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Abstract

This paper presents an e�cient model checking algorithm for one�safe time
Petri nets and a timed temporal logic� The approach is based on the idea of
��� using only di�erences of timing variables to be able to construct a 	nite
representation of the set of all reachable states and �
� further reducing the size
of this representation by exploiting the concurrency in the net� This reduction
of the state space is possible� because the considered linear�time temporal logic
is stuttering invariant� The 	rings of transitions are only partially ordered by
causality and a given formula� therefore the order of 	rings of independent
transitions is irrelevant� and only one of several equivalent interleavings has to
be generated for the evaluation of the given formula� In this paper the theory
of timing veri	cation with time Petri nets and temporal logic is presented�
a concrete model checking algorithm is developed and proved to be correct�
and some experimental results demonstrating the e�ciency of the method are
given�

� Introduction

Model checking has proved to be useful for the automatic veri�cation of �nite state
systems� see� e�g� �CES��	 and others� Unfortunately� the veri�cation of large paral

lel systems su�ers from the so called state explosion problem� the number of states
to be checked is exponential in the size of the system� An approach to con�ne
this problem is to use partial orders and thus to avoid the construction of equiv

alent states reachable by di�erent interleaving of atomic events� Several methods
�Val
�� God
�	 based on this approach have been proposed for reachability analysis
and various other properties of Petri nets�
Those untimed veri�cation techniques are suitable to check qualitative timing

properties� Recently� the demand for correctness proofs of real�time systems in

creases rapidly� In real�time systems� the system correctness depends not only on
the functional results of the system but also on the time at which these results are
produced�
Such systems are often represented by �nite automata� whose transitions are

labeled by time intervals �AH�
� and others	� or which have a �nite number of
clocks �ACD
�	� However� concurrency can not be modeled directly by such timed
state graphs� On the other hand� time Petri nets were considered in �MF��	� Time
Petri nets are an adequate model of timed concurrent systems� which generalizes
other models �e�g�� those of �dBak
�	� in a natural way� Using time Petri nets� it
is very easy to model� for example� logic gates with bounded delays or network
protocols �for an example� see section ���
In order to specify and verify real�time systems� languages for reasoning about

quantitative timing properties are necessary� Many timed temporal logics have been
proposed to express such properties �AH�
� ACD
�� and others	� But again� for
practical applications� state explosion is a big problem� There are only a few reports
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on the avoidance of state explosion in the case of real�time systems� Reachability
analysis techniques for time Petri nets using partial orders have been reported in
�YTK
�	� Symbolic model checking for real�time systems is proposed in �HNSY
�	�
In this paper� we develop an e�cient model checking algorithm for the veri�ca


tion of real�time systems based on the partial order approach� The given real�time
system is modeled by a time Petri net� For the speci�cation of properties and time
constraints of the time Petri nets we use a suitably extended linear temporal logic�
The language is designed such that it �ts to the partial order analysis� Automatic
veri�cation is achieved by generating a reduced state space of the net� which is
traversed with the given formula�
The rest of this paper is organized as follows� In the next section� several

de�nitions concerning time Petri nets are given� In Sect� �� we introduce our logic�
Both the basic model checking algorithm and its partial order improvement are
developed in the following two sections� In Sect� �� some experimental results are
presented which demonstrate the e�ciency of the proposed method� Finally� we
summarize our discussion�

� Time Petri Nets

Time Petri nets were �rst de�ned in �MF��	� and used for timing veri�cation in
�BD
�� RB��	� The de�nitions here are based on �Sta
�	�
Let Q be the set of rational numbers� and Q� the set of nonnegative rational

numbers� A time Petri net N is six�tuple� N � �P� T� F�Eft�Lft� ���� where

� P � fp�� p�� � � � � pmg is a �nite set of places�

� T � ft�� t�� � � � � tng is a �nite set of transitions �P � T � ���

� F � �P � T � � �T � P � is the �ow relation�

� Eft� Lft � T � Q� are functions for the earliest and latest �ring times of
transitions� satisfying Eft�t� � Lft�t� for all t 	 T �

� �� � P is the initial marking of the net�

For any transition t� �t � fp 	 P j �p� t� 	 Fg and t� � fp 	 P j �t� p� 	 Fg denote
the preset and the postset of t� respectively� To simplify the presentation� we require
that �t � t� � � and �t 
� � for every transition t� however� this requirement is not
essential for our results�
Since we are dealing with �nite
state systems� each place is limited to at most

one �token�� A marking � of N is any subset of P � A transition is enabled in a
marking � if �t � � �all its input places have tokens in ��� otherwise� it is disabled�
Let enabled ��� be the set of transitions enabled in ��
A state � of a time Petri net is a pair ��� clock�� where � is a marking and clock

is a function T � Q�� The initial state �� is ���� clock��� where clock��t� � � for
all t 	 T �
The states of time Petri nets change� if time passes or if a transition �res� In state

� � ��� clock�� time � 	 Q� can pass� if for all t 	 enabled ���� clock�t�� � � Lft�t��
In this case� state �� � ���� clock �� is obtained by passing � from �� if

�� � � ��� and

�� for all t 	 T � clock ��t� � clock�t� � � �

In state � � ��� clock�� transition t 	 T can �re� if t 	 enabled���� and clock �t� �
Eft�t�� In this case� state �� � ���� clock �� is obtained by �ring t from �� if
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Figure �� An example of a time Petri net � Nx

�� �� � ��� �t� � t�� and

�� for all �t 	 T � clock ���t� �

�
� if �t 	 enabled ���� � enabled ���
clock��t� else �

Intuitively� this can be interpreted as follows � Firing a transition t consumes no
time� but updates � and clock such that the clocks associated with newly enabled
transitions �i�e�� transitions which are enabled in �� but not in �� are reset to
�� Clock values of other transitions �i�e�� transitions not a�ected by t� are left
unchanged�
A run � � ���� ��� ��� � � �� of N is a �nite or in�nite sequence of states such that

�� is the initial state� and �i is obtained from �i�� by passing some time �i �possibly
�� and then �ring some transition ti� We write �i��� for the i�th state of �� and
similarly �i��� and clock i���� and omit the argument ��� whenever appropriate� A
run is maximal� if it is in�nite or in its last state there is no enabled transition� The
behavior B�N � of N is the set of all maximal runs of N �
Thus Eft�t� and Lft�t� can be seen as a ��ring interval� for each transition t

which constrains the timing associated with runs of the net� If N � di�ers from N
only in the earliest and latest �ring times of its transitions� such that the �ring
intervals associated with each transition in N � are a subinterval of those of N � then
B�N �� � B�N ��
Given any run � and i � �� we de�ne timei��� to be the sum of all times �

passed between ����� and �i���� that is� time���� � � and timei����� � timei��� �
clock i���t� � clock i�t� for some t which is not newly enabled in �i���
A state � is reachable if there exists a �nite run whose last state is �� A time

Petri net is one�safe� if for every state � � ��� clock� obtained by passing time from
any reachable state ��� and for every transition t which can �re in �� t � � � � ��
The restriction to one�safe nets simpli�es both the analysis of time Petri nets and
the reduced state space generation�
Further� for the proof of the �niteness of the graphs introduced in Sect� ��

we need the following progress condition �AH�
	� The sum of earliest �ring times
of transitions forming any loop in N is positive� More precisely� for every set
ft�� t�� � � � � tng of transitions such that t� � � � t� 
� �� t� � � � t	 
� �� � � �� tn � � � t� 
� �
it holds that Eft�t�� � Eft�t�� � 
 
 
� Eft�tn� � �� This guarantees that in any
in�nite run time is increasing beyond any bound�
In the sequel� a net will always be a one�safe time Petri net satisfying the

progress condition�
Fig� � shows an example net Nx� Pairs of numbers after transition names rep


resent earliest and latest �ring times� respectively� Since� for example� t� can �re
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at any time between � and � after being enabled� the behavior B�Nx� contains an
in�nite number of runs� Furthermore� since Eft�t�� � Lft�t��� t� can never �re� and
thus every run of Nx is in�nite�
In Fig� � an example run of the net is shown� where the �p� and �t� columns

describe the marking �i and clock values clock i of enabled transitions� respectively�
Times �i and transitions ti are chosen arbitrarily� such that the conditions that �i
can pass and ti can �re are not violated�

� TNL� a Timed Temporal Logic for Nets

In this section� we propose a temporal logic for the speci�cation of net proper

ties� On one hand� every such logic should be expressive enough to be capable of
formalizing �interesting� properties including quantitative time requirements� and
on the other hand there should exist an e�cient model checking algorithm for the
logic avoiding the state explosion problem� In this paper� we focus on linear time
temporal logic�
Given a net N and formula 	� we want to �nd whether there exists a run � of

N satisfying 	 �written � j� 	�� In general there are in�nitely many runs of N �
therefore we group these into a �nite number of equivalence classes ���	� ���	� � � � �
��c	� such that any run � satis�es 	 i� every element of the equivalence class ��	
satis�es 	� Thus we only have to check a �nite number of equivalence classes� and
a coarser partition yields a better algorithm�
Consider a set of atomic propositions fp�� � � � � pkg of a logic� such that the notion

of validity ���� i� j� pj� of an atomic proposition pj in a state �i of a run � is de�ned�
Two runs � and �� are strongly equivalent with respect to fp�� � � � � pkg� if ��� i� j� pj
i� ���� i� j� pj for all i � � and all atomic propositions pj 	 fp�� � � � � pkg�
A state �i�� in a run � is stuttering with respect to fp�� � � � � pkg� if ��� i� j� pj i�

��� i� �� j� pj for all pj 	 fp�� � � � � pkg� Two runs � and �� are stuttering equivalent
w�r�t� fp�� � � � � pkg� if the two sequences obtained by eliminating all stuttering states
from � and �� are strongly equivalent w�r�t� fp�� � � � � pkg� De�ne a formula 	 to be
stuttering invariant� if for any two runs � and �� which are stuttering equivalent
with respect to the atomic propositions in 	 it holds that � j� 	 i� �� j� 	�
Stuttering invariance allows to group all stuttering equivalent runs into the same

equivalence class� thereby reducing the average complexity of the model checking�
In particular� all runs which di�er only in the interleaving of independent transitions
are stuttering equivalent with respect to places not connected to these transitions�

i ��i� ti� p� p� p� p	 p�� p� p� p�	 t� t� t� t	 t� t� t
 t� timei
� � � � � � � � � �
� ��� t	� � � � � � � � �
� ��� t�� � � � � � � �
� ��� t�� � � � � � � � �
� ��� t�� � � � � � � �
� ��� t�� � � � � � �
� ��� t�� � � � � � � �
� ��� t�� � � � � � �
� � � � � � � � � �

Figure �� An example run of net Nx
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Unfortunately� most formulas of existing real�time logics are not stuttering in

variant� Firstly� uncautious use of a �next�state� operator inhibits stuttering in

variance� Moreover� if the logic allows to directly refer to the time associated with
a state in a run� then a similar e�ect as with a �next�state� operator can result� In
other words� classical real�time logics are inappropriate for our purpose� Therefore�
our logic only refers to di�erences of �ring times of transitions�
Our logic� which we call TNL� is formally de�ned as follows� Given any net

N � �P� T� F�Eft�Lft� ���� let P � fp� j p 	 Pg � fp� j p 	 Pg be the set of time
variables� The set of propositional variables is P � The formulas of TNL are de�ned
inductively�

� If x� y 	 P and c 	 Q� then x� y � c is a formula�

� Every propositional variable is a formula�

� false is a formula�

� If 	� and 	� are formulas� then �	� � 	�� and �	� U 	�� are formulas�

false� propositional variables� and x � y � c for x� y 	 P and c 	 Q are called
atomic propositions� Formulas x � y � c are called atomic inequalities� and an
atomic formula is either an atomic proposition or an atomic inequality� Additional
boolean connectives true� �� �� ���� and temporal connectives �� � can be de�ned
as usual� Also formulas x � y � c� where � is any relation from f
����� �g� can
be de�ned in an obvious way�
In order to de�ne the semantics of TNL� the value of time variables in a state

of a run has to be de�ned� Intuitively� p� and p� 	 V represent the time when the
place p got or lost the latest token� respectively�
Let � be a run of N � i � �� and let x 	 P�

eval i�x� �

����
���

� if i � �
timei��� if x � p�� p 	 �i � �i��

timei��� if x � p�� p 	 �i�� � �i
eval i���x� otherwise

Validity of a TNL formula 	 in a run � at point i � �� denoted by ��� i� j� 	� is
now de�ned by induction on 	 as usual�

�� ��� i� j� x� y � c i� eval i�x� � eval i�y� � c

�� ��� i� j� p i� p 	 �i for p 	 P

�� ��� i� 
j� false

�� ��� i� j� �	� � 	�� i� ��� i� j� 	� implies ��� i� j� 	�

�� ��� i� j� �	� U 	�� i� there exists j � i such that ��� j� j� 	�� and for all k
such that i � k 
 j� ��� k� j� 	�

� satis�es 	� denoted by � j� 	� if ��� �� j� 	� Thus we adopt the so
called
initial semantics which is more natural for our purposes� 	 is satis�able in N if
there exists a �maximal� run � 	 B�N � such that � j� 	�
Consider our example net from Fig� �� Then the formula�p�� is satis�able if the

place p�� is reachable� which is the case� and ��p���p
�
���p

�
�� � �� is satis�able if it

can be reached within � time units� which is not the case� �Note that evali�p
�
��� � �

for all i� in general we can reference the start time of the net by any time variable
related to a constant place�� ���p�� � p�� � �� means that t� may in�nitely often
need more than � time units to �re�

�



� Model Checking for Nets and TNL

In general� there exist in�nitely many runs of a given net N � In this section� we
will construct a �nite graph G such that the paths through G represent exactly
the runs of N � and that every node in G determines the truth value of all atomic
propositions appearing in the given TNL formula� Thus� the TNL model checking
problem is reduced to the LTL model checking problem� for which an algorithm can
be found in �LP��	�
Basically� we use a set of inequalities to represent a number of di�erent clock

functions� By an inequality we mean any string of the form �x� y � c�� where
x and y are from a designated set of variables� c 	 Q and � is a relation sym

bol from f�� 
��� ���g� We use �c � x� y � d� as abbreviation for the two
inequalities�x� y � d� and �x� y � c�� and �x � y� for �x� y � ��� If I is a
set of inequalities� then var�I� denotes the set of variables that I contains� we say
that I is a set of inequalities over var�I��
Let I be a set of inequalities over fx�� x�� � � � � xng� A feasible vector or solution

for I is a tuple �c�� c�� � � � � cn� of constants ci 	 Q� such that every inequality
obtained by replacing every xi by ci �� � i � n� in any inequality from I holds in
the theory of rational numbers� The solution set of I is the set of feasible vectors
for I� A set of inequalities is consistent if its solution set is nonempty� Two sets of
inequalities are isomorphic� if they have the same solution set�
The closure of a TNL�formula 	� denoted by Cl�	�� is the smallest set of in


equalities such that for every inequality �x� y � c� appearing in	� both �x� y � c�	
Cl�	� and �x � y � c�	 Cl�	�� A maximal consistent set of 	 is a maximal set
F � Cl�	� of inequalities which is consistent� Given any set I of inequalities� a
complete extension I� of I and 	 is any consistent set I� � I � I ��� such that I�� is a
maximal consistent set of 	� CE �I� 	� denotes the set of all complete extensions of
I and 	� Note that for consistent I� CE �I� 	� is nonempty and �nite�
In the previous section� time variables representing times when the correspond


ing places got or lost its latest token were introduced� In order to grasp the future
behavior of the net� we introduce another sort of time variables� called transition
variables� representing the possible next �ring time of �enabled� transitions� Since
there is no confusion� we use the set T to denote transition variables as well as tran

sitions� all inequalities in this section will therefore use variables from V � P � T �
P� denotes the set of time variables appearing in 	�
An atom is a pair � � ��� I�� where � is a marking and I is a set of inequalities�

The initial atom is �� � ���� I���� where �� is the initial marking of the net� and I
�
�

is the unique complete extension of the following set I� of inequalities�

I� � f�x � y� j x� y 	 Pg �
f�Eft�t� � t� x � Lft�t�� j t 	 enabled ����� x 	 Pg

The �rst line de�nes the initial values of all time variables to be equal� and the
second line gives the timing constraints on the next �ring of transitions enabled in
the initial marking�
In our example net Nx� the initial atom contains the inequalities� f�p�� � p�� �


 
 
 � p��	 � p��	�� �� � t� � p�� � ��� �� � t	 � p�� � 
�� �� � t� � p�� � ��� �� �
t� � p�� � ��g
We are now going to describe how the set of successor atoms �� of an atom

� can be computed� To this end we need the notion of deletion of a set U of
variables from a set I of inequalities� For every such I and U there exists an �up
to isomorphism� unique set I� � delete�I� U � of inequalities over var �I� � U � such
that the solution set of I� is equal to the solution set of I� projected on var�I��U �
For example� if I � f�� � t� � p�� � ��� �� � t	 � p�� � 
�g� then delete�I� fp��g� �

�



f��� � t� � t	 � ��g� As shown in �JM��	� I
� can be computed by a graph�based

algorithm in time O�jvar�I�j	��
If we delete in this way all time variables from the above set� we obtain f


�� � t� � t� � 
�� 
�� � t� � t� � 
�� 
�� � t� � t� � ��� 
�� � t� � t� � ��� 
�� � t� � t� � ���


�� � t� � t� � �� g� In fact� before generating the successor atoms of the initial
atom we delete from it all time variables which are not necessary for the evaluation
of the given formula by applying delete�I��P � P���
Let � � ��� I� be an atom� and tf be a transition enabled in �� Transition tf is

called �rable in �� if I�f�tf � t�j t 	 enabled ���g is consistent� That is� tf is �rable
in � if it can �re earlier than all other �enabled� transitions in the given marking and
timing� �rable��� denotes the set of transitions �rable in �� Let tf be a transition
in �rable���� �� � ��� �tf � � tf�� and Uf � fp� j p 	 �tfg�fp� j p 	 tf�g� If t 	 T
and p 	 �t� then parent�t� p� � f�Eft�t� � t � p� � Lft�t��g � f�q� � p�� j q 	 �tg
is a set of inequalities describing that the next �ring of t is determined by the value
of p�� We de�ne the following sets of inequalities�

� J� � I � f�tf � t� j t 	 enabled ���g

� J� � delete�J�� Uf �

� J	 � J� � f�x � tf� j x 	 Ufg

� J� � delete�J	� ft j t 
	 enabled ����g�

� J� � J� �
S
fparent�t� p� j t 	 enabled ���� � enabled ���� p 	 tf � � � tg

� J
 � delete�J��P � P��

Intuitively� this can be read as follows� J� describes that tf �res �rst� i�e�� earlier
than other enabled transitions� J� is obtained from J� by eliminating all time
variables Uf which have to be updated� This updating is then done in J	 by
�xing the value of these variables to be equal to the �ring time of tf � In J� the
transition variables of disabled transitions are deleted� J� relates the transition
variables of newly enabled transitions to the updated time variables� Finally� all
irrelevant time variables are removed� Note that our de�nition of the Ji�s contains
some redundancies� e�g�� J
 can be computed by using the operation delete�I� U �
only once� For any � and tf � J
 is uniquely determined �up to isomorphism�� we
say J
 is obtained by �ring tf from �� �� � ���� I�� is a tf �successor atom of �� if
I � 	 CE �J
� 	� for J
 obtained by �ring some �rable transition tf from ��

An atom sequence � is a �nite or in�nite sequence � � ��
t�� ��

t�� 
 
 
� such that
�� is the initial atom and �i�� is a ti��
successor atom of �i for any i � �� The
atom graph G��N�	� consists of all atoms reachable by a �nite atom sequence� and
its edges represent the successor relation of atoms�
To illustrate this construction� in Fig� � the �rst few atoms of Nx �with P� � ��

are given as calculated in a depth
�rst search�
Given any atom sequence �� satisfaction of 	 in � �� jj� 	� is de�ned in an

obvious way� the relevant clause for atomic inequalities being ��� i� jj� x� y � c i�
�x� y � c�	 Ii� Now� the question of whether there exists a run of N satisfying 	
can be reduced to the question of whether there exists a satisfying atom sequence�

Theorem �

� For any atom sequence � there exists a run � such that � j� 	 i� � jj� 	
�correctness�	 and

� for any run � there exists an atom sequence � such that � j� 	 i� � jj� 	
�completeness�


�



atom � � u
f p� p� p�� p�	 g I
f ��� � t� � t	 � �� ��� � t� � t	 � 	� ��� � t� � t	 � ��
��� � t� � t� � 	� ��� � t� � t� � �� ��	 � t� � t� � 	� g

�rable � t	 t� t� t�

atom �� t	 u
f p� p	 p�� p�	 g I
f ��� � t� � t� � 	� ��� � t� � t� � �� ��	 � t� � t� � �� g
�rable � t� t� t�

atom �� t� u
f p� p	 p� p�	 g I
f ��� � t� � t� � ��� g
�rable � t�

atom 	� t� u
f p� p	 p� p�	 g I
f ��
 � t� � t� � �� ��� � t� � t� � ��� ��� � t� � t� � ��� g
�rable � t�

atom �� t� u
f p� p	 p� p�	 g I
f ��
 � t� � t� � �� g
�rable � t� t�

atom �� t� u
f p� p	 p� p�	 g I
f g
�rable � t�

atom 
� t� u
f p� p	 p� p�	 g I
f ��� � t� � t� � ��� g
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Figure �� Part of the state space of Nx

Proof� To show the correctness of our analysis method we have to show that any
atom sequence � corresponds to a possible run � of the net� But� this is almost
immediate� since any sequence of feasible vectors for the transition variables of an
atom sequence determines a run of the net� Note that the set of inequalities in any
reachable atom is consistent� because �rable selects only appropriate transitions� and
J	 and J� add only inequalities for previously unconstrained variables� Thus� assume

that an atom sequence � � ��
t�� ��

t�� 
 
 
 with solutions is given� De�ne clock i�t�
such that clock��t� � � for all t 	 T � and clock i���t� � �� if t is newly enabled in
�i��� else clock i���t� � clock i�t� � ci��� where ci�� is the value associated to ti��

in the solution of Ii� Then� it is routine to show that the sequence ���i� clocki�� is
a valid run � of the net� Clearly� the evaluations of 	 in � and � are the same�
Let us now prove that the atom graph is also complete� i�e�� that any run is

represented as a sequence of atoms� Given any run � � ���
t�� ��

t�� 
 
 
� and
transition variable t� de�ne eval i�t� � max�timei��� � Eft�t� � clock i�t�� timej�����
where j is the smallest index greater or equal to i such that t is disabled at �j� For
an enabled transition� eval i�t� is the time when t �res next� or �if it is disabled before

�ring� when it could have �red� We construct a sequence � � ���
t�� ��

t�� 
 
 
�
of atoms such that the markings of �i and �i are equal� and eval i for both time
variables and transition variables determines a feasible vector for the inequalities
Ii� Then� ��� i� satis�es the same atomic propositions as ��� i�� and hence both
evaluations of 	 are the same� Let �� be the initial atom� All inequalities of I�
are valid� Since eval��x� � � for all x 	 P� we have eval��x� � eval��y� for all
x� y 	 P� Furthermore� for all t 	 enabled ����� it holds that eval i�t� � max�� �
Eft�t� � �� timej���� � Eft�t�� and eval i�t� � Lft�t� since both Eft�t� � Lft�t� and
timej��� � Lft�t� �note that in any run any enabled transition will be disabled
before its latest �ring time is elapsed��

�



Assume inductively that the markings of �i and �i are equal� and that all
inequalities in Ii are satis�ed by eval i� Let �i�� be obtained from �i by �ring tf � We
have to show that tf 	 �rable��i�� Since tf 	 enabled ��i� and tf 
	 enabled ��i���
��ring any transition disables it�� eval i�tf � � timei������ Moreover� for any other
transition t 	 enabled ��i� it is the case that eval i�t� � timei������ Therefore eval i
satis�es Ii � ftf � t j t 	 enabled ��i�g� i�e�� tf 	 �rable��i��
Let I�i�� be the set of inequalities obtained by �ring tf from �i� We show

that evali�� is a solution for I�i��� Note that eval i���x� � evali�x� for any x 	
P � Uf � and that eval i���x� � timei����� for any x 	 Uf � Similarly� eval i���t� �
eval i�t� for any t 	 enabled ��i����enabled��i�� and eval i���t� � max�timei������
Eft�t�� timej���� for t 	 enabled��i��� � enabled ��i��
As we already have seen� eval i is a solution for Ii � ftf � t j t 	 enabled ��i�g

�which is J� in the above construction�� Therefore� the vector assigning eval i���x� �
timei����� � eval i�tf � to any x 	 Uf and eval i to all other variables is a solution for
J	� which di�ers from J� only in inequalities over Uf � Since J� di�ers from J	 only
with respect to the timing relations of newly enabled transitions� and J� does not
contain any transition variables for disabled transitions� eval i�� gives a solution for
J� �note that eval i���t� � timei����� �Eft�t� and eval i���t� � timei����� � Lft�t�
from timej��� � timei����� � Lft�t� and timei����� �Eft�t� � timei����� � Lft�t��
thus Eft�t� � eval i���t�� timei����� � Lft�t��� Of course� any solution for a set of
inequalities is a solution for the set of inequalities obtained by deleting arbitrarily
many variables�
To conclude� let Ii�� be the complete extension of I�i�� which satis�es the same

atomic inequalities from 	 as ��� i���� Note that Ii�� is uniquely determined since
the value of any atomic inequality can be calculated using eval i��� Since all possible
complete extensions of I�i�� are represented in the atom graph� �i�� � ��i��� Ii���
is the required successor atom of �i� �end of proof�
If 	 contains no time variables� then G��N�	� is �nite as shown in �BD
�	� In

this case� all inequalities of all atoms are over the set of transition variables T �
Furthermore� any inequality t� � t� � c satis�es jcj � Lftmax� where Lftmax is the
maximal latest �ring time in the net� For� if both t and t� are newly enabled in ��
then Eft�t� � t�x � Lft�t� and Eft�t�� � t��x � Lft�t�� are in J�� Hence Eft�t��
Lft�t�� � t � t� � Lft�t� � Eft�t�� is in J
� Since � � Eft�t� � Lft�t� � Lftmax� we
know that I implies that �Lftmax � t� t� � Lftmax� Similarly� if �� is obtained from
� by �ring tf � and t 	 enabled ���� � enabled ���� and t� 	 enabled����� enabled ����
then we can assume as inductive hypothesis that �Lftmax � tf � t � Lftmax� J�
sets tf � t� J	 sets x � tf � and J� sets Eft�t

�� � t� � x � Lft�t��� Hence� we have
�Lftmax � �Lftmax � Eft�t�� � t� � t � Lft�t�� � Lftmax� Finally� if both t and t�

are enabled in �� and �� any inequality t� t� � c is in I i� it is in I�� Therefore� we
have shown that the di�erences between transition variables are bounded�
Moreover� every appearing constant is a linear combination of other rational

constants� c �
P

t�T

�
nt 
Eft�t� �mt 
 Lft�t�

�
� where nt and mt are integers� Since

there are only �nitely many linear combinations of rationals in a bounded interval�
the set of all inequalities in the atom graph is �nite� Of course� since we are dealing
with one
safe nets� there are also only �nitely many possible markings� and hence�
�nitely many di�erent reachable atoms�
Otherwise� however� if 	 refers to the time when certain places got or lost to


kens� an in�nite number of di�erent atoms may be reachable from the initial atom�
because the di�erence x � y between some time variables may become arbitrar


ily large� E�g�� in our example� for � � ��
t�� ��

t�� ��
t�� �	

t�� ��
t�� �� 
 
 
�

each of I� �f�p�
� � p�� � ��g� I	 � f�p�

� � p�� � ��g� and I� �f�p�
� � p�� � ��g

is consistent� In this case� however� every atomic proposition p�� � p�� � c and
p���p�� � c will eventually become constantly false and true� respectively� and thus






all �i in which the di�erence surpasses a certain threshold value can be considered
to be equivalent�
Let max const be the absolute value of the maximal constant appearing in any

subformula of 	� and let I be a set of inequalities� A time variable x 	 P� is
called saturated in I� if there is no transition variable t 	 var �I� such that the set
I�f�t�x � max const�g is consistent� that is� I implies that max const 
 t�x for
all enabled transitions� For any two reachable atoms �� � ��� I�� and �� � ��� I���
let D � fx j x is saturated in I� and I�g� �� and �� are equivalent� denoted by
�� � ��� if I� � Cl�	� � I� � Cl�	� and delete�I�� D� � delete�I�� D�� that is� if
the same maximal consistent set of 	 is a subset of both I� and I� and the timing
relations of I� and I� with respect to unsaturated variables are isomorphic�
From these de�nitions we can prove� using similar techniques as in �ACD
�	�

Theorem �

�
 � is a bisimulation� that is	 � is an equivalence relation	 and for any �� and
�� such that �� � ��	 and for any ��� which is a successor of �� there exists
a successor ��� of �� such that ��� � ���




 � is an equivalence relation of �nite index	 that is	 containing only �nitely
many equivalence classes


Proof� In the proof of � being an equivalence relation� re�exivity and symmetry is
immediate� For transitivity� note that if �� � ��� then x is saturated in I� i� x is sat

urated in I�� For� if x were saturated in I� but not in I�� then x 
	 D� hence �t�x �
c� 	 I� i� �t�x � c� 	 I�� But� this contradicts the assumption that I��f�t�x �
max const�g is consistent for some t� whereas I� implies t�x � max const � There

fore� �� � �� and �� � �	 imply delete�I�� D� � delete�I�� D�� delete�I�� D�� �
delete�I	� D

��� and D � D�� where D � fx j x is saturated in I� and I�g and
D� � fx j x is saturated in I� and I	g� Hence� delete�I�� D� � delete�I	� D� as
well as I� �Cl�	� � I� � Cl�	� � I	 �Cl�	�� which means �� � �	�
Now� we show that � is a bisimulation� If�� � ��� then �rable���� � �rable�����

because the timing with respect to transition variables is isomorphic� Let I�� and
I�� be the sets of inequalities obtained by �ring a �rable transition tf from �� and
��� respectively� let D be the set of saturated variables from I� �or I��� and let
D� � D � Uf � Then� D� is the set of saturated time variables in I�� and I ���
because the modi�ed transition variables are only those for transitions newly en

abled I�� �I

�
��� and for such transition variables t� I

�
� �I

�
�� implies tf � t� and hence

max const 
 tf � x � t � x� Furthermore� assume any complete extension I�� of
I��� and show that a corresponding complete extension I�� of I�� exists� For any
inequality x � y � c in I�� � Cl�	�� x and y are either from Uf � from D�� or from
P � �D� � Uf �� If both x and y are in Uf � then I�� and I�� imply x � y � �� If
neither x nor y are from Uf � then x � y � c is in Ii i� it is in I�i for i � �� �� If
x 	 Uf and y 	 D�� then both I� and I� imply that tf � y � max const � hence
both I�� and I

�
� imply that x� y � max const � Therefore� for these cases� the value

of �x � y � c� is �xed to the same value both in I�� and I�� � If x 	 Uf and
y 	 P � �D� � Uf �� then since the timing of I� and I� with respect to unsaturated
variables is isomorphic �delete�I�� D� � delete�I�� D��� we have �e � tf � y � l� in
I� i� �e � tf � y � l� in I�� From this� �e � x� y � l� in I�� i� �e � x� y � l� in
I��� Therefore� in this case� any consistent extension �xing the value of x� y � c in
I�� extends I �� consistently to I

�
� � Hence� for any complete extension I�� and the

above corresponding I�� � we have I
�
� �Cl�	� � I�� �Cl�	�� Similarly� it is easy to

show delete�I�� � D
�� � delete�I�� � D

��� and therefore ��� � ��� is valid�
To show that there are only �nitely many inequivalent atoms� we have to show

that in any atom the di�erences between unsaturated variables are bounded by

��



constants� We construct a constant c such that for any atom sequence � � ���
t��

��
t�� ����� atom �i � ��i� Ii�� unsaturated time variable x and transition variable t�

if t is enabled in �i� then Ii implies that � � t�x � c holds �and hence �c � x�y � c
for any two time variables x� y�� Finiteness then follows from the �niteness of Cl�	�
and the fact that every constant in every inequality is a linear combination of Eft �s
and Lft�s as above�
Recall that Lftmax is the maximal value of Lft�t� of all t 	 T � Given i and x�

let j � i be the maximal index such that x is updated in �j� By induction on i� j
we show that Ii implies that for all t enabled in �i� t� x � �i � j � �� 
 Lftmax� As
shown above� for all enabled transitions t and t�� Ii implies t � t� � Lftmax� If x is
updated in �i� then x � ti was set by J	� Thus� if i � j� we have t � x � Lftmax�
If i � j� then according to the induction hypothesis� Ii�� implies that ti � x �
�i� j� 
Lftmax� since ti 	 enabled ��i���� J	 sets y � ti for some updated y� and for
any newly enabled t we have t�y � Lft�t� by J�� Hence for any such t it holds that
t � x � �i � j� 
 Lftmax � Lft�t� � �i � j � �� 
 Lftmax� For t which remain enabled
from �i�� to �i� if Ii�� implies that t � x � �i � j� 
 Lftmax� then Ii implies that
t� x � �i� j� 
 Lftmax� hence Ii implies that t� x � �i� j � �� 
 Lftmax�
As a lower bound� note that in any atom �i for all enabled t and all x 	 P��

from Ii it follows that t�x � �� For� if x is updated in �i� then for all newly enabled
transitions t we have Eft�t� � t � x and hence t � x � �� and for all transitions
enabled in �i�� and not disabled in �i� we have x � tf � t by J	 and J�� hence
t�x � �� Furthermore� if x is not updated in �i� then the minimal value of t�x is
nondecreasing� If c � t� x for all enabled t in �i��� then in particular� c � tf � x�
and hence for all t continuously enabled in �i also c � t � x� and for all newly
enabled transitions t also c� Eft�t� � t� x holds�
We can show that for those x which are not updated� the minimal value of t�x

eventually increases� Let Eftmin denote the minimal value of all Eft�t� which is not
zero� The progress condition guarantees that there is a constant M � �P such
that in any atom sequence of length M at least one transition t� �newly enabled
in the atom sequence� with Eft�t�� � Eftmin is �red� Consider any atom sequence
���� ���� ���M� in which x is not updated� and suppose that c � t�x for all enabled
t in ��� Furthermore� let t

� be newly enabled in ���� and �red in ����� Then� in ���

it holds that c� Eft�t�� � t� � x� and in ���� it holds that c� Eft�t�� � t� x for all
enabled t� Since the minimal value of t� x is nondecreasing� in ���M it holds that
c� Eftmin � t� x for all enabled t�
Summing up� we have shown that with r �

�
�i�j� DIV M

�
in �i for all enabled

t the following inequality holds�

r 
 Eftmin � t� x � �r � �� 
M 
 Lftmax

Since x was assumed to be unsaturated in Ii� there exists a transition t such that
Ii � ft � x � max constg is consistent� Hence� Ii � fr 
 Eftmin � max constg is
consistent� Since r is a constant value depending only on i and x� this is equivalent
to stating that r � max const
Eftmin� which means that Ii implies

� � t � x � �max const
Eftmin � �� 
M 
 Lftmax�

�end of proof�
This theorem shows that there exists a �nite set G of representative atoms such

that for any atom sequence �� � ���� ��� ��� � � �� there is a strongly equivalent
sequence �� � ����� �

�
�� �

�
�� � � �� in G such that �i � ��i �i � �� and thus �� jj� 	

i� �� jj� 	� The atom graph G can be constructed by depth��rst�search from the
initial atom� where the equivalence of atoms can be checked e�ciently using hash�
tables� Note� however� that the size of G can be more than exponential in the size
of the net and depends on the number of di�erent constants and their values�

��



Model checking ofTNL is performed by building the product of Gwith the set of
all sets � of subformulas of 	� eliminating from this product all pairs ��� �� inconsis

tent with 	� and decomposing the resulting graph into maximal strongly connected
components� 	 is satis�able by N i� there is a self�ful�lling strong component� i�e��
one which contains with any pair ���� ��� and any formula �	� U 	�� 	 �� also an
pair ���� ��� such that 	� 	 ��� In our implementation the product and strongly
connected components are calculated �on the �y�� during the depth
�rst enumer

ation of the state space� Thus� if a self�ful�lling strong component is found in an
initial part of the state space� we can report a satisfying sequence even if the whole
state space is too large to �t into the available memory�

� E�ciency Improvement by Partial Orders

In this section we show how to reduce the size of the atom graph of a given net and
formula without a�ecting the correctness of the model checking procedure� The
reduced state space is obtained by considering a coarser equivalence on atom se

quences than the one de�ned in the previous section� It satis�es the requirement
that for any run of the net there exists a stuttering equivalent �w�r�t� atomic propo

sitions in 	� atom sequence in the reduced state space� and vice versa�
Given any atom ��� �rable transition t

� and set W of �rable transitions� we say
thatW is independent from t� with respect to � and 	� if for any atom sequence � �
���� �

�
�� �

�
�� � � �� such that �

�
� is obtained by �ring t

� from �� there exists a stuttering
equivalent �w�r�t� atomic propositions in 	� atom sequence � � ���� ��� ��� � � �� such
that �� is obtained by �ring some t 	 W from ��� Otherwise� we say that W
depends on t��
If W is independent from t�� we do not have to consider the �ring of t� when

generating the successors of � in the depth��rst�search� there will be a stuttering
equivalent sequence constructed by the �ring of some t 	W �
However� the above de�nition is not e�ective� there is no e�cient way to compute

the smallest set of transitions independent from all other transitions in a given
�� Therefore� subsequently we give an algorithm to compute an approximation�
that is� for a given �rable transition t� we construct the set dependency �t� �� 	�
�or dependency �t�� in short� of transitions containing t such that any t� on which
dependency �t� might depend is included in dependency �t��
This idea is similar to the stubborn set theory of �Val
�	 and the interleaving set

temporal logic of �KP
�	� a similar concept was developed independently in �YNT�
	�
Of course� dependency �t� should be as small as possible� For example� if the

net N consists of two unconnected subnets N� and N�� and 	 mentions only places
from one of these� then certainly the set of all �rable transitions in N� should be
independent from any transition in N� �if it is not empty�� and vice versa� E�g�
we don�t have to consider the di�erent interleavings of t� with t	� t� and t� in our
example net Nx �shown in Fig� �� for the formula ���p�� � p�� � ���
On the other hand� if for some t� t� which are in con�ict �i�e�� �t��t� 
� ��� both

t and t� are �rable in �� then the �ring of t� inhibits that of t� thus in general ftg
is not independent from t�� and we add t� to the dependency of t� So� in Nx� for
every �ring of t� also the alternative of �ring t� should be considered�
Furthermore� disabled con�icting transitions t� may inhibit the �ring of t if they

can become enabled by the �ring of other ��rable� transitions� In the example�
although t
 �in con�ict with t	� is disabled� it may inhibit the �ring of t	� since it
can become enabled by the �ring of t� and t�� Thus� ft	g may depend on t�� and
t� is in dependency �t	��
A set  of transitions is necessary for t� if for some p 	 �t � � it holds that

 � ft� j p 	 t��g� Let necessary��t� �� be any set of transitions containing t

��



which is transitively closed under necessity� that is� for any t� 	 necessary��t� ��
such that t� is disabled in � there exists a set  of transitions necessary for t� with
 � necessary��t� ��� For example� necessary��t
� ��� � ft
� t�� t�g in Fig� ��
If t is in con�ict with tf � then all �rable transitions in necessary��t� �� should

be �red as alternatives to the �ring of tf � The only such transition which could
inhibit the �ring of t	 in our above example is t��
There is still another class of dependent transitions� We want to obtain stutter


ing equivalence with respect to the atomic propositions of 	� Usually� 	 contains
only a few propositional and time variables� A transition t is visible for 	 if �t� t�
contains any place p such that p or p� or p� appears in 	� If t is visible� the �ring
order with other visible transitions is important� For example� both t� and t	 are vis

ible for the formula �p� U p	� in the example net� therefore the �ring order between
t� and t	 is relevant for the evaluation of �p� U p	�� Thus t� should be in the depen

dency set of t	� and vice versa� A visible transition can be regarded as being in con

�ict with all other visible transitions� Let con�ict��t� be the set ft� j �t� � �t 
� �g�
if t is not visible� else con�ict��t� is ft� j �t� � �t 
� �g � ft� j t� is visible g� Then
dependency �tf � is any set of transitions such that for every t 	 con�ict��tf � there
exists a set necessary��t� �� such that all enabled transitions in necessary��t� �� are
contained in dependency �tf ��
Conceptually� the set of transitions which are �red should be transitively closed

under dependency� e�g�� in our example� since t� is in the dependency set of t	� and
t� is in the dependency set of t�� we have to �re t� as an alternative whenever we �re
t	 �p�� is only reachable by �rst �ring t� and then t��� Thus� let dependency

��tf �
be any set of transitions containing tf � such that for any t 	 dependency ��tf � we
have dependency �t� � dependency ��tf �� When �ring a transition tf we have to �re
as alternatives at least all �rable transitions which are in dependency��tf ��
We should mention that dependency ��tf � is a stubborn set in the sense of �Val
�	�

Dependency sets are �insensitive� to the �ring of outside transitions� For any atom
�� obtained by �ring t� from �� if t� is not in dependency ��tf � in �� then any
transition t 	 dependency ��tf � in � is enabled in �� i� it is enabled in �� The same
marking will be reached by �ring t� after t as by �ring t� before t� However� the
�rability of transition can be a�ected by this permutation� t might be �rable in ��

but not in �� Hence� it is not su�cient to �re only transitions in dependency��tf ��
�rable���� because there might be runs in which a transition in dependency ��tf ��
�rable��� �res after becoming �rable by the �ring of an outside transition�
Transition tf is called �rable with respect to a set of transitions W in an atom

� � ��� I�� if tf is enabled in � and I � f�tf � t� j t 	 W� t 	 enabled ���g is
consistent� �rable���W � is the set of transitions �rable with respect to W � Note
that �rable��� � �rable��� T ��
The �rability of t 	 dependency��tf � with respect to dependency ��tf � is not

a�ected by the �ring of any t� 
	 dependency��tf �� When �ring a transition tf �
we should �re all transitions in dependency��tf � which are �rable with respect
to dependency ��tf �� However� dependency

��tf � � �rable��� dependency��tf �� might
contains non
�rable transitions� In our algorithm� every successor atom must be
obtained by �ring a �rable transition� Therefore� we are looking for a set of tran

sitions �transitively closed under dependency�� such that every transition from this
set which is �rable with respect to the set is also �rable�
Formally� a ready set� denoted by ready���� is a nonempty set of �rable transi


tions such that for any t 	 ready��� it holds that dependency �t���rable��� ready���� �
ready���� That is� for any tf 	 ready���� if t 	 dependency �tf � is enabled and can
�re earlier than all transitions in ready���� then t 	 ready����
If the set �rable��� of all �rable transitions is not empty� then it is a ready

set� because �rable��� �rable���� � �rable��� and dependency �tf � � �rable��� �
�rable���� Therefore� for any atom � containing �rable transitions there exists at

��



least one ready set� In the sequel ready��� denotes some such set�
The following algorithm can be used to compute a set ready����

�� Start with ready �� ftfg for a �rable tf �

�� Iterate ready �� ready � �dependency �t� � �rable���� for some t 	 ready until
a �xpoint is reached�

�� If there exist t 	 ready and t� 	 dependency �t� such that t� 	 �rable��� ready�
but not t� 	 ready � then add some �rable t�� to ready� for which I implies
t�� 
 t�� and goto ���

The nondeterminism in the de�nition of dependency �t� can be resolved by calculat

ing all possibilities and using the smallest set dependency �t�� During the construc

tion of the set of successor atoms of an atom we can neglect all �rable transitions
which are not ready� This results in a considerable average case reduction� For
example� in Fig� �� �rable���� � ft�� t	� t�� t�g� whereas ready���� � ft�g�
However� the construction of the successors of an atom in our partial order

method di�ers from the total order method� because di�erent sets of inequalities
have to be built�
Let again� � ��� I� be an atom� tf a transition in ready���� �

� � ��� �tf � � tf��
and Uf � fp� j p 	 �tfg�fp� j p 	 tf�g� Recall that parent�t� p� is de�ned to be the
set f�Eft�t� � t � p� � Lft�t��g � f�q� � p�� j q 	 �tg� Furthermore� let select�t�
be a function selecting some p 	 �t for every t 	 T � We consider the following sets
of inequalities�

� K� � I � f�tf � t� j t 	 ready���g

� K� � delete�K�� Uf �

� K	 � K� � f�x � tf� j x 	 Ufg

� K� � delete�K	� ft j t 
	 enabled����g�

� K� � K� �
S
fparent�t� p� j t 	 enabled ����� enabled ���� p � select�t�g

� K
 � delete�K��P � P� �D��
where D � fp� j p 	 �� � �t for some transition t disabled in ��g

Let us give some comments on this construction� In contrast to the total order
method� K� relates the �ring of tf only to �rings of transitions in the ready set�
There might be runs in which transitions that are not ready �re at an earlier time
than tf � K�� K	 and K� are as in Section �� K� is some set of inequalities obtained
by extendingK� with some parent p for every newly enabled t� Note that in contrast
to the total order method� p is not necessarily selected from tf� as long as p can be
a parent �i�e�� p� can be greater than or equal to any other q� for q 	 �t�� Again�
in K
 irrelevant time variables are deleted� but we keep time variables related to
places which could become parents of a transition not �yet� enabled�

�� � ���� I�� is a tf �successor atom of �� if I� 	 CE �K
� 	� for some select

function for which K� is a consistent set� The reduced atom graph is constructed
in the same way as described in Sect� ��
Completeness and correctness of our partial order analysis method is granted by

the following theorem�

Theorem �

� For any run � there exists a stuttering equivalent atom sequence � in the
reduced atom graph


��



� For any partial order atom sequence there exists a stuttering equivalent total
order atom sequence


