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Abstract

These tutorial notes contain an introduction to the logical theory and computational aspects of computer aided verification of finite state
reactive systems with linear and branching temporal logic model checking. As a general recipe, computer science applications and al-
gorithms are derived from logical notions and proofs. First, the expressivity of various temporal logics is compared to first and second
order logic, and to �-automata and formal languages. Then, temporal safety and liveness properties are reviewed. From the complete-
ness proof for natural and tree models, local and global decision procedures are developed. These in turn give rise to the corresponding
model checking procedures. Various modelling techniques for reactive systems are presented. Finally, symbolic techniques for global
model checking with binary decision diagrams, and partial order techniques for local model checking with stubborn sets are discussed.
Keywords: Computer Aided Verification, Finite State Systems, Temporal Logic, Model Checking, Modal Logic, Expressivity, Expressive-
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1 Introduction

A reactive system consists of several components which are
designed for continuous interaction with one another and
with the system’s environment. A property is a set of de-
sired behaviours which the system is supposed to show.

Formal semantics treats such systems as mathematical
structures (e.g., as functions, relations, streams etc.), and
properties as mathematical theorems (e.g., finiteness, in-
jectivity, monotonicity etc.) about these structures. From
a logical viewpoint, a system is a semantical model, and a
property is a logical formula. Arguing about system cor-
rectness therefore amounts to verifying formulas in models.

To be able to prove that a system satisfies a property,
one needs a modelling language to describe the system, a
logical language in which the property can be formulated,
and a deductive calculus and algorithmswith which verific-
ation can be performed. Examples for modelling languages
include process calculi (e.g. CCS and CSP), state machine
description languages (e.g. StateCharts), protocol specific-
ation languages (e.g., Lotos or Esterelle), and simple shared
variables programming languages (C, Basic, ...). Logical
languages which are considered in these notes are e.g. first
and second order logic, and propositional modal and tem-
poral logic. For verifying whether a model satisfies a for-
mula we derive model checking algorithms based on ca-
nonical Hilbert axioms and tableau decision procedures.

Interactive vs. Automatic Verification
Verification algorithms can be classified as interactive or
automatic. Interactive methods are more general but harder
to use; automatic methods have a limited range but are
more likely to be accepted.

In interactive verification, the user provides the overall
proof strategy; the machine augments the user by

� checking the correctness of each step,
� maintaining a list of assumptions and subgoals,
� applying the rules and substitutions which the user in-

dicates, and by
� searching for applicable transformation rules and as-

sumptions.

Sophisticated tools also are able to prove certain easy
lemmas by themselves, usually by applying a heuristic
search. However, since most interactive provers are de-
signed for undecidable languages (e.g., first or higher or-
der logic), the proof process is never completely automatic.
User interaction is required, e.g., to find certain loop invari-
ants or inductive hypothesis, and it requires a highly skilled
experienced user to perform a nontrivial proof.

On the other side, with automatic verification all the
user has to do is to provide a formal model of the system
he or she wants to verify, and a formulation of the proper-
ties he or she thinks that this system satisfies. The verifica-
tion tool then checks these properties, and either succeeds
in finding that they are valid, or giving an indication why
the properties fail to hold in the specific system.

Finite State Systems
The completely automatic approach generally requires that
the automatic verifier traverses all states of the given sys-
tem, which is only possible if the state space is finite.

Because of the undecidability of the halting problem,
programs operating on natural or real data values can never
be verified fully automatic. But, this is not quite correct:

� All physical machines have a limited memory, and op-



erate with bounded-width arithmetic. Thus, natural
and real values are not machine representable, and on a
“deeper” level, all programs are finite-state. (On a yet
“deeper” level, when machine cycles are broken into
voltage increases, there might again be an infinite num-
ber of states. However, on the next level, there is a fi-
nite number of electrons, and ultimatively the question
whether the real world is finite state or not seems to be
beyond our imagination.)

� In many cases it is possible to separate between the
control structure and the data structure of a given pro-
gram. Branches if c then goto a else goto b fi, where
c depends on data from an infinite domain, can be ab-
stracted as nondeterministic choice goto a or goto b.
In a network communications protocol, often the cor-
rectness of the protocol does not depend on the specific
type (finite or infinite) of the transmitted data; thus data
values can be abstracted as tokens from a finite (or even
binary) domain.

� Several interesting systems actually are finite state,
even though the systems designer used infinite do-
mains. E.g., a boolean C++ variable can only take the
values � and � even though it is declared integer. Of
course, proving that a system is finite state can be dif-
ficult.

� Even if the program inherently uses infinite domains,
errors are likely to be preserved when these infinite do-
mains are replaced by appropriate finite domains. E.g.,
a faulty sortingalgorithm for natural numbers is almost
certainly also incorrect for sorting values, say, between
0 and 10. Therefore, even if no proof can be automatic-
ally obtained, automatic verification tools can be used
to debug the system.
Given a formal model of the system to be verified, and

a formulation of the properties the system should satisfy,
there are three possible results which an automated model
checker can produce:
1. either it finds a proof for the formula in the model and

outputs “verified”, or
2. it constructs a refutation, i.e., an execution of the

(model of the) system which dissatisfies the (formula-
tion of the) property, or

3. the complexity of the verification procedure exceeds
the given memory limit or time bound.
If there is not sufficient space or time, we can increase

these resources, provided there is enough money available.
Alternatively, we can use a coarser abstraction of the sys-
tem and its properties. The third possibility is to employ
heuristics which improve the performance of the verifier.
Some of these heuristics are discussed in sections 9 and 10.

In some sense it is more interesting to get a refutation
than to get a proof. Whenever we get a refutation, we can
decide whether it is due to our abstraction in modelling and
formulation, or whether this undesired sequence of events
could indeed happen in reality. In the former case, the un-
realistic behaviour can be eliminated by additionalassump-
tions on the model or formula. In the latter case, we have
found a bug, and something should be changed in the sys-
tem.

If the model checker is able to prove a formula for a
given model, there is nothing left to do. But, what has been
achived in this case?

The Role of Formal Methods in Engineering
There can never be any guarantee that a system which has
been verified by a computer aided tool will function cor-
rectly in reality. Even if we could assume that the verifiers
hard- and software is correct (which we can not), there is
a fundamental source of inaccuracy involved. Verification
proves theorems about models of systems and formulations
of properties, not about physical systems and desired beha-
viour; we can never know to which extent our models and
formulations reflect physical reality and intuitions.

Nobody can ever guarantee that a physical system will
not fail in unexpected (i.e., unmodeled) situations. It would
be stupid, however, to reject formal methods because they
cannot offer such guarantees. Civil engineering can never
prove that a certain building will not collapse. Neverthe-
less it uses mathematical models to calculate loads and wall
thicknesses and so on.

Similarly, we can never prove that our model ad-
equately represents the reality. Therefore we can never
prove that a system will function as planned. Neverthe-
less, computer aided verification can help locating errors
already during the design of a complex system, and it can
help to increase reliability of these systems. In the future,
formal verification will augment classical software design
tools like structured analysis, code review and automated
testing.

2 Logical Languages, Expressiveness

Propositional Logic
Given a set P � fp�q�p�� ���g of (atomic) proposi-
tions which can be either true or false. E.g., proposition
sun is shining denotes the fact that “the sun is shin-
ing”.

Propositional logic PL is built fromP with the follow-
ing syntax:

PL ��� P j � j �PL � PL�

That is,
� Every p� P is a well-formed formula of propositional

logic,
� � is a well-formed formula (“falsum”),
� if � and � are well-formed formulae, then so is �� �
��, and

� nothing else is a formula.
Note that P is a parameter of the logic! The special

case P � � is allowed. Other connectives can be defined
as usual:
� ��

�

� �����

� �
�

� ��
� �� � ��

�

� ���� ��

� �� 	 ��
�

� ����� ���

� ��
 ��
�

� ���� �� 	 �� � ���



Semantics: Assume an interpretationI of propositions
is given, which assigns a truth value ftrue� falseg to every
proposition. (E.g., propositionsun going down is inter-
preted differently at the shore, in front of a computer ter-
minal, or at the stock exchange :)

I can be extended to the set of all propositional formu-
las as follows:

� I��� � false, and
� I���� ��� � true iff

I��� � true implies I��� � true.

We write I j� � iff I��� � true. Thus the above is
equivalent to:

� I �j� �, and
� I j� ��� �� iff I j� � implies I j� �.

Propositional logic is not well-suited to formalise state-
ments about events in time. Even though the interpretation
of a statement can be fixed, its truth value may vary in time.

First Order Logic
To express temporal dependencies, the set P is used as a
set of monadic predicates, i.e., each p � P is augmented
with an additional parameter denoting time, for example,
sun is shining�t�.

What kind of language elements should be permitted?
For sake of simplicity, we do not include function symbols
(or constants) in the first order language. Assume in ad-
dition to the set P of unary predicates a fixed set R

�

�
fR� a� b� ���g of accessibility relations or actions, and let
R� �

� R� f���g. Furthermore, let T be a set of first or-
der variables T

�

� ft� t�� ���g for moments in time (which
is assumed to be infinite unless stated otherwise).

FOL ��� P�T � j � j �FOL � FOL� j
R��T � T � j �T FOL

Again, we do not assume P orR to be nonempty. t �
is short for ��t��. Relations are denoted in infix notation
as well: t�Rt�

�

� R�t�� t��.
Semantics: To assign a truth value to a formula con-

taining (free) variables, we assume that we are given a
nonempty universeU of time-points, and that the interpret-
ation I assigns to every proposition p � P a subset of
points I�p� � U , and to every actionR � R a binary rela-
tion I�R� � U�U . For the special relation signs� and �

we require that I���
�

� f�w�w� j w � Ug, and I��� is the
transitive closure of

S
fI�R� j R � Rg. A variable valu-

ation v assigns to any variable t � T a time-pointw � U .
A first-order model M �

� �U� I�v� consists of a universe
U , an interpretation I, and a variable valuation v. Similar
to above, we define when a formula holds in a model:

� M j� p�t� iff v�t� � I�p�;
� M �j� �, and
� M j� ��� �� iff M j� � implies M j� �;
� M j� R�t�� t�� iff �v�t���v�t��� � I�R�;
� M j� �t � iff �U� I�v�� j� � for some v

�

which differs from v at most in t.

This language is rather expressive:

(1) nil�t��� �t��put�t�� t�� 	 �nil�t���
If nil holds, then it is possible to perform a put and
become not nil.

(2) t���t� � t� 	 req�t���� �t��t� � t� 	 ack�t����
Every request is eventually acknowledged.

(3) t���t� � t�	req�t���� �t���t� � t�	ack�t���	
t���t� � t� 	 t� � t��� req�t�����

No request is withdrawn before it is acknowledged.
But is first-order logic intuitive?

Multimodal Logic
Except from text in mathematical books, one can hardly
find english sentences which explicitly use variables to
refer to objects. Natural language statements use modal ad-
verbs like “possibly” and “necessarily” to refer to alternat-
ive state of affairs. Temporal phrases in natural language
use the adverbs “eventually” and “constantly” (or “some-
time” and “always”) to refer to future time points. Modal
logic was invented to formalise these modal and temporal
adverbs: the idea is to suppress first order variables t �
T ; propositions p � P are again without argument. The
meaning of a proposition like sun is shining is “the
sun is shining now”. Thus, in a temporal interpretation,
every formula describes a certain state of affairs at a given
moment.

What about accessibility relations? For every R � R,
multimodal logic introduces a new operator hRi� mean-
ing “possibly �”, i.e., “there exists some t accessible via
R such that � holds at t”. Dually, �R�� �

� �hRi�� means
“necessarily�”; “for all t accessible viaR, it is the case that
� holds at t”.

ML ��� P j � j �ML � ML� j hRiML�

Intuitively, the above example (1) could be written

nil� hputi�nil�

A (Kripke-) modelM
�

� �U� I� w�� for multimodal lo-
gic again consists of a universe U of points, an interpret-
ation I assigning to every p � P and R � R a subset
I�p� � U and a relation I�R� � U � U , respectively. In-
stead of a valuation for free variables, a model designates a
current or initial point w� � U .

� M j� p iff w� � I�p�;
� M �j� �, and
� M j� ��� �� iff M j� � implies M j� �.
� M j� hRi� iff there exists w� � U with

�w�� w�� � I�R� and �U� I� w�� j� �.

A formula� is universally valid in �U� I�, if for allw �
U it holds that �U� I� w� j� �.

By definition, multimodal logic has no operator for �,
the transitive closure relation of all actions. Define M j�
�� iff there existsw� � w� such that �U� I� w�� j� �; that
is, � �

� h�i, and � �

� ���. With these operators, example
(2) could be written

��req� �ack��



Temporal Logic
However, modal operators cannot express statements about
intervals (example (3) of the above). Temporal logic is
based on a binary operator U��� �� meaning “until�, also
� holds”.

Syntax of linear temporal logic (LTL):
LTL ��� P j � j �LTL � LTL� j

hRiLTL j U�LTL�LTL��
The above definitionof validity of a formula in a model

is extended for formulas involvingU-operators as follows:

� M j� U��� �� iff there exists w� � U with w� � w�

and �U� I� w�� j� �, and for all w� � U withw� � w�

and w� � w�, we have �U� I� w�� j� �.

The following picture illustrates this situation:

n n n n n n n� � � � � � �� � � � . . .

Various other operators can be expressed using U :

� ��
�

� U����� (Sometime)

n n n n n n n� � � � � � �� . . .

� ��
�

� U����� (Nexttime)

n n n� � �� . . .

� B��� ��
�

� U��� 	 ����� (Before)

n n n n n n n� � � � � � ��� �� �� ��
�

� . . .

� A��� ��
�

� U�� 	 ����� (Atnext)

n n n n n n n� � � � � � ��� �� �� �� � . . .

� V��� ��
�

� �U���� �� (Unless)

n n n n n n n� � � � � � �� � � � � � . . .

Note: these definitions are made up with a linear, ir-
reflexive and discrete �–relation in mind. But, this is not
required so far.

