Efficient Verification of Parallel Real-Time Systems

Tomohiro Yoneda Bernd—Holger Schlingloff
Tokyo Institute of Technology = Technische Universitat Minchen
(yoneda@cs.titech.ac. jp) (schlingl@informatik.tu-muenchen.de)
Abstract

This paper presents an efficient model checking algorithm for one—safe time
Petri nets and a timed temporal logic. The approach is based on the idea of
(1) using only differences of timing variables to be able to construct a finite
representation of the set of all reachable states and (2) further reducing the size
of this representation by exploiting the concurrency in the net. This reduction
of the state space is possible, because the considered linear—time temporal logic
is stuttering invariant. The firings of transitions are only partially ordered by
causality and a given formula; therefore the order of firings of independent
transitions is irrelevant, and only one of several equivalent interleavings has to
be generated for the evaluation of the given formula. In this paper the theory
of timing verification with time Petri nets and temporal logic is presented,
a concrete model checking algorithm is developed and proved to be correct,
and some experimental results demonstrating the efficiency of the method are
given.

1 Introduction

Model checking has proved to be useful for the automatic verification of finite state
systems; see, e.g. [CES86] and others. Unfortunately, the verification of large paral-
lel systems suffers from the so called state explosion problem: the number of states
to be checked is exponential in the size of the system. An approach to confine
this problem is to use partial orders and thus to avoid the construction of equiv-
alent states reachable by different interleaving of atomic events. Several methods
[Val90, God90] based on this approach have been proposed for reachability analysis
and various other properties of Petri nets.

Those untimed verification techniques are suitable to check qualitative timing
properties. Recently, the demand for correctness proofs of real-time systems in-
creases rapidly. In real-time systems, the system correctness depends not only on
the functional results of the system but also on the time at which these results are
produced.

Such systems are often represented by finite automata, whose transitions are
labeled by time intervals [AH89, and others], or which have a finite number of
clocks [ACD90]. However, concurrency can not be modeled directly by such timed
state graphs. On the other hand, time Petri nets were considered in [MF76]. Time
Petri nets are an adequate model of timed concurrent systems, which generalizes
other models (e.g., those of [dBak92]) in a natural way. Using time Petri nets, it
is very easy to model, for example, logic gates with bounded delays or network
protocols (for an example, see section 6).

In order to specify and verify real-time systems, languages for reasoning about
quantitative timing properties are necessary. Many timed temporal logics have been
proposed to express such properties [AH89, ACD90, and others]. But again, for
practical applications, state explosion is a big problem. There are only a few reports

on the avoidance of state explosion in the case of real-time systems. Reachability
analysis techniques for time Petri nets using partial orders have been reported in
[YTK91]. Symbolic model checking for real-time systems is proposed in [HNSY92].

In this paper, we develop an efficient model checking algorithm for the verifica-
tion of real-time systems based on the partial order approach. The given real-time
system 1s modeled by a time Petri net. For the specification of properties and time
constraints of the time Petri nets we use a suitably extended linear temporal logic.
The language 1s designed such that it fits to the partial order analysis. Automatic
verification 1s achieved by generating a reduced state space of the net, which is
traversed with the given formula.

The rest of this paper is organized as follows. In the next section, several
definitions concerning time Petri nets are given. In Sect. 3, we introduce our logic.
Both the basic model checking algorithm and its partial order improvement are
developed in the following two sections. In Sect. 6, some experimental results are
presented which demonstrate the efficiency of the proposed method. Finally, we
summarize our discussion.

2 Time Petri Nets

Time Petri nets were first defined in [MF76], and used for timing verification in
[BD91, RB86]. The definitions here are based on [Sta90].

Let Q be the set of rational numbers, and Q% the set of nonnegative rational
numbers. A time Petri net N is six—tuple, N = (P, T, F, Eft, Lft, uy), where

o P={p1,p2,...,pm} is a finite set of places;
o T'={t1,1a,...,1,} is a finite set of transitions (P NT = 0);
o ' C (PxTYU(T x P)is the flow relation;

o Eft, Lft : T — QT are functions for the earliest and latest firing times of
transitions, satisfying Eft(t) < Lft(t) for all t € T}

e yg C P is the initial marking of the net.

For any transition ¢, ot = {p € P | (p,t) € F'} and te = {p € P | (t,p) € I'} denote
the preset and the postset of ¢, respectively. To simplify the presentation, we require
that et Nte — () and et # () for every transition ¢; however, this requirement is not
essential for our results.

Since we are dealing with finite-state systems, each place i1s limited to at most
one “token”: A marking p of N is any subset of P. A transition is enabled in a
marking yp if o2 C p (all its input places have tokens in p); otherwise, it is disabled.
Let enabled(yt) be the set of transitions enabled in p.

A state o of a time Petri net is a pair (u, clock), where p is a marking and elock
is a function T — Q¥. The initial state oq is (po, clocky), where clocky(t) = 0 for
allt € T.

The states of time Petri nets change, if time passes or if a transition fires. In state
o = (u, clock), time 7 € QT can pass, if for all t € enabled(u), clock(t)+7 < Lft(t).
In this case, state o/ = (¢, clock’) is obtained by passing T from o, if

1. p=4, and
2. for all t € T, clock’(t) = clock(t) + 7 .

In state ¢ = (p, clock), transition t € T can fire, if t € enabled(p), and clock(t) >
Eft(t). In this case, state o/ = (y', clock’) is obtained by firing t from o, if

Po_ 1o[l,1] P2 t3[1,9] D3

Figure 1: An example of a time Petri net : N,

1. g = (p—ot) U te, and

0 if ¢ € enabled(p') — enabled(y)

2. forallt € T, clock'(t) = { clock(i) else

Intuitively, this can be interpreted as follows : Firing a transition ¢ consumes no
time, but updates p and clock such that the clocks associated with newly enabled
transitions (i.e., transitions which are enabled in g’ but not in p) are reset to
0. Clock values of other transitions (i.e., transitions not affected by t) are left
unchanged.

A run p = (69,01,032,...) of N is a finite or infinite sequence of states such that
¢ is the initial state, and o; is obtained from o;_1 by passing some time 7; (possibly
0) and then firing some transition ¢;. We write o;(p) for the i-th state of p, and
similarly p;(p) and clock;(p), and omit the argument (p) whenever appropriate. A
run is mazemal, 1f 1t is infinite or in its last state there is no enabled transition. The
behavior B(N) of N is the set of all maximal runs of N.

Thus Eft(t) and Lft(t) can be seen as a “firing interval” for each transition ¢
which constrains the timing associated with runs of the net. If N’ differs from N
only in the earliest and latest firing times of its transitions, such that the firing
intervals associated with each transition in N’ are a subinterval of those of N, then
B(N'") C B(N).

Given any run p and ¢ > 0, we define #ime;(p) to be the sum of all times 7
passed between og(p) and o;(p); that is, timeg(p) = 0 and time;1(p) = time;(p) +
clock;41(t) — clock;(t) for some ¢ which is not newly enabled in p;41.

A state o is reachable if there exists a finite run whose last state is 0. A time
Petri net is one-safe, if for every state o = (u, clock) obtained by passing time from
any reachable state ¢, and for every transition ¢ which can fire in o, t e N = 0.
The restriction to one—safe nets simplifies both the analysis of time Petri nets and
the reduced state space generation.

Further, for the proof of the finiteness of the graphs introduced in Sect. 4,
we need the following progress condition [AH89]: The sum of earliest firing times
of tranmsitions forming any loop in N 1is positive. More precisely, for every set
{t1,ts, ..., t,} of transitions such that t; eNety # 0 iseNeis £ O .. t,eNet; £
it holds that Eft(t;) + Eft(t2) + -+ Eft(t,) > 0. This guarantees that in any
infinite run time is increasing beyond any bound.

In the sequel, a net will always be a one-safe time Petri net satisfying the
progress condition.

Fig. 1 shows an example net N,. Pairs of numbers after transition names rep-
resent earliest and latest firing times, respectively. Since, for example, ¢5 can fire

at any time between 1 and 3 after being enabled, the behavior B(N,) contains an
infinite number of runs. Furthermore, since Eft(tg) > Lft(t1), to can never fire, and
thus every run of N, is infinite.

In Fig. 2 an example run of the net i1s shown, where the “p” and “t” columns
describe the marking u; and clock values clock; of enabled transitions, respectively.
Times 7; and transitions t; are chosen arbitrarily, such that the conditions that r;
can pass and t; can fire are not violated.

3 TNL, a Timed Temporal Logic for Nets

In this section, we propose a temporal logic for the specification of net proper-
ties. On one hand, every such logic should be expressive enough to be capable of
formalizing “interesting” properties including quantitative time requirements, and
on the other hand there should exist an efficient model checking algorithm for the
logic avoiding the state explosion problem. In this paper, we focus on linear time
temporal logic.

Given a net N and formula ¢, we want to find whether there exists a run p of
N satisfying ¢ (written p = ¢). In general there are infinitely many runs of N,
therefore we group these into a finite number of equivalence classes [p1], [p2], - -,
[pc], such that any run p satisfies ¢ iff every element of the equivalence class [p]
satisfies . Thus we only have to check a finite number of equivalence classes; and
a coarser partition yields a better algorithm.

Consider a set of atomic propositions {p1, ..., px } of a logic, such that the notion
of walidity ((p, 1) |E p;) of an atomic proposition p; in a state ¢; of arun p is defined.
Two runs p and p' are strongly equivalent with respect to {p1,...,pr}, if (p,7) E p;
iff (p/,i) | p; for all i > 0 and all atomic propositions p; € {p1,...,pr}-

A state 0;41 In a run p is stuttering with respect to {p1,...,px}, if (p,9) F p; iff
(p,i+ 1) p;forallp; € {p1,...,pr}. Tworuns p and p’ are stuttering equivalent
w.r.t. {p1,...,px}, if the two sequences obtained by eliminating all stuttering states
from p and p’ are strongly equivalent w.r.t. {p1,...,pr}. Define a formula ¢ to be
stuttering invariant, if for any two runs p and p’ which are stuttering equivalent
with respect to the atomic propositions in ¢ it holds that p = ¢ iff p/ = .