Proof� We introduce the notion of event in order to distinguish di�erent �rings
of the same transition and di�erent arriving!leaving of a token in the same place�
An event e is a pair �x�E�� where x is any transition or time variable and E is a
set of events� Given any atom sequence or run �� index i� and transition or time
variable x� the history of x in � and i is the event de�ned by the following recursive
de�nition�

hist�t� i� �� � �t� fhist�p��� i� ��� ���� hist�p
�
n� i� ��g� where � t � fp�� ���� png

hist�p�� i� �� �

��
�
�p�� fg� if i � �

�p�� fhist�ti� i� �� ��g� if i � �� p 	 �i � �i��� �i��
ti� �i

hist�p�� i� �� �� else

hist�p�� i� �� �

��
�
�p�� fg� if i � �

�p�� fhist�ti� i� �� ��g� if i � �� p 	 �i�� � �i� �i��
ti� �i

hist�p�� i� �� �� else

An event e � �x�E� is valid in � at index i� if e � hist�x� i� ��� In case that
e � �t� E� is a transition event� we additionally require that t is enabled in �i� The
event e is valid in �� if there exists an i such that e is valid in � at i� As we will
see� if an event e � �x�E� is valid in a run or atom sequence� then all events in E
are valid in �� A transition event e � �t� E� is enabled or �res in � at i� if e is valid
in � at i� and t is enabled or �res in ��� i�� Transition event e is enabled or �res in
�� if there exists an i such that e is enabled or �res in � at i�
Since the above recursive de�nition of hist is deterministic� for every � and

every x� there is no more than one event e � �x�E� valid in �� For any atom

sequence � � ����� I��� ���� I��� 
 
 
� and i � �� let Ii �
Si

k
� I
�
i� where I

�
i is the set

of inequalities such that var �I�i� is a set of events� that is� I
�
i is obtained from Ii by

replacing every variable x by the event �x�E� valid in � at i� For every sequence
of solutions for �I�� I�� 
 
 
� there is a sequence of solutions for �I�� I�� 
 
 
� and vice
versa� Similarly� de�ne the value of an event e � �x�E� valid in a run at i to be
the value of x in �i� EVALi��x�E�� � eval i�x�� �Recall that eval i�t� was de�ned
in the proof of Theorem ��� It is easy to see that if e is valid at i and j� then
EVALi�e� � EVALj�e�� Further� if a transition event e � �t� E� is not valid in ��
but every d 	 E is valid in �� then we de�ne

EVAL�e� � EVAL�d�� � Lft�e��

where d� 	 E� for every d 	 E� EVAL�d� � EVAL�d��� Therefore� every run �
determines a unique value EVAL�e� for every event valid in � or a transition event
like the above�
For the completeness proof� we have to construct for any run � a stuttering

equivalent atom sequence in the reduced state space� However� in general the two
�ring sequences will not be strongly equivalent� the atom sequence will correspond
to a permutation of the sequence of states of the given run �a permutation � of a
sequence � is any bijection of the integers f�� ���� j�jg onto itself��

Given any run � � ���
e�

�� ��
e�

�� � � ��� we inductively de�ne a sequence � � ���
e��

��
e�� 
 
 
� of atoms in the partial order state space and a permutation � such that

the following holds�

�� �i��
e
� �i i� ���i���

e
� ���i� �the same event �res in �i�� and in ���i�����

�� If var �Ii� � fe�� ���� eng� then �EVAL�e��� ����EVAL�en�� is a solution for Ii�

��



�� if�i��
e
� �i is visible� then the sequences ���� ��� 
 
 
 � �i� and ���� ��� 
 
 
 � ���i��

are stuttering equivalent�

Let �� be the initial atom� and ���� � �� Then� the claims � � � are trivially
satis�ed for i � �� Assume that ��� � � � � �i has been constructed� and that � � �
hold for all j � i� Call any state in f������ ������ 
 
 
 � ���i�g consumed�
First� we show that some transition event e 	 ready��i� �res in �� Suppose that

e 	 ready��i�� Since e is enabled in �i and all events up to �i also �re in �� either
e is enabled in � or a con�icting event with e �res before e being enabled� If e is
enabled in some state in �� again either e or an event con�icting with e �res� Thus�
in any case� e or a con�icting event e� �res in �� Since e is in ready��i�� we only have
to consider the latter case� Since e� �res in �� some event in necessary��e�� �i� must
also �re in �� If there exists an event e�� in necessary��e�� �i� such that e�� is �rable
in �i� then e�� is included in ready��i�� Thus� we have to show that some such e�� is
�rable� Assume that every event in necessary��e�� �i� is disabled in �i� Since there
exists a �ring sequence in which e� �res �as in ��� some con�icting events �re before
�i in �� These events� however� also �re in � from the induction hypothesis� This
contradicts the assumption that e� �res in �� Hence� some e�� 	 necessary��e�� �i� is
enabled in �i� There exist events eparent and e��parent �before �i in �� satisfying the
following inequalities�

Eft�e� � EVAL�e� � EVAL�eparent� � Lft�e��
Eft�e��� � EVAL�e���� EVAL�e��parent� � Lft�e���

Since e� �res in �� we have EVAL�e�� � EVAL�e�� Further� EVAL�e��� �
EVAL�e�� from e�� 	 necessary��e�� ���� Thus� we have

EVAL�e��parent� � Eft�e��� � EVAL�eparent� � Lft�e��

From the induction hypothesis� EVAL�e��parent� and EVAL�eparent� satisfy Ii� Hence�
e�� can �re earlier than e in �i �i�e�� Ii � f�e�� � e�g is consistent�� If e�� is �rable�
then we are done� Otherwise� from the de�nition of the ready set� some event e�
which makes e�� non �rable �i�e�� Ii implies e� 
 e��� is in the ready set �otherwise� e��

must be in the ready set�� If we have the same consideration as above for e� instead
of e� then in this turn we have to show that e��� is �rable� where Ii � f�e

��
� � e��g

is consistent� If e��� is not �rable� again there exists e� in the ready set� where
Ii implies e� 
 e��� � and the same process can be repeated� Since the ready set
is �nite� we eventually have ek � ej for � � j 
 k with e� � e� which implies
that Ii � f�ek 
 
 
 
 � ej � ek�g is consistent� This is� however� a contradiction�
Therefore� for some l �� � l 
 k�� e��l is �rable�
De�ne ��i��� to be the smallest number such that ���i��� is obtained by �ring

some ef 	 ready��i��
If ef is invisible� there is nothing to show for the inductive assertion �� Otherwise�

we show by induction on i that all states in ��� ��� ���� ���i� obtained by the �ring of
visible events are consumed� The base case is trivial� Suppose that the induction
hypothesis holds for i� i�e�� for every state �k 
	 f������ ���� ���i�g such that �k is
obtained by the �ring of a visible event we have k � ��i�� Since ef is visible
and ���i��� 
	 f������ ���� ���i�g� we have ��i � �� � ��i� according to the induction
hypothesis� Assume that for ��i� 
 m 
 ��i � ��� state �m is also obtained by a
visible event e�� If e� is enabled in �i� then e� must be in ready��i�� If e� is not
enabled� some event e�� in necessary��e�� �i�� which is in ready��i�� must also �re
before �m �the �rability of e� or e�� can be shown similar as above�� Either case leads
to a contradiction� because ��i��� is de�ned to be smallest� Hence� the sequences of
visible events in ���� ��� 
 
 
 � �i� and ���� ��� 
 
 
 � ���i�� are equal� and we have shown
stuttering equivalence of those sequences with respect to propositional variables �i�e��
atomic propositions except for atomic inequalities��

��



Next� we prove inductive assertion � together with the remaining part of ��
Let I� � Ii � K�


� where K
�

 is modi�ed from K
 by replacing variables with

events� For any newly enabled transition event e � �t� E� in �i��� every d 	 E
is valid in �� Thus� there exists d� 	 E such that for every d 	 E� EVAL�d� �
EVAL�d��� Then�

Eft�e� � EVAL�e� � EVAL�d�� � Lft�e�

holds� We de�ne select�e� to be any such p� Therefore� from K�� I � contains in
addition to Ii

Eft�e� � e� d� � Lft�e��

d � d�

for every d 	 E� These inequalites are clearly satis�ed by EVAL�
Further� from the de�nition of events� no consumed states in � are obtained by

�rable events in �i� and the earliest unconsumed state is obtained by ef � Thus�
ef �res in � earliest among the events �rable in �i� That is� EVAL�ef � satis�es
EVAL�ef � � EVAL�e� for e 	 ready��i�� This guarantees that the remaining
additional inequalities in I�

ef � e

for e 	 ready��i� are satis�ed by EVAL� Therefore� EVAL is a solution for I
��

Suppose that ef is visible and an atomic inequality x � y � c holds in ���i����
This means that two visible events e� and e� �red in � with EVAL�e���EVAL�e�� �
c� and el �l 	 f�� �g� �red in �kl

for kl � i �because e� and e� are visible�� If kl 
 i for
l 	 f�� �g� EVAL�e�� and EVAL�e�� satisfy I

� from the induction hypothesis� The
case that kl � i for l 	 f�� �g is trivial� Consider one of the remaining cases in which
e� is ef and � is �� As shown above� EVAL�ef � � EVAL�e� holds for e 	 ready��i��
Thus� for some event eparent that �red before �i in � with select�e� 	 eparent� �eparent
made e enabled��

EVAL�e�� � c � EVAL�ef � � EVAL�e� � EVAL�eparent� � Lft�e�

holds� Note that both e� and eparent �red before �i in �� Thus� from the induction
hypothesis� they satisfy I�� Since the constraints for ef are only the inequalities
added in K�� in I� ef can be as large as eparent � Lft�e�� which means that I� �
f�e��c � ef�g is consistent� The remaining cases can be proven similarly� Further�
the cases that there exists more than one atomic inequality holding in ���i��� can
be handled analogically� Therefore� there exists an complete extension Ii�� of I