As an example, the above formula (3) can be expressed
as

��req� U�ack�req���

How can we compare first order and temporal logic?
First order logic formulas can mention several reference
points (free variables), which is not possible in modal or
temporal logic. To be able to compare the expressiveness
of both logics, we restrict FOL to formulas with at most
one free variable.

Moreover, first order logic can use reverse relations:
x � y iff y � x. Therefore, we introduce a temporal past
operator S (since), with the following semantics:

� M j� S��� �� iff �w��w� � w� 	 ��w�� 	
w��w� � w� � w� � ��w����.

We write��� and��� for S����� and�����, re-
spectively. Intuitively, these operators refer to “sometime
in the past” and “always in the past”.

The semantic clause induces a translation from tem-
poral to first order logic.
E.g., U�ack�S�req��ack�� is translated as
�t��t� � t� 	 ack�t�� 	 t��t� � t� � t� �
�t��t� � t� 	 req�t�� 	 t��t� � t� � t� �

�ack�t������.
Hence, FOL is at least as expressive as LTL. Form-

ally, this means: for every � � LTL (with or without
past operators) there exists a formula �� � FOL (with ex-
actly one free variable t�), such that for every modelM

�

�
�U� I� w�� and valuation v for which v�t�� � w� we have
�U� I� w�� j� � iff �U� I�v� j� �� .

A logic is called expressive (or expressively complete),
if there exists also a translation in the other direction: given
any first-order formula, does an equivalent temporal for-
mula exist?

Expressive Completeness of Temporal Logic
Observation: Only 3 variables are really needed in the
translation of any given temporal formula; other variables
can be “reused”.
E.g., U�ack�S�req��ack�� can be translated as
�t��t� � t� 	 ack�t�� 	 t��t� � t� � t� �
�t��t� � t� 	 req�t�� 	 t��t� � t� � t� �

�ack�t������.
As an immediate consequence, LTL cannot express

properties which “inherently” use four variables, like, e.g.,
the statement “there are three different connected points
reachable from the current point”,

�t�� t�� t��t� � t� 	 t� � t� 	 t� � t� 	
t� � t� 	 t� � t� 	 t� � t��

nt�

nt�

nt�

nt�

�
���

�
�
��R�

A
AAU

�
���

In case that� is a linear order (antisymmetric and total)
this is equivalent to

�t��t� � t� 	 �t��t� � t� 	 �t��t� � t����
�t��t� � t� 	 �t��t� � t� 	 �t��t� � t����

which can be expressed temporally as ����.
Therefore, attention is restricted to certain classes of

structures, like e.g. Dedekind-complete linear orders, or
finitely-branching trees, and others.

A path in a model is a (finite or infinite) sequence
of points and actions w�R�w�R����, where �wi� wi��� �
I�Ri� for each i. A path is maximal, if each of its points
which has a successor in the model also has a successor in
the path; that is, a maximal path is either infinite, or for its
final point wn there is no w such that wn � w. Natural



models are Kripke models for which there exists exactly
one maximal path, and every pointw � U is contained ex-
actly once in this path. That is, in natural models �U��� is
isomorphic to the natural numbers or an initial segment of
the natural numbers, with its usual ordering. Additionally,
for every point w � U there exists at most one R � R and
w� � U such that �w�w�� � I�R�.

Theorem(Kamp, Gabbay): Temporal logic is express-
ive for natural models.

The proof follows [6] and uses a certain property
called separation. Call a temporal formula pure future, if
it is of form hRi� or U��� ��, where in both � and � no
S-operator occurs, and pure past, if it is of form S��� ��,
where in both � and � no U-operator occurs, and pure
present, if it contains no U or S-operators.

A formula is separated if it is a boolean combination
of pure future, pure present and pure past formulas. A logic
has the separation property (for a given class of models), if
for every formula there exists an separated formula which
is equivalent for all models under consideration.

Lemma: The separation property implies expressive
completeness.

Proof is by induction on the structure of those FOL-
formulas which have exactly one free variable t�. Transla-
tion of p�t�� is p, and boolean connectives are immediate.
We don’t have to consider formulas like t� � t� by them-
selves, since they involve two free variables. The only re-
maining case are formulas � � �t���t�� t��. Without loss
of generality we can assume that � does not contain any
p�t��. That is, ��t�� t�� is a boolean combination of for-
mulas p�t��, t�Rt�, t�Rt�, t� � t�, t� � t�, t� � t�,
and ��, where in ��

�

� �t����t�� t�� t�� again we can as-
sume that �� does not contain any p�t�� or p�t��. Replace
in� every t�Rt by a new unary propositionXR�t�, replace
every tRt� by a new unary YR�t�, replace t� � t by F �t�,
replace t� � t by N �t�, and replace t � t� by P �t�. That
is, � now does not contain any t�. Since the nesting depth
of existential quantifiers in �� � �t����t�� t�� is smaller
than that of�, we can apply the induction hypothesis to get
a temporal formula 	 ����. Reinserting this into � and re-
placing p�t�� by p, and XR�t�� by XR and YR�t�� by YR,
and F �t�� by F , and N �t�� by N , and P �t�� by P gives
	 ���. Now separate the formula�	 ����	 ������	 ���.
The resulting formula is a boolean combination of pure fu-
ture, pure past and pure present formulas. Replace in this
formula every F inside a pure future formula by �, every
other F by �, and similar for XR, YR, N and P . The res-
ulting formula is the required translation 	 ���.

To illustrate this construction, let us find the temporal
equivalent of � � �t��t� � t� 	 p�t�� 	 t��t� �
t� � t� � q�t����. (We already know that the out-
come should be U�p�q�!) The first replacement results in
�t��F �t�� 	 p�t�� 	 ��t��F �t�� 	 t� � t� 	 �q�t����.
The formula ���t�� � �t��t� � t� 	 F �t�� 	 �q�t���� in-
ductively translates to 	 ���� � �

��F 	 �q�. Separating
��F 	 p 	 ���F � q�� gives ���F � q� 	 �F �
q� 	 U��F 	 p�� �F � q�� (see below). With the fi-
nal replacement, the disjuncts ��	 ��� and 	 ��� reduce
to �, and ���F � q� 	 �F � q� reduces to �, and

U��F 	 p�� �F � q�� reduces to U�p�q�, so that we are
left with the desired result.

The above proof could be slightly simplified if mul-
timodal diamond operators were encoded as special pro-
positions: In natural models, hRi� 
 �� 	 pR, where
pR

�

� hRi�. A similar encoding will be used in sections 3
and 4.

To show expressive completeness, it remains to prove
that LTL has the separation property for natural models.
This can be done by systematically considering equival-
ences like

��� 	����
 ����� 	 � 	 U��� ���
���	����
 ���	������	��������	����
U��� � 	 S���� ����

�� � U���� � 	 ��� � ��� 	 ��� � �� 	 S���� ����

To complete this proof, the reader has to go through the
tedious exercise of giving such clauses for all possible oc-
currences of a since-operator in a propositional formula in-
side an until-operator.

3 Second Order Languages

Linear and Branching time Logics
As we have seen, linear temporal logic is expressive for nat-
ural models. The same result can be proved (with minor
modifications) for finitely branching trees. In computer sci-
ence, the set of executions of a program can be modelled as
a set of execution sequences or as an execution tree, where
branches denote nondeterministic decisions.

Statements about correctness of program can involve
talking about all maximal paths in a tree.

Syntax of computation tree logic (CTL):
CTL ��� P j � j �CTL � CTL� j

hRiCTL j EU�CTL�CTL� j AU�CTL�CTL��
This definition is slightly nonstandard: to give a uni-

form treatment for modal, linear and branching temporal
logic we include hRi-operators referring to the action,
i.e. labelling of a transition.

CTL is interpreted on tree models. A tree is defined as
usual: It has a single root w�, and every node wn can be
reached from w� by exactly one finite path. The symbol �
then denotes the usual tree-order: w� � w� iffw� is on the
(unique) path from the root w� up to w�.

� �U� I� w�� j� EU��� �� iff there exists w� � w�

such that �U� I� w�� j� �, and for all w� � w� � w�,
�U� I� w�� j� �.

� �U� I� w�� j� AU��� �� iff for all maximal paths
p from w� there exists w� � w� on p such that
�U� I� w�� j� �, and for all w� � w� � w�,
�U� I� w�� j� �.

The following operators are defined as abbreviations:

� EX�
�

� EU�����

� AX�
�

� �EX��

� EF�
�

� EU�����

� AG�
�

� �EF��

� AF�
�

� AU�����

� EG�
�

� �AF��



EU���� ��� AU���� ��� EX�

How can we compare the expressivity of CTL with
(the future fragment of) LTL? Direct comparison is dif-
ficult, since models are different: On natural models, AU
and EU-operators coincide; on tree models, LTL trivially
cannot express AU .

Therefore, one considers (nonlinear, nontree) Kripke-
models �U� I� w��. In contrast to natural or tree models,
Kripke models can contain reflexive points, loops or even
dense relations. On Kripke models, an LTL-formula is
valid, if it is valid for all natural models generated from the
Kripke model. (This definition revises the original defini-
tion given above!) Similarly, a CTL-formula is valid in a
Kripke model, if it is valid for the unique maximal tree gen-
erated from it.

Now, the LTL-formula��p is not expressible in CTL
(it is not the same property as AFAGp), and AGEFp is
not expressible in LTL (it is not the same as��p); for more
information on the expressiveness of linear versus branch-
ing time see [4].

On Kripke models, the more expressive logic CTL�

subsumes CTL and LTL by separating path quantification
(E) from temporal quantification (U):

CTL� ��� P j � j �CTL� � CTL�� j
hRiCTL j U�CTL��CTL�� jE CTL��

In the semantics, validity is declared relative to a cur-
rent point w� and current path p�:

� �U� I� w�� p�� j� U��� �� iff
�w��w� � w� 	 p��w�� 	 �U� I� w�� p�� j� � 	
w��w� � w� � w� � �U� I� w�� p�� j� ����.

� �U� I� w�� p�� j� E� iff
� path p� from w�� �U� I� w�� p�� j� �.

(Here p��w�� indicates that point w� is on path p�.) A
CTL�-formula� is defined to be valid for �U� I� w��, if it is
valid for all models �U� I� w�� p��, where p� is a path from
w�. Therefore, for Kripke models, CTL� is strictly more
expressive than CTL and LTL.

Propositionally Quantified Logics
The second of the above clauses uses quantification over
paths, which is not a first-order notion. For linear time, this
is not very useful. But why should second-order quantifica-
tion be restricted to paths? Wolper remarked that “temporal
logic can be more expressive”.

In LTL (or FOL), is it possible to specify that a cer-
tain property holds on every second point of an execution
sequence?

even �
�

� � 	���� � � ��

even ��t��
�

� ��t�� 	 t � t����t��
�t�� t��tSt�St� 	��t����

Not correct: if � holds twice in a row, it must hold always.

even �
�

� ����q
 ��q� 	 �q� ��� 	 q�

even ��t��
�

� �t � t�� tSt���q�t�
 �q�t��� 	
�q�t�� ��t��� 	 q�t���

Almost correct: q is an auxiliary variable (“implementa-
tion detail”).

even �
�

� �q����q 
 ��q� 	 �q� ��� 	 q�

even ��t��
�

� �q�t � t�� tSt���q�t�
 �q�t��� 	
�q�t�� ��t��� 	 q�t���

That’s it! The language used in the first item is called quan-
tified temporal logic qTL, the language of the second item
is monadic second order logic MSOL.

qTL ��� P j Q j � j �qTL � qTL� j
hRi qTL j U�qTL� qTL� j �Q qTL�

MSOL ��� P�T �jQ�T �j�j�MSOL � MSOL�j
R��T � T � j �T MSOL j �Q MSOL

To define this syntax, we used another syntactic cat-
egory Q � fq� q�� ���g of proposition variables. Any valu-
ation in a model assigns a subset of U to each of these
(second order) variables. The formula �q � is true in a
model M if it is true in a model which differs from M at
most in the valuation of the proposition variable q.

On natural models, the U-operator in qTL is definable
by � and � with the following clause:

U��� ��
 �q��q 	��q� �� � � 	 �q�� 	��q��

For complexity reasons, it is not always advisable to allow
full monadic second order quantification (that is, quantifi-
ers on arbitrary subsets of U ). Therefore, we introduce fix-
point quantification: quantification on sets which can be
obtained as fixed points of recursive definitions.

Examples:
��
 ��� 	���
 ��� 	 ��� 	����
 � � �
U��� ��
 ��� � �� 	 U��� ����


��� � �� 	 ��� � �� 	 U��� ������
��
 
q � �� 	 q�
U��� ��
 �q � �� � �� 	 q��

Syntax of the propositional�-calculus �TL:
�TL ��� P j Q j � j ��TL � �TL� j

hRi �TL j 
Q �TL�
The formula �q ��q� is short for �
q ����q�. Se-

mantics can again be defined by a translation into qTL (or
MSOL):

� M j� 
q � iff �q�q�w��	w��q�w��� ��w����.

Hence, �TL is at most as expressive as qTL and
MSOL.

Theorem (Büchi, Wolper): On natural models, �TL is
as expressive as qTL and MSOL.

For the proof of this theorem, we need the notion of �-
regular languages and �-automata.

�-automata and -languages
Any linear-time logic formula specifies the set of all natural
models (execution sequences) in which it is valid. Consider
an infinite sequence �U � �w�� w�� w�� ����� I�w��, where
I defines a mapping from P into subsets of U , and for a
mapping from R into subsets of U � U such that for any i
there is exactly one R such that �wi� wi��� � I�R� . Equi-
valently, we can introduce a labelling function L from U
into subsets of P:

w � I�p� iff p � L�w�



Define a function w from the natural numbers into 	P �
R by w�i�

�

� �L�wi�� Ri�, where Ri is the unique ac-
tion such that �wi� wi��� � I�Ri�. (For finite sequences
�w�� ���� wn�, we can either leave the last action Rn arbit-
rary, or introduce a special null action. Details will not be
elaborated here.) The function w is called an �-word over
the alphabet 	P � R. Since a set of (�-)words is usually
called an (�-)language, every LTL-formula defines such a
language.

Languages can also be defined by (�-)regular expres-
sions and by (�-)regular automata.