Stuttering invariance allows to group all stuttering equivalent runs into the same
equivalence class, thereby reducing the average complexity of the model checking.
In particular, all runs which differ only in the interleaving of independent transitions
are stuttering equivalent with respect to places not connected to these transitions.

i || (7i,t:) | po p1 P2 p3 P11 pa ps P13 | to by ta 3ty s ts U7 | time;
0 o o ° . 000 0 0

1| (2,t3) o o o o 2 2 2 2
20 (1,4) . . . 3 0 3
31 (0,t2) | o o e |00 0 3
41 (0,t1) o o 0 0 3
51 (3,15) o o 0 6
6| (0,t2) | o o e |00 6
71 (0,t1) o o o 0 6
8

Figure 2: An example run of net N,

Unfortunately, most formulas of existing real-time logics are not stuttering in-
variant. Firstly, uncautious use of a “next—state” operator inhibits stuttering in-
variance. Moreover, if the logic allows to directly refer to the time associated with
a state in a run, then a similar effect as with a “next—state” operator can result. In
other words, classical real-time logics are inappropriate for our purpose. Therefore,
our logic only refers to differences of firing times of transitions.

Our logic, which we call TNL, is formally defined as follows. Given any net
N = (P, T,F,Eft, Lft, po), let P ={p* |p€ PYU{p® |p € P} be the set of time
variables. The set of propositional variablesis P. The formulas of TNL are defined
inductively:

e Ifx,y € P and ¢ € Q, then z — y < ¢ is a formula.

e Every propositional variable is a formula.

e false is a formula.

o If v and ¢ are formulas, then (1 — ¢2) and (p1 U p2) are formulas.

false, propositional variables, and # —y < ¢ for z,y € P and ¢ € Q are called
atomic propositions. Formulas * — y < c¢ are called atomic inequalities, and an
atomic formula is either an atomic proposition or an atomic inequality. Additional
boolean connectives true, =, A, V, <, and temporal connectives O, & can be defined
as usual. Also formulas 2 — y ~ ¢, where ~ is any relation from {< =,> >}, can
be defined in an obvious way.

In order to define the semantics of TNL, the value of time variables in a state
of a run has to be defined. Intuitively, p®* and p°® € V represent the time when the
place p got or lost the latest token, respectively.

Let p be arun of N, i >0, and let z € P.

0 ifi=0
' _ time; (p) ife=p* p€pi— pi—1
evaly(z) = time; (p) fe=p° p€pi_1 —
eval;_1(x) otherwise

Validity of a TNL formula ¢ in a run p at point ¢ > 0, denoted by (p,?) = ¢, is
now defined by induction on ¢ as usual:

1. (p,8) Ee—y<ciff eval;(2) — eval;(y) < ¢

(p.1)
2. (p)Epiffpep; forpe P
3. (p, i) £ false
(1) |2 (91 — 2 fE (5,3) [o1 implies (s, 1) = s
(P,

i) E (¢p1U 2) iff there exists j > 4 such that (p,j) E 2, and for all &k
such that i < k < j, (p, k) E o1

p satisfies , denoted by p = ¢, if (p,0) E ¢. Thus we adopt the so-called
wnitial semantics which is more natural for our purposes. ¢ is satisfiable in N if
there exists a (maximal) run p € B(N) such that p = ¢.

Consider our example net from Fig. 1. Then the formula $pyg is satisfiable if the
place p1p is reachable, which is the case, and O(p1g Aply—p3y < 8) is satisfiable if it
can be reached within 8 time units, which is not the case. (Note that eval;(p$,) = 0
for all ; in general we can reference the start time of the net by any time variable
related to a constant place.) OO(pS — p} > 2) means that ¢; may infinitely often
need more than 2 time units to fire.

4 Model Checking for Nets and TNL

In general, there exist infinitely many runs of a given net N. In this section, we
will construct a finite graph G such that the paths through G represent exactly
the runs of N, and that every node in G determines the truth value of all atomic
propositions appearing in the given TNL formula. Thus, the TNL model checking
problem is reduced to the LTL model checking problem, for which an algorithm can
be found in [LP85].

Basically, we use a set of inequalities to represent a number of different clock
functions. By an inequality we mean any string of the form “xz — y ~ ¢”, where
z and y are from a designated set of variables, ¢ € Q and ~ is a relation sym-
bol from {<,<,=,>,>}. We use “c <a—y <d” as abbreviation for the two
inequalities“z — y < d” and “c—y >¢”, and “e~y” for “e—y~07. If [is a
set of inequalities, then war(I) denotes the set of variables that I contains; we say
that I is a set of inequalities over var([).

Let I be a set of inequalities over {@1,z9,...,2,}. A feasible vector or solution
for T is a tuple (c1,ea,...,¢,) of constants ¢; € Q, such that every inequality
obtained by replacing every #; by ¢; (1 < ¢ < n) in any inequality from 7 holds in
the theory of rational numbers. The solution set of I is the set of feasible vectors
for I. A set of inequalities is consistent if its solution set is nonempty. Two sets of
inequalities are isomorphic, if they have the same solution set.

The closure of a TNL-formula ¢, denoted by Cl(y), is the smallest set of in-
equalities such that for every inequality “z — y < ¢” appearingin ¢, both “z —y < "€
Cl(¢) and “@ —y > € Clp). A mazimal consistent set of ¢ is a maximal set
F C Cl(g) of inequalities which is consistent. Given any set I of inequalities, a
complete extension I' of I and ¢ is any consistent set I’ = I U I such that I"” is a
maximal consistent set of . CE(I,) denotes the set of all complete extensions of
I and ¢. Note that for consistent I, CE(I, ¢) is nonempty and finite.

In the previous section, time variables representing times when the correspond-
ing places got or lost its latest token were introduced. In order to grasp the future
behavior of the net, we introduce another sort of time variables, called transition
variables, representing the possible next firing time of (enabled) transitions. Since
there is no confusion, we use the set T" to denote transition variables as well as tran-
sitions; all inequalities in this section will therefore use variables from V =P UT.
P, denotes the set of time variables appearing in ¢.

An atom is a pair o = (p, I), where p is a marking and 7 is a set of inequalities.
The initial atom is g = (po, If), where pig is the initial marking of the net, and I
is the unique complete extension of the following set Iy of inequalities:

L= {*v=y" |z, yeP}tU
{“Eft(t) <t —a < Lft(t)” |t € enabled(pg), x € P}

The first line defines the initial values of all time variables to be equal, and the
second line gives the timing constraints on the next firing of transitions enabled in
the initial marking.

In our example net N,, the initial atom contains the inequalities: {“p% = p§ =
= ply =Pl U<t —ph <87, U<ty —ph <97, L <ta—ph <57, 0 <
tr—ph <47}

We are now going to describe how the set of successor atoms &’ of an atom
a can be computed. To this end we need the notion of deletion of a set U of
variables from a set I of inequalities. For every such I and U there exists an (up
to isomorphism) unique set I’ = delete(I,U) of inequalities over var(Il) — U, such
that the solution set of I’ is equal to the solution set of I, projected on wvar(l) —U.
For example, if I = {“1 <t3 —p8 <37, “1 <t3—pd <97}, then delete(I,{p}}) =

{“—8 <ty —13 < 2”}. As shown in [JM87], I’ can be computed by a graph—based
algorithm in time O(|var(I)|?).

If we delete in this way all time variables from the above set, we obtain {
CL8 <ty 1y <27, d <ty — 1y <27, 3 <ty — 1 <3, A<ty —ty < 8,923 < 1
“-3 <ts—1t7 <5” }. In fact, before generating the successor atoms of the initial
atom we delete from it all time variables which are not necessary for the evaluation
of the given formula by applying delete(Iy, P — Py,).

Let o = (u, I) be an atom, and ¢y be a transition enabled in g. Transition ¢; is
called firable in o, if IU{“t; < 17|t € enabled(p)} is consistent. That is, ¢ is firable
in e if it can fire earlier than all other (enabled) transitions in the given marking and
timing. firable(«) denotes the set of transitions firable in «. Let t; be a transition
in firable(a), o' = (u— oty)Utre, and Uy = {p° |p € oty }U{p* |pEtyo}. Ift €T
and p € ot, then parent(t,p) = {“Eft(t) <t —p* < Lt@)" U {“g* < p*” | q € ot}
is a set of inequalities describing that the next firing of ¢ is determined by the value
of p*. We define the following sets of inequalities:

o Ji=ITU{% <t”|t€ enabled(p)}

Jo = delete(J1,Uy)

J3IJ2U{“$Itf” |l‘EUf}
Jy = delete(Js, {t |t & enabled(p')})

Js = Ja U | J{parent(t,p) | t € enabled(yt') — enabled(p), p €ty eNet}
o Js = delete(Js, P —Py)

Intuitively, this can be read as follows: J; describes that t; fires first, i.e., earlier
than other enabled transitions. Jy is obtained from J; by eliminating all time
variables Uy which have to be updated. This updating is then done in J3 by
fixing the value of these variables to be equal to the firing time of ¢;. In J4 the
transition variables of disabled transitions are deleted. J5 relates the transition
variables of newly enabled transitions to the updated time variables. Finally, all
irrelevant time variables are removed. Note that our definition of the J;’s contains
some redundancies; e.g., Js can be computed by using the operation delete(I,U)
only once. For any « and ty, Jg is uniquely determined (up to isomorphism); we
say Jg is obtained by firing ty from o. o = (', I') is a ty-successor atom of «, if
I' € CE(Js,) for Js obtained by firing some firable transition ¢; from «.

An atom sequence p is a finite or infinite sequence ¢ = g n, o U -, such that
o 1s the initial atom and ;41 1s a ¢;41-successor atom of «; for any ¢ > 0. The
atom graph Go(N, @) consists of all atoms reachable by a finite atom sequence, and
its edges represent the successor relation of atoms.

To illustrate this construction, in Fig. 3 the first few atoms of N, (with P, = 0)
are given as calculated in a depth-first search.