�

such that Ii�� includes atomic inequalites holding in ���i��� and EVAL is a solution
of Ii���
We have shown that �i�� satis�es the same atomic propositions as ���i��� if ef

is visible� Hence� the inductive assertion � holds�
Since our logic is stuttering invariant� this assertion ensures that the evaluation

of any formula in � and � yields the same value� provided that every visible event
�ring in � is eventually consumed�
Therefore� we �nally show that every event �ring in � also �res in �� and thus

the set of events valid in � is equal to the set of events valid in ��
We will show that for an event e � �t� E� which �res in �� if every e� �which

�res in �� such that �p�� fe�g� 	 E for some p �res in �� then e also �res in ��
If e is not enabled in �� its con�icting event e�� must �re in �� This� however�
means that e�� �res also in � as shown above� and contradicts the assumption that
e �res in �� Thus� we can suppose that e is enabled in �i� From the construction�
�e� e� � Lft�e�� is in Ii� Since nonzero time passes in every loop� e and its direct

��



con�icting events must eventually become the only �rable events� Since those direct
con�icting events do not �re in �� e must be chosen� If we consider a dummy event
of which �ring generates the initial atom� then it �res both in � and �� Hence� every
event is eventually consumed�
The correctness proof would be simple� if the set of the partial order atom

sequences is a subset of the set of total order atom sequences� However� this does not
hold� because in the partial order atom sequences the transition tf that �nally made
some t enabled is not always the parent of t� Thus� we have to consider again the
permutation to relate both partial and total atom sequences� In the following� for
the correctness proof� we construct for any partial order atom sequence a stuttering
equivalent total order atom sequence in a way similar to the above completeness
proof�

Given any partial order atom sequence �� � ����
e�

�� ���
e�

�� � � ��� we de�ne a total

order atom sequences � � ���
e�� ��

e�� 
 
 
� and a permutation � such that the
following holds for all i � ��

�� �i��
e
� �i i� ����i���

e
� ����i� �the same event �res in �i�� and in ����i�����

�� �I� � Ii is consistent� where �Ij and Ii are the accumulated sets of inequalites

for �� and �� respectively� and �I� �
S
j
�Ij �

�� if�i��
e
� �i is visible� then the sequences ���� ��� 
 
 
 � �i� and � ���� ���� 
 
 
 � ����i��

are stuttering equivalent�

For events ei� ej that �re in an atom sequence �� � ����
e�

�� ���
e�

�� 
 
 
�� we say that

ei precedes ej at k� if �I� � Ik � f�ei � ej�g is inconsistent� If ei does not precede
ej at k� then we say that ej is precedable to ei at k�
Let �� � ��� be the initial atom� and ���� � �� Again� the base case for the

induction is immediate� Assume that ��� � � � � �i has been constructed� In the same
way as in the completeness proof� we can show that an event e 	 �rable��i� �res in
���
De�ne ��i� �� such that ����i��� is obtained by �ring some ef 	 �rable��i� and

ef is precedable at i to any event which is in enabled ��i� and �res in ���
If ef is invisible� there is nothing to show for the inductive assertion �� Otherwise�

assume that for ��i� 
 m 
 ��i � ��� ��m is obtained by a visible event e�� Since
every visible event is ordered even in the partial order atom sequences� e� precedes
ef � If e� is enabled in �i� then this contradicts that ef is precedable to e� at i�
Otherwise� some enabled event e�� that �res in � must precede e�� which again
causes the contradiction� Therefore� the inductive assertion � holds with respect to
propositional variables�
If e 	 enabled��i� �res in ��� then according to its de�nition� ef is precedable to

e at i� Otherwise� an event e� which is in con�ict with e must �re in ��� and such e�

must be enabled in �i or made enabled by the �ring of an event enabled in �i� In
any case� ef is precedable to e

� at i� and hence e� Thus� for any e 	 enabled ��i��
�I� � Ii � f�ef � e�g is consistent�
Suppose that an event e � �t� E� is newly enabled by �ring ef in �i� If e is not

enabled in ��� then a con�icting event e� must �re in ��� Let e� be in the ready set
in ��m for m 
 ��i � ��� �� Then� some event e� 	 necessary���m� e� is also in the
ready set� Thus� e� precedes e�� Since e is enabled in �i� e� �red in �j for j � i�
e� does not �re up to �i in �� because e is enabled in �i� If e� is enabled in �j�
this contradicts the assumption that e� is precedable �at j� to transitions enabled
in �j� Otherwise� e� is made enabled by �ring some e�parent enabled in �j� From
the causality� such e�parent precedes e

� at j� and hence e�� This again contradicts the
assumption�

��



Thus� e is enabled in ��� This implies that

Eft�e� � e � d� � Lft�e�

d � d�

are in �I� for d� � �p�� E�� 	 E� p � select�e�� d � �q�� fe��g� 	 E� Since ef �nally
made e enabled in �� every such e�� is precedable to ef at i� Thus� inequalities

d� � ef must hold� Hence� �I� � Ii � f�Eft�e� � e � ef � Lft�e��g is consistent�
Note that �Eft�e� � e� ef � Lft�e�� is equivalent to the inequality added in J��

We have shown that �I� �Ii � J �
 is consistent for J
�

 modi�ed from J
 by using

events instead of variables� Suppose an atomic inequality �x � y � c� holds in
���i���� Then� for visible event e and e

�� �e � e� � c� is in �I�� Thus� f�e � e� �

c�g � I� is consistent� Hence� for the related complete extension Ii��� �I� � Ii�� is
consistent�
Again� an event �nally precedes some other event which �res in ��� because

nonzero time passes in every loop� Thus� every atom in �� is eventually consumed�
�end of proof�

We have shown that our partial order method captures the behavior of the
net correctly and completely� However� in contrast to other partial order methods
proposed for untimed systems� our partial order state space is not a subset of the
total order state space� since there are di�erent sets of inequalities involved� In
particular� we can not conclude that the termination proof of Theorem � still holds�
in fact� there are cases when the above partial order method does not terminate�
If the net contains several independent loops� transitions in these loops are

handled completely in parallel� that is� inequalities which restrict the di�erence of
future �ring times of those transitions are not involved� Hence� the time di�erence
of those transitions may not be bounded� To deal with this problem� we require that
all transitions for which the time di�erence to transitions in the ready set exceeds
a certain maximum are also �red�
For two enabled transitions t� and t� in � � ��� I�� if both I � f�t� � t� � a�g

and I�f�t�� t� � a�g are inconsistent� then we say that t� and t� are a�bounded at
�� Let c � � be any constant� In addition to the conditions given above� we require
the ready sets to satisfy the following property�

� For t 	 ready��� and all �rable transition t� at �� if t and t� are not c 
Lftmax

bounded at �� then t� 	 ready���

Intuitively� this modi�cation guarantees that when the time di�erence between
�rable transitions t and t� exceeds some constant value� then for both cases that
t �res before t� and that t� �res before t atoms are generated� and in both these
atoms the di�erence between t and t� is restricted�
We say that � is a
bounded� if for all enabled transitions t� and t� at �� t� and

t� are a
bounded�

Lemma � For any reachable atom � � ��� I� and successor �� � ���� I�� obtained
by �ring t 	 ready���	 if � is �c��� 
Lftmax�bounded	 then �� is also �c��� 
Lftmax�
bounded


Proof� Let t� and t� be transitions enabled in ��� We have the following three
cases �

� both t� and t� are enabled also in ��

� both t� and t� are newly enabled in ��� and

� t� is enabled in � and t� is newly enabled in ���

�




In the �rst case� from the hypothesis t� and t� are �c���Lftmax
bounded in �� When
�ring t in �� inequalities like t � t� representing the condition that t �res earlier than
the other �rable transitions t� in the ready set are added to I� These inequalities
only give the restriction to the lower bound of the �ring times of continuously
enabled transitions� Thus� t� and t� are also �c� ��Lftmax
bounded in ���
In the second case� some inequalities

Eft�t�� � t� � x� � Lft�t���

Eft�t�� � t� � x�� � Lft�t���

t � x��

t � x��

are added to I� where x� and x�� are the parents of t� and t�� Let t� be a transition
such that t� � x�� and assume that t� �red in ��� We consider some ancestor tx of
t which is �rable in ��� Then� tx � t holds� If t� and tx are not c 
 Lftmax
bounded�
then from the de�nition of the ready set �t� � tx� must hold� This implies

t� � tx � t � x� � t��

and hence t� � tx� which contradicts the assumption that t� and tx are not c 
Lftmax

bounded� Thus� t� � tx � c 
 Lftmax� From tx � t� x� � t�� and t � x�� we have
� � x� � t � c 
 Lftmax� Similarly� we have � � x�� � t � c 
 Lftmax� Hence� we have

�c 
 Lftmax � x� � x�� � c 
 Lftmax�

and thus�

�c 
 Lftmax � Eft�t��� Lft�t�� � t� � t� � c 
 Lftmax � Lft�t��� Eft�t���

which implies that t� and t� are �c� ��Lftmax
bounded in ���
For the third case� we de�ne x�� and t�� similarly to the above� If t� � x��� then

similarly to the above� we have � � x�� � t� � c 
 Lftmax� Hence� we have

Eft�t�� � t� � t� � c 
 Lftmax � Lft�t���

If x�� � t�� then from the hypothesis�

��c � ��Lftmax � t� � t � �c � ��Lftmax�

From t � x�� and x�� � t�� we have

� � t� � x�� � �c� ��Lftmax�

Thus� we have
��c � ��Lftmax � Eft�t�� � t� � t� � Lft�t���

Therefore� in any case it is implied that t� and t� are �c� ��Lftmax
bounded in ���
�end of proof�

The initial atom is clearly �c���Lftmax
bounded� Thus� from the above lemma�
every reachable atom is �c� ��Lftmax
bounded�
Let G� be the quotient of the reduced atom graph G�

� under the equivalence
relation induced by the deletion of saturated time variables� Then the proof of
bisimilarity given in Section � is valid also for G��
It remains to show that the di�erences between �rable transitions and unsat


urated variables are bounded� The proof for this is also very similar to the proof
for the total order method given in Section �� However� the partial order method
involves other constants�

��



Given i and x� let again j � i be the maximal index such that x is updated in
�j� By a similar induction as in the total order case we obtain t� x � �i� j � �� 

�c � �� 
 Lftmax for all t enabled in �i� As shown above� for all enabled transitions
t and t�� Ii implies t � t� � �c � �� 
 Lftmax� thus the base case �i � j � �� follows
analogously� For transitions t remaining enabled from �i�� to �i� we can again
rely on the induction hypothesis� For transitions t newly enabled in �i� we have
to distinguish two cases� If select�t� is among the updated variables� then we can
conclude as in Section �� Else� there exists a place p � select�t� such that p 	 �i���
Let k 
 i be the biggest index such that p was updated in �k� Then� we can refer to
the induction hypothesis that Ii�� implies that ti�x � �i�j� 
�c��� 
Lftmax �recall
that �i is obtained by �ring ti�� Suppose k � �� If ti was enabled in �k��� the
upper bound of tk� ti is �c���Lftmax� Otherwise� some transition t�i was enabled in
�k�� and t�i � ti� Since the upper bound of tk � t�i is again �c���Lftmax� the upper
bound of tk � ti is less than it� In any case� tk � ti is bounded by �c � ��Lftmax�
From t� p � Lft�t� and p � tk� Ii implies that t� x � �i� j � �� 
 �c� �� 
 Lftmax�
The remaining cases that k � � is proven similarly from p� ti � �Eft�ti��
A lower bound for the partial order method is given by r 
Eftmin��c��� 
Lftmax�

If x is updated in �i� again for all newly enabled transitions t we have Eft�t� � t�x�
since parent�t� p� implies Eft�t� � t � p� and p� � x and hence t� x � Eft�t�� and
for all transitions t enabled in �i�� and not disabled in �i� we have x � ti �
t� �c � �� 
 Lftmax� since ti � t is �c � �� 
 Lftmax
bounded in �i��� The rest of the
proof is completely analogous to the total order case�
Thus we have shown�

Theorem � The partial order analysis generates only a �nite number of di�erent
atoms


There are a number of improvements to our method which we omitted in the
above presentation to simplify it� The static timing intervals of the transitions in
the net can be used to reduce the size of the dependency set of a transition�
In our introductory example� we mentioned that although t
 is disabled� it

may inhibit the �ring of t	� if t� and t� �re� Therefore� we included t� into
dependency �t	�� However� t
 will not inhibit the �ring of t	 if t
 becomes enabled
too late� This can be checked by examining the minimal time di�erence between
the next �ring times of t� and t	� It takes at least Eft�t�� � Eft�t
� � � � � time
units to �re t
 after the �ring of t�� Thus� t� can only inhibit the �ring of t	� if t�
can �re � time units earlier than t	� Hence� we include t� in the dependent set of t	
only if I � f�t	 � t� � ��g is consistent� where � � di� �t�� t
� is the sum of earliest
�ring times in the path from t� to t
�
Formally� let di� �t� t�� be the minimal value of sums of earliest �ring times in

all paths from t to t�� with Eft�t� not included� A transition th in necessary��t� ��
is harmful for tf � if it is enabled� and I � f�tf � th � di� �th� t��g is consistent�
Instead of including all enabled transitions in necessary��t� �� for all con�icting
t into the dependency of tf it is su�cient to include those which are harmful�
harmless transitions can never inhibit the �ring of tf since the con�icting transition
they enable becomes enabled �too late��
Another improvement concerns the deletion of �aged� variables in K
� In the

current de�nition of K
� all time variables p
� for all marked input place p of a

disabled transition t are left in the set of inequalities� Thus� if t is continuously
disabled� the di�erence of these variables to other �transition� variables becomes
larger and larger until they are saturated� This is not a problem from the view of
correctness� completeness� or termination of the algorithm� However� it contains
some redundancy� because time variables which are too old can not be the parent
of newly enabled transitions� Here� �too old� means that p� can not be greater or
equal to the earliest time when t gets enabled� and such earliest time can be guessed

��



with t� � di� �t�� t� � Eft�t� for some enabled transition t�� Thus� if we de�ne D in
K
 as

D � fp� j p 	 �� � �t�K� � fp
� � t� � di� �t�� t�� Eft�t�g is consistent

for some disabled t and enabled t� in ��g�

the algorithm is still correct� and in general more e�cient�

� Experimental Results

We have implemented both the basic model checking algorithm and its partial order
improvement on a �� MIPS UNIX workstation in C��� In this section� the perfor

mance of both algorithms with an example from �RB��� YNT�
	 is demonstrated�
The veri�ed system called PROWAY is a local area network linking stations by a

shared hardware bus� The bus allocation procedure is based on a token bus access
technique� Fig� � shows a Time Petri net model for station � of the PROWAY system
in a four
station con�guration�
Stations are logically distributed on a ring� and a baton goes around on the ring�

When a station has the baton� it can transmit application messages� whereas the
other stations can only listen to them� A token in p� means that the station is in
the listening mode� A token in p	 means that the station has a baton� If transition
t� �res� the station �rst transmits application messages and then it passes a baton
to the next station on the logical ring� Otherwise� the station only passes a baton
without message transmission� On the transmission of messages� the station holds
a baton for a longer time� �Compare �ring intervals associated with t� and t�� in
Table ���
Each station has a recovery mechanism against a single fault� A station sets

its frame interval timer T� �represented by t��� when it transmits a baton� If
any activity on the bus �i�e�� baton or message transmission from other stations� is
listened a certain time later� the station gets into listening mode� resetting the timer�
Otherwise� the frame interval timer times out� Suppose the station Sa transmits a
baton to the station Sb� Time
out of the Sa�s frame interval timer occurs when �i�
a baton from Sa is lost� �ii� Sb is faulty� or �iii� the baton or messages from Sb are
lost� In these cases� Sa transmits a new baton to another station Sc� Next time Sa
has a baton� Sa tries to transmit the baton to Sb� If T� of Sa times out again� Sa
will ignore Sb from now on� p�� p� and p�� represent how many times this time
out
of T� occurs�
A station sets its lost baton timer T� �represented by t�� when it gets into

listening mode� The purpose of this timer is to initiate a new baton when a baton
holder goes faulty� holding the current baton� and all other live stations are in the
listening mode� The value of T� is indexed with the station�s address as shown in
Table �� in such a way that the live station with the smallest address monitors the
recovery�
As example property� we verify if the next activity will always occur within

some constant time units� say max� after a station �nishes sending its message�
This property holds in the system if the TNL formula

����nish� ��activity�U �activity� � �nish� � max�	

is not satis�able� More concretely� we have checked the formula

���p�� � ��p��U �p
�
� � p��� � ���	�

The Fig� � shows the CPU times for both implemented algorithms with this
example� The size of the net is linear in the number n of stations� thus the basic
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Figure �� A time Petri net model for station � �U�� of the PROWAY system in a
four
station con�guration�
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Table �� Timing constraints for transitions �TC���

t� ����� t� ����� t�	 ����
�� t�� �����

t� �
��� ����y t� ����� t�� ������ t�� �����

t	 ����� t� �������� t�� �������� t�� �����

t� ����
�� t�� ����
�� t�
 ����
�� t�� �����

t� ������ t�� ������ t�� �������

t
 ����� t�� �������� t�� �����

y ���i�������i����	 for station i

algorithm is exponential in n� Since all stations operate more or less independently�
parallelism also increases with n� therefore� the partial order method succeeds in
reducing the complexity� This result is typical for a number of similar examples�
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Figure �� Performance of the basic!partial order methods

	 Conclusion

In this paper� we have proposed a timed temporal logic for time Petri nets which is
expressive enough to formalize quantitative timing properties and yet it is stuttering
invariant� so that the parallelism in the nets can be used to avoid the state explosion
problem during veri�cation�
Then� we have developed a model checking algorithm for our logic� We con


structed for the in�nite state space of the net a �nite representation� the atom
graph� such that every atom sequence represents a set of runs� and satis�es the
formula i� the corresponding runs satisfy the formula�
Since the complexity of the consequent model checking algorithm depends on

the number of atoms� we have shown how to reduce this number by elimination of
redundant interleavings� In our method� for every �rable transition all dependent
sets� i�e�� sets of �rable transitions whose �rings are relevant for the evaluation of
the given formula� are computed� From the smallest set of �rable transitions which
is closed under dependency the reduced atom graph is generated� Since this set is
usually much smaller than the set of all �rable transitions� a considerable reduction
of the state space is achieved�
Although the worst case complexity of the problem is exponential� experimental

results from several examples show that the proposed algorithm successfully reduces
the average complexity of the model checking�
In the future we intend to combine our method with symbolic model checking

techniques �which represent state spaces as binary decision diagrams�� and to �nd

��



similar e�cient model checking algorithms for other kinds of temporal logics such
as branching time temporal logics and timed ��calculi�
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