(�-)regular expressions are defined like usual regular
expressions, with additional operation denoting infinite re-
petition of a subexpression:
� Every letter from the alphabet is an �-regular expres-

sion (letters can be seen as words of length one, and
words can be seen as languages with one element)

� If  and � are �-regular, then so are �
 ��, � � ��
and �.

� If  is �-regular, then so is �.
We use boolean expressions over P �R to denote (unions
of) letters; e.g. ��p1 � p2� over P � fp1�p2g denotes
fg� fp2g� fp1,p2g.

Example for an �-regular expression: ��p1�� �
���
p2��.

An �-automaton over the alphabet 	P � R is defined
like a usual finite automaton; it is a tuple �S��� S�� Ff � Fi�,
where
� S is a set of states,
� � � S � 	P �R � S is the transition relation,
� S� � S is the set of starting states,
� Ff � S is the acceptance set for finite words, and
� Fi � S is the recurrence set for infinite words.

A Büchi-automaton is an �-automaton where the set of
states is finite.

When does such an automaton accept a word? A (fi-
nite or infinite) word �w�� w�� ���� is accepted by the auto-
maton, if there is a labelling � assigning to any point wi a
state ��wi� of the automaton such that
� ��w�� � S�,
� For all � � i � n, �si� wi� si��� � �, and
� ��wn� � Ff , if the word is finite with last letter wn,

and
� inf��� � Fi �� �, if it is infinite, where inf��� is the set

of states that appear infinitely often in the range of �.
That is, at least one state from the recurrence set must
be selected infinitely often.
For alternative acceptance conditions, see [11]. As an

example of a Büchi-automaton, consider the following:

-p1

-p1

T

T p2

T

This automaton accepts (i.e., defines) exactly the same
language as the example �-regular expression above. In
general, Büchi-automata can define all and only �-regular
languages. The proof of this statement is similar as for

automata on finite words: For one direction, we have to
show that Büchi-automata are closed under concatenation,
union, Kleene-star and �-repetition. All of these construc-
tions are straightforward extensions of the appropriate con-
structions for automata on finite words.

The other direction is to show that the Büchi accept-
ance condition can be captured by an appropriate regular
expression. Let Lij be the regular language of finite words
sending an automaton from state si into state sj . Then the
�-regular language associated with any Büchi-automaton
is

w��S�� wf�Ff
L�f �w��S�� wi�Fi

L�i
 �Lii�
�

Trivially, �-automata are closed under projection onto
a smaller alphabet. Büchi showed that his automata are
closed under complement; this is a highly nontrivial proof.
The best known construction for complementing Büchi-
automata was given by Safra.

Automata and Logics
Closure under complement can be used to show that Büchi-
automata are at least as expressive as qTL: Automata for
propositions are trivial two-state machines; from an auto-
maton for �, an automaton for hRi�, �� and �� can be
built by an appropriate prefixing with a single step or loop
on the initial states; as already mentioned, U can be ex-
pressed with �, � and second order quantification; implic-
ations ��� �� can be written as ������ and thus be re-
duced to unions and complements; and existential second
order quantification amounts to the projection of the auto-
maton onto a smaller alphabet.

To close the circle, we show that for every �-regular
expression there exists a �TL-formula describing the same
language. This proof associates with every �-regular ex-
pression� a �TL-formula�TL��� q�with at most one free
proposition variable q indicating the end of the sequence:

� For � � 	P�R, say � � �P�R�, define �TL��� q� �

�
�
V
p�P p 	

V
p��P �p 	 hRiq�

� If �TL��� q� and �TL��� q� are given (with the same
free q), then�TL����� q� �

� �TL��� q���TL��� q�.
� If �TL��� q�� and �TL��� q�� are given (with q� ��

q�), then �TL��
�� q��
�

� �TL���q���TL��� q����
� If �TL��� q�� is given with q� �� �TL��� q��, then
�TL���� q��

�

� ��q���TL��� q�� � q���
� Finally, �TL��� � q� �

� �
q �TL��� q��.
If there is a free proposition variable q in the result, it can
be eliminated by an empty quantification 
q.

As an example for this construction, consider
�TL���p�� � ���
q���

� 
q���p 	 �q�� � 
q��q����	 �q�� � �q 	 �q���
Thus we have shown: For every �TL-formula there

exists an equivalent qTL-formula by definition; on nat-
ural models qTL is equal in expressiveness to MSOL by
(an obvious extension of) Kamp’s theorem; for every qTL
(or MSOL) formula there is a Büchi-automaton defining
the set of its models; Büchi-automata are equivalent to �-
regular expressions; and these in turn can be described by



�TL-formulas.

�TL � qTL � MSOL � �-automata � �-regular

Similar results can be proved about branching time lo-
gic (�TL�qTL on tree models) and tree automata, which
accept computation trees (� � S � 	P � �R� S�n) (see
[11]).

4 Transition Systems and Properties

As we have seen, linear temporal formulas and �-automata
both can be used to describe sets of infinite sequences. The
practical difference is, that logic tends to be more “descript-
ive”, describing what a system should do, whereas auto-
mata tend to be more “machine-oriented”, describing how
it should be done. Logical formulas are “global”, they are
interpreted on the whole structure, whereas automata are
“local”, describing single states and transitions.

Therefore, traditionallyautomata or related models are
used to give an abstract account of the system to be veri-
fied, whereas formulas are used to specify properties of
these systems. But, since it is possible to translate between
automata and formulas and back, the choice is a matter of
complexity, of available algorithms and of taste. We could
equally well define both system and properties in temporal
logic; in this case we would have to prove an implication
formula (section 6 will explain how to do this). Another
alternative is that both the implementation and the specific-
ation are given as automata, where the latter is more “ab-
stract” than the former. Then we have to prove that one can
simulate the other.

Transition Systems
Any Kripke model can be regarded as an automaton
without acceptance or recurrence conditions (i.e., as a
transition system): Given a model M

�

� �U� I� w�� over
P and R, let L�w�

�

� fp j p � I�w�g � 	P be the
label of a point. The alphabet of the automaton corres-
ponding to M is 	P � R. The set of states is the set of
arcs in the model, i.e., the set of tuples �w�w�� such that
�w�w�� � I�R� for some R � R, plus an additional initial
state s�. Two states �w�� w

�
�� and �w�� w

�
�� are related by

�P�R� (where P � P) iff w�� � w�, �w�� w
�
�� � I�R� and

L�w��� � L�w�� � P . Similarly, the initial state s� is re-
lated to �w�� w

�
�� by �P�R�, iffw� is the current point of the

model, �w�� w
�
�� � I�R� and L�w�� � P . The set of ac-

ceptance and recurrence states of the automaton are defined
to be the set of all of its states. Then, this automaton accepts
exactly the set of all natural models which can be generated
from the Kripke model. Note that this set is a prefix-closed
language, that is, one which contains with every word also
all of its prefixes. In general, we can not go back from an
automaton to a single Kripke model, since automata corres-
pond to formulas, i.e. sets of models.

Thus, models can be seen as automata. Likewise, for-
mulas can be seen as automata: the result of the previous
section implies that for every LTL formula there exists an

equivalent automaton. Because this proof is constructive,
it yields a method to obtain such an automaton; however,
a much more concise way of constructing it is the tableau
construction sketched in section 6.

A Kripke modelM satisfies a given LTL-formula� iff
the language of M is a subset of the language of the auto-
maton M� for �. That is, M j� � iff L�M� � L�M��.
(We assume that the alphabet of M is including the alpha-
bet of �, and that the language ofM is obtained by projec-
tion onto the alphabet of�.) The latter condition is equival-
ent toL�M���L�M�� � �. Therefore, a feasible way to
check whetherM j� � is to construct the automatonM��

for ��, and to check whether the language of the product
automaton M�M�� is empty.

If both system M and property � are given as auto-
mata, then “specification” � can be regarded as a “more
abstract version” of the “implementation” M. We write
MI j� MS if L�MI� � L�MS�, i.e., if the language
of MI is a subset of the language of MS . A property
� is defined to be just any �-language � � �, where
 � 	P �R.

For Büchi-automata M� and M� it holds that M� j�
M�

iff for all properties �, ifM� j� � then M� j� �
iff for all �-regular �, if M� j� � then M� j� �.

Safety and Liveness Properties
A similar characterisation holds for finite transition sys-
tems and safety-properties: For a natural model M, let
M���i� be the model consisting of the first i points of M,
andM� �M� be the concatenation of the two modelsM�

and M�.
� � is a safety property, iff for every natural model M,

M j� � if i�M� � M���i� �M� j� �

� � is a liveness property, iff for every natural modelM,

i�M� � M���i� �M� j� �

Thus, � is a safety property if for every model not
satisfying � there is a finite prefix M���i� which can not
be completed by any continuation M� such that M���i� �
M� j� �. In other words, for every model dissatisfying
� something “bad” must have happened after some finite
number of steps which cannot be remedied by any future
(well-) behaviour. Hence, in Lamport’s popular character-
isation, safety properties express that “something bad never
happens”.

A liveness property �, on the other hand, can never be
refuted by observing only a finite prefix of some run. It
holds, if and only if every finite sequence can be completed
to a model satisfying �, hence � states that “something
good eventually happens”. Notice, however, that in con-
trast to the “bad thing” referred to above, the occurrence of
the “good thing” does not have to be observable in any fixed
time interval.

Facts about safety and liveness:
� Safety properties are closed under finite unions and ar-

bitrary intersections.



� Liveness properties are closed under arbitrary unions,
but not under intersections (e.g., ���p 	 ���p� 

�).

� The complement of safety properties are the open sets,
and liveness properties are the dense sets in the product
topology on finite and infinite words.

� � is the only property which is both a safety and a live-
ness property.

� For any � there exists a safety property �S and a live-
ness property �L such that �
 ��S 	 �L�.
A Kripke model or automaton is called image finite, if

every pointhas only finitely many successors. In particular,
finiteness implies image finiteness.

For image finite transition systems M� and M� it
holds thatM� j�M� iff for all safety properties� it holds
that M� j� � if M� j� �. To see why this is so, as-
sume that M� j� M�, and that M� �j� �. Then there
exists a natural model generated fromM� dissatisfying�.
Since L�M�� � L�M��, this countermodel can also be
generated from M�, hence M� �j� �. For the other direc-
tion, note that the set of all natural models generated from
an image finite transition system is a safety property. This
can be proved using König’s lemma. Therefore, by the fact
that M� j� M� the assumption immediately reduces to
M� j�M�.

Characterisation of Safety Properties
In modal logic, safety properties are exactly those not in-
volving any diamond operator. More precisely, proposi-
tions and ��� are modal safety properties, and if � and �
are modal safety properties, then ��	��, ����� and �R��
are modal safety properties. Any formula of modal logic
which is a safety property can be written as a modal safety
property.

For linear temporal logic, an LTL safety property can
be defined as a formula��, where � is a boolean combin-
ation of pure present and pure past formulas. It is not dif-
ficult to show that any such formula defines a safety prop-
erty; moreover, also the other direction holds: all temporal
formulas which are safety formulas can be written as an
LTL safety property.

For qTL, a definition of qTL safety property is imme-
diate from the definition of safety property. For �TL, we
take all formulas of the kind 
q�� 	 �R�q�, where � is a
pure present formula.

When does an �-automaton specify a safety property?
We call a strongly connected component (SCC) in a Büchi-
automaton bad, if it is either trivial and non-accepting, or
nontrivial and without any recurrence state. We call it
good, if it is trivial and accepting or nontrivial and contains
a recurrence state. A safety automatonhas for any bad SCC
B, and any good SCCG, that eitherB is not reachable from
the initial state, or G is not reachable from B.

Any language accepted by a safety automaton is a
safety property, and for any �-regular safety property there
is a safety automaton accepting it. Furthermore, by re-
moving nonreachable parts and bad SCCs, for any safety
automaton we can obtain an equivalent transition system.
Given any automaton, it can be decided with linear time

complexity whether this automaton presents a safety prop-
erty or not.

Classification of Temporal Properties
Manna and Pnueli [8] gives a hierarchy of property classes,
which is derived from an identical hierarchy in topology.
Assume that � and � are boolean combinations of pure
present and pure past temporal formulas.
� Safety: ��
� Guarantee: ��
� Obligation: ��� ���� (or ���� ���)
� Response: ���
� Persistence: ���
� Reactivity: ���� ����� (or ����� ����)

These are only normal forms! E.g., ��p	�q� is equival-
ent to the guarantee formula ��q 	 S�p����. As another
example, ��� �� is equivalent to��S��� 	�����

All safety and guarantee properties are also obliga-
tions; the class of obligation properties is properly in-
cluded in the response and persistence classes. Response
and persistence are closed under disjunctions and conjunc-
tions, and are properly included in reactivity. Every LTL-
property can be written as a conjunction of reactivity for-
mulas, since these can be used to describe the acceptance
condition of �-automata.

5 Completeness

Logicians are interested in logical truths, i.e., in the set of
formulas which are valid in all models of the logic.

What about specific theories like the theory of groups,
or the theory of a specific given model? How does it help
to know about the set of all valid formulas when we want
to find out whether a particular formula� holds for a given
model or theory?

Answer: encode the model or theory as a set of as-
sumptions� and check whether the formula in question fol-
lows from �!

In fact, a logic can be defined to be any set of well-
formed formulas which is closed under provable con-
sequence; and a theory is a set of well-formed formulas
which is closed under semantical consequence.

Thus there are three notions of consequence involved
here:
� � jj� � if from � follows �,

i.e. if any model in which all formulas from� are valid
also validates �,

� � � � if � proves �,
i.e. if there is a proof of� which uses only assumptions
from �, and

� �� � if � implies �,
i.e. this is a statement of the object language which is
only defined if � is a single formula. To be liberal, we
can identify a finite set of formulas f��� ���� �ng with
the conjunction ��� 	 ���	�n�.
Note that� jj� � is different fromM j� �! The nota-

tions jj� � and � � are short for fg jj� � and fg � �,
respectively.



Of course, the semantical notion of validity sometimes
is restricted to certain classes of models, e.g., to those sat-
isfying certain axioms, or to natural or tree models. For the
sake of simplicity, we will restrict ourself to natural models
in this section. However, all results apply to tree models as
well. To be able to talk about propositions and actions, we
assume that the transition from one point to the next carries
a unique label a � R.