Given any atom sequence g, satisfaction of ¢ in ¢ (¢ | ¢) is defined in an
obvious way, the relevant clause for atomic inequalities being (g,¢) |F # — y < ¢ iff
“e —y < c”€ ;. Now, the question of whether there exists a run of N satisfying ¢
can be reduced to the question of whether there exists a satisfying atom sequence:

Theorem 1

o For any atom sequence o there exisls a run p such that p = ¢ iff o |F ¢
(correciness), and

o for any run p there exisls an atom sequence o such that p = ¢ iff o | ¢
(completeness).

— 7 S 933’

atom 0 : u={ pl p2 pll p13} I={(-8
5
firable : t3 t4 t7 t2

atom 1: t3 u={ pl p3pllpl3} I={(-4<t7-t4<3)(-4<t2-t4<2)(-3<t2-t7<2)}
firable : t4 t7 t2

atom 2: t4 u={ pl p3 p4 pl3} I={ (-7 <t2-t5 <-1) }
firable : t2

atom 3: t2 u={ p0 p3 p4 pl3} I={ (-6 <t0-t5 <0)(-7<tl-t5<-1)(-1 <tl-t0<-1)}
firable : t1

atom 4: t1 u={ pl p3 p4 pl3} I={ (-6 <t2-t5<2)}
firable : t5 t2

atom 5: t5 u={ pl p3 p5 pl3} 1={}
firable : t2

atom 6: t2 u={ p0 p3 p5 pl3} I={ (-1 <tl-t0<-1)}
firable : t1

old atom 5: t1
back to depth 6
back to depth 5

atom 7: t2 u={ p0 p3 p4 pl3} I={(-5<t0-t5<1)(-6<tl-t5<0)(-1<tl-t0<-1)}
firable : t5 t1

old atom 6: t5

atom 8: t1 u={ pl p3 p4 pl3} I={ (-5 <t2-t5<3)}
firable : t5 t2

Figure 3: Part of the state space of N,

Proof: To show the correctness of our analysis method we have to show that any
atom sequence g corresponds to a possible run p of the net. But, this is almost
immediate, since any sequence of feasible vectors for the transition variables of an
atom sequence determines a run of the net. Note that the set of inequalities in any
reachable atom is consistent, because firable selects only appropriate transitions, and
Js and J5 add only inequalities for previously unconstrained variables. Thus, assume

that an atom sequence ¢ = «g 12N o1 Y2 .. with solutions is given. Define clock;(t)
such that clocky(t) = 0 for all t € T, and clock;41(t) = 0, if ¢ is newly enabled in
Hit1, else clock;11(t) = clock;(t) + ¢;41, where ¢;41 is the value associated to #;41
in the solution of I;. Then, it is routine to show that the sequence ((y;, clock;)) is
a valid run p of the net. Clearly, the evaluations of ¢ in ¢ and p are the same.

Let us now prove that the atom graph is also complete, i.e., that any run is

. t t
represented as a sequence of atoms. Given any run p = (g — 03 — ---) and

transition variable ¢, define eval;(t) = max(time;(p) + Eft(t) — clock;(t), time; (p)),
where j is the smallest index greater or equal to ¢ such that ¢ is disabled at ;. For

an enabled transition, eval;(t) is the time when ¢ fires next, or (if it is disabled before

firing) when it could have fired. We construct a sequence ¢ = (ag g 2)

of atoms such that the markings of «; and o; are equal, and eval; for both time
variables and transition variables determines a feasible vector for the inequalities
I;. Then, (p,7) satisfies the same atomic propositions as (p,¢), and hence both
evaluations of ¢ are the same. Let ag be the initial atom. All inequalities of I
are valid: Since evalg(z) = 0 for all # € P, we have evaly(x) = evaly(y) for all
z,y € P. Furthermore, for all ¢ € enabled(pg), it holds that eval;(t) = max(0 +
Eft(t) — 0, time; (p)) > Eft(t), and eval;(t) < Lft(t) since both Eft(t) < Lft(t) and
time;(p) < Lft(t) (note that in any run any enabled transition will be disabled
before its latest firing time is elapsed).

Assume inductively that the markings of «; and o; are equal, and that all
inequalities in I; are satisfied by eval;. Let o;4; be obtained from o; by firing t;. We
have to show that t; € firable(w;). Since t; € enabled(p;) and t; & enabled(pt;41)
(firing any transition disables it), eval;(ty) = time;11(p). Moreover, for any other
transition ¢ € enabled(y;) it is the case that eval;(t) > time;11(p). Therefore eval;
satisfles I; U{ty <t |t € enabled(p;)}, ie., t; € firable(w;).

Let I7,, be the set of inequalities obtained by firing ; from «;. We show
that eval;yy is a solution for I7, ;. Note that evaliyi(x) = eval;(x) for any = €
P — Uy, and that eval;11(z) = time;41(p) for any » € Uy. Similarly, eval;yq(t) =
eval;(t) for any t € enabled (pi41) N enabled(p;), and eval;yq(t) = max(time;+1(p) +
Eft(t), time;(p)) for t € enabled(p;11) — enabled (u;).

As we already have seen, eval; is a solution for I; U {t; <t |t € enabled(p;)}
(which is Jy in the above construction). Therefore, the vector assigning eval;11(x) =
time;11(p) = eval;(ty) to any z € Uy and eval; to all other variables is a solution for
J3, which differs from J; only in inequalities over U;. Since Js differs from J3 only
with respect to the timing relations of newly enabled transitions, and J5 does not
contain any transition variables for disabled transitions, eval;;1 gives a solution for
Js (note that eval;11(2) > time;y1(p) + Eft(t) and eval;11(t) < time;11(p) + Lft (1)
from time; (p) < time;y1(p) + Lft(t) and time;y1(p) + Eft(t) < time;11(p) + Lft(t),
thus Eft(t) < eval;11(t) — timeip1(p) < Lft(t)). Of course, any solution for a set of
inequalities is a solution for the set of inequalities obtained by deleting arbitrarily
many variables.

To conclude, let I;4; be the complete extension of I{,; which satisfies the same
atomic inequalities from ¢ as (p,i+1). Note that I,1; is uniquely determined since
the value of any atomic inequality can be calculated using eval; 1. Since all possible
complete extensions of I, are represented in the atom graph, a;11 = (g1, liy1)
is the required successor atom of «;. (end of proof)

If ¢ contains no time variables, then G (N, ¢) is finite as shown in [BD91]. In
this case, all inequalities of all atoms are over the set of transition variables T
Furthermore, any inequality ¢; — {5 ~ ¢ satisfies |¢| < Lftmax, where Lftyax is the
maximal latest firing time in the net. For, if both ¢ and ¢ are newly enabled in «,
then Eft(t) <t—x < Lft(t) and Eft(t") <t/ —x < Lft(t') are in J5. Hence Efi(t) —
Lft(t"y <t —t < Lft(t) — Eft(t') is in Js. Since 0 < Eft(t) < Lft(t) < Lftmax, we
know that I implies that — Lftnax <t —1" < Lftmax. Similarly, if o/ is obtained from
a by firing t¢, and t € enabled(u’) N enabled(p), and t' € enabled(yt') — enabled (1),
then we can assume as inductive hypothesis that —Lftmax < €5 —1 < Lftmax. Ji
sets tp <1, Jg sets & = ty, and Js sets Eft(t') <t/ —x < Lft(t'). Hence, we have
—Lftmax < —Lftmax + Eft(t') <t —t < Lft(t') < Lftmax. Finally, if both ¢t and ¢/
are enabled in o' and «, any inequality t —#' ~ ¢ isin [iff it is in I’. Therefore, we
have shown that the differences between transition variables are bounded.

Moreover, every appearing constant is a linear combination of other rational
constants: ¢ = ZteT (nt - EBft(t) + my - Lﬂ(t)), where n; and m; are integers. Since
there are only finitely many linear combinations of rationals in a bounded interval,
the set of all inequalities in the atom graph is finite. Of course, since we are dealing
with one-safe nets, there are also only finitely many possible markings, and hence,
finitely many different reachable atoms.

Otherwise, however, if ¢ refers to the time when certain places got or lost to-
kens, an infinite number of different atoms may be reachable from the initial atom,
because the difference # — y between some time variables may become arbitrar-
ily large. E.g., in our example, for ¢ = ag ts o 2 Qo RZN a3 Y oy n, as -,
each of Iy U{“pl* —p3* =07}, LU {“pl* — p3* = 3"}, and ; U{“pl* — p3* = 6"}
is consistent. In this case, however, every atomic proposition pl® — p3* < ¢ and
p3* —pl* < ¢ will eventually become constantly false and true, respectively, and thus

all o; in which the difference surpasses a certain threshold value can be considered
to be equivalent.

Let maz_const be the absolute value of the maximal constant appearing in any
subformula of ¢, and let I be a set of inequalities. A time variable x € P, is
called saturated in I, if there is no transition variable ¢ € var(I) such that the set
TU{“t — & < maz_const” } is consistent; that is, I implies that maz_const < t —x for
all enabled transitions. For any two reachable atoms oy = (i, I1) and ag = (g, I2),
let D = {« | «is saturated in I} and I»}. «; and as are equivalent, denoted by
ay =~ ag, if T N Cl(p) = I, N Cl(p) and delete(I, D) = delete(Is, D), that is, if
the same maximal consistent set of ¢ is a subset of both I; and I; and the timing
relations of I; and I3 with respect to unsaturated variables are isomorphic.

From these definitions we can prove, using similar techniques as in [ACD90]:

Theorem 2

1. ~ is a bisimulation; that is, >~ is an equivalence relation, and for any oy and
as such that ay =~ «g, and for any o) which is a successor of oy there exists
a successor oy of ay such that o) ~ af,.

2. ~ s an equivalence relation of finite index, that is, containing only finitely
many equivalence classes.

Proof: In the proof of ~ being an equivalence relation, reflexivity and symmetry is
immediate. For transitivity, note that if «y ~ «o, then x is saturated in I iff = is sat-
urated in /5. For, if were saturated in /3 but not in /5, then € D, hence “t —z >
el iff “t—a > ¢” € Iy. But, this contradicts the assumption that I, U{“t —a <
maz_const” } is consistent for some ¢, whereas I implies { — 2 > maz_const. There-
fore, a1 ~ a2 and as ~ gz imply delete(Iy, D) = delete(Is, D), delete(Iy, D) =
delete(I3,D'), and D = D' where D = {x | z issaturated in I; and I} and
D' = {x | xissaturated in I and Is}. Hence, delete(I;, D) = delete(Is, D) as
well as I; N Cl(p) = I, N Cl(p) = I3 N Cl(p), which means a7 ~ as.

