	� �� � � into �P�UA������ �� 	�� ���

	���p�� ���� pn�� 	 	����	�p��� ���� 	�pn���

Hence every modal algebra is isomorphic to a subalgebra of a powerset algebra� As a corollary� any term
valid in A is valid in its ultra�lter algebra� Furthermore� if A is �nite� then 	 constitutes an isomorphism�
This representation theorem is fundamental to modal duality theory�

Let us try to illustrate the ultra�lter construction with our example program and � 	 fok � ko� hputig�
The modal algebra A contains at least the elements f�� � ok� kog� Other elements of A can be constructed

as lo
�
	 hput iok � el

�
	 ko
lo� and hi

�
	 �el � and eh

�
	 ko
hi� A validates the following terms� lo � hputihi �

hi � hputiko� and ko � �put ����� Therefore A can be pictured as follows�

0

hi kolo

ok el eh

1

The ultra�lters of A are ulo
�
	 flo� ok � el� g� uer

�
	 fko� el � eh� g� and uhi

�
	 fhi � ok � eh� g� The

representation function 	 is obvious� it maps e�g� lo �� fulog and ok �� fulo� uhig� It is easy to see that
this map de�nes a modal isomorphism� Note that for the type � 	 fok � ko� hR ig� no additional elements
besides f�� � ok� kog are generated
 lo and hi cannot be distinguished in this language�

Consider the special case that the boolean algebra �A�
�	� �� is a relation algebra� providing additional
operators �� �� and id� That is� we regard relations as objects rather than transitions between objects� As
usual we write � and � in in�x and post�x notation and assume that the axioms of relational algebra are



valid� It is easy to verify from these axioms that � and � are normal and additive� so �A�
�	� �� ��� � id� � �
is indeed a modal algebra� We call such a structure a modal relation algebra�

Under which conditions can the operators from � be represented in the relation algebra� A relational

representation 
 of the n�ary operator� is any relational expression 
��� containing n variables such that
for all a�� ���� an � A we have��a�� ���� an� 	 
����a�� ���� an�� According to this de�nition� propositions ���
ary operators� must be represented by their denotation in the algebra� In general� most binary operators
will not admit a relational representation�

Call a unary operator � associative if ��p � q� 	 ��p� � q� Then � is associative if and only if ��p�
is represented by R � p� where R 	 ��id� is an element of A�

Every associative operator is conjugated� If ��p� 	 R � p� then ��p� � q 	 � � p � ���q� 	 � for

���q�
�
	 R� � q�

In the modal encoding of relations as operators we de�ned for any binary relation R an operator hR i
by requiring for all x� y �W that x � hR i�y� i� �x� y� � R� Call a unary operator � in a modal relation
algebra A internal� if there exists a relation R � A such that for all points x� y � A we have x � ��y� i�
x � y� � R� �Recall that a point is any element y �	 � with y 	 y �  and y � y� � id��

Any associative operator is internal� For� if y is a point� then for all x it holds that x � R � y i�
x�y� � R� Proof� Let x � R � y� Then x�y� � R �y �y�� which implies x�y� � R since y is a point�
To prove the other direction� we note that for any point y� it holds that  � y 	  � y �  	 � Therefore
�R � y� 
 ��R � y� 	 � which can be written as x���R � y� � x� ��R� � y by boolean transformations�
Assuming x�y� � R� or� equivalently� x���R��y 	 �� we have x���R�y� 	 �� showing that x � R�y�
To sum up� � is internal if for all y which are points� ��y� 	 R � y�

Any relational representation 
 of all modal operators in � induces a translation PT � of modal formulas
into relation algebraic terms� Since in general PT ���� is not a right ideal� we call the translation purely

relational�

PT ��P � 	 P for any proposition or variable P � and

PT ����� 	 � � PT ���� for associative operators�

��� Algebraic Characterizations of De�nability

Any formula � de�nes the set of models or frames g with g j	 �� Can the class of models or frames
de�ned by a given formula be characterized with algebraic means�

We introduced several languages which can be compared with respect to de�nability�

� MS� basic multimodal sentences of type � �

� ML� basic multimodal formulas �with propositional variables��

� RA� the language of variable�free relation algebraic terms�

� qRA� the language of relation algebraic terms with relation variables�

� Lo � �rst order predicate logic of type � �

� qLo � universal monadic second order logic of type � ��

Standard translations like those of Section �� establish a syntactic containment between these languages
as follows�

Lo ��� qLo
� �
j j

RA��� qRA

� �
j j

MS ��� ML



As we will see� all of the above inclusions are proper�
Since in no formula from MS� RA� or Lo proposition variables apppear� with these formalisms there

is no di�erence between de�nability of frame classes or model classes� A class K of frames is de�ned by�
e�g�� a modal sentence � i� the class M�K� of all models based on K is de�ned by �� Thus� we only have
to consider de�nability of classes of frames�

A �rst characterization of the expressivity of modal sentences can be given as follows� precisely those
classes are de�nable which are de�ned by �rst order sentences elementary equivalent �i�e�� equivalent for
all �rst�order sentences� to the standard translation of a modal sentence�

Equivalence to standard translations of modal sentences� however� can also be formulated without the
notion of elementary equivalence� For frames g 	 �W�R�� g� 	 �W ��R�� and x �W � y �W �� we say that
�g� x� and �g�� y� are modally equivalent ��g� x� �MS �g�� y��� if g� x j	 � i� g�� y j	 � for all modal sentences
�� A function f �W �W � between frames g 	 �W�R� and g� 	 �W ��R�� is called a p�morphism�Seg���
if for all � � � and all x� �W � y� �W � such that f�x�� 	 y� we have

For all x�� ���� xn � W with R����x�� x�� ���� xn� there are y�� ���� yn � W � such that
R�����y�� y�� ���� yn� and f�xi� 	 yi for  � i � n


For all y�� ���� yn � W � with R�����y�� y�� ���� yn� there are x�� ���� xn � W such that
R����x�� x�� ���� xn� and f�xi� 	 yi for  � i � n


A frame g� is called a p�morphic image of g� if there is a p�morphism f � W � W �� We write g �� g�

or �g� x�
f
�� �g�� y� if g� is a p�morphic image of g with f�x� 	 y� For the basic monomodal language�

�g� x�
f
�� �g�� y� i�

R � f 	 f �R�� and

g� x j	 P i� g�� y j	 P for all propositions P �

In computer science� bisimulations are a concept which often replace p�morphisms� Bisimulations are
equivalence relations satisfying the same conditions as above �i�e�� instead of requiring f to be a function
with f�xi� 	 yi� for a bisimulation we require f to be an equivalence relation with f�xi� yi��� Thus
p�morphism can be seen as special bisimulations� Vice versa� if f is a bisimulation between g and g��
then the function mapping any x in the domain of f to the equivalence class of some bisimilar w� is a
p�morphism�

Now� p�morphisms are precisely those homomorphisms which preserve modal equivalence� If �g� x� ��
�g�� y�� then �g� x� �MS �g�� y�� This can be easily shown by induction on the structure of ��

For any set � of modal formulas� we write g� x j	 � if g� x j	 � for all � � �� Note that g� x j	 � only
if g� x j	 �o for all �nite �o � �� A frame g 	 �W�R� for the basic modal language is modally saturated

if for all x �W and all sets � of modal formulas the following holds� there is a y �W with R�x� y� and
g� y j	 � i� g� x j	 hRi

V
�� for all �nite �o � �� The frame g is image �nite if for all x � W the set

fy � R�x� y�g is �nite� All �nite frames are image �nite
 all image �nite frames are modally saturated�
Let g� and g� be modally saturated frames such that �g� x� and �g�� y� are modally equivalent� Then

there is a p�morphism �g� x� �� �g�� y�� This can be proved by an indirect argument� let �g� z� �MS �g
�� z���

and assume that not �g� z� �� �g�� z��� That is� for any morphism f � x �� x� we can �nd y or y� such that

i� R�x� y� and for all y� with R��x�� y�� is y� �	 f�y�� or

ii� R��x�� y�� and for all y with R�x� y� is y� �	 f�y��

We derive a contradiction from case i� case ii being essentially symmetric� Assume that for any y� with
R��x�� y�� we have y� �	 f�y�� Then by induction hypothesis for any such y� there is a sentence �y�

with g�� y� j	 �y� � but g� y �j	 �y� � Now� let �
�
	 f	�y� � R��x�� y��g� Per construction g� y j	 �� and

thus for every �nite �o � � we have g� x j	 hRi
V
�o� Furthermore� for any y� with R��x�� y�� it holds

that g�� y� �j	 �� since g�� y� j	 �y� � and 	�y� � �� By modal saturation� there is a �nite �o � � with
g�� x� �j	 hRi

V
�o� in contradiction to the assumption�



We have shown that modally saturated frames can be characterized  up to p�morphism! by modal
sentences� The restriction to modally saturated frames re�ects the �niteness of the language
 it provides
a compactness argument� which could be dropped if modal languages contained in�nite conjunctions�
Another way to arrive at an exact algebraic characterization of modal sentences is to weaken the notion
of p�morphism�

A partial p�morphism is a partial function which is a p�morphism on its domain� Let g 	 �W�R� and
g� 	 �W ��R�� be frames� Then �g�� x�� is a �nitely p�morphic image of �g� x�� if there is a sequence �Fn�
of sets of partial p�morphisms �g� x� �� �g�� x�� such that

for any f � Fn��� and x�� ���� xn �W such that x� � dom�f� and R����x�� ���� xn� for some � � � �
there is an f � � Fn such that domf � domf �� ranf � ranf � and x�� ���� xn � domf �� and

for any f � Fn��� and y�� ���� yn � W such that y� � ranf and R����y�� ���� yn� for some � � � �
there is an f � � Fn such that domf � domf �� ranf � ranf � and y�� ���� yn � ranf ��

If �g� x� is a �nitely p�morphic image of �g�� x��� then it can be shown by induction on the nesting of
modal operators� that for any sentence � it holds that g� x j	 � i� g�� x� j	 �� Vice versa� if �g� x� and
�g�� x�� are modally equivalent� then we can construct a sequence of sets of partial p�morphisms with
extending domains and ranges� asserting that �g�� x�� is a �nitely p�morphic image of �g� x��

The above idea can be transformed into an algorithm that checks whether two �nite frames are
modally equivalent� Start with all mappings x �� x� such that x and x� satisfy the same propositions� and
systematically try to extend this mapping for all worlds reachable from any world in the domain or range
of any already constructed mapping� Upon termination this algorithms delivers a partial p�morphism
from the strongly connected component containing x� or a modal sentence distinguishing the two frames�
Many computer aided veri�cation systems incorporate an algorithm for checking bisimulation equivalence
which is based on this method�

Using the notion of p�morphism� �Ben��� gives a characterization of de�nability of basic multimodal
sentences relative to �rst order logic� Any Lo�formula is invariant for p�morphisms i� it is equivalent to
�the standard translation of� a modal sentence�

As an example we prove that the term R� � R � R� or� equivalently� the �rst�order sentence E �
�xyz �R�x� y� � R�x� z� � R�y� z�� cannot be expressed by a modal sentence� We give two frames g 	
�W�R� and g� 	 �W �� R�� such that g is the p�morphic pre�image of g�� and g� satis�es E� but g does not�

Let W
�
	 fa� b� c� d� eg with R

�
	 f�a� b�� �a� c�� �b� c�� �c� b�� �b� e�� �c� d�� �d� e�� �e� d�g� and W � �

	 f� �� �g

with R� �
	 f�� ��� �� ��� ��� ��� ��� ��g� The mapping f given by a �� � b �� �� c �� �� d �� �� e �� �

is the required p�morphism g � g�� However� even though the validity of E is not preserved under
p�morphic pre�images� it can be proved that it is preserved under p�morphic images
 that is� if g� x j	 E
and �g� x� �� �g�� y�� then g�� y j	 E�

In the case of modal formulas with propositional variables� axioms essentially are ��
��sentences� For

this language the theorem above could be used to characterize de�nability of sets of models
 however�
axioms usually are used to de�ne classes of frames� Although axioms in general are not invariant under
p�morphisms� they are preserved� If �g� x� �� �g�� y� and g� x j	 �� then g�� y j	 ��

Further invariances are for generated subframes� disjoint unions� and ultra�lter expansions�
Let g 	 �W�R� be a standard frame for the basic multimodal language� and S be the re�exive

transitive closure of
S
fR�R� � hRi � �g� For any world x �W � the generated subframe gx 	 �Wx�Rx� of

g is de�ned by Wx
�
	 fy � S�x� y�g� and Rx�R�

�
	 Rx� where Rx is the restriction of R to Wx �Wx� It is

easy to see that any modal formula is valid in a frame only if it is true in all of its generated subframes�
As a sideline� invariance of �rst order sentences under generated subframes can be characterized

itself� This was was shown by Goldblatt and Feferman� Existentially restricted Lo�formulas are built
from propositions and negated propositions using conjunction� disjunction� universal quanti�cation and
restricted existential quanti�cation of the form �y �R�x� y� � ����� �Note that any modal sentence is an
existentially restricted Lo�formula using only restricted universal quanti�cation�� An Lo sentence is
preserved under generated subframes i� it is equivalent to an existentially restricted Lo sentence�

The disjoint union of two frames g 	 �Wg�Rg� and h 	 �Wh�Rh� is the frame g�h 	 �Wg "�Wh�Rg�h��



where Wg "�Wh is the disjoint union of Wg and Wh and Rg�h�R��x� y� i� Rg�R��x� y� or Rh�R��x� y��
Modal formulas are invariant under disjoint unions� g � h j	 � i� g j	 � and h j	 ��

Recalling the construction of the ultra�lter extension from ���� we can characterize de�nability of
modal axioms with respect to �rst order logic� Let K be a frame class which is closed under elementary
equivalence� Then K is de�nable by a modal formula i� K is closed under generated subframes� disjoint
unions� and p�morphic images� and the complement of K is closed under ultra�lter extensions�

This theorem can be used to disprove modal de�nability� For example� there is no basic modal formula
de�ning all frames with R 	 � It is immediate� that the disjoint union of the universal relations of two
frames g and h is not universal in the frame g�h� Another example of a relational property which is not
de�nable by any modal axiom is irre�exivity� R � �Id� This can be shown using preservation of modal
formulas by p�morphisms� The frame �fag� f�a� a�g� is a re�exive p�morphic image of the frame ��� S��
where � is the set of natural numbers� S is the successor relation �irre�exive�� and f�i� 	 a for all i � ��

The above de�nability considerations can be extended from modal logic to relational or predicate
logic� Whereas  modal equivalence! can be checked by means of �partial� p�morphisms� in �rst order
logic elementary equivalence can be checked by means of partial isomorphisms� Let g 	 �W�R� and
g� 	 �W ��R�� be frames� A partial function f � g � g� is called a partial isomorphism� if

f is injective� i�e�� x� 	 x� i� f�x�� 	 f�x��� and

R�R��x�� � � � � xn� i� R��R��f�x��� � � � � f�xn��

Two frames g� g� are called �nitely isomorphic� if there is a sequence �Fn� of sets of partial isomorphisms
g � g� with�

for f � Fn�� and x �W there is an f � � Fn with f � � f and x � domf �


for f � Fn�� and y �W � there is an f � � Fn with f � � f and y � ranf ��

Compared to partial p�morphisms� partial isomorphisms yield a stronger condition on f � as they ad�
ditionally require R��R��f�x��� ���� f�xn�� � R�R��x�� ���� xn�� Finite isomorphisms are to elementary
equivalence what �nite p�morphisms are to modal equivalence� Fraiss�e proved that two frames satisfy
the same �rst�order formulas i� they are �nitely isomorphic� Van Benthem and Doets use this theorem
to show that a class K of models is de�nable by a �rst order sentence i� there exists an n such that K is
invariant for �nite isomorphisms of level n�

For relation algebras we mention another approach to characterize its expressivity� As we have seen�
the standard translation of a basic multimodal formula yields a �rst order formula with at most two
individual variables� Similarly� the calculus of relations can be understood as a proper subformalism of
�rst order logic� Every relation algebraic term t can be translated into an Lo formula ST �t� with two free
variables x�� x� and one bounded variable� Thus this term is valid in a frame i� the universal closure of
the translation is valid in this frame� g j	 t i� g j	 �x�� x� �ST �t��� We say that RA is contained in the
��variable fragment of Lo�

As an example� �Q � S �R�� �R � Q can be translated into
�x�� x� ��x� �Q�x�� x�� � �x� �S�x�� x�� �R�x�� x��� �R�x�� x��� Q�x�� x�����

Givant and Tarski�GT��� showed that also the converse direction is true� For every Lo�sentence
with at most three variables there is an equivalent variable�free relation algebraic term� Put di�erently�
relation algebra is expressively complete with respect to the ��variable fragment of Lo� �To be more
speci�c� relation algebra is expressively complete w�r�t� the ��variable fragment of Lo with at most two
free individual variables�� As the proof of this theorem is constructive� an algorithm may be given which
computes the relation algebraic translation of any ��variable formula�

From this theorem� an algebraic characterization of de�nability with relational terms can be developed
by de�ning a suitable restricted version of �nite isomorphisms� Additionally� this theorem can be used to
show non�de�nability of certain properties in relation algebra� For example consider the �rst order frame
property XX� �x� y� z� u �Q�x� y� � R�x� z� � S�x� u� � �v �T �y� v� � U �z� v� � V �u� v��� It can be shown
that XX needs at least four individual variables� so it cannot be expressed in RA� However� it can be



de�ned in qRA with the following axiom� �p� q �R � ��U � �p� �S � ��V � �p����Q � ��T � �p� q�����
These matters will be pursued further in Section ����

� Modal Logic as Relational Algebra

In this section we regard modal formulas as a special class of relational terms� First we present some
well�known modal completeness and incompleteness results with implications for the relational language

then we describe how some modal axioms can be translated into variable�free relational terms�

��� Completeness and Incompleteness

Whereas in the previous section we focussed on the de�nitional power of modal formulas� in this section
we will describe their deductive capabilities�

Let any type � and set of variables V be given� Formally� a modal logic L is any set of modal
formulas closed under propositional tautologies� modus pones� normality� additivity� replacement� and
substitution of formulas for propositional variables� The smallest modal logic is K
 the largest logic is
the one containing �� which consists of all formulas� If X is any set of formulas� then L�X� denotes the
smallest logic containing X�

This de�nition allows us to identify a logic L�X� with its axioms X� For a formula �� a set � of

sentences and a set X of axioms� we write � X�� if � � L� where L is the smallest logic with ��X � L�
If � is empty� it is omitted
 also X is omitted whenever no confusion can arise� Note that in contrast to
predicate logic� modal logic does not provide a deduction theorem� From ��f�g  � we are not allowed
to conclude �  ��� ���

To prove � X� one has to give a derivation of � from the assumptions �� i�e�� a sequence of formulas
such that the last element of this sequence is �� and every element of this sequence is either from �� or
a substitution instance of an axiom from X� or the substitution instance of the consequence of a rule�
where all premisses of the rule for this substitution appear already in the derivation�

As an example� let us derive monotonicity inK� First� we note that the rule of replacement of provably
equivalent subformulas �Repl� �p � q�  ���p� � ��q��� is admissible� i�e�� does not increase the
number of derivable formulas� We proceed as follows�

� ��	q� �	p 
�	q� �taut�
�� ��	q� ��	p 
 	q�� ��add�
�� ��	q� ��	p 
 �p � 	q��� ���Repl�
#� ��	q� �	p 
��p � 	q��� ���add�
�� �	�	p��	q� ��	�p� q��� �#�Repl�
�� ���p� q�� ��p� �q� ���taut�

A formula � follows from a set � of sentences in a class G of standard frames or models ��
G

jj� ��� if � is

valid in every frame or model of G which validates all � � �� X is called correct for G� if
G

jj� � whenever

X�� Note that since any deduction can use only �nitely many premisses� X is correct for G i� for all �

it holds that �
G

jj� � whenever � X��

Any set of formulas X is correct for the set G�X� of frames in which all elements of X are valid� X�

implies
G�X�
jj� ��

The converse direction of this statement is called the completeness problem� X is called complete for

G if
G

jj� � implies X�� X is strongly complete for G if for all �� if �
G

jj� � then � X�� In contrast
to the correctness statement� the two notions of completeness do not coincide� there are axiom systems
complete for a certain class of models� but not strongly complete� The situation is the same as in more
expressive languages like predicate logic or relational calculus� Some �classes of� models can be described
by an in�nite set of formulas� but not by any �nite subset thereof�

The minimal logicK is strongly complete for the class G of all standard models� i�e�� � jj� � i� �  ��
The proof follows the so�called Henkin$Hasenj%ager construction and is completely analogous to the proof



of the representation theorem for boolean algebras sketched in ���� A set & of formulas is inconsistent
with �� if there is a �nite subset f��� ���� �ng � & such that �  ��� � ��� � �n � ��� To prove strong
completeness� we have to show that every formula consistent with � is satis�able in a model validating

�� For� if � jj� �� then no model validating � satis�es f	�g
 therefore f	�g is inconsistent with ��
hence �  �� �Without loss of generality� we can assume here � to be consistent with itself� or else �  �
holds�� Lindenbaum�s extension lemma states that any set of formulas consistent with � can be extended
to a maximal consistent set including � �by repeatedly adding � or 	�� respectively��

The quotient algebra of modal formulas with respect to provable equivalence is called the Lindenbaum
algebra� named LINDA in �DP���� Maximal consistent sets are ultra�lters in this algebra� Now we
de�ne the analogon of the ultra�lter algebra� The canonical model for � is �W�R�V�� where W is the

set of maximal consistent sets which include �� R���
�
	 f�w�� ���� wn� � p� � w� � ��� � pn � wn �

��p�� ���� pn� � w�g� and V�v�
�
	 fw � v � wg� The fundamental �truth� or �killing� lemma states

that for any formula � and maximal consistent set w it holds that � � w i� W�R�V� w j	 �� In the
inductive step for this lemma� we have to show that �������n � w i� W�R�V� w j	 �������n� The
�if� direction being a direct consequence of the de�nition� assume that �������n � w� We have to �nd
maximal consistent sets w�� ���� wn such that �w�w�� ���� wn� � R��� and �i � wi for i � n� Since
 ��������n � �������n � ���� � ���������n� 
 ��� 
 ��������n����n � �n���� for every �������n in
w there exists some k such that ��������k � �k�����n is in w� Fix an enumeration �j� of all formulas
�������n in w� and de�ne n sequences ui of consistent sets ui�j such that �

W
u�j���

W
unj is in w for

all j� Let ui��
�
	 �i� and ui�j��

�
	 ui�j � �i if i 	 k� or else ui�j��

�
	 ui�j� �In the basic monomodal

language� u�j is just f��g � f�j � ��j � wg�� Let wi be any maximal consistent extension of uij� Then
�w�w�� ���� wn� � R���� since for formulas ��� ����n the assumptions �i � wi and not ���� ���� �n � w�

lead to a contradiction� Thus we have achieved our goal of constructing a model for any consistent set�
In fact� we have shown that any set of formulas is strongly complete for its canonical model� To show

that a set of formulas is complete for a set G of models� a useful strategy is to show that the canonical
model belongs to G� or� that the canonical model can be transformed into a model belonging to G� Such
transformations include the unfolding of models into trees� and the collapse of the model with respect to
bisimulation equivalence�

Note that the completeness proof can be improved� It is not necessary that maximal consistent
sets are maximal in the space of all formulas
 it is su'cient to consider maximality with respect to all
subformulas of the given consistent set� This idea can be used to transform the above completeness proof
into a decision algorithm� For any formula� there are only �nitely many di�erent subformulas� and hence
only �nitely many sets of subformulas� Call such a set w of subformulas locally maximal consistent� if

for any subformula �� either � � w or 	� � w� and

� �� w� and

��� � ��� � w i� 	�� � w or �� � w�

There are two approaches to deciding whether a given formula � is satis�able� The �rst� �local� algorithm�
is tableaux�based� We start with the set of all locally maximal consistent sets containing � and try to
systematically extend one of these to a model� Given a locally maximal consistent set w� we construct
for any formula �p����pn � w as successors all n�tuples of locally maximal consistent sets �w����wn�
which arise in the completeness proof� If there are no such successors� then w is unsatis�able and we
backtrack
 otherwise we proceed to extend the successors� Since there are only �nitely many locally
maximal consistent sets� the process stabilizes� Either all initial nodes are unsatis�able� or we have
constructed a model for the formula�

The second� �global� algorithm for testing satis�ability starts with the set W of all locally maximal
consistent sets and the set of all n��tuples for any n�ary operator� It then iteratively deletes �bad arcs�
and �bad nodes� until stabilization is reached� Bad arcs are tuples �w�w�� ���� wn� such that w contains
�������n� but for all i � n it is not the case that �i � wi� Bad nodes w contain a formula �p����pn�
but there does no longer exist a tuple �w�w�� ���� wn� with �i � wi for all i � n� The given formula is
satis�able i� upon termination there is a node left in which it is contained�



These two algorithms can be extended to yield more general algorithms for relational structures�
We proved completeness with respect to sets of models� However� axioms are usually used to de�ne

sets of frames� Thus we are looking for completeness statements of the kind  
G

jj� � implies X�!� where

G is a class of frames� We know that X� i� � is valid in the set G�Subst�X�� of all models satisfying
all substitution instances �of propositional variables with formulas� of X� But� this set is much bigger
than the set G�X� of all models based on some frame for X� because the latter models have to satisfy all
substitution instances of X� where variables are substituted with subsets of worlds� Since in general not
all subsets of worlds are described by sentences� we can not infer that validity in all frames for X implies
derivability from X� In fact� there is a �nite axiom set X and formula � such that the question whether

G�X�
jj� � is (�

��hard �and thus not recursively enumerable��
Consider our example program as the state transition diagram of a counter machine� which increments

and decrements its counter with every put and get operation� respectively� We show how this machine
can be coded by a �nite set of formulas� such that every model of these formulas describes the sequence
of memory states of a complete run�

Let �
�
	 fhi � lo� er� put � get � eoq� hXi� hF i� hM ig� The operator hXi will be used to describe the exe�

cution steps of the program in time� the operator hF i to denote the transitive closure of hXi� and the
operator hM i to access the content of the memory� As we will see in the next section� the following
axioms describe that X and M are functional �X� � X � id and M� �M � id�� form a half�grid
�M �X � X �M �� and that F is the transitive closure of X�

hXip� �X�p� hM ip� �M �p

hM ihXip� hXihM ip

hXip 
 hXihF ip� hF ip� �F ��p� �X�p�� ��X�p� �F �p�

Using these relations� we will �x the propositions such that

the number of M��successors in any world labelled eoq is the value of the counter�

every world is labelled hi �lo� or er � according to the machine state it denotes�

every world is labelled put or get � according to which action is executed next�

So� here are the relevant sentences�

put increases the length of the counter by one�
�put � �M ��� hXihM i�M ���

get decreases the length of the counter by one�
�hM i�get � �M ���� hXi�M ���

Every world is exactly one of fput � getg and fhi � lo� erg�
�put xor get� � �hi xor lo xor er�

All worlds reachable by M� have the same marking�
�P � �M �P � for P � fput � get� hi � lo� erg

eoq propagates only in one dimension�
�eoq � �X�eoq�� �M �	eoq

Transitions�
�lo � put � �X�hi�� �hi � get � �X�lo��
�lo � get � �X�er�� �hi � put � �X�er��
�er � get � �X�er�� �er � put � �X���



For a conditional transition like  from er go to lo if counter is zero! we could use the sentence �er � eoq �
�M �� � �X�lo�� For a multiple counter machine� we can use a similar encoding with several memory
access functions hMii� Now there is a computation in which such a machine reaches a certain state �say�
hi� in�nitely often from its initial state i� the sentence �lo � eoq � �M ��� �F �hF ihi� is satis�able in a
model validating all of the above axioms and sentences� Of course� for our example machine� we easily
see that the formula is satis�able
 for all single counter machines this recurrence problem is decidable�
But� for multiple counter machines the problem is (�

� complete� therefore also the problem whether any
sentence follows from a set of axioms is (�

� hard� Recall that axioms are monadic ��
��properties� so the

problem is in (�
� as well�

However� there is a notion of completeness for frame consequences� which is inspired by the algebraic
approach� Even though not every modal algebra is isomorphic to its ultra�lter algebra� modal algebras
can be regarded as models in their own right� This viewpoint gives rise to a semantics more general than
standard semantics�

A general frame is a structure �W�R�B�� where �W�R� is a standard frame� and B is a domain for

quanti�cation� a modal subalgebra of the powerset algebra on W � That is� B is a set of subsets of W
closed under boolean operations as well as under modal operators� If p�� ���� pn � B� then �p����pn � B�

where again �p����pn
�
	 fx� �W � �x����xn �R����x�� ���� xn�� xi � pi�  � i � n�g� A model �W�R�V� is

based on a general frame �W�R�B�� if V�v� � B for every propositional variable v� An axiom � is valid in
a general frame g� if it is valid in all models based on g� Note that there are many more general frames
than standard frames satisfying a given axiom
 in fact� standard frames can be seen as the special case
of general frames where B 	 P�W ��

For every consistent set of modal formulas there is a nontrivial modal algebra� Using this algebra as
domain for quanti�cation� we can construct for every consistent set X of axioms a general frame validating

all elements from X� Hence
G

jj� � i� X�� where G is the class of all general frames validating all elements
of X� This idea can even be extended to yield completeness results for more expressive formalisms like
relational terms with variables or (�

� formulas�

��� Second�order to First�order

Standard translations of modal axioms can be regarded as universal second order formulas� We say that
a modal axiom corresponds to some monadic ��

� frame property� Sometimes� such a property can be
expressed by a �rst order sentence� Vice versa� �rst order logic is a proper extension of the language of
modal sentences
 however� in some cases a �rst order formula which has no equivalent modal sentence
can be described by a modal axiom� The important questions are� given a modal axiom� does it de�ne a
�rst�order property� And� given a �rst order property� is there a modal axiom describing it� In general�
the complexity of these questions is not known� Thus� none of the methods for deriving �rst�order
correspondences can be proved complete� they are proved relatively complete w�r�t� each other�

In this section we give a brief survey of the existing theory on modal correspondences� and investigate
�rst order de�nability in relation algebras with propositional variables�

Consider the modal axiom U� ��p � �p��� which we met several times in the previous sections� It
de�nes the �rst�order property of functionality� i�e�� �xyz �R�x� y��R�x� z�� y 	 z�� This correspondence
can be established as follows� Assume a frame g for U such that R�x� y� for some x� and a valuation
assigning fyg to p� Then x satis�es �p� Hence every z with xRz must satisfy p� But� given the choice
of p� we see that z must be equal to y� establishing functionality� Now� assume a functional frame and
a valuation for p which validates the antecedent of U in x� Thus� we have a successor y of x in p�
Functionality establishes that y is the only successor of x� hence all successors of x are in p� establishing
validity of U� This proof displays the role of the proposition variables� they can be used as a kind of
register for a certain individual variable�

U can also be de�ned by the relation algebraic sentence R� � R � id� This can be shown with the
relational translation of modal formulas from Section ��� U is translated into R � p � ��R � �p�� which
is equivalent to �R � �p� � �R � p� 	 �� which is conR �R � p ��p 	 �� or� equivalently� R� �R � p � p�
Since the relation variable p can be substituted with any relation� this is equivalent to R� �R � id�



Incompleteness of modal axioms w�r�t� standard frames can be obtained easily by certain correspon�
dences�

���p� �p� �

����p� p�� �p� W

���	p
�p� M

As we shall see� � corresponds to transitivity �R �R � R�� every standard frame satisfying W must be
irre�exive� and � and M imply the existence of certain re�exive worlds� So� there is no standard frame
satisfying all of the above axioms� that is� their conjunction de�nes the �rst order frame property ��
Nevertheless� the axioms are satis�able in the general frame having the natural numbers as worlds� the
usual !!�relation as accessibility relation and the boolean algebra of �nite and co�nite sets as domain
for quanti�cation� Hence � cannot be derivable from �� M and W�

For a systematical approach to �rst order correspondences attention is restricted to those axioms for
which the standard semantics is appropriate� that is� which are complete w�r�t� the property they de�ne�
Let � be a modal axiom corresponding to the �rst order sentence �� Then � is canonical if the canonical
frame for � satis�es ��

Normal modal logics� constructed from canonical axioms � �with modus ponens and replacement as
the only rules� are complete� the canonical frame for � invalidates any formula which is not derivable
from �� If � is canonical� the canonical frame is an ��frame� thus � is complete for ��

Examples of non�canonical axioms are W and M� A detailed account on canonicity and corre�
spondence can be found in �Gol���� A very wide class of canonical axioms� which has a direct syn�
tactical characterization� are the Sahlqvist axioms� conjunctions of formulas of the following kind�
���p�� ���� pk�� ��p�� � � � � pk��� where � is positive in all of its arguments� and � is built from sequences
�R������Rj� pi and � and �� using only conjunction and existential modalities�

Sahlqvist correspondences can be calculated automatically� see e�g� �OS��� for a detailed presentation�
In this section we follow an alternative approach of second order quanti�er elimination using certain
extensionality priciples� The canonical frame satis�es the following two conditions�

x 	 y � �p �p�y� � p�x��

R�x� y� � �p �p�y�� �y �R�x� y� � p�y��� ExtR

the latter one being developed from the de�nition of the accessibility relation in the canonical frame�
This idea is generalized into the following second order axiom system C�

i� All �rst order tautologies


ii� A� �p �A�� if p is not free in A


iii� x 	 y � �p �p�y� � p�x��


iv� �p �A�� A�p���� for � any standard translation of a modal formula


v� �p �ST �p� �R �hR�ip�� and �p �ST �p� �R��hR ip�� for all hR i � � 


vi� �p �ST ��R��p� ��� � ST ����p�z��R�z� x�� �� positive in p�

The axiom ExtR mentioned above is an instantiation of item vi in this list�
The correspondence problem in terms of C reduces to whether for a �rst order sentence � and a modal

axiom ��
C � � �p����pn �ST �����

An induction on deductions in C shows that C is correct for canonical frames� Thus� for any C�derivable
equivalence of the type above� � corresponds to �� and � is canonical and hence complete for �� The
system C is relatively complete� C proves all Sahlqvist correspondences�Hei����



We now consider modal correspondences in a relation algebraic environment� To be conservative
w�r�t� the treatment given above� we assume relation algebras with operators� where all ��operators are
internal� that is� represented by the term R � p for some element R of the relation algebra� Internal
operators are residuated� thus continuous and conjugated�

Let �A� � � be a relation algebra A with internal operators hR i� An relation algebraic term t containing
free variables v was de�ned to be valid in A� if t�v�R�� 	  for all substitutions of variables with relations
from A� However� we can de�ne a weaker notion of validity by allowing only substitutions of variables
with right ideal elements of A� Let qRAr denote an internal qRA with variables from the subalgebra of
right ideal elements of A� and qRAg an internal qRA with quanti�cation on all of A�

Furthermore there are several possibilities as to which terms are allowed as internal representation of
operators�

conservative internal qRA� only relation constants R� S� � id� ��� are allowed for operators


liberal internal qRA� every variable�free relation algebraic term is allowed as an operator�

The expressivity of liberal qRAs is considerably stronger than that of conservative ones� as here for
instance irre�exivity is de�ned by hR � id ip��� We will come back to this point in Section #�

Now� we consider the correspondence problem for qRAg� Compared to qRAr� here we have additional
structure on the algebra of the variables� In qRAg� the following quanti�er elimination principle holds�

�p �Q � p� R � p� i� Q � R qep

The proof is immediate� from right to left it is monotonicity of the relational product
 the other direction
is achieved by specialization of p to the identity relation id� An immediate consequence is the modal
correspondent to the relational product�

hQ ihR ip � hS ip i� Q �R 	 S

Even in liberal qRAr� qep can be derived only under additional assumptions� such as the point�axiom�
Many common modal �rst order correspondences can be obtained from qep� For instance� re�exivity
�id � R� translates into T� p � hR ip� and transitivity �R � R � R� becomes �� hR ihR ip � hR ip� We
already gave a derivation of the corresponding axiom U for functionality� In Section �� we de�ned the
property that M and X form a half grid �M �X � X �M �� By qep� this is equivalent to hM ihX ip�
hX ihM ip�

Conjugated operators re�ect relational converses via the Prior�McTaggart axiom PMcT� �p �
�Q �hR ip � �R �hQ ip� i� Q 	 R� The proof is an easy relation algebraic deduction� Let �p� �Q �hR ip��
or equivalently Q ���S � p� � �p� Thus we get Q� � p � R � p� and with qep� Q� � R� Symmetrically�
the second axiom gives R� � Q� together� Q� 	 R�

Next� we prove a generic correspondence scheme X�

Q� � V � S � U� i� hV i�U �p� �Q �hS ip �

By qep we have Q� �V � S �U� i� hQ�ihV ip� hS ihU�ip� This formula is equivalent to the required
axiom�

The following correspondences can be proved by instanciating Q� V � S� and U in X with appropriate



relations�

� id � R p� hR ip T

�� R �R � R hR ihR ip� hR ip �

�� R� 	 R p� �R�hR ip B

#� R� �R � id hR ip� �R�p U

�� R� �R � R hR i�R�p� �R�p E

�� R� �R � S hR i�S�p� �R�p

�� R� �R � R 
R� �R���R�p� q� 
 �R���R�q� p� Lem

�� R� �R � id 
 S 
R hR ip� �R��p
 hR ip 
 hSip�

�� R� �R � R �R� hR i�R�p� �R�hR ip G

�� R� �R � Q �Q� hR i�Q�p� �R�hQip

� R� �R � id 
R 
R� 
R �R� hR i�p � �R�p�� �R��p
 hR ip�

�� id � R �R� �R�p� hR ip D

�� id 
 S 
R � R �R� �R�p
 hR i�R�p
 hSi�R�p� hR ip

#� R� � �R ���R��� � R �hR i�R�p� q� 
 �R���R�q� p� F

�� R� � �R ���R��� � R hR i�R�p� �p� �R�p� R

�� Q � �R ��S� � U hQ i�hR ip � 	hS ip�� hU ip Y

We give a proof of Y� The variable�free version is obtained by substitution of p with id� and the other
direction is proved by the following relational derivation�

� ��S � p� � p� � �S �ax�
�� R � p ���S � p� � �R ���S � p� � p�� � �p �R� � ��S � p��
�� R � p ���S � p� � �R ���S � p� � p�� � p ���
#� R � p ���S � p� � �R ��S� � p �����
�� Q � �R ��S� � U �ass�
�� Q � �R ��S� � p � U � p ���qep�
�� Q � �R � p � ��S � p�� � U � p �#���

Using the same methods� we can derive correspondences even for richer modal languages such as liberal
qRAg with universal or di�erence operators� Even though completeness may be lost� correctness is
guaranteed� we can derive only correspondences which are valid in all standard frames� This is because
qep with quanti�cation over right�ideals is correct for standard frames and can be proved in relation
algebras with point�axiom�

� Relational Algebra as Modal Logic

In the previous section we reviewed modal logics per se and scetched the impact of the results for more
expressive formalisms� Now we try to extend the modal language according to the guidelines given in
the relational approach� First we extend the semantics by the use operators with a �xed interpretation�
and the syntax by admitting several kinds of deduction rules� Then we allow also recursive de�nitions of
operators and relations�

��� Extensions of the Modal Language

As we have seen� various relational concepts like the universal relation cannot be characterized in modal
logic� Thus we can try to extend the latter with these concepts� Doing so� we have to be careful to
preserve the advantages we gained by using a restricted language �e�g�� decidability��

A �rst obvious idea is to include special operators hL i �universal operator� or hD i �di�erence operator�
into the type � � with additional semantic clauses�



� W�R�V� w j	 hL i� i� there exists w� �W such that W�R�V� w� j	 �

� W�R�V� x j	 hD i� i� there exists w� �	 w �W such that W�R�V� w� j	 �

These operators were investigated in �Gor��� and �Rij���� To get an impression of their de�ning power�
consider the following examples�

�hL ihR i�� corresponds to R �	 �� which is unde�nable in basic modal logic�

��L ��R �p� p� corresponds to id � R� �R� or� equivalently� to hR�i��

�hL ip � p 
 hD ip�� thus hL i is de�nable from hD i�

�hR ip� hD ip� corresponds to irre�exivity R � Id 	 �� and

R � Id �	 � has no correspondent axiom even with hD i�operator�

A relation algebra is called simple� if it satis�es the Tarski�rule� R �	 � �  �R �  	 � Similarly�
we can extend the expressivity of the modal language by admitting modal derivation rules as a means
of speci�cation� A standard rule 
 � � � � consists of two modal formulas � and � and closes the set
of formulas of logic L under the condition� For any substitution Subst of propositional variables with
formulas� Subst��� is in L implies that Subst ��� is in L� E�g�� the rule p � hR ip � p � hSip allows to
derive hSi� from hR i��

A modal sequent rule��Kap���� 
 � ��� ���� �n � ��� ���� �m imposes the condition� Subst ���� � L and
��� and Subst ��n� � L� implies Subst���� � L or ��� or Subst��m� � L� Since modal logic is an extension
of propositional logic� Subst ���� � L and Subst���� � L i� Subst��� � ��� � L� Thus rules with a �nite
set of antecedents f��� ���� �ng are equivalent to rules with a single antecedent ��� � �����n�� Any axiom
can be regarded a standard rule with antecedent �� and every standard rule can be regarded a sequent
rule with one consequent�

Let X be a set of �axioms or� rules� The formula � is derivable from a set � of formulas in the system

X �� X��� if there is a derivation tree for �� This is a �nite tree of formulas� such that every leaf in this
tree is �� and every node of this tree is either from �� or one of the n children of a node x which are
substitution instances of a consequence of a rule� such that all antecedents of this rule occur above x in
the tree�

We de�ne a �sequent� rule 
 � ��� ���� �n � ��� ���� �m to be derivable in X �X
�� if there is a derivation

tree with leafs from f��� ���� �mg from the assumptions f��� ���� �ng� For standard rules� X� � � i�

f�g X�� Note the di�erence to X���� which is & X� for the set & of substitution instances of �)

A �sequent� rule 
 � ��� ���� �n � ��� ���� �m is valid in an class of models G �
G

jj� 
�� if for any g � G we
have that g j	 �� and ��� and g j	 �n implies g j	 �� or ��� or g j	 �m� It is valid in a class of frames� if
it is valid in every model based on that class�

Thus  � ! is interpreted as global consequence relation�
G

jj� � � � i� for any frame g of G with g j	 �

also g j	 � holds
 this in turn is true i� for all �� if �
G

jj� � then �
G

jj� �� Thus
G

jj� � � � and G � G�

imply
G

�

jj� � � �� The rule of replacement is valid in the class of all frames� A standard rule � � � is
called locally valid in a class of frames G� if � is valid in every world of every model of G in which � is

valid� It is easy to see that � � � is locally valid in G i�
G

jj� �� � ��� Thus� with local validity there
is no di�erence in de�nability between axioms and standard rules� Furthermore� there are frames locally
invalidating the rule of replacement� enforcing yet another interpretation for this rule� � is called a global

frame consequence of � in G �
G

jj� � 	� ��� if
G

jj� � implies
G

jj� �� Clearly� we have
G

jj� � 	� � if
G

jj� � � �

if
G

jj� � � ��
Some observations about de�nability with rules are�

�p � p corresponds to id � R� �R� �R �p � p is equivalent to hR�i��

the hL i�operator is unde�nable with standard rules� R 	  has no correspondent standard rule�



with hL i�operator� every rule 
 	 ��� ���� �n � ��� ���� �m is equivalent to ��L��� � ��� � �L��n �
�L��� 
 ���
 �L��m��

�p 
 �R �q� � p� q corresponds to R 	  and is complete for this condition on models�

hD i is not de�nable from hL i even with rules�

In summary� standard rules give only a limited access to universal and converse relation� sequent rules
and hL i�operator are alternative choices to reason about a universal relation in modal logic� whereas the
hD i�operator is a further step towards more general logics�

Nevertheless� standard rules can be used to give simple correspondences for certain second order
properties relevant to computer science� such as terminality� discreteness� and transitive closure� We
develop axioms for these properties from intuitive rule characterizations�

A paths in a frame is a sequence of R�successors of any world for the given accessibility relation R�
A frame is called terminal if it contains no in�nite paths� Any terminal image �nite frame is �nite by
K%onigs lemma� Finite frames may contain in�nite paths� if R contains a world x such that R�x� x�� this
trivial loop gives rise to an in�nite path� A frame is called strongly terminal if in every in�nite path each
two neighbors are di�erent� �This notion could be generalized to �nite loops of arbitrary �xed length��

The existence of in�nite paths is expressed by the following second�order sentence�

�p ��x �p�x�� ��y �p�y�� �z �R�y� z� � p�z������

Thus the frame g is terminal if the negation of that sentence holds�

�p ��y �p�y�� �z �R�y� z� � p�z���� �x �	p�x���

This can be written in qRAr as follows�

�p � �p� � p 	 � �LR�

Its dual version is the so�called L%ob�rule� ��p� p� � p�
Terminality implies irre�exivity ��R � id� � p 	 ���

� �id �R� � p 	 �id � id �R� � p �ax�
�� �id �R� � p � �id �R� � �id �R� � p ��
�� �id �R� � p � R � �id �R� � p ���
#� �id �R� � p 	 � �LR���

With transitivity� �LR� is equivalent to the already mentioned axiomW� ���p� p�� �p
A frame contains an in�nite path without trivial loops� if

�p ��x �p�x�� ��x �p�x�� �y �R�x� y� � 	p�y� � �z �R�y� z� � p�z�������

Again� strong terminality can be described by the negation of this sentence� which can be translated into
the following rule �

p � ���p ��p� � p 	 � �Grz�

An equivalent modal formula is the Grzegorczyk�axiom ����p� �p�� p� � �p
Every transitive standard frame for �Grz� is antisymmetrical �R �R� � id�� Antisymmetry can be

derived in qRAr from � and �Grz� with point�axiom� Using a nonrepresentable relation algebra� it can
be shown that antisymmetry can not be derived from � and �Grz� alone� So� the relational K��Grz�
based on qRAr is incomplete� However� antisymmetry can not be formulated as a modal formula� In
fact� the modal K��Grz� is complete�

Terminality is related to discreteness� A total�linear irre�exive frame is called Dedekind�discrete if it
satis�es the following condition�

�p ����x �p�x��� �x �	p�x���� �x� y �p�x� � 	p�y�� R�x� y����
�uw �p�u� � 	p�w� �	�v �R�u� v��R�v� w����



This is de�ned in relation algebra with the following rule�

� � p� � � � ��p�� 	  � p � �p� � R � p� � ��R �R� � �p 	 

A path p �on a linear frame� is unbounded� if every successor of any point in p has a successor which
again is in p� p � �R �hR ip� A frame g is called path�discrete� if every in�nite path is unbounded� So�
path�discreteness is de�ned by the following pair of rules �ZR��

p � hR ip � p � �R �hR ip � p � hR�ip � p � �R��hR�ip

In irre�exive� linear frames� these rules are equivalent to Dedekind�discreteness�
Let g be an irre�exive transitive standard frame� Then g has greatest lower bounds in every w � W

i� g validates the �rst rule �ZR�� and� dually� g has smallest upper bounds in every w �W i� it satis�es
the second one�

Changing the basic notion of path to paths without trivial loops allows us to generalize Dedekind�
discreteness to re�exive �transitive� linear� frames as well�

A linear frame is strongly path�discrete� i� it satis�es the following Dummet rules �DumR��

p � hRi��p � hRip� � p � �R�hRip �

p � hR�i��p � hR�ip� � p � �R��hR�ip

Again� with transitivity �DumR� is equivalent to the following axiom�

��R���R��p� �R�p�� p� � hRi�R�p�� �R�p

So� any linear frame g has greatest lower bounds i� it satis�es this axiom� Let R be the next�step relation
of a program� and R� its re�exive transitive closure � If R is functional� then R� satis�es �DumR��

��� Dynamic and Fixpoint Logic

We have seen that Peirce algebras extend modal algebras by admitting arbitrary operations on the oper�
ators� However� Peirce algebras do not provide a Kleene star for transitive closure of relations� which is a
very important concept in computer science� To avoid undecidability caused by the nonrepresentability
of relation algebras� in dynamic logic we start with a relation semilattice� i�e�� we disallow complement
and intersection of relations� A Kleene algebra is a relation semilattice A augmented with an additional
operator � � A� A� such that

R � S� � T 	 sup nR � S
n � T�

where S� 	 id and Si�� 	 S �Si� and the supremum is with respect to the lattice order of A� A dynamic

algebra is a Peirce algebra �B�A� h i� ��� where A is a Kleene algebra instead of a relation algebra� satisfying
the following equality�

hR�ip 	 sup nhR
n ip�

where the supremum is with respect to the lattice order in B�
Standard models for modal logics can be extended to standard models for dynamic algebras by de�ning

R� to be the re�exive transitive closure ofR� A proof similar to the completeness proof sketched in Section
�� shows that every dynamic algebra is representable in a standard model� Hence propositional dynamic
logic is complete
 the following axioms and rule� in addition to K� give a complete deductive basis �see�
e�g���Koz�����

hR 
 S ip � �hR ip 
 hS ip�

hR � S ip � hR ihS ip

hp� iq � �p � q�

hR�ip � �p 
 hR ihR�ip�



hR ip� p � hR�ip� p

The last axiom and rule in this list are called recursion axiom and induction rule� respectively� To give
a relational interpretation� the recursion axiom forces R� to be any re�exive transitive relation containing
R� and the induction rule determines R� to be the smallest such relation� Let S be any relation with
id � S� R � S and S � S � S� Then R � S � S � S� hence R � S � S� Assuming that from R � p we can
derive R� � p � p� we can infer R� � S � S� Since id � S� we have R� � id � R� � S� which gives R� � S�

Even with Kleene star� there are some properties of programs not expressible in dynamic logic� For
example� our introductory example formula �R��hR i expresses that every execution of the program is
nonterminating� its complement being the property that some execution halts� To assert that every

computation halts� we extend the basic modal logic with recursive de�nitions of operators� By the above
axioms� hR�i is de�ned to be the smallest operator hF i satisfying hF ip � �p 
 hR ihF ip� for all p�
hR�ip is the least �xpoint of the function f mapping every q onto �p
hR iq�� We introduce a propositional
quanti�cation � for least �xpoints and write �hR�ip � �q�p 
 hR iq���

Formally� the ��calculus can be seen as a sublanguage of monadic second order logic� via the standard
translation�

ST ��q����
�
	 �q ��y �ST ����x�y�� q�y��� q�x��

The property that every execution of a program terminates can be formulated in the propositional
��calculus as �q��R ���� The standard translation of this sentence amounts to �q �q�x� � �y �q�y� �
�z �R�y� z� � 	q�z����� Substituting for q the set of states of any complete execution sequence� we see
that this sequence must be terminal�

All known program logics which are decidable can be embedded in the propositional ��calculus�
Moreover� this calculus itself is decidable and was recently shown to be complete by �Wal���� The
relevant recursion axiom and induction rule are�

��q��q����� �q���

��q�p�� p � �q���� p

The propositional ��calculus is particularly useful for automatic program veri�cation� Given a ��
calculus speci�cation formula� and a model describing �the executions of� the program� we can give
simple algorithms for testing whether the speci�cation is satis�ed by the program� This model checking

problem has received much attention� and several elaborate data structures for the representation of
relational models have been developed� see e�g� �BCMD�����
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