Also, the syntactical notion of provability sometimes
is parametrised to a certain proof-system. In this section,
we will use Hilbert-style proof-systems, consisting of a set
of axioms and derivation rules. Usually, axioms and de-
rivation rules contain propositional variables q � Q and
a substitution rule allowing consistent replacement of pro-
positional variables with formulas. (Conceptually, propos-
itional variables are not the same as propositions, though
many authors do not distinguish between these syntactic
categories.)

To complicate things even more, there are two notions
of validity of a formula: local validity �U� I� w�� j� �,
where the evaluation point is given, and universal validity
�U� I� j� �. Traditionally, focus has been on complete ax-
ioms for universal validity rather than for the local version;
proofs are much simpler. Thus, we are interested in formu-
las which are valid in all models at all points.

One of the major concerns after defining a logical lan-
guage and its models is to find an adequate proof-system
for the logic, i.e. one which is both correct and complete.
That is, for any � and �,
� if � � �, then � jj� � (Correctness), and
� if � jj� �, then � � � (Completeness).

Why should these statements be valid?
Correctness should be clear: We don’t want to be able

to “prove” false statements. Usually correctness is very
easy to show, we just have to show that the axioms are
valid, and that the derivation rules only allow to deduce
valid formulas from valid formulas.

Completeness is in most cases much harder to show, if
not impossible. So, why is it important to show complete-
ness? Firstly, we would like to make sure that any specific-
ation which is satisfied by a program can be proved from
the program axioms, provided the specification is express-
ible in the logic. Secondly, and more important, in many
cases decision algorithms for automated verification can be
obtained from the completeness proofs.

Deductions in Multimodal Logic
To illustrate the basic idea, we start with a deductive sys-
tem for multimodal logic for natural models. A number of
similar proofs can be found in [2]. We use the following
axioms and rules:

(taut) propositional tautologies
(MP) p� �p� q� � q
(N) q � �a�q
(K) � �a�p	 �a��p� q�� �a�q
(U) � haiq � �a�q
(L) � haiq � �b��q for a �� b

To prove� � � we have to give a derivation of� from
the assumptions �, i.e., a sequence of formulas such that

the last element of this sequence is �, and every element of
this sequence is either from �, or a substitution instance of
an axiom, or the substitutioninstance of the consequence of
a rule, where all premisses of the rule for this substitution
appear already in the derivation.

As an example, let us assume �p � q� and derive
some consequences:

1. p� q (ass)
2. �a��p� q� (1, N)
3. �a��p� q�� ��a�p� �a�q� (K, taut)
4. �a�p� �a�q (2,3,MP)
5. �q� �p (1)
6. �a��q� �a��p (5)
7. haip� haiq (6)

Lines (4) and (7) form the basis for an inductive proof
of the following replacement and monotonicity rules:

(repl) p
 q � ��p�
 ��q�, and
(mon) p� q � ��p�� ��q�.

(mon) requires that ��q� is positive in q, that is, that every
occurrence of q is under an even number of negation signs
(an exact definition will be given in section 9). For ex-
ample, �a�q, haiq, q 	 �a��q � haiq� are all positive in q.

Using these rules, we prove that (L) is equivalent to
�a��� �b��:

1. haiq� �b��q (L)
2. hai��� �b���� (1)
3. �a��� �b�� (2,repl)

And the other direction:
4. �� �q (taut)
5. �a��� �a��q (4, mon)
6. haiq� ��a�� (5)
7. ��a��� �b�� (3)
8. �b��� �b��q (4, mon)
9. haiq� �b��q (6,7,8)

As a more practical example, let us derive from the as-
sumptions

set� hV i�set and
�set� hP iset � hV i�set the property
�P ��P ��.

The assumptions can be seen as describing the actions of a
semaphore with two states, set and �set, which allows
to be set with a P -operation when it is not set, and to be
freed with a V -operation when it is either set or not set. The
given property describes that there are never two P opera-
tions in a row.

1. �� �P �� (taut)
2. �P ��� �P ��P �� (1,mon)
3. hV i� � �P �� (L)
4. hV i�set� hV i� (mon)
5. hV i�set� �P �� (3,4)
6. hV i�set� �P ��P �� (2,5)
7. hP ihV i�set� hP i�P �� (5,mon)
8. set� hV i�set (ass)
9. set� �P ��P �� (6,8)
10. hP iset� hP ihV i�set (8,mon)
11. hP iset� hP i�P �� (7,10)
12. hP i�P ��� �P ��P �� (U)



13. hP iset� �P ��P �� (11,12)
14. �hP iset� hV i�set�� �P ��P ��(6,13)
15. �set� hP iset� hV i�set (ass)
16. �set� �P ��P �� (14,15)
17. (set� �set�� �P ��P �� (9,16)
18. �P ��P �� (17)

As we see, even in such relatively easy examples it can be
quite cumbersome to find a Hilbert-style proof “by hand”;
it should be possible to conduct these proofs automatically.
This will be the topic of the next section!

Let us argue about the correctness of our deduction
rules. (taut) and (MP) are immediately clear. (N) is the so
called necessitation rule. Its validity depends on the uni-
versal interpretation of validity: If some formula is true in
every point of a model, it is true in every point which is the
a-successor of some other point in that model. (K) is the
classical Kripke-axiom which holds for all normal modal
logics. If in all accessible points p holds, and in all access-
ible points �p � q� holds, then in all accessible points q
must hold. (U) is the axiom describing that the next-step
relation is univalent: If there is any successor satisfying
q, then all successors satisfy q. This holds because at any
given moment, there is at most one successor which can be
reached. While this is true for natural models, it does not
hold for trees or other branching structures. (L) finally is
an additional axiom for the labelling of the next-step rela-
tion by transition relations. If some a-successor satisfies q,
then the next state is determined by an a-step, hence it is
not a b-step, and all states reachable by a b-step are false.
Again, this only holds because we are considering natural
models (i.e. paths through a Kripke model, not the Kripke
model as such).

Completeness of Multimodal Logic
The classical way to prove completeness is the so–called
Henkin/Hasenjäger construction. A set� of formulas is in-
consistent with �, if there is a finite subset f��� ���� �ng �
� such that� � �����������n�. To prove completeness,
we have to show
(*) Every formula consistent with � is satisfiable in a

model validating �.
For, if � jj� �, then no model validating� satisfies f��g;
therefore with (*) it follows that f��g is inconsistent with
�, hence � � �. (Without loss of generality, we can as-
sume here � to be consistent with itself, or else � jj� �
holds).

Thus, the task is to construct a model for a given con-
sistent set of formulas. Lindenbaum’s extension lemma
states that for any formula � which is consistent with �
there exists a maximal consistent set w� such that � � w�

and � � w�: Start with � � f�g; for every formula �
according to a fixed enumeration add either � or �� to w,
whichever is consistent with the set constructed so far.

The canonical model for � is �U� I� w�, where
� U is the set of maximal consistent sets which include
�,

� I�a�
�

� f�w�� w�� j q � w� � haiq � w�g, and
� I�p�

�

� fw� j p � w�g, and
� w is any element from U such that � � w.

For every w� � U of our canonical model and every
a � R there is at most one w� with �w�� w�� � I�a�. For,
assume �w�� w�� � I�a� and �w�� w

�
�� � I�a�. Then, there

must be a formula � such that � � w� and � �� w��, or
else w� � w��. Since w�� is maximal, �� � w��. Therefore
hai� � w� and hai�� � w�. But, this is a contradiction to
the consistency ofw�: axiom U requires that if hai� � w�,
then �hai�� � w�.

Similarly, we can show that for every w� � U there
is at most one a such that �w�� w�� � I�a�. The opposite
assumption would lead to a contradiction with axiom L.

The fundamental ‘truth’ or ‘killing’ lemma states that
for any formula� and maximal consistent setw it holds that
� � w iff �U� I� w� j� �.

In the inductive step for this lemma, we have to show
that hai� � w� iff �U� I� w�� j� hai�. The ‘if’ direc-
tion being a direct consequence of definition and induction
hypothesis, assume that hai� � w�. We have to find a
maximal consistent set w� such that �w�� w�� � I�a� and
� � w�. Since � �hai� 	 �a��� � hai�� 	 ��, the set
f�g � f�j j �a��j � wg is consistent. Let w� be any max-
imal consistent extension of this set. Then for all � � w�

the formula hai� must be in w� (otherwise, a contradiction
could be derived). Therefore �w�� w�� � I�a�. Since � �
w�, the induction hypothesis gives �U� I� w�� j� �. To-
gether with �w�� w�� � I�a� we have �U� I� w�� j� hai�.

Since for the canonical model �U� I� w� it holds that
� � w and � � w, we proved that �U� I� w� j� � and
�U� I� w� j� �. Thus we have achieved our goal of con-
structing a natural model for � � f�g.

Completeness of Temporal Logic
How can this completeness proof be lifted to more express-
ive logics like LTL?

Let us for the moment focus on temporal logic on nat-
ural models with the operators � for the union of all access-
ibility relations and � for the transitive closure; the exten-
sions for until- and since operators being almost straight-
forward extensions of the basic ideas.

The relation between � and hai is fixed by the follow-
ing axiom:

(nex) � haiq � �q for all a � R
A close inspection of the semantics of� reveals a fun-

damental problem:
Consider the set� �

� f�p� �� p� ���p� ���g. Then clearly
� jj� ��. However, � �� ��, since every proof of ��
from � can use only a limited number of premisses (proofs
are finite sequences). But, for no finite subset �� � � the
statement �� � �� holds.

Where does the above completeness proof fail? It is
not possible to find a maximal consistent extension, since
we can not apply an axiom to show the consistency of an
infinite set of premisses.

When dealing with second order concepts like transit-
ive closure we have to limit ourselves to a weaker form of
completeness. Call a logic weakly complete, if for all finite
� it holds that � jj� � implies � � �.

In first order logic, the deduction theorem allows to dis-
card any finite set of assumptions: � jj� � iff jj� � � �,



where � is the universal closure of �. In temporal logic,
similar deduction theorem holds:

� jj� � iff jj� � 	�� � �

Therefore, to prove weak completeness it suffices to prove
that jj� � implies � �.

We use the following axiom set (in addition to the
modal axioms above):

(Rec) � ��q ��q�� �q
(Ind) ��p � q�� q � �p� q

Dually, this can be written as

(Rec) � �q � � � ��q 	�q�
(Ind) q� � � ��p 	 q� � q � �p

These are the so-called Segerberg axioms reflecting the
definition of the transitive closure as the minimal transitive
relation which includes all a � R. (Rec) is the recursion
axiom which can be used to unfold a Box-operator:

��� � � ��� 	 � � ��� 	 � � ��� 	 �������

(Ind) is the induction axiom which can be used to derive
a property �� from an invariant �, i.e. from a formula �
for which � � �a�� and � � �a�� are derivable (for all
a � R).

How do these axioms prove completeness of the trans-
itive closure relation? Up to the truth lemma, the proof is
almost the same as for modal logic. But, we only use finite
maximal consistent sets: we start with a single (finite) con-
sistent formula � for which we have to construct a model.
Define the notion of extended sub-formula of� (sometimes
also called Fisher-Ladner closure) as follows:
� � is an extended sub-formula of �,
� �� is an extended sub-formula of�, if� is not of form
���,

� �� and �� are extended sub-formulas of ��� � ���,
(thus � is an extended sub-formula of ��)

� � is an extended sub-formula of ��,
� �� is an extended sub-formula of ��, and
� ��� is an extended sub-formula of ��

For any given formula, there are finitely many different
extended sub-formulas. Now, a consistent set of formu-
las is called finitely maximal, if it is maximal with respect
to extended sub-formulas; that is, for every extended sub-
formula � of �, either � or �� is in the finitely maximal
consistent set.

In the proof of the truth lemma we additionally have to
show

�� � w� iff �U� I� w�� j� ���

One direction again is easy: If�� � w�, then��must
be in any finitely maximal consistent set reachable fromw�

by any number of steps, because the recursion axiom forces
� � ��� to be in w�, and hence �� is in every w� with
�w�� w�� � I�a�.

The other direction follows from the induction axiom:
Assume that �� � w�, but no finitely maximal consistent
set reachable fromw� has � in it. Let ��� �����n be all dif-
ferent finitely maximal consistent sets in the same strongly

connected component as w�, and �
�

� ��� �����n, where
�i

�

�
V
f� j � � �ig (remember that the �i are finite).

Then
� � w� � �, since w� is one of the �i of which � is

composed. Furthermore,
� � � � ��, since �� was assumed to hold in the

whole component. Finally,
� � �� ����, since� consists of all finitely maximal

consistent sets in this component.
Putting these parts together, we have a contradiction, since
the induction axiom gives � w� � ���, but �� � w�.

A detailed exposition of this proof can be found in [7].

Completeness of the �-calculus
We just briefly indicate how the above axioms can be ex-
tended for �TL.

(Rec
) � 
q ��q�� ��
q ��q��
(Ind
) q� ��q� � q � 
p ��p�

The recursion and induction axiom can be obtained
as special cases of these very general axioms by defining
�p

�

� 
q
V
i�ai��p 	 q�.

The above completeness proof can be adapted to show
completeness for a certain subclass of monotonic �TL for-
mulas, the aconjunctive ones.

The problem of completeness of these axioms for all
�TL formulas had been open for more than a decade until
it was solved in [13]. It can be shown that for any formula
there exists an equivalent aconjunctive formula. Thereby
it suffices to derive this aconjunctive formula from the ax-
ioms in order to prove any given formula.

This proof also applies to tree models. In general,
however, for each class of models under consideration the
completeness question has to be solved independently.

6 Decision Procedures

In this section we derive decision procedures for some of
the logics introduced above. We already indicated that the
decision procedures will be extracted from the complete-
ness proofs of the previous section. In the next section, this
line of thought is continued to derive model checking al-
gorithms from the decision procedures.

Given a set � of assumptions, and a formula �. We
want to decide whether � jj� �, which by completeness
is the same as � � �. Now � jj� � iff � � f��g is (uni-
versally) unsatisfiable. Hence we need an algorithm which,
given a set of formulas, decides whether this set has a model
or not.