Now, we show that ~ is a bisimulation. If oy ~ «va, then firable(o) = firable(as),
because the timing with respect to transition variables is isomorphic. Let I] and
I} be the sets of inequalities obtained by firing a firable transition ¢; from «; and
ag, respectively, let D be the set of saturated variables from I; (or I2), and let
D' = D —U;. Then, D' is the set of saturated time variables in I and I3,
because the modified transition variables are only those for transitions newly en-
abled I] (I5), and for such transition variables ¢, I{ (1) implies ¢t; < ¢, and hence
mazr_const < t; —x <t — x. Furthermore, assume any complete extension If' of
I}, and show that a corresponding complete extension Ij of I} exists. For any
inequality # —y ~ ¢ in I N Cl(p), = and y are either from Uy, from D', or from
P —(D'UU;). If both # and y are in Uy, then Ij and Ij imply 2 —y = 0. If
neither « nor y are from Uy, then 2 —y ~ cisin [; iff it is in I} for ¢ = 1,2. If
z € Uy and y € D', then both I and I imply that {; — y > maz_const, hence
both I and I} imply that « — y > maz_const. Therefore, for these cases, the value
of “z —y ~ ¢ is fixed to the same value both in I and If. If z € U; and
y € P — (D' UUy;), then since the timing of I; and I with respect to unsaturated
variables is isomorphic (delete(I;, D) = delete(I, D)), we have “e <ty —y <!{" in
Liff e <t; —y <l in . Fromthis, “e <z —y <P inIfiff e<ez—y<Pin
Il,. Therefore, in this case, any consistent extension fixing the value of x —y ~ ¢ in
I extends I consistently to If. Hence, for any complete extension I and the
above corresponding I, we have It N Cl(p) = I+ N Cl(p). Similarly, it is easy to
show delete(It, D') = delete(1, D'), and therefore o ~ o} is valid.

To show that there are only finitely many inequivalent atoms, we have to show
that in any atom the differences between unsaturated variables are bounded by

10

constants. We construct a constant ¢ such that for any atom sequence g = (ag RZN

ap 2 ...), atom «; = (p, I;), unsaturated time variable z and transition variable ¢,
if ¢ is enabled in yi;, then I; implies that 0 < t—# < ¢ holds (and hence —e < z—y < ¢
for any two time variables #, y). Finiteness then follows from the finiteness of C'l(p)
and the fact that every constant in every inequality is a linear combination of Eft’s
and Lft’s as above.

Recall that Lftmax is the maximal value of Lfi(¢) of all t € T. Given ¢ and #,
let j < ¢ be the maximal index such that x is updated in «;. By induction on ¢ —j
we show that I; implies that for all ¢ enabled in p;, t — 2 < (i —j + 1) - Lftpax. As
shown above, for all enabled transitions ¢t and t’, I; implies t —t' < Lftyax. If z is
updated in «;, then # = ¢; was set by Js. Thus, if i = j, we have t — x < Lt ax.
If i > j, then according to the induction hypothesis, I;_; implies that {; — z <
(1 —J) - Lftmax, since t; € enabled(p;—1). Js sets y = t; for some updated y, and for
any newly enabled ¢ we have t —y < Lft(t) by Js. Hence for any such ¢ it holds that
t—a < (i—7j) Lftmax + Lft(t) < (i —j+ 1) - Lftmax. For ¢ which remain enabled
from a;_1 to a, if I;_; implies that ¢t — « < (i — j) - Lftmax, then I; implies that
t— a2 < (i—j) Lftmax, hence I implies that t — 2 < (i — j + 1) - Lftmax.

As a lower bound, note that in any atom «; for all enabled ¢ and all z € P,
from I; it follows that ¢ —z > 0. For, if # is updated in «;, then for all newly enabled
transitions ¢ we have Eft(t) < ¢t — x and hence t — # > 0, and for all transitions
enabled in g;_; and not disabled in y;, we have x = ¢; <t by J3 and Ji, hence
t —x > 0. Furthermore, if z is not updated in «;, then the minimal value of ¢t — z is
nondecreasing: If ¢ < — x for all enabled ¢ in a;_, then in particular, ¢ <t; — =z,
and hence for all ¢ continuously enabled in «; also ¢ < t — z, and for all newly
enabled transitions ¢ also ¢ + Eft(t) <t — x holds.

We can show that for those z which are not updated, the minimal value of ¢t — z
eventually increases: Let Eftnin denote the minimal value of all Fft(¢) which is not
zero. The progress condition guarantees that there is a constant M < 2¥ such
that in any atom sequence of length M at least one transition ¢’ (newly enabled
in the atom sequence) with Eft(t') > Eftyiy is fired. Consider any atom sequence
(ay, ..., apyr) in which # is not updated, and suppose that ¢ < ¢ —x for all enabled
t in a,. Furthermore, let ¢’ be newly enabled in a/, and fired in a,». Then, in a,
it holds that ¢+ Eft(t') <t — x, and in «,» it holds that ¢+ Eft(t') <t — « for all
enabled . Since the minimal value of { — z is nondecreasing, in «, 437 it holds that
¢+ Fftnin <t — o for all enabled ¢.

Summing up, we have shown that with » = ((Z—j) DIV M) in o for all enabled
t the following inequality holds:

T'EﬂminSt_xg(r'i'l)'M'Lﬂmax

Since # was assumed to be unsaturated in I;, there exists a transition ¢ such that
L U{t — « < maz_const} is consistent. Hence, I; U {r - Eftmin < maz_const} is
consistent. Since r is a constant value depending only on ¢ and z, this i1s equivalent
to stating that » < maz_const/ Eftyin, which means that I; implies

0<t—x< (maz_const/Eftmin + 1) - M - Lftmax.

(end of proof)
This theorem shows that there exists a finite set GG of representative atoms such
that for any atom sequence g1 = (ap, a1, ova,...) there is a strongly equivalent
sequence go = (of, o, ah,...) in G such that «; ~ of (i > 0) and thus o1 | ¢
iff o2 |- ¢. The atom graph G can be constructed by depth—first—search from the
initial atom, where the equivalence of atoms can be checked efficiently using hash—
tables. Note, however, that the size of G can be more than exponential in the size
of the net and depends on the number of different constants and their values.

11

Model checking of TINL is performed by building the product of G with the set of
all sets ¥ of subformulas of ¢, eliminating from this product all pairs («,) inconsis-
tent with ¢, and decomposing the resulting graph into maximal strongly connected
components. ¢ is satisfiable by N iff there is a self-fulfilling strong component, i.e.,
one which contains with any pair (a1, 1) and any formula (p1 U ¢2) € 11 also an
pair (aa,7y2) such that g3 € v2. In our implementation the product and strongly
connected components are calculated “on the fly”, during the depth-first enumer-
ation of the state space. Thus, if a self-fulfilling strong component is found in an
initial part of the state space, we can report a satisfying sequence even if the whole
state space 1s too large to fit into the available memory.

5 Efficiency Improvement by Partial Orders

In this section we show how to reduce the size of the atom graph of a given net and
formula without affecting the correctness of the model checking procedure. The
reduced state space is obtained by considering a coarser equivalence on atom se-
quences than the one defined in the previous section. It satisfies the requirement
that for any run of the net there exists a stuttering equivalent (w.r.t. atomic propo-
sitions in ¢) atom sequence in the reduced state space, and vice versa.

Given any atom «y, firable transition ¢’ and set W of firable transitions, we say
that W is independent fromt’ with respect to « and ¢, if for any atom sequence ¢ =
(avg, o, by, ..) such that of is obtained by firing ¢’ from g there exists a stuttering
equivalent (w.r.t. atomic propositions in ¢) atom sequence ¢ = (g, a1, @s,...) such
that a7 is obtained by firing some ¢ € W from «g. Otherwise, we say that W
depends on t'.

If W is independent from ', we do not have to consider the firing of ¢ when
generating the successors of a in the depth—first—search; there will be a stuttering
equivalent sequence constructed by the firing of some ¢t € W.

However, the above definition is not effective; there is no efficient way to compute
the smallest set of transitions independent from all other transitions in a given
«. Therefore, subsequently we give an algorithm to compute an approximation,
that is, for a given firable transition ¢, we construct the set dependency(t, o, ¢)
(or dependency(t), in short) of transitions containing ¢ such that any ¢’ on which
dependency(t) might depend is included in dependency(t).

This idea is similar to the stubborn set theory of [Val90] and the interleaving set
temporal logic of [KP90]; a similar concept was developed independently in [YNT89].

Of course, dependency(t) should be as small as possible. For example, if the
net N consists of two unconnected subnets N; and N3, and ¢ mentions only places
from one of these, then certainly the set of all firable transitions in N; should be
independent from any transition in Na (if it is not empty), and vice versa. FE.g,
we don’t have to consider the different interleavings of ¢t with ¢3, {4 and ¢; in our
example net Ny (shown in Fig. 1) for the formula OO(pS — pt > 2).

On the other hand, if for some ¢, ¢’ which are in conflict (i.e., ot Nt £ (), both
t and ¢’ are firable in «, then the firing of ¢’ inhibits that of ¢; thus in general {¢}
is not independent from ', and we add ¢ to the dependency of . So, in N, for
every firing of ¢4 also the alternative of firing ¢7 should be considered.

Furthermore, disabled conflicting transitions ¢’ may inhibit the firing of ¢ if they
can become enabled by the firing of other (firable) transitions. In the example,
although ts (in conflict with ¢3) is disabled, it may inhibit the firing of ¢3, since it
can become enabled by the firing of ¢4 and t5. Thus, {{3} may depend on ¢4, and
4 is in dependency(ts).

A set T of transitions is necessary for ¢, if for some p € ot — p it holds that
T = {t' | p € t'e}. Let necessary*(t,«) be any set of transitions containing ¢

12

which is transitively closed under necessity, that is, for any t' € necessary™ (¢, o)
such that ¢’ is disabled in p there exists a set T of transitions necessary for ¢’ with
T C necessary™(t,). For example, necessary® (tg, ag) = {te, 15,4} in Fig. 1.

If t is in conflict with ¢;, then all firable transitions in necessary™(¢, o) should
be fired as alternatives to the firing of ;. The only such transition which could
inhibit the firing of ¢35 in our above example is 4.

There is still another class of dependent transitions. We want to obtain stutter-
ing equivalence with respect to the atomic propositions of ¢. Usually, ¢ contains
only a few propositional and time variables. A transition ¢ is visible for ¢ if ot Ute
contains any place p such that p or p* or p® appears in . If ¢ is visible, the firing
order with other visible transitions is important. For example, both 5 and t3 are vis-
ible for the formula (p; U p3) in the example net, therefore the firing order between
to and t3 is relevant for the evaluation of (py U ps). Thus 3 should be in the depen-
dency set of t3, and vice versa. A visible transition can be regarded as being in con-
flict with all other visible transitions. Let conflictt(t) be the set {t' | ot' N ot £ 0},
if ¢ is not visible, else conflict™ (t) is {t' | o' N ot # O} U {t' | ¢’ is visible }. Then
dependency(t;) is any set of transitions such that for every ¢ € conflictt(¢;) there
exists a set necessary* (¢, o) such that all enabled transitions in necessary™(t, o) are
contained in dependency(ts).

Conceptually, the set of transitions which are fired should be transitively closed
under dependency; e.g., in our example, since ?4 is in the dependency set of ¢3, and
t7 18 in the dependency set of ¢4, we have to fire 7 as an alternative whenever we fire
ts (p1o 1s only reachable by first firing ¢7 and then ¢4). Thus, let dependency™(ty)
be any set of transitions containing ¢;, such that for any ¢t € dependency™(t5) we
have dependency(t) C dependency™(t;). When firing a transition t; we have to fire
as alternatives at least all firable transitions which are in dependency™(ty).

We should mention that dependency™(ts) is astubborn set in the sense of [Val90].
Dependency sets are “insensitive” to the firing of outside transitions: For any atom
o' obtained by firing ¢’ from «, if ¢ is not in dependency™(t;) in «, then any
transition ¢ € dependency™(t) in « is enabled in o’ iff it is enabled in . The same
marking will be reached by firing ¢’ after ¢ as by firing ¢’ before ¢t. However, the
firability of transition can be affected by this permutation: ¢ might be firable in o’
but not in «. Hence, it is not sufficient to fire only transitions in dependency™(t;)N
firable(a), because there might be runs in which a transition in dependency™ () —
firable(a) fires after becoming firable by the firing of an outside transition.

Transition t; is called firable with respect to a set of transitions W in an atom
a = (u,I), if ty is enabled in g and TU{“t; < t” |t € W, t € enabled(p)} is
consistent. firable(or, W) is the set of transitions firable with respect to W. Note
that firable(o) = firable(e, T).

The firability of ¢t € dependency™(t;) with respect to dependency™(ty) is not
affected by the firing of any ¢ ¢ dependency™(t;). When firing a transition ¢y,
we should fire all transitions in dependency™(t;) which are firable with respect
to dependency™(ty). However, dependency™(ty) N firable(c, dependency™(ty)) might
contains non-firable transitions. In our algorithm, every successor atom must be
obtained by firing a firable transition. Therefore, we are looking for a set of tran-
sitions (transitively closed under dependency), such that every transition from this
set which is firable with respect to the set is also firable.

Formally, a ready set, denoted by ready(«), is a nonempty set of firable transi-
tions such that for any ¢ € ready(«) it holds that dependency(t)Nfirable(a, ready(a)) C
ready(c). That is, for any t¢ € ready(a), if t € dependency(ty) is enabled and can
fire earlier than all transitions in ready(«), then t € ready(«).

If the set firable(«) of all firable transitions is not empty, then it is a ready
set, because firable(w, firable(«)) = firable(a) and dependency(t;) N firable(o) C
firable(a). Therefore, for any atom « containing firable transitions there exists at

13

least one ready set. In the sequel ready(a) denotes some such set.
The following algorithm can be used to compute a set ready(«):

1) Start with ready := {t;} for a firable ¢;.

2) Tterate ready := ready U (dependency(t) N firable(«)) for some ¢t € ready until
a fixpoint is reached.

3) If there exist t € ready and t' € dependency(t) such that ¢ € firable(o, ready)
but not ¢’ € ready, then add some firable ' to ready, for which I implies
t” <t and goto 2).

The nondeterminism in the definition of dependency(t) can be resolved by calculat-
ing all possibilities and using the smallest set dependency(t). During the construc-
tion of the set of successor atoms of an atom we can neglect all firable transitions
which are not ready. This results in a considerable average case reduction: For
example, in Fig. 1, firable(ag) = {ta,t3,%4,17}, whereas ready(og) = {t2}.

However, the construction of the successors of an atom in our partial order
method differs from the total order method, because different sets of inequalities
have to be built.

Let again o = (u, I) be an atom, ¢; a transition in ready(p), ¢t = (u — oty) Utye,
and Uy = {p° | p € ot }U{p® | p € tye}. Recall that parent(t,p) is defined to be the
set {“Eft(t) <t —p* < Lft(t)" U {“¢* < p*” | ¢ € ot}. Furthermore, let select(t)
be a function selecting some p € ot for every ¢ € T. We consider the following sets
of inequalities:

o Ky =TU{“ <t |tE€Eready(a)}

Ky = delete(Kq,Uy)

[(3:[(2U{“l‘2tf” |$6Uf}

Ky = delete(K3,{t | t & enabled(p')})

Ky = K4 U U{parent(t,p) |t € enabled(p') — enabled(p), p = select(t)}

K = delete(Ks5,P — P, — D),
where D = {p* | p € p/ N ot for some transition ¢ disabled in p'}

Let us give some comments on this construction. In contrast to the total order
method, K relates the firing of ¢; only to firings of transitions in the ready set.
There might be runs in which transitions that are not ready fire at an earlier time
than t;. Ko, K3 and K, are as in Section 4. K5 is some set of inequalities obtained
by extending K4 with some parent p for every newly enabled ¢. Note that in contrast
to the total order method, p is not necessarily selected from ¢;e as long as p can be
a parent (i.e., p* can be greater than or equal to any other ¢°* for ¢ € ot). Again,
in Kg irrelevant time variables are deleted, but we keep time variables related to
places which could become parents of a transition not (yet) enabled.

o = (W, I') is a tp-successor atom of o, if I' € CE(Ks,¢) for some select-
function for which K5 is a consistent set. The reduced atom graph is constructed
in the same way as described in Sect. 4.

Completeness and correctness of our partial order analysis method is granted by
the following theorem:

Theorem 3

e For any run p there exists a stuttering equivalent atom sequence g in the
reduced atom graph.

14

e For any partial order atom sequence there erists a stuttering equivalent total
order atom sequence.

Proof: We introduce the notion of event in order to distinguish different firings
of the same transition and different arriving/leaving of a token in the same place.
An event e is a pair (#, F'), where z is any transition or time variable and F is a
set of events. (Given any atom sequence or run g, index ¢, and transition or time
variable &, the history of z in g and i is the event defined by the following recursive
definition:

hist(t,i,0) = (¢, {hist(p},i,0),..., hist(py,,1,0)}) where ot ={p1,...,pn}
(", {}) ifi=0

hist(p®, i, o) { (p*, {hist(ts,i— 1,0)}) ifi>0, p€pi—pis1, @iy = a
hist(p*,i—1,0) else
(°,{}) ifi=0
(p°, {hist(t;,i—1,0)}) ifi>0, p€ pi1 — 15, i1 > oy
hist(p®,i—1,0) else

hist(p°®, 1, 0)

An event e = (z, E) is valid in ¢ at index i, if e = hist(x,i,0). In case that
e = (t, F) is a transition event, we additionally require that ¢ is enabled in y;. The
event e s valid in p, if there exists an ¢ such that e is valid in ¢ at ¢. As we will
see, if an event e = (z, F) is valid in a run or atom sequence, then all events in £
are valid in g. A transition event e = (¢, F) is enabled or fires in g at 7, if e is valid
in ¢ at ¢, and ¢ is enabled or fires in (g, ¢). Transition event e is enabled or fires in
o, if there exists an ¢ such that e is enabled or fires in o at 1.

Since the above recursive definition of hist is deterministic, for every ¢ and
every #, there is no more than one event ¢ = (#, F) valid in ¢. For any atom
sequence ¢ = ((po, In), (1, 11),-+) and @ > 0, let Z; = |} _, I/, where I/ is the set
of inequalities such that var(I}) is a set of events, that is, I/ is obtained from I; by
replacing every variable z by the event (x, E) valid in ¢ at ¢. For every sequence
of solutions for (Iy, I, - - -) there is a sequence of solutions for (Zy, 71, - -) and vice
versa. Similarly, define the value of an event e = (#, F) valid in a run at ¢ to be
the value of # in ¢;: EVAL;((z, E)) = eval;(x). (Recall that eval;() was defined
in the proof of Theorem 1). Tt is easy to see that if e is valid at ¢ and j, then
EVAL;(e) = EVAL;(e). Further, if a transition event e = (¢, E') is not valid in p,
but every d € F is valid in p, then we define

EVAL(e) = EVAL(d') + Lft(e),

where d' € FE, for every d € F, EVAL(d) < EVAL(d"). Therefore, every run p
determines a unique value FVAL(e) for every event valid in p or a transition event
like the above.

For the completeness proof, we have to construct for any run p a stuttering
equivalent atom sequence in the reduced state space. However, in general the two
firing sequences will not be strongly equivalent; the atom sequence will correspond
to a permutation of the sequence of states of the given run (a permutation = of a
sequence p is any bijection of the integers {0, ..., |p|} onto itself).