Modal Decision Algorithms
We considered completeness of modal logic (with hai-
operators) and of temporal logic (with operators � and �).
The completeness proof of temporal logic depended on the
fact that we could use finite maximal consistent sets to con-
struct our model. For multimodal logic, we allowed infin-
ite sets of assumptions because we wanted to show strong
completeness. If we restrict ourselves to the weak notion



of completeness (� jj� � � � � � for finite �), then
also here it is not necessary that maximal consistent sets are
maximal in the space of all formulas. It is sufficient to con-
sider maximality with respect to all extended subformulas
of the given consistent set.

Let us quickly recall the definition of extended subfor-
mula for multimodal formulas:
� SF ���

�

� f�g

� SF ���� ���
�

� f��� ��g � SF ��� � SF ���

� SF �p�
�

� fpg

� SF �hai��
�

� fhai�g � SF ���

� NSF ���
�

� f�� j � � SF ���g

� ESF ���
�

� SF ��� �NSF ���

� ESF ���
�

�
S
fESF ��� j � � �g

Expanding the definition, we see that for any formula � �
��� 	 ��� or � � ��� � ���, all f��� ����������g �
ESF ���.

For any finite �, there are only finitely many different
extended subformulas, and hence only finitely many sets of
extended subformulas. Any such set is called maximal with
respect to �, if for any � � ESF ���, either � � w or
�� � w.

Call such a set w of subformulas propositionally con-
sistent, if

� �� w, and
if ��� � ��� � ESF ��� then

��� � ��� � w iff �� � w implies �� � w.
That is, if ��� � ��� � w then ��� � w or �� � w,
and if one of ���, �� � w then ��� � ��� � w. Again,
expanding the definitions we see that
� for any ��� 	 ��� � ESF ���,

��� 	 ��� � w iff both �� � w and �� � w,
� for any ��� � ��� � ESF ���,

��� � ��� � w iff �� � w or �� � w.
Any propositionally maximal consistent sets is “consist-
ent for propositional logic”: if we consistently replace any
modal formula in w by a new proposition, then the result-
ing set of formulas is satisfiable in propositional logic. A
satisfying propositional interpretation is given by I�p�

�

�
true iff p � w.

The modal formulas inw determine the structure of the
accessibility relation(s) in any model for�, if such a model
exists. There are two approaches to construct these access-
ibility relations.

The first, ‘local’ algorithm, is tableaux-based. Start
with the set w�� ���� wn of all propositionally maximal con-
sistent sets which include � and try to systematically ex-
tend one of these to a model. Given a propositionally max-
imal consistent set wi, if it does not contain any formula
hai�, we are finished. If it contains both some hai�� and
some hbi��, then this set is unsatisfiable (because we are
considering models in which the labelling of any arc from
some point is unique); thus we backtrack. Otherwise, there
is exactly one a such that some formulas hai� � wi. Con-
struct the sets w�i

�

� f� j hai� � wig � f�� j �hai� �

wig and w��i
�

� w�i � � (We are considering linear access-
ibility relations and universal consequence!). There are fi-

nitely many propositionally maximal consistent extensions
wi��� ���� wi�n of w��i .

If w��i is not propositionally consistent, then there is no
such extension (n � �): backtrack. Otherwise, recurse
with all propositionallymaximal consistent extensionswi�j

of wi and continue ad infinitum. No wait; that might take
too long. Since there are only finitely many proposition-
ally consistent sets, we will hit onto a cycle sooner or later.
In that case, we are also finished: we have constructed a
model consisting of an infinite loop.

Modal Tableau Rules
Before giving a example, we give a set of tableau rules
which can be seen as another formulation of this idea. A
large number of similar tableau rules for all sorts of modal
logics can be found in [5].

Let � be the set of formulas whose satisfiability we
have to check. � is any set of formulas;

(�)
�� ��� � ���

����� �� ��
(� �)

������ � ���

�� ������

(��)
�� ����

�
(��)

���

�
(L)

�� hai��� hbi��

�

(��)
�����

�� �

(h�i)
�� hai��� ���� hai�n��hai��� �����hai�m

�� ��� ���� �n����� ������m
(���)

�

Derived rules:

(�)
�� ��� � ���

�� �� �� ��
(��)

������ � ���

���������

(	)
�� ��� 	���

�� ��� ��
(�	)

������ 	 ���

����� �����

(�hai)
���hai�

�� �a���
(��a�)

����a��

�� hai��

(L’)
�� hai��� �b���

�� hai��
(U)

�� hai��� �a���

�� hai��� hai��

The tableau rules allow to derive a set of sets of formu-
las from any set of formulas. Additional regulations are:
� Rule (�) can only be applied if �� �� �
� Rules (h�i) and (���) can only applied if no other rule is

applicable.
� Rule (h�i) can only be applied if no other hai� or�hai�

is in �
� Rule (���) can only be applied if no hai� is in �

A tableau is a finite tree of sets of formulas such that
� The root of the tableau is �, and
� The successors of each node are constructed according

to some tableau rule.
A leaf is called closed, if it consists of the symbol �. It is
called open, if it consists of a subset of formulas of some
other node on the path from the root to this leaf. (In partic-
ular, if rule (h�i) regenerates the root�, the new leaf is open.
Also, any empty node constructed by rule (���) is open). A
tableau is completed, if any leaf is closed or open. A com-
pleted tableau is successful, if it contains an open leaf.

The tableau rules are formulated in a nondeterministic
way, since we did not specify any order in which the rules
have to be applied. Nevertheless all tableaus for a given



formula are equivalent: If � has any successful tableau,
then every completed tableau for � is successful.

Adequacy of the Modal Tableau Procedure
� is satisfiable iff � has a successful tableau.

The proof of this statement is more or less straightfor-
ward: Assume � is satisfiable in a natural model M �

�
��w�� w�� w�� ����� I�w��, and show that there is a tableau
for � with an open leaf. Equivalently, assume that any
tableau for � is given, and show that it contains an open
leaf. We construct a sequence of tableau nodes ni, and as-
sociate a point w�ni� in the model with any ni. As an in-
variant of this construction, we show that for all formulas
� � ni it holds that w�ni� j� �. Initially n� is the root of
the tableau, with w�n��

�

� w�. Since w� j� �, the invari-
ant is satisfied. Given any tableau node ni with w�ni� �
wj , no closing rules can be applicable, because this would
contradict the invariant. Assume the successor ofwi is con-
structed by rule �� �� or ����. Then w�ni���

�

� wj, and
the invariant is preserved. If two successors of wi are con-
structed by rule (�), then any one of them is chosen which
preserves the invariant, and again w�ni���

�

� wj. If ni has
a successor obtained by rule (h�i), then w�ni���

�

� wj��.
The specific formulation of the rule guarantees that the in-
variant is preserved. Since the tableau is finite, and we can
never apply one of the closing rules, we must hit onto an
open leaf sooner or later.

For the other direction, we have to show that from any
tableau with open leafs we can construct a model. The con-
struction is similar to above. We consider the unfolding of
the tableau, which is the tree arising from the repeated sub-
stitution of any open leaf with the subtableau rooted at the
node subsuming this open leaf. If the tableu contains open
leafs, then the unfolding contains infinite paths. In the un-
folding, call any node whose successor is constructed by
rule (h�i) or (���) a pre-state. The set of pre-states of any in-
finite path from the root constitutes an infinite model.

As an example for the tableau construction, we again
prove �P ��P �� from the assumptions

� � f�s� hV i�s�� ��s� hP is � hV i�s�g�

A formula is valid, if its negation is unsatisfiable; hence
we start the tableau with �s � hV i�s�, ��s � hP is �
hV i�s�, and hP ihP i�.

�� hP ihP i�

�s� hP is� hP ihP i�

�� s� hP i�
s� hV i�s� hP i�

�

hV i�s� hP ihP i�

�

� � �

�

Here the dots indicate a number of other branches
closed by rule (L). In the completed tableau, since every
leaf is closed, the original formula �P ��P �� follows from
the assumptions �.

This example exhibits the connection between the tab-
leau method and the local satisfiability algorithm sketched
above: The propositional tableau rules systematically gen-
erate all necessary propositionally maximal consistent ex-

tensions of a given set of formulas, and the modal rules fix
the structure of the accessibility relations in the generated
model graph.

Global Modal Satisfiability
The second, ‘global’ algorithm for testing satisfiability of a
set of formulas starts with the set W of all propositionally
maximal consistent sets and the universal relation for any
hai operator. We first delete all nodes which contain both
some hai�� and hbi��. Then we iteratively delete ‘bad
arcs’ and ‘bad nodes’ until stabilisation is reached. Bad
arcs are pairs �w�� w�� � I�a� such thatw� contains hbi��

for some b �� a, or hai� or �a��, but it is not the case that
� � w�. Bad nodes w� contain a formula hai�, but there
does not (or no longer) exist a tuple �w�� w�� � I�a� with
� � w�. The given formula set � is satisfiable iff upon
termination there is a node n left in which it is included
�� � n�.

Since this algorithm iterates on all nodes and on all sub-
formulas, we can implement it by a search on all nodes,
with nested iteration on all subformulas of this node, or by
a bottom up iteration on all diamond-subformulas, where
we check all node whether they are ‘bad’ with respect to
this subformula. In both cases, it is important to re-iterate
after some deletions have taken place, until stabilisation is
reached.

As a simple example for global satisfaction, we show
the result of constructing all models for hai�p 	 hbip�.�

�
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�hai�p� hbip�
�hbip
p

�hai�p� hbip�
hbip
p

�hai�p� hbip�
�hbip
p *

�hai�p� hbip�
hbip
�p

�hai�p� hbip�
�hbip
�p

hai�p� hbip�
�hbip
�p *

(The starred ovals indicate points which are connected
to all other points in the picture.)

Decidability for Branching Time
It is almost obvious how to extend both of the above ap-
proaches for branching time, i.e., for tree models in which
every point can have arbitrarily many successors for each
accessibility relation.

In the “local approach”, we build a tree of trees: Again,
we start with the set w�� ���� wn of all propositionally max-
imal consistent sets which include �. By backtracking, we
try to extend one of these to a tree model. Given a propos-
itionally maximal consistent set wi, if it does not contain
any formula hai�, this branch of the tree is finite. In con-
trast to linear models, the set fhai��� hbi��g can be sat-
isfied by constructing two successor nodes. In general, if
wi contains diamond-formulas ��� ���� �n, there will be n
successor nodes of wi in the constructed tree model. Let



S�wi� be the set of alln-tuples ���� �����n� of proposition-
ally maximal consistent sets satisfying

If �j � hai�, then �j is any maximal consistent
extension of � � f�� j �a��� � wig.

Every n-tuple in S�wi� determines a set of possible
tree-successors of wi in the constructed tree; therefore we
have to recurse and backtrack on all elements of all of these
n-tuples. Formally, a leaf wi is open if it is included in
some node above, or if for some n-tuple ���� �����n� �
S�wi�, all �i are open.

To formulate this procedure with tableaus, we use non-
determined tableau rules: For any given formula, there
can be both successful and unsuccessful tableaus. The for-
mula is satisfiable, if there is at least one successful tableau.
(Thus, in the worst case, all possible tableaus have to be
checked.) We only give the rules which are different from
above:

(��)
�� ��� � ���

�����
(��)

�� ��� � ���

�� ��

(h�i)
���

���� ��� ���n

where � � fha�i��� ���� hani�ng, no hai� is in �, and
�i

�

� f�ig � f� j �ai�� � �g.
It seems to be much easier to abridge the ‘global’ al-

gorithm for satisfiability testing to the branching paradigm.
Again, we start with the set W of all propositionally max-
imal consistent sets and the universal relation for any hai
operator, and delete bad arcs and bad nodes until stabil-
isation is reached. Here, bad arcs are pairs �w�� w�� �
I�a� such that w� contains �a��, but it is not the case that
� � w�. Bad nodes w� contain a formula hai�, but there
does not (or no longer) exist a tuple �w�� w�� � I�a� with
� � w�.

Hence, on the multimodal level, it appears that for nat-
ural models the local algorithm is simpler, whereas for tree
models the global algorithm is easier to implement. In fact,
many automatic provers for linear time are tableau based,
and many provers for branching time are global. However,
the average complexity in both cases depends largely on the
structure of the formulas which are to be proven.

Tableaus for LTL
Can we extend these methods for transitive closure operat-
ors?

Firstly, in the definition of extended subformula, all ��
should be regarded as extended subformula of the formula
��. Furthermore, we define also ��� to be an extended
subformula of ��. We have to be a bit careful to avoid a
nonterminating recursion in the algorithmic reformulation
of the recursive definition:
� SF ���

�

� �

� SF ���� ���
�

� f��� ��g � SF ��� � SF ���

� SF �p�
�

� fpg

� SF ����
�

� f��g � SF ���

� SF ����
�

� f��� ��g � SF ���

� TSF ���
�

� SF ��� � f���� ���� j �� � SF ���g

� NSF ���
�

� f�� j � � TSF ���g

� ESF ���
�

� SF ��� �NSF ���

� ESF ���
�

�
S
fESF ��� j � � �g

Now, this definition of extended subformula guarantees
that for any �� in wi, all possible successors will contain
�� or ��� as well.

For LTL on natural models, we try to construct a lin-
ear path through the space of all propositionally maximal
consistent sets by depth-first-search. If a node wi contains
some formula ��, but no formula ���, we can discard it,
because the eventuality �� is not fulfilled. Also, if some
candidate successor w�i of node wi with�� � wi contains
��� and ��, we can discard w�i. But, if w�i contains ��
again, this unsatisfied eventuality could be propagated, res-
ulting in a cycle where the fulfilment of �� is infinitely
delayed. The solution is to require that a backward loop
only can be regarded as open, if for any �� which occurs
in any wi in the loop, there must be a wj in the loop such
that � � wj.

For the tableau, we add the rules:

(�)
�� ��

�� ha�i� ��� �� hani�

(��)
��� � �

���ha�i�� �����hani�

(�)
����

�� ��� ����
(��)

�����

��� � �� ����

These rules are based on the unfolding of the �- and�-
operators:

� �� 

W
ahai�

� �� 
 ��� ����

Additionally we have to require that a leaf is only
called open, if for all formulas �� occurring in it, the for-
mula � is contained in some node between the leaf and its
subsuming ancestor (loop condition).