Given any run p = (o AP), we inductively define a sequence g = (ag =
o 2. -) of atoms in the partial order state space and a permutation = such that

the following holds:
1. g = oy iff Or(i)-1 = Ox(i) (the same event fires in ;1 and in oy ;)-1),

2. If var(Z;) = {e1,...,en}, then (EVAL(e1), ..., EVAL(e,)) is a solution for Z;,

15

3. ifa;_1 = ay is visible, then the sequences (ag, ay, - - -, ;) and (a9, 01, - - -, Or(i))
are stuttering equivalent.

Let ag be the initial atom, and 7(0) = 0. Then, the claims 1 — 3 are trivially
satisfied for ¢ = 0. Assume that ap,...,a; has been constructed, and that 1 — 3
hold for all j <. Call any state in {0 (0), Tn(1), **, Or(s)} consumed.

First, we show that some transition event e € ready(«;) fires in p. Suppose that
e € ready(a;). Since e is enabled in «; and all events up to «; also fire in p, either
e is enabled in p or a conflicting event with e fires before e being enabled. If e is
enabled in some state in p, again either e or an event conflicting with e fires. Thus,
in any case, e or a conflicting event €’ fires in p. Since e is in ready(c;), we only have
to consider the latter case. Since ¢’ fires in p, some event in necessary™(e’, a;) must
also fire in p. If there exists an event e’ in necessary*(e’, o;) such that ¢’ is firable
in oy, then e” is included in ready(cy;). Thus, we have to show that some such e’ is
firable: Assume that every event in necessary®(e’, o;) is disabled in «;. Since there
exists a firing sequence in which e’ fires (as in p), some conflicting events fire before
a; in g. These events, however, also fire in p from the induction hypothesis. This
contradicts the assumption that e’ fires in p. Hence, some e’ € necessary™(e’, «;) is
enabled in «;. There exist events eparent and egarem (before «; in g) satisfying the
following inequalities:

Eft(e) < EVAL(e) — EVAL(eparent) < Lft(e),
Eft(e") < EVAL(e") — EVAL(egarent) < Lft(e")

Since €' fires in p, we have EVAL(e') < EVAL(e). Further, EVAL(e") <
EVAL(e') from e" € necessary™(e’, ay). Thus, we have

EVAL(egarent) + Eﬂ(@“) S EVAL(ePaI‘ent) + Lﬂ(@)
From the induction hypothesis, EVAL(egarent) and EVAL(eparent) satisfy Z;. Hence,

¢’ can fire earlier than e in oy (i.e., 7; U{“e” < €”} is consistent). If e” is firable,
then we are done. Otherwise, from the definition of the ready set, some event e;
which makes e’ non firable (i.e., Z; implies e; < €’’) is in the ready set (otherwise, e
must be in the ready set). If we have the same consideration as above for e; instead
of e, then in this turn we have to show that ef is firable, where Z; U {“¢} < e;”}
is consistent. If ef is not firable, again there exists ey in the ready set, where
Z; implies e5 < €, and the same process can be repeated. Since the ready set
is finite, we eventually have e = ¢; for 0 < j < k with eg = e, which implies
that 7, U {“ex < --- < e; = e;”} is consistent. This is, however, a contradiction.
Therefore, for some ! (0 <1< k), ef is firable.

Define w(i+ 1) to be the smallest number such that Or(i+1) 1s obtained by firing
some ef € ready(c;).

If e; is invisible, there is nothing to show for the inductive assertion 3. Otherwise,
we show by induction on 7 that all states in o¢, 01, ..., 0 (;) obtained by the firing of
visible events are consumed. The base case is trivial. Suppose that the induction
hypothesis holds for i, i.e., for every state ox € {0x(0), .., Or()} such that oy is
obtained by the firing of a visible event we have k& > w(i). Since ey is visible
and ox(i41) € {0x(0), - Ox(i)}, We have 7(i 4+ 1) > 7(i) according to the induction
hypothesis. Assume that for 7(i) < m < w(i + 1), state oy, is also obtained by a
visible event ¢’. If ¢’ is enabled in «;, then ¢’ must be in ready(w;). If € is not
enabled, some event e” in necessary*(e’, oy), which is in ready(a;), must also fire
before o, (the firability of ¢’ or e’ can be shown similar as above). Either case leads
to a contradiction, because w(i+1) is defined to be smallest. Hence, the sequences of
visible events in (ao, a1, - - -, ;) and (00,01, - - -, 0r(y)) are equal, and we have shown
stuttering equivalence of those sequences with respect to propositional variables (i.e.,
atomic propositions except for atomic inequalities).

16

Next, we prove inductive assertion 2 together with the remaining part of 3.

Let I' = 7; U K[, where K/ is modified from Kg by replacing variables with
events. For any newly enabled transition event e = (¢, F) in a;11, every d € E
is valid in p. Thus, there exists d’ € E such that for every d € E, EVAL(d) <
EVAL(d'). Then,

Efi(e) < EVAL(e) — EVAL(d') < Lft(e)

holds. We define select(e) to be any such p. Therefore, from K, I’ contains in
addition to Z;

Eft(e) <e—d < Lft(e),
d<d

for every d € E. These inequalites are clearly satisfied by FVAL.

Further, from the definition of events, no consumed states in p are obtained by
firable events in «;, and the earliest unconsumed state is obtained by e;. Thus,
e; fires in p earliest among the events firable in «;. That is, EVAL(es) satisfies
EVAL(e;) < EVAL(e) for e € ready(e;). This guarantees that the remaining
additional inequalities in I’

er <e

for e € ready(«;) are satisfied by EVAL. Therefore, FVAL is a solution for I'.

Suppose that ey is visible and an atomic inequality x —y ~ ¢ holds in o(;41).
This means that two visible events e; and e fired in p with EVAL(ey)— EVAL(es) ~
e, and e; (I € {1,2})fired in ay, for k; < i (because e; and ey are visible). If k; < ¢ for
le{l1,2}, EVAL(ey) and EVAL(es) satisfy I’ from the induction hypothesis. The
case that k; = i for [€ {1,2} is trivial. Consider one of the remaining cases in which
e1 is ef and ~ is >. As shown above, EVAL(e;) < EVAL(e) holds for e € ready(w;).
Thus, for some event eparent that fired before «; in g with select(e) € eparent® (€parent
made e enabled),

EVAL(es)+ ¢ < EVAL(ep) < EVAL(e) < EVAL(eparent) + Lft(e)

holds. Note that both ez and eparent fired before a; in ¢. Thus, from the induction
hypothesis, they satisfy I’. Since the constraints for e; are only the inequalities
added in Ky, in I’ e can be as large as eparent + Lft(e), which means that I’ U
{“ea+c < e;”}is consistent. The remaining cases can be proven similarly. Further,
the cases that there exists more than one atomic inequality holding in r(;11) can
be handled analogically. Therefore, there exists an complete extension Z;y1 of I’
such that 7,11 includes atomic inequalites holding in ¢r(;11) and EVAL is a solution
of Iz'+1~

We have shown that ;4 satisfies the same atomic propositions as o (;41) if ef
is visible. Hence, the inductive assertion 3 holds.

Since our logic is stuttering invariant, this assertion ensures that the evaluation
of any formula in p and g yields the same value, provided that every visible event
firing in p is eventually consumed.

Therefore, we finally show that every event firing in p also fires in g, and thus
the set of events valid in p is equal to the set of events valid in g.

We will show that for an event e = (¢, F') which fires in p, if every ¢’ (which
fires in p) such that (p*,{e’}) € F for some p fires in g, then e also fires in g.
If e is not enabled in g, its conflicting event e’ must fire in g. This, however,
means that e’ fires also in p as shown above, and contradicts the assumption that
e fires in p. Thus, we can suppose that e is enabled in «;. From the construction,
“e — e < Lft(e)” is in Z;. Since nonzero time passes in every loop, e and its direct

17

conflicting events must eventually become the only firable events. Since those direct
conflicting events do not fire in p, e must be chosen. If we consider a dummy event
of which firing generates the initial atom, then it fires both in p and ¢. Hence, every
event is eventually consumed.

The correctness proof would be simple, if the set of the partial order atom
sequences is a subset of the set of total order atom sequences. However, this does not
hold, because in the partial order atom sequences the transition ¢; that finally made
some t enabled is not always the parent of {. Thus, we have to consider again the
permutation to relate both partial and total atom sequences. In the following, for
the correctness proof, we construct for any partial order atom sequence a stuttering
equivalent total order atom sequence in a way similar to the above completeness
proof.

Given any partial order atom sequence ¢ = (&g 4 aq S .), we define a total

order atom sequences ¢ = (ag 2o 2 -++) and a permutation w such that the
following holds for all ¢ > 0:

1. ajoq = ay iff Qr(i)—1 5 Qr(s) (the same event fires in ;1 and in ag;)-1),

2. foo UZ; is consistent, where fj and Z; are the accumulated sets of inequalites
for ¢ and g, respectively, and Zoo = U]' fj,

3. ifa;_1 = ay is visible, then the sequences (g, a1, - - -, ;) and (dg, G, - - -, Qr(s))
are stuttering equivalent.

i i
€ €

For events ¢;, ¢; that fire in an atom sequence ¢ = (&g — &1 — - - -), we say that
e; precedes e; at k, if foo UZy U{“ > e;”} is inconsistent. If e; does not precede
e; at k, then we say that e; is precedable to e; at k.

Let g = ép be the initial atom, and 7(0) = 0. Again, the base case for the
induction is immediate. Assume that «q, ..., o; has been constructed. In the same
way as in the completeness proof, we can show that an event e € firable(o;) fires in

0.

Define m(i + 1) such that d,(;41) is obtained by firing some e; € firable(a;) and
e is precedable at i to any event which is in enabled(c;) and fires in §.

If e; is invisible, there is nothing to show for the inductive assertion 3. Otherwise,
assume that for 7(7) < m < w(i 4+ 1), Gy, is obtained by a visible event e’. Since
every visible event is ordered even in the partial order atom sequences, ¢’ precedes
ep. If € is enabled in «;, then this contradicts that e; is precedable to e’ at i.
Otherwise, some enabled event e” that fires in ¢ must precede ¢’, which again
causes the contradiction. Therefore, the inductive assertion 3 holds with respect to
propositional variables.

If e € enabled(a;) fires in g, then according to its definition, ey is precedable to
e at 7. Otherwise, an event ¢’ which is in conflict with e must fire in ¢, and such &’
must be enabled in «; or made enabled by the firing of an event enabled in «;. In
any case, ey is precedable to ¢’ at ¢, and hence e. Thus, for any e € enabled(q;),
Too UZ; U{“e; < "} is consistent.

Suppose that an event e = (¢, E) is newly enabled by firing e in «;. If e is not
enabled in ¢, then a conflicting event ¢’ must fire in g. Let ¢/ be in the ready set
in &, for m < w(i+ 1) — 1. Then, some event e; € necessary(ém,e) is also in the
ready set. Thus, e’ precedes eq. Since e is enabled in «;, e fired in «; for j < .
¢’ does not fire up to «; in g, because e is enabled in «;. If €' is enabled in «j,
this contradicts the assumption that ey is precedable (at j) to transitions enabled
in aj. Otherwise, ¢/ is made enabled by firing some e}, enabled in «;. From

the causality, such e%arem precedes €’ at j, and hence e;. This again contradicts the
assumption.

18

Thus, e is enabled in ¢. This implies that

Eft(e) <e—d < Lft(e)
d<d

are in Zoo for d' = (p*,E') € E, p= select(e), d = (¢*,{¢''}) € E. Since e; finally
made e enabled in g, every such e’ is precedable to ef at 7. Thus, inequalities
d" = ey must hold. Hence, Zoo UZ; U {“Eft(e) < e—ep < Lft(e)’} is consistent.
Note that “Eft(e) < e —e; < Lft(e)” is equivalent to the inequality added in Js.

We have shown that foo UZ; U J§ is consistent for J§ modified from Js by using
events instead of variables. Suppose an atomic inequality “z — y ~ ¢” holds in
ar(it1)- Then, for visible event e and €', “e — e’ ~ ¢” is in Zoo. Thus, {“e—¢ ~
¢’} U I’ is consistent. Hence, for the related complete extension I;11, foo UZ;q1 18
consistent.

Again, an event finally precedes some other event which fires in g, because
nonzero time passes in every loop. Thus, every atom in ¢ is eventually consumed.

(end of proof)

We have shown that our partial order method captures the behavior of the
net correctly and completely. However, in contrast to other partial order methods
proposed for untimed systems, our partial order state space is not a subset of the
total order state space, since there are different sets of inequalities involved. In
particular, we can not conclude that the termination proof of Theorem 2 still holds;
in fact, there are cases when the above partial order method does not terminate.

If the net contains several independent loops, transitions in these loops are
handled completely in parallel, that is, inequalities which restrict the difference of
future firing times of those transitions are not involved. Hence, the time difference
of those transitions may not be bounded. To deal with this problem, we require that
all transitions for which the time difference to transitions in the ready set exceeds
a certain maximum are also fired.

For two enabled transitions ¢; and ¢5 in & = (, I), if both TU{“t; —t2 > a”}
and TU{“ls —t; > a”} are inconsistent, then we say that ¢; and t5 are a-bounded at
a. Let ¢ > 1 be any constant. In addition to the conditions given above, we require
the ready sets to satisfy the following property:

e For ¢ € ready(«) and all firable transition ¢’ at «, if ¢ and ¢’ are not ¢ Lftyax-
bounded at «, then ¢ € ready(«)

Intuitively, this modification guarantees that when the time difference between
firable transitions ¢ and ¢’ exceeds some constant value, then for both cases that
t fires before ¢’ and that ¢’ fires before ¢ atoms are generated, and in both these
atoms the difference between ¢ and t' is restricted.

We say that « is a-bounded, if for all enabled transitions ¢; and ¢ at «, ¢; and
{5 are a-bounded.

Lemma 1 For any reachable atom o = (u, I) and successor o = (', I') obtained
by firing t € ready(«), if & is (c+ 1) Lftmax-bounded, then o' is also (¢+1) - Lftmax-
bounded.

Proof: Let ¢; and ?; be transitions enabled in o/. We have the following three
cases :

e both t; and t5 are enabled also in «,
e both #; and t5 are newly enabled in o/, and

e ¢ is enabled in « and t5 is newly enabled in «o’.

19

In the first case, from the hypothesis ¢t; and t5 are (¢4 1) Lftpax-bounded in o. When
firing ¢ in «, inequalities like ¢ < ¢’ representing the condition that ¢ fires earlier than
the other firable transitions ¢’ in the ready set are added to I. These inequalities
only give the restriction to the lower bound of the firing times of continuously
enabled transitions. Thus, ¢; and t5 are also (¢ + 1) Lftpax-bounded in «o’.

In the second case, some inequalities

Eft(ty) <ty — o' < Lft(t),
Eft(ty) <ta— 2" < Lft(ts),
t<a,

t <z

are added to I, where =’ and z” are the parents of t; and 5. Let ¢ be a transition
such that ¢/ = z’, and assume that ¢’ fired in oy. We consider some ancestor t, of
t which is firable in 1. Then, ¢, <t holds. If ¢’ and ¢, are not ¢ - Lft;ax-bounded,
then from the definition of the ready set “t' < t¢,” must hold. This implies

V<t,<t<z' =t,

and hence ¢/ = t,,, which contradicts the assumption that ¢’ and ¢, are not ¢- Lft;ax-
bounded. Thus, t' —t, < ¢ Lftnax. From t, < ¢, ' = ¢/, and ¢t < z’, we have
0<z' —t<c- Lftnax. Similarly, we have 0 < 2" — ¢ < ¢+ Lftyax. Hence, we have

—c - Lftmax < a' = < ¢ Lftmax,
and thus,
—C- Lﬂmax + Eﬂ(tl) - Lﬂ(tZ) S tl - t2 S c- Lﬂmax + Lﬂ(tl) - Eﬂ(tZ)a

which implies that ¢; and 3 are (¢ 4+ 1) Lftmax-bounded in o’.
For the third case, we define ' and t” similarly to the above. If t; < z', then

similarly to the above, we have 0 < 2’ —t; < ¢ Lftmax. Hence, we have
Eft(ts) <ty —t1 <c¢- Lftmax + Lft(t2).
If " < t;, then from the hypothesis,
—(e+ 1) Lftmax <t1 —t < (c+ 1) Lftmax.
From ¢ < z” and =" <t;, we have
0<t; — 2" <(c+1)Lftmax-

Thus, we have

—(C + 1)Lﬂmax + Eﬂ(tz) S tz — tl S Lﬂ(tz)

Therefore, in any case it is implied that ¢; and ¢2 are (¢ + 1) Lftpax-bounded in o'
(end of proof)

The initial atom is clearly (¢+ 1) Lftmax-bounded. Thus, from the above lemma,
every reachable atom is (¢ 4+ 1) Lftmax-bounded.

Let G’ be the quotient of the reduced atom graph G’, under the equivalence
relation induced by the deletion of saturated time variables. Then the proof of
bisimilarity given in Section 4 is valid also for G”.

It remains to show that the differences between firable transitions and unsat-
urated variables are bounded. The proof for this is also very similar to the proof
for the total order method given in Section 4. However, the partial order method
involves other constants:

20

Given ¢ and z, let again j < ¢ be the maximal index such that is updated in
«;. By a similar induction as in the total order case we obtaint — 2z < (i—j+1)-
(¢ 4 2) - Lftmax for all ¢ enabled in p;: As shown above, for all enabled transitions
t and ¢/, I; implies t — ' < (¢ 4+ 1) - Lftmax, thus the base case (i — j = 0) follows
analogously. For transitions ¢ remaining enabled from «;_; to «;, we can again
rely on the induction hypothesis. For transitions ¢ newly enabled in «;, we have
to distinguish two cases: If select(?) is among the updated variables, then we can
conclude as in Section 4. Else, there exists a place p = select(?) such that p € p;_;.
Let k < ¢ be the biggest index such that p was updated in ag. Then, we can refer to
the induction hypothesis that 7;_; implies that t; —2 < (i—j)-(¢+2) - Lftmax (recall
that o; is obtained by firing ¢;). Suppose k > 0. If ¢; was enabled in pg_1, the
upper bound of t;, —#; is (¢4 1) Lftmax. Otherwise, some transition ¢/ was enabled in
pr—1 and t; < t;. Since the upper bound of ¢ — ¢} is again (¢ + 1) Lftmax, the upper
bound of t; — t; is less than it. In any case, ¢ — ¢; is bounded by (¢ + 1) Lftmax.
From ¢t —p < Lft(t) and p = ¢5, I; impliesthat t — 2 < (i —j+ 1) - (¢ + 2) - Lftmax.
The remaining cases that k = 0 is proven similarly from p — ¢; < —Eft(¢;).

A lower bound for the partial order method is given by r- Eftmin — (¢+1) - Lftmax.
If z is updated in oy, again for all newly enabled transitions ¢ we have Fft(t) <t—ux,
since parent(t,p) implies Eft(t) <t — p*® and p* > x and hence t — x > Eft(t), and
for all transitions ¢ enabled in p;—; and not disabled in p;, we have 2z = ¢; <
t+ (c+1) - Lftmax, since t; —tis (¢ + 1) - Lftmax-bounded in e;_1. The rest of the
proof is completely analogous to the total order case.

Thus we have shown:

Theorem 4 The partial order analysis generates only a finite number of different
atoms.

There are a number of improvements to our method which we omitted in the
above presentation to simplify it. The static timing intervals of the transitions in
the net can be used to reduce the size of the dependency set of a transition.

In our introductory example, we mentioned that although s is disabled, it
may inhibit the firing of t3, if {4 and t5 fire. Therefore, we included ¢, into
dependency(ts). However, tg will not inhibit the firing of ¢3 if ¢5 becomes enabled
too late. This can be checked by examining the minimal time difference between
the next firing times of ¢4 and t3. It takes at least Eft(ts) + Eft(ts) = 3+ 4 time
units to fire t¢ after the firing of £4. Thus, ¢4 can only inhibit the firing of ¢35, if {4
can fire 7 time units earlier than ¢5. Hence, we include ¢4 in the dependent set of #3
only if TU{“ts —t4 > 77} is consistent, where 7 = diff (t4,1s) is the sum of earliest
firing times in the path from ¢4 to ¢s.