As an example for the loop condition, we show that the
formula �� is unsatisfiable:

��

�������

ha�i������

����
�

�

��

�

� � �

hani������

����
�

�

��

�

Each left branch closes because of rule (�), each right
branch is closed because it forms a loop with unsatisfied
eventuality��.

Equally, for U���� ��� and �U���� ���, there are two
tableau rules based on the fixed point unfolding of the U-
operator:

� U���� ���
 ���� � �� 	 U���� ����

There is a close connection between the tableau de-
cision procedure and �-automata: The pre-states in the
tableau can be seen as states of a generalised Büchi-
automaton. The set of open leafs forms the acceptance con-
dition, and the recurrence condition is given as follows: For
every subformula U���� ���, either it is infinitely often not
contained in the accepting run, or �� is contained infin-
itely often. This can be formulated as generalised Büchi-
acceptance condition.



Satisfiability for CTL
To conclude, we quickly sketch the necessary modifica-
tions for the CTL-transitive closure operators AU and EU
in the global satisfiability procedure. In modal logic, a ‘bad
node’ was defined to be one which contains hai�, but no
a-successor has �. For CTL, a node is bad, if it contains
AU���� ��� or EU���� ���, but does not satisfy this re-
quirement. To check this, for all such subformulas we iter-
atively mark all nodes whether they satisfy the respective
requirement:

A node satisfies AU���� ���, if all successors satisfy
�� or �� and AU���� ���. A node satisfies EU���� ���, if
some successor satisfies �� or �� and EU���� ���.

Thus, to delete all bad nodes for the subformula
AU���� ���, we mark all good nodes which satisfy this for-
mula: Initially, we mark all nodes for which all successors
(if any) contain ��. Then we continue to mark all nodes
for which all successors contain ��, or contain �� and are
already marked. After stabilisation is reached, we can de-
lete all unmarked nodes which contain AU���� ���.

Analogously, for the subformula EU���� ��� we ini-
tially mark all nodes which have a successor containing��.
Then we repeat until stabilisation to mark all nodes which
have a successor containing ��, or containing �� and be-
ing already marked. Again, after stabilisation all unmarked
nodes containingEU���� ��� are no good.

7 Basic Model Checking Algorithms

In this section, we will show how the most commonly used
model checking procedures can be obtained from the satis-
fiability algorithms we considered above.

Decision procedures can be used to construct a proof
or counter-model for any correctness statement � about
a model M by encoding M as a set of assumptions (or
premisses, or program axioms) �, and deciding whether
� � �. However, some experiments will quickly convince
you that a naı̈ve approach of doing so is doomed to failure.
Usually, the program axioms all have a very special form,
such as

state i� ��succ i1 � � � � � �succ in�
in a linear time modelling, or

state i� �ha�isucc i1	� � �	 hanisucc in�
in a branching time approach. The decision procedure in
general can not take advantage of this special form of the
assumptions, and will in every step break down all assump-
tions to its basic propositional components. This results in
a very inefficient behaviour; usually only very small sys-
tems can be verified and debugged that way.

Therefore, model checking algorithms avoid the en-
coding of the models as a set of program axioms; they use
the models directly instead. Model checking tries to de-
termine whether a given specification formula is satisfied in
a given Kripke model, i.e., whether a natural or tree model
satisfying the formula can be generated from it.

There are two variants of this task, depending on
whether the universal or initial definition of satisfaction
of a formula in a model is used. In the initial definition,

a Kripke model, consisting of universe U , transition rela-
tion(s) defined by I, and initial point w� � U , is given,
and we have to check whether the formula � is satisfied:
�U� I� w�� j� �. In the universal definition, we are
given universe and transition relation, and want to know
whether the formula is satisfied in all points w of the uni-
verse: �U� I� j� � iff for all w� � U it holds that
�U� I� w�� j� �; Equivalently, we want to know whether
the set of points satisfying the formula is the whole uni-
verse; therefore we need an algorithm which calculates the
set of points S�U� I� ��

�

� fw j �U� I� w� j� �g in which
a given formula is satisfied.

Of course, any algorithm which calculates S�U� I� ��
can also be used to decide whether �U� I� w�� j� � holds:
�U� I� w�� j� � iffw� � S�U� I� ��. Vice versa, if we have
an efficient algorithm for �U� I� w�� j� �, we can calcu-
late S�U� I� �� by an iteration on all states. Thus, in theory
there is not much difference between both variants; prac-
tically, the initial definition corresponds more or less to the
local methods for satisfiability, whereas the universal defin-
ition fits more to the global methods.

However, in both cases we usually are given a set
of global assumptions � together with the Kripke-model.
These global assumptions are assumed to hold in the whole
model; i.e., they restrict the model to those parts where
they are valid. For example, an �-automaton can be re-
garded as a Kripke model, together with global eventual-
ity and fairness assumptions (acceptance and recurrence
set). Global assumptions can be formulated in the same
language in which the formula to be checked is specified;
however, there have been suggested “mixed” approaches,
where e.g. the global assumptions are described in LTL and
the property is described in CTL.

Local Modal Model Checking
Given a Kripke model M � �U� I� w��, a finite set �
of ML-formulas as global assumptions, and a property �
given as ML-formula. Model checking means to answer
the question: “Does every natural model generated from
M in w� which globally satisfies � also satisfy � in w�?”
Or, equivalently, “Is there a sequence generated from M
in w� which satisfies � in every point, and satisfies �� in
w�?”

There is a pitfall here which can easily be overlooked:
Without additional assumptions, any set of formulas con-
taining only formulas in which each outmost modal oper-
ator is a �a�-operator is immediately satisfiable! This is
because we did not require sequences generated from the
Kripke-model to be maximal; any one-point sequence is
a legally generated natural model. To restrict the model
checking procedure to infinite sequences, an assumptionW
ahai� has to be added.

A local model checking procedure for multimodal lo-
gic can be obtained by buildingthe product of the set of pro-
positionallymaximal consistent sets with the set of states of
the model. Similar to our proceeding in the decision pro-
cedure, we restrict attention to those propositionally max-
imal consistent sets m which include �.

Formally, an atom  is any pair �w�m�, where w � U



is a point, and m � ESF ��� is a locally maximal consist-
ent set including�, andw andm agree on the interpretation
of propositions. That is, if p � ESF ���, then p � m iff
w � I�p�.

An initialatom is any atom � �w��m��, wherew� is
the initial state of M, and �� � m�. For each a � R, we
define a relationXa between atoms: Xa��w�m�� �w��m���
iff
1. �w�w�� � I�a�,
2. if �hai� � m , then �� � m�,
3. if hai� � m, then � � m�,
4. for no b �� a is some hbi� � m.
5. some hai� � m.

The first condition reflects the fact that the steps in the gen-
erated sequence are predetermined by the Kripke model
(system to be verified). The second condition is imposed
by the semantics of the �a�-operator; the third and fourth
condition are reformulations of the axioms (U) and (L),
respectively, and the corresponding tableau rules �h�i� and
�L�. The fifth condition allows the generated sequence to
be finite when all diamonds are killed, even if the model has
continuation states in it.

Now we can construct a forest of atoms as follows:
� initial nodes are all initial atoms
� any node has as successors all� such thatXa�� ��

Since for any finite Kripke-model there are only fi-
nitely many atoms, each branch in this forest can be made
finite by appropriate backward arcs. Similar to the tableau
definition, a leaf is called open, if it has no hai formulas in
its m-component; otherwise, it is closed.

An accepting path through the resulting structure starts
with any initial node and is either infinite or ends with an
open leaf. Any accepting path is a sequence generated from
the Kripke model which satisfies the given formula ��,
thereby forming a counterexample to the specification �.

To implement the search for an accepting path, we per-
form a depth-first search with backtracking from the set
of initial atoms to all of its X-successors. In order to be
able to terminate loops in this search, we have to store all
atoms which were encountered previously. Though there
are several possibilities to represent such a set of atoms, the
method of choice seems to be to employ a hash table. It is
not necessary to use all components of m as hash indices,
since boolean combinations of formulas can be recovered
from their constituent parts.

In the depth-first search, we have to remove closed
atoms from the list of possible loop points. A better way
is to mark these nodes as closed while backtracking; then
the search will not recurse again if such an atom reappears.

In general, since we are only looking for some counter-
model, we can terminate the search if a counter-model is
found. Although in the worst case (if no counter-model ex-
ists) the whole forest must be searched, there is a chance to
find errors very quickly by an appropriate ordering of the
depth-first search successors.

Extensions for LTL
We have seen that the local model checking algorithm for
multimodal logic is almost the same algorithm as the local

tableau decision procedure. Similarly, the local model
checking for LTL is very close to its respective satisfiab-
ility algorithm. Again, we first give the version for a logic
which contains � and �-operators, and then show how to
extend this for U-operators.

Also, we do not consider additional assumptions in this
subsection, since with�-operator we can dispose any finite
set of LTL-assumptions: � jj� � iff jj� ��� �.

In the definition ofXa��w�m�� �w��m��� we addition-
ally require

6. if �� � m, then � � m� or �� � m�

7. if ��� � m, then �� � m� and ��� � m�

Similar as for modal logic, we try to thread an accepting
path through the graph of atoms which arises from this
definition. A leaf is open, if it neither contains any ��, nor
any ��. In contrast to modal logic, however, we can only
accept a path in which in addition to the ‘killing’ of all ��
by the next-step relation each occurrence of a �� is even-
tually ‘killed’. And, unlike in the tableau decision method,
we can not guarantee that several diamonds are simultan-
eously satisfied in some single loop. For example, an atom
 might contain ���, ���, some successor � of  con-
tains �� but not��, and some other successor � of  con-
tains �� but not ��. Hence, a loop from � to  is non-
accepting, because it does not fulfil the eventuality��, and
a loop from � to  is non-accepting, because it does not
fulfil the eventuality��. But, of course, any path which in-
finitely often passes through both � and � is accepting.

In general, we have to consider maximal strongly con-
nected components of the transitive closure of all Xa. A
maximal SCC is a set g of atoms, such that for each two ,
� � g there exists a finite path� �� ���� n� 

� connecting
 and �, and all  which can be reached from g and lead
into g are contained in g. Call such a maximal SCC g self-
fulfilling, if for any �� in some  � g there exists some
� � g with � � �. Now an accepting path is one which
starts in some initial atom and either ends in an open leaf or
infinitely often passes through all atoms of a self-fulfilling
maximal SCC.

Adequacy of this procedure: �� is satisfiable in the
model iff there exists such an accepting path.

For U-operators, each positive occurrence U���� ���
is an eventuality which has to be fulfilled at some point;
thus the SCC g is defined to be self-fulfilling, if for any
U���� ��� in some  � g there exists some � � g with
�� � �.

How can we construct maximal SCCs, and decide
whether they are self-fulfilling? There are two different al-
gorithms known in the literature. For model checking, Tar-
jan’s algorithm is particularly well-suited, since it enumer-
ates the strong components of a graph during the backtrack
from the depth-first search. Thus model checking can be
performed “online” during the enumeration of the reach-
able state space of the model.

In this algorithm the function successors con-
structs for a given atom alpha the set of all possible
successor atoms according to the transition relation of the
Kripke model and to the fixed point definition



PROGRAM LTL_check(Model m, Formula phi) =
Nat depth_first_count := 0;
Atomset stack := {};
Natarray table;
Atomset init := {alpha |
alpha is an initial atom of m and phi};

FOR ALL (alpha IN init) DO
depth_first_search (alpha)

ENDDO;
print (‘‘phi is not satisfiable in m’’);

PROCEDURE depth_first_search (Atom alpha) =
IF (table [alpha] = UNDEFINED)
Nat dfnumber := depth_first_count;
depth_first_count:=depth_first_count+1;
table [alpha] := dfnumber;
push (stack, alpha);
Atomset succ := successors (alpha);
FOR ALL (beta IN succ) DO

depth_first_search (beta);
table [alpha] :=

min(table [alpha], table [beta])
ENDDO;
IF (table [alpha] = dfnumber)

Formulaset required := {},
fulfilled := {};

REPEAT
beta := pop (stack);
table [beta] :=MAXNAT;
required := required + {psi_1 |

Until(psi_1, psi_2) in beta};
fulfilled := fulfilled + beta

UNTIL (alpha = beta);
IF required <= fulfilled

print (‘‘phi satisfiable in m’’);
EXIT;

ENDIF
ENDIF

ENDIF

Figure 1. Depth–first–search LTL model checking algorithm

8. U���� ��� � w iff
�� � w� or �� � w� and U���� ��� � w�.

The procedure depth first search builds recurs-
ively all atoms reachable from a given atom alpha; upon
backtrack alpha is found to be the root of a maximal SCC
iff there are no atoms beta in the subtree below alpha
such thatalpha is also in the subtree of beta. In this case
the maximal SCC containing alpha consists of all nodes
in the subtree below alpha, and this maximal SCC can be
checked for acceptance. table is implemented as a hash
table from atoms to natural numbers. table [alpha]
contains
� undefined, as long as atom alpha has not occurred,
� the depth-first-number of alpha, upon first encounter

of alpha,
� the depth–first–number of the first encountered atom

belonging to the same strongly connected component
as alpha, after return from the recursive call, and

� maxnat (i.e. a value for which the test n < maxnat
is always true), after the maximal strong component
containing alpha has been analysed.

The main program calls depth first search for all
initial atoms. If during the construction of the atom graph a
maximal final SCC is found, the algorithm reports success;
if the whole graph is searched without success we know
that the formula is not satisfiable, and the program termin-
ates with this result.

The complexity of this algorithm is exponential
(PSPACE) in the number of U-subformulas, because every
set of such subformulas determines a locally maximal con-
sistent set, and linear (NLOGSPACE) in the size of the
Kripke model. The exponential complexity in the length
of the formula is not very problematic, because specifica-
tion formulas tend to be rather short. The linear complex-
ity in the size of the model is a more serious limiting factor,
since in the worst case (i.e., if the formula is unsatisfiable)
all states have to be traversed. Current technology limits
the applicability of such algorithms to models with approx-
imately ��	 � ��
 reachable states. In the last section we
will discuss approaches which try to overcome this limit.