Formally, let diff (¢,¢') be the minimal value of sums of earliest firing times in
all paths from ¢ to ¢/, with Eft(¢) not included. A transition t5 in necessary™ (¢, «)
is harmful for ty, if it is enabled, and I U {“ty —¢5, > diff (t,t)”} is consistent.
Instead of including all enabled transitions in necessary™ (¢, o) for all conflicting
t into the dependency of t; it is sufficient to include those which are harmful;
harmless transitions can never inhibit the firing of ¢; since the conflicting transition
they enable becomes enabled “too late”.

Another improvement concerns the deletion of “aged” variables in Kg. In the
current definition of Ky, all time variables p* for all marked input place p of a
disabled transition t are left in the set of inequalities. Thus, if ¢ is continuously
disabled, the difference of these variables to other (transition) variables becomes
larger and larger until they are saturated. This is not a problem from the view of
correctness, completeness, or termination of the algorithm. However, it contains
some redundancy, because time variables which are too old can not be the parent
of newly enabled transitions. Here, “too old” means that p* can not be greater or
equal to the earliest time when ¢ gets enabled, and such earliest time can be guessed

21

with ¢ + diff (t',¢) — Eft(t) for some enabled transition ¢'. Thus, if we define D in
Kg as

D = {p*|lpep Nnet, KsU{p® >t + diff (', t) — Eft(t)} is consistent
for some disabled ¢ and enabled ¢ in p'},

the algorithm is still correct, and in general more efficient.

6 Experimental Results

We have implemented both the basic model checking algorithm and its partial order
improvement on a 17 MIPS UNIX workstation in C++4. In this section, the perfor-
mance of both algorithms with an example from [RB86, YNT89] is demonstrated.

The verified system called PROWAY is a local area network linking stations by a
shared hardware bus. The bus allocation procedure is based on a token bus access
technique. Fig. 4 shows a Time Petri net model for station 1 of the PROWAY system
in a four-station configuration.

Stations are logically distributed on a ring, and a baton goes around on the ring.
When a station has the baton, it can transmit application messages, whereas the
other stations can only listen to them. A token in p; means that the station is in
the listening mode. A token in ps means that the station has a baton. If transition
ty fires, the station first transmits application messages and then it passes a baton
to the next station on the logical ring. Otherwise, the station only passes a baton
without message transmission. On the transmission of messages, the station holds
a baton for a longer time. (Compare firing intervals associated with ¢ and ¢ in
Table 1).

Each station has a recovery mechanism against a single fault. A station sets
its frame interval timer T'1 (represented by #;7) when it transmits a baton. If
any activity on the bus (i.e., baton or message transmission from other stations) is
listened a certain time later, the station gets into listening mode, resetting the timer.
Otherwise, the frame interval timer times out. Suppose the station S, transmits a
baton to the station Sp. Time-out of the S,’s frame interval timer occurs when (i)
a baton from S, is lost, (ii) S is faulty, or (iii) the baton or messages from S; are
lost. In these cases, S, transmits a new baton to another station S.. Next time S,
has a baton, S, tries to transmit the baton to Sy. If T'1 of S, times out again, S,
will ignore Sy from now on. ps, ps and pig represent how many times this time-out
of T'1 occurs.

A station sets its lost baton timer T2 (represented by ¢2) when it gets into
listening mode. The purpose of this timer is to initiate a new baton when a baton
holder goes faulty, holding the current baton, and all other live stations are in the
listening mode. The value of T2 is indexed with the station’s address as shown in
Table 1, in such a way that the live station with the smallest address monitors the
recovery.

As example property, we verify if the next activity will always occur within
some constant time units, say maz, after a station finishes sending its message.
This property holds in the system if the TNL formula

—0O[finish — (—activity) U (activity® — finish® < maz)]
is not satisfiable. More concretely, we have checked the formula
—0[p12 — (=p2) U (p — pi, < 100].
The Fig. 5 shows the CPU times for both implemented algorithms with this

example. The size of the net is linear in the number n of stations; thus the basic

22

receive message
or baton

15(U2)
15(Us)
t5(Us)
t11(U2)
111(Us)
t14(U2)
t14(Us)
111 (Us)

baton from t14(Us)
U3 or U4 tll(U2)

baton t14(U2)

ts from U

application

messages

pr(Us)
Pa(Uz)
Pp2(Us)
p2(U4) \l
baton
to U2
11y ;/f 10 ‘\:: 116
(| —
t14
pr(Us) P12 tos
p2(Uz) | ./
Pa(Us) /< = D
P2(Us) b1z
tir P16
baton j
to U3 14

Figure 4: A time Petri net model for station 1 (Uy) of the PROWAY system in a
four-station configuration.

23

Table 1: Timing constraints for transitions (7'C'1).

t [0,0] tr [0,0] tis | [16,24] || 19 | [0,0]
T | [260,300]T || ¢s | [0,0] || tia | [0,10] | 20 | [0,0]
i3 [0,0] o | [50,100] || t15 | [50,100] || £21 | [0,0]
s | [16,24] || t1o | [16,24] || tis | [16,24] || t2o | [0,0]
&5 | [0,10] t1 | [0,10] || 17 | [50,53]
is [0,0] 1o | [50,100] || t1s | [0,0]

7 [80i4180,80i+220] for station ¢

algorithm is exponential in n. Since all stations operate more or less independently,
parallelism also increases with n; therefore, the partial order method succeeds in
reducing the complexity. This result is typical for a number of similar examples.

2500 f f f
Basic H—
Partial -©- -

2000
1500
CPU time(s)
1000

500 -

"ay

(11— e Y Y eoc oo
Number of Stations

Figure 5: Performance of the basic/partial order methods

7 Conclusion

In this paper, we have proposed a timed temporal logic for time Petri nets which is
expressive enough to formalize quantitative timing properties and yet it is stuttering
invariant, so that the parallelism in the nets can be used to avoid the state explosion
problem during verification.

Then, we have developed a model checking algorithm for our logic. We con-
structed for the infinite state space of the net a finite representation, the atom
graph, such that every atom sequence represents a set of runs, and satisfies the
formula iff the corresponding runs satisfy the formula.

Since the complexity of the consequent model checking algorithm depends on
the number of atoms, we have shown how to reduce this number by elimination of
redundant interleavings. In our method, for every firable transition all dependent
sets, 1.e., sets of firable transitions whose firings are relevant for the evaluation of
the given formula, are computed. From the smallest set of firable transitions which
is closed under dependency the reduced atom graph is generated. Since this set is
usually much smaller than the set of all firable transitions, a considerable reduction
of the state space is achieved.

Although the worst case complexity of the problem is exponential, experimental
results from several examples show that the proposed algorithm successfully reduces
the average complexity of the model checking.

In the future we intend to combine our method with symbolic model checking
techniques (which represent state spaces as binary decision diagrams), and to find

24

similar efficient model checking algorithms for other kinds of temporal logics such
as branching time temporal logics and timed p—calculi.

Acknowledgment:

We would like to thank E. Clarke for his contribution to the preliminary version of
this paper and his continuous support and encouragement. We would also like to
thank K. McMillan for many helpful discussions, and A. Shibayama for his help in
implementing the proposed method.

References

[ACD90] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time
systems. Proc. of 5th IEEE LICS, 1990.

[AH89] R. Alur and T. A. Henzinger. A really temporal logic. Proc. of 30th
IEEE FOCS, 1989.

[BCD192] J. R. Burch, E. M. Clarke, D. L. Dill, L. J. Hwang, and K. L. McMillan.
Symbolic model checking: 102° states and beyond. Academic Press,
98(2):142-170, 1992.

[BD91] B. Berthomieu and M. Diaz. Modeling and verification of time dependent
systems using time Petri nets. IEEE Trans. on Software Eng., 17(3):259—
273, 1991.

[CES86] E.M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM
Trans. on Programming Languages and Systems, 8(2):244-263, 1986.

[dBak92] J. W. de Bakker et al. (ed), editor. Real time - Theory in Practice, Proc.
REX Workshop. Springer LNCS 600, 1992.

[GKPP94] R. Gerth, R. Kuiper, D. Peled, and W. Penczek. A partial order ap-
proach to branching time logic model checking. Internal report, 1994.

[God90] P. Godefroid. Using partial orders to improve automatic verification
methods. Proc. of Workshop on Computer Aided Verification, 1990.

[HNSY92] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model
checking for real-time systems. 7th IEEE LICS, 1992.

[JM8T] F. Jahanian and A. K. Mok. A graph-theoretic approach for timing
analysis and its implementation. IEEE Trans. Comput., C-36(8):961-
975, 1987.

[KP90] 5. Katz and D. Peled. Defining conditional independence using collapses.
Semantics for concurrency, BCS-FACS Workshop, M. Kwiatkowska
(ed.), Springer, 1990.

[LP85] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent
programs satisfy their linear specification. Proc. 12th POPL, pages 97—
107, 1985.

[MF76] P. Merlin and D. J. Faber. Recoverability of communication protocols.
IEEE Trans. on Communication, COM-24(9), 1976.

25

[RB36]

[Sta90]
[Val90]

[YNTS9]

[YTKO1]

J-L. Roux and B. Berthomieu. Verification of a local area network pro-
tocol with Tina, a software package for time Petri nets. 7th Furopean
Workshop on Application and Theory of Petri Nets, pages 183-205, 1986.

P. Starke. Analyse von Petri-Netz Modellen. Teubner, Stuttgart, 1990.

A. Valmari. A stubborn attack on state explosion. Proc. of Workshop
on Computer-Aided Verification, 1990.

T. Yoneda, K. Nakade, and Y. Tohma. A fast timing verification method
based on the independence of units. Proc. of 19th International Sympo-
stum on Fault-tolerant Computing, pages 134-141, 1989.

T. Yoneda, Y. Tohma, and Y. Kondo. Acceleration of timing verification
method based on time Petri nets. Systems and Computers in Japan,

92(12):37-52, 1991,

26