Global Branching Time Model Checking
We omit to detail the modification which are necessary to
adapt the local modal model checking algorithm to branch-
ing time logics. Instead, we review the global model check-
ing algorithm for CTL.

For a given Kripke model, branching time model
checking answers the question: “Does the maximal tree
model generated from the Kripke model M in any state
w� satisfy the formula �?” In some sense, this is an easier
question than the one for linear time, because the max-
imal tree model generated fromM is uniquely determined,
whereas each Kripke model generates a set of natural mod-
els, and we want to check all of these.

Put differently, the value of each CTL-formula in each
state of the generated tree model is uniquely determined.
In the linear interpretation, from any given point in the
Kripke model there is a set of generated sequences; there-
fore e.g. the formula �� can both be true for one of them,
and false for another one. Thus we used the product of
the universe and the set of subformulas in the search for
a counter-sequence. In branching time, any subformula
EF� orAF� in any point of a Kripke model is either true
or false, because there is only one maximal tree model gen-
erated from this point.

Consequently, the CTL model checking algorithm
proceeds by marking each point with the set of subformu-
las valid for this point. I.e., to label the set of points satis-
fying �

�

� EU���� ���, suppose we have already labelled
the set of points satisfying �� and those satisfying ��. We
use the fixpoint unfoldingEU���� ���
 EX��� ��� 	
EU���� ���� and repeat until stabilisation to label all nodes
with� which have a successor which is labelled with�� or
with �� and with �.

Similarly for � �

� AU���� ��� we repeat until stabil-
isation to label all nodes with� for which all successors are
labelled with�� or with�� and with�. A recursive formu-
lation of this algorithm is given below.

Since the Kripke model has a finite number of points,
each REPEAT stabilises after at most jU j passes. In the



PROGRAM CTL_check (Model m, Formula phi) =
IF m.w_0 IN eval(phi)
THEN print (‘‘phi is satisfied in m’’)
ELSE print (‘‘phi not satisfied in m’’);

PROCEDURE eval (Formula phi): Nodeset =
CASE phi OF
p : RETURN m.I(p);
false : RETURN {};
(psi_1 -> psi_2) :

RETURN m.U-eval(psi_1)+eval(psi_2);
EUntil(psi_1, psi_2) :

epsi_1 := eval(psi_1);
epsi_2 := eval(psi_2);
ephi := {};
REPEAT UNTIL STABILIZATION

ephi := ephi + {s |
succ(s)*(epsi_1+epsi_2*ephi)#{}};

RETURN ephi;
AUntil(psi_1, psi_2) :

epsi_1 := eval(psi_1);
epsi_2 := eval(psi_2);
ephi := {};
REPEAT UNTIL STABILIZATION

ephi := ephi + {s |
succ(s)<=epsi_1+epsi_2*ephi};

RETURN ephi;

Figure 2. naı̈ve CTL model checking algorithm

worst case, each pass searches the whole model, hence the
complexity is linear in the number of different subformulas,
and cubic in jU j.

However, this bound can be improved if the search is
organised better. Clarke, Emerson and Sistla gave an al-
gorithm which is linear in the size of the model as well.
For the EF -operator, the problem of marking all nodes for
which EF� holds, given the set of node satisfying �, is
equivalent to the inverse reachability problem: Given a set
of nodes, mark all nodes from which any finite path leads
into the given set. Assuming that for any two nodes we can
decide in constant time whether they are connected by an
arc, this can be done with time complexity quadratic in the
number of nodes.
PROCEDURE reach (nodeset target): nodeset =
source := {}; search := target;
WHILE search # {} DO
search := pred (search) - source;
source := source + search

ENDDO;
RETURN source;

Every node enters the set search in the WHILE loop
at most once. Moreover, all set operations can be per-
formed in time linear in the size of these sets, i.e., in the
number of nodes; thus the overall complexity is quadratic
in jU j, i.e., linear in the size of the Kripke model.

For the EU-operator, this idea can be refined to give
an evaluation procedure of linear complexity. The AU-
operator can be expressed by

AU���� ���
 ��EU����� 	 �������� �EG����

Thus, we only need a procedure marking all nodes for

which EG� holds. This can be done as follows:
— restrict the model to those states satisfying �
— find the maximal strongly connected components in the
restriction
— mark all nodes in the original model from which a non-
trivial SCC or a node without successors can be reached by
a path in the restricted model.

Fairness Constraints

Some automated model checkers for CTL allow to restrict
the path-quantifiers A and E to fair paths, which satisfy
certain fairness constraints specified in LTL. Simple fair-
ness constraints are of form ��, where � is a boolean
combination of propositions. E.g., the maximality con-
dition �� of the preceding subsection was of this type.
As another example for a simple fairness constraint, we
might want to restrict our attention to execution sequences
in which every component is always eventually sched-
uled. Streett fairness constraints are of form ����� �
����� and e.g. are useful to restrict attention to strongly
fair schedulers: if a component infinitely often requests a
resource, it will be granted infinitely often. The above al-
gorithm can be modified to deal with such fairness con-
straints by building the tableau of the LTL-assumption, and
checking the CTL-formula on the product of Kripke model
and tableau.

Model Checking for �-calculus

Both the local and the global model checking algorithms
can be easily adapted to (monotonic) �TL. For the global
version, an algorithm is given in section 9. For the local
version, there have been a number of algorithms proposed
in the literature, which are all more or less similar to each
other; see [10]. In general, the model checking problem
for �TL is exponential in the size of the formula (alterna-
tion depth); however, the proposed algorithms may vary in
their average case performance.

8 Modelling of Reactive Systems

Up to now, we regarded a system as being given as a single
Kripke model.

However, real-life systems are usually composed of a
number of smaller subcomponents. Even if the target sys-
tem is a single sequential machine, it is of advantage to
model it as a set of processes running in parallel:

� usually the functionality suggests a certain decomposi-
tion into modules; sequentialization is not the primary
issue in the design;

� certain subcomponents (e.g. hardware components)
actually are independent of the rest of the system, and
therefore conceptually parallel,

� the environment can be seen as a process running in
parallel to the system

� software-reusability and object-oriented design re-
quires modularity



Message Passing vs. Shared Variables
Hence, we have to consider systems of parallel processes,
and the synchronisationbetween these processes. There are
two main paradigms of parallel systems: distributed sys-
tems, where the subcomponents are seen as spatially apart
from each other, and concurrent systems, where the sub-
components use common resources such as processor time
or memory cells.

Consequently, there are two main paradigms for syn-
chronisation between parallel processes: via message
passing (for distributed systems), and via shared variables
(for concurrent systems).

Of course, there is no clear distinction between dis-
tributed and concurrent programs. It is not possible
to formalise the concept of being spatially apart, since
this is dependent on one’s own point of view: from
South Africa, all computers in the local area network
informatik.tu-muenchen.de can be regarded as a
single system, whereas from the processor’s viewpoint a
hard disk controller can be regarded as a remote subsystem.
On the other side, every component of a distributed system
shares some resource with some other component; if it were
totally unrelated it would not make sense to regard it as be-
ing part of one system.

Consequently, from a certain point of view, passing a
message between process A and B can be seen as process
A writing into a shared variable which is read byB. On the
other side, writing a shared variable can be seen as send-
ing to all other processes which might use this variable the
message that its value has changed. In fact, this transition
from the message passing paradigm to an implementation
via shared variables occurs in every network controller; and
the transition from the shared variables paradigm to an im-
plementation via message passing occurs in every distrib-
uted cache.

However, different paradigms produce different
techniques; many parallel programming languages and
many verification systems support only one of these two
paradigms.

Synchronous vs. Asynchronous Communication
Another paradigm, which applies mainly (but not solely)
to the message passing approach is the question of syn-
chronous versus asynchronous interaction between the par-
allel components. In the synchronous approach a partner
wishing to communicate is blocked until a communication
partner is willing to participate in the communication. In
the asynchronous approach each process decides whether
it wants to wait at a certain point or not; usually some kind
of buffering mechanism is used for messages which are not
needed immediately.

Synchronous communication can be seen as a special
case of asynchronous communication where the length of
each buffer queue is limited to one, and each process de-
cides to wait after writing into or before reading from that
queue until the queue is empty or full again, respectively.

Vice versa, a buffer can be seen as a separate process
in a synchronous system which is always willing to com-
municate with other processes. If the size of the buffer is

unbounded, the system is not finite state. Even if their size
is bounded, the buffers can be the biggest part of the trans-
lation of an asynchronous system.

Examples of synchronous modelling formalisms are
(parallel) transition systems, Petri nets, CCS, CSP, and its
variants, semaphores and monitors, critical regions and so
on. Examples of asynchronous formalisms are protocol
specification languages such as SDL and Lotos.

Some Concrete Formalisms
We already mentioned that a transition system is basically
a finite automaton without acceptance or recurrence condi-
tion. Formally, a transition system is a tuple �� S��� s��,
where
�  is a nonempty finite alphabet,
� S is a nonempty finite set of states,
� � � S � � S is the transition relation, and
� s� � S is the initial state.

A parallel transitionsystem is a tupleT � �T�� ���� Tn�
of transition systems, such that Si � Sj � �. The global
transition system T associated with a parallel transition
system �T�� ���� Tn� is defined by T � �� S��� s��, where
�  �

S
i

� S � S� � � � � � Sn
� s� � �s��� ���� sn��, and
� ��s�� ���� sn�� a� �s��� ���� s

�
n�� � � iff for all Ti

— if a � i, then �si� a� s�i� � �i, and
— if a �� i, then si � s�i

Thus, we model parallelism by interleaving, and synchron-
isation by the common alphabet. A parallel transition sys-
tem can be seen as a very restricted kind of CSP process,
with a fixed number of parallel subprocesses. The size of
the state space of the global transition system is the product
of the sizes of all parallel components.

An elementary Petri net is a tuple N � �P� T� F� s��,
where
� P is a finite set of places,
� T is a finite set of transitions (P � T � �),
� F � �P � T � � �T � P � is the flow relation, and
� m� � P is the initial marking of the net.

A marking m of the net is any subset of P . By �t �

� fp j

�p� t� � Fg and t�
�

� fp j �t� p� � Fgwe denote the preset
and the postset of transition t, respectively. A transition t
is enabled at marking m if �t � m (all its input places are
occupied at m) and t� �m � �t (all its output places are
empty at m, or they are also input places). Marking m� is
the result of firing transition t from marking m, if t is en-
abled at m and m� � �m n �t� � t�.

For every elementary Petri net there is an associated
transition system: The alphabet is the set of transitions, the
state set is the set of markings, the initial state is the initial
marking, and �m� t�m�� � � iff m� is the result of firing
t from m. However, the number of states in the transition
system is exponential in the number of places of the net.

Vice versa, every parallel transition system can be for-
mulated as an elementary Petri net: Exercise!

A shared variables program is a tuple �V�D� T� s��,
where



� V � �v�� ���� vn� is a set of variables,
� D � �D�� ���� Dn� is a tuple of corresponding finite do-

mains Di � fdi�� ���� dimi
g

� T � D �D is a transition relation, and
� s� � �d��� ���� dn�� is the initial state.

A state of a shared variables program is a tuple �d�� ���� dn�,
where each di � Di. Thus the number of states in a shared
variables program is the product of the size of all domains.
Usually the transition relation T is given as a propositional
formula�T overP � f�x � y� j x� y � �V �V ��

S
Di�g,

where V � � fv��� ���� v
�
ng. If s � �d�� ���� dn� and s� �

�d��� ���� d
�
n�, then �s� s�� � T iffI j� �T , where I�vi� � di

and I�v�i� � d�i.
For every elementary Petri net or parallel transition

system there is an equivalent shared variables program of
the same order of size. The translation in the other direc-
tion requires the evaluation of propositional formulas and
thus can involve an exponential blowup. Using relational
semantics, a shared variables program can be obtained for
almost all other models for concurrency. Therefore, shared
variable programs are widely used to model reactive sys-
tems.

9 Symbolic Model Checking

For any shared variables program, we can obtain an equi-
valent shared variables program which uses only binary do-
mains: D � f�� �gn. To do so, we use an arbitrary bin-
ary encoding of domain Di and introduce for any variable
vi over domain Di new binary variables vi�� ���� vik, where
k � dlog��jDij�e. This encoding can be compared to
the implementation of arbitrary data types on digital com-
puters, where each bit can take only two values.

If all variables V � fv�� ���� vng of a shared variables
program are over a binary domain, then any propositional
formula� overP � fv�� ���� vng describes a set of states of
the program, namely the set of all propositionalmodels (in-
terpretations) which validate the formula. Here we assume
the substitution � for false and � for true. Vice versa, for
any set of states there is a propositional formula describing
this set. However, this formula is not uniquely determined;
the problem of findinga shortest formula describing a given
set of states is NP-hard.

Also, the transition relation of a shared variables pro-
gram with binary variables V � fv�� ���� vng can be rep-
resented as an ordinary propositional formula over P �
fv�� ���� vn� v��� ���� v

�
ng. If the transition relation is given as

a propositional formula with equalities, we replace � by�,
and � by �, and �v � v�� by �v 
 v��. E.g., the formula

v� � �� ��v�� � �� 	 �v�� � v�� 	 �v�� �� v���

becomes in this notation

�v� � �v�� 	 �v�� 
 v�� 	 ��v
�
� 
 v���

For a shared variables with n variables over binary do-
mains the size of the state space is 	n. Therefore e.g. the
state space of a buffer of length 10 with values between 1

and 1000 is 	��� � ����. The reachable state space is a
subset of this state space, which can be of the same order of
magnitude. The transition relation for this buffer consists
of pairs of states and therefore has a size of approximately
��
�.

To perform global model checking on systems of this
or bigger size, we need an efficient representation of large
sets.

Binary Decision Diagrams
The representation of a set by explicit enumeration of its
elements, e.g., as a listor array, can be rather wasteful, since
it pays no respect to the internal structure of the set. E.g.,
given the domain D � f�� �� ������g, the explicit repres-
entation of the set “all numbers which are even or bigger
than 11” is a list of the elements

S � f�� 	� �� ��������	���������g

This representation takes O�jDj � dlog��jDj�e� memory
bits. A much more succinct representation of the same set
can be given by a propositional formula over the binary en-
coding n � n�n�n�n� of the domain:

S � fn j n� � O � n� � L 	 n� � Lg

To put this idea into a picture, look at the binary decision
tree for S:
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This tree is just a transcription of the truth table of S’s
characteristic function. It has many isomorphic subtrees.
For any two isomorphic subtrees it is sufficient to maintain
only one copy. We can replace the other one by a link to the
corresponding subtree.
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In the resulting structure, there are nodes for which
both alternatives lead to the same subtree. These nodes rep-
resent redundant decisions and can be eliminated.

n4

n1

3
n

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

����
����
����
����
����
����

����
����
����
����
����
����

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
��������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

1

1

0 1

  + -

+

0

0

The resulting structure is called an (ordered) binary de-
cision diagram (BDD, [1]). As we see, the BDD can be
much more concise than the original decision tree. In fact,



the size of the BDD depends on the structure of the repres-
ented set rather than on its cardinality. For example, the
representation of the empty set and the full set are both of
constant size 1. Because of this dependence on the struc-
ture of the represented object, the description by BDDs is
sometimes called symbolic, and techniques using BDDs to
represent objects are called symbolic techniques.

Given a tuple of binary domain variables V �
�v�� ���� vn� , and a set of states given as a propositional for-
mula over V , or the transition relation given as a propos-
itional formula over V � V �. Can we directly construct a
BDD for this formula (we want to avoid the full decision
tree)? Call a leaf in the BDD negative if it marked by “-
”, positive otherwise. The BDD for � is a negative leaf;
BDDs for propositionsvi consist of a node with variable vi
and a negative and positive leaf.

To construct a BDD for �� from a BDD for � is just
exchanging of positive and negative leafs. A BDD for
�� � �� from BDDs for � and � can be constructed
by recursive descent. We have to consider the cases that
either of �, � is a negative or positive leaf, or a variable.
If both BDDs for � and � are not leafs, let v be the top
variable in both BDDs, or, if the two top variables are dif-
ferent, the smaller one according to the order of variables.
Split the problem into two subproblems for v � false and
v � true, respectively, and solve the two subproblems re-
cursively. The result give the � and � branch of the result
node. We do not create a new result if both branches are
equal (return a common result), or if an equivalent node
already exists in the result. To check this latter condition,
we maintain a hash table of BDD nodes which is updated
upon backtrack.

There are other boolean operations on BDDs which can
be implemented with the algorithm sketched above. For
example, substitution ��v��� of a proposition v in a for-
mula � by� can be done by assigning a pointer to the neg-
ative leaf to v during the backtrack. Boolean quantification
�v � can be reduced to substitution by

��v ��
 ����v��� � ��v�����

Since BDDs are a form of deterministic finite automata on
finite strings over the alphabet ��� ��, for any given variable
ordering and formula there is a unique BDD representing
the formula.

The size of this BDD depends critically on the ordering
of the variables. For our above example formula

v� � �� ��v�� � �� 	 �v�� � v�� 	 �v�� �� v���

and the variable ordering �v�� v�� v�� v��� v
�
�� v

�
��, the above

algorithm yields the followingBDD. (We omit all branches
leading to negative leafs.)
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For the variable ordering �v�� v
�
�� v�� v

�
�� v�� v

�
��, how-

ever, we obtain the following much smaller BDD:
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This is a common phenomenon when working with
BDDs. In general, a good heuristics is to keep “depend-
ent” variables as close together in the ordering as possible.
For a more formal treatment in the context of sequential
circuits, see [9]. Unfortunately, the problem of finding an
optimal variable ordering is NP-hard. Basically, for every
possible ordering one has to construct the BDD and com-
pare their sizes, which is not feasable. Automatic reorder-
ing strategies usually proceed by steepest ascend heuristics.

Symbolic Model Checking for �TL
Recall from section 7 that global model checking for
CTL unfolds the fixpoint definition of the AU and EU
operators. If we restrict our attention to monotonic �TL-
formulas (to be defined below), then this idea can be used
to obtain a global model checking algorithm for these for-
mulas. Moreover, this algorithm can directly be implemen-
ted using BDDs as representation of transition relation and
state sets( [3]).

A formula � is positive or negative in a propositional
variable q, if every occurrence of q in � is under an even or
odd number of negations. Formally, this notion is defined
recursively: Any �TL-formula not containing the proposi-
tional variable q is as well positive as negative in q, and q is
positive in itself. The formula �� � �� is positive in q, if
� is negative in q and also� is positive in q; symmetrically,
��� �� is negative in q, if � is positive in q and also � is
negative in q.

Given any set, the set of all of its subsets forms under
the inclusion ordering a complete lattice. A function f �
	S � 	S is called monotonic, if f�p� � f�q� whenever
p � q. Any monotonic function has greatest and least fixed
points:

gfp�f� � supfq j q � f�q�g � supfq j q � f�q�g
lfp�f� � inffq j q � f�q�g � inffq j f�q� � qg

Moreover, on a finite lattice every monotonic function
is continuous, therefore in this case



gfp�f�q�� � limi��f
i��� and

lfp�f�q�� � limi��f
i���

We have already seen, that any formula defines a set
of points in the model, namely those points where it is sat-
isfied. Likewise, a formula ��q� with a free propositional
variable q can be seen as a function from sets of points to
sets of points: it maps any set of states � to the set of states
satisfying ��q���, that is, � where every occurrence of q
is replaced by �.

If � is positive in q, then it is also monotonic:

�p� q� � ���p�� ��q��

This can be proved by induction on the structure of �.
Therefore, for such � we have 
q� � gfp��� and
�q� � lfp���. Consequently, for monotonic formulas
model checking can be performed by extending the naı̈ve
global algorithm as follows:
eval(�) =
case � of
p : return fs j M�s j� pg

� : return �
��� � ��� : return M� eval(��) + eval(��)
hai� : return fs j �s� � �s� s�� � a � s� � eval(��g
�q��� : H �� M

repeat until stabilization
H �� eval���q�H��

return H
�q��� : H �� �

repeat until stabilization
H �� eval���q�H��

return H

In this algorithm, all set operations can be directly per-
formed with BDDs. Calculation of the BDD for hai� from
the BDD for � amounts to calculation the inverse image
of � under the relation a. This is done using propositional
quantification: Recall that the BDD for� is using variables
�v�� ���� vn�, and the BDD for a is defined over the variables
�v�� ���� vn� v��� ���� v

�
n�. To get the BDD for hai�, we first

rename all variables vi in the BDD for � by v�i, then build
the intersection of this BDD with the BDD for a to obtain
a BDD over �v�� ���� vn� v��� ���� v

�
n�, and then “throw away”

all primed variables by an existential quantification. In fact,
all these operations can be performed during a single BDD
traversal, if vi and v�i are always kept together in the vari-
able order.

A more sophisticated algorithm avoids the recalcula-
tion of certain common subexpressions during the traversal
of the formula. For a detailed exposition, cf. [4].

The complexity of this algorithm is potentially expo-
nential in the number of variables and exponential in the
formula. Nevertheless, in practice the number of iteration
steps required to reach a fixed point is often small (� ���).
For hardware systems, that is, in the verification of sequen-
tial circuits, most states are reachable in very few steps, but
the BDDs tend to grow exponentially in the first few steps.
For software systems, especially if there is not much par-
allelism contained, the BDD often grows only linear with
the number of steps, until the whole state space is traversed.

The following picture shows the relation between the BDD
size and number of steps in typical examples.

500 000

200

2
- 10 100

BDD nodes

steps

10reachable states

10 Partial Order Techniques

With symbolic methods we try to tackle the complexity
problem which arises from the parallel composition of
modules by using the BDD data structure which can handle
very large sets. Partial order methods, on the other hand,
try to avoid the generation of large sets: We only generate a
minimal part of the state space which is necessary to evalu-
ate the given formula. Thus symbolic methods correspond
to the global model checking approach, whereas partial or-
der methods are a refinement of local model checking.

The interleaving definition of parallel program se-
mantics determines the state space of the global system to
be the product of all state spaces of its parallel components.
This can lead to wasteful algorithms. In general, each (non-
deterministic) execution of a program generates a partial
order, where points are ordered by causality. In interleav-
ing semantics this partial order is represented by the set of
all of its interleaving sequences.

For example, the following elementary Petri net rep-
resents a system with two processes synchronising via t�
and t�:

t11 t12

t0

t21 t22

t3

This system generates the following partial order:

t��
�

t��

t��

t��

t��

�
�
t� t��

�

t��

t��

t��

t��

�
�
t� . . .

Some of the interleaving sequences are
t�t��t��t��t��t����
t�t��t��t��t��t����
t�t��t��t��t��t����
t�t��t��t��t��t����
t�t��t��t��t��t����

However, it may not be necessary to consider all of
these interleavings to determine, e.g., the truth value of the
formula ��t�. The main idea of partial order methods is
to try to inspect only some “representative” interleaving se-
quences for the formula in question. Thus, we do not alter
the semantics to deal with “real” concurrency (where in-
dependent transitions can occur at the same time), and we
do not extend the logic to be able to express partial order



properties. On the contrary, we will limit the expressive-
ness of temporal logic and use the partial order to improve
efficiency of model checking. The relevant keywords are
stubborn sets ( [12]), sleep sets ( [14]) and interleaving set
temporal logic.

Stuttering Invariance
Given an elementary Petri net N and a formula �, we want
to find whether there exists a run � of N satisfying �. In
general, there are infinitely many runs through the system;
therefore we group these into a finite number of equival-
ence classes, such that the existence of a satisfying run �
implies that every element of the equivalence class ��� sat-
isfies �. Thus we only have to check a finite number of
equivalence classes, and a coarser partition yields a better
algorithm.

To do so, we need a stuttering invariant temporal lo-
gic, i.e., one in which no next-state operator is definable.
The next-operator has always been a topic of emotional
discussions in temporal specification. Most notions of re-
finement of systems will not preserve properties involving
next-operators.

Consider a formula over atomic propositions P �
fp�� ����pkg. Two natural models M and M� are strongly
equivalent with respect to fp�� ����pkg, if they are of the
same cardinality, and for all i � � and all p � fp�� ����pkg
we have wi � I�p� iff w�i � I��p�. A point wi in M is
stuttering w.r.t. fp�� ����pkg, if for all p � fp�� ����pkg we
have wi � I�p� iff wi�� � I�p�. Two models M� and
M� are stuttering equivalent w.r.t. fp�� ����pkg, if the two
models M�

� and M�
� obtained by eliminating all stuttering

states from M� and M�, respectively, are strongly equi-
valent w.r.t. fp�� ����pkg. A formula � is stuttering invari-
ant, if for any two modelsM� andM� which are stuttering
equivalent with respect to the set of atomic propositions of
� it holds thatM� j� � iff M� j� �.

Stuttering invariance allows to group all stuttering
equivalent runs into the same equivalence class, thereby re-
ducing the average complexity of the model checking. Of
course, the reduction will be better if � uses less proposi-
tions. Usually, a given formula mentions only a small sub-
set of the system, allowing the equivalence classes to be
rather large. In particular, all runs of an elementary Petri net
which differ only in the interleaving of independent trans-
itions (to be defined below) are stuttering equivalent with
respect to all formulas not mentioning these transitions or
adjacent places.

Analysis of Elementary Nets
How can we talk about elementary Petri nets? Recall that a
state of the net is just a marking of its places. Thus, a reas-
onable choice seems to be to use the set of places as pro-
positions, where p is true in a state iff place p is marked in
that marking. As temporal operator, we define the reflexive
until:
M� I� wi j� Uo��� �� iff
�j �i � j 	 wj j� � 	 k �i � k � j � wk j� ���

With this reflexive definition, it is no longer possible
to define a next-state operator. (Of course, this spoils the

expressive completeness of the logic...)
When are two transitions independent from one an-

other? Firstly, independent transitions can neither disable
nor enable each other; that is, if t� is enabled in s and s� is
a successor of s with respect to the firing of t�, then t� is
enabled at s iff t� is enabled at s�, and vice versa for t� fir-
ing. Secondly, if t� and t� are both enabled in s, then they
can commute; that is, the state obtained by first firing t� and
then t� is the same as first firing t� and then t�.

However, it is not practical to check these two prop-
erties for all pairs of transitions in all global states of the
system (remember, we wanted to avoid having to construct
all global states). Therefore, we use a syntactic condition
which ensures that some transition is independent from an-
other one.

Call a set T of transitions persistent in s, if whatever
one does from s while remaining outside of T does not af-
fect T . Formally, T is persistent in s iff for all t � T and
all firing sequences t�� t�� ���� tn� t such that all ti �� T there
exists a stuttering equivalent firing sequence starting with t.

If T is persistent, we do not have to consider the fir-
ing of transitions outside of T when constructing the suc-
cessors of the given state in the depth-first-search; there
will be a stuttering equivalent sequence constructed by the
firing of some t � T .

However, this definition still is not effective. There
is no efficient way to compute a minimal persistent set of
transitions for a given state. Therefore, we compute an
approximation. There is a tradeoff between the amount
of time spent in the calculation of minimal persistent sets,
and the reduction of the state space obtained. As a gen-
eral strategy, some simple heuristics will go a long way, and
sophisticated methods don’t add too much.

We start with a single enabled transition T � ftg
and repeat until stabilisation to add all transitions which
can “interfere” with some transition in T . Here “interfere”
means
� can enable or disable, or
� cannot commute with.

Given any marking m, firable transition tf and dis-
abled transition t, we have to find a set of firable transitions
such that the firing of any transition in this set could make
t fire before tf fires. A set NEC�t�m� of transitions is ne-
cessary for t in m, if NEC�t� � ft� j p � t��g for some
p � �t nm. NEC��t�m� is any set of transitions contain-
ing t which is transitively closed under necessity; that is,
for any t� � NEC��t�m� such that t is disabled inm there
exists a setNEC�t��m� of transitions necessary for t� such
that NEC�t��m� � NEC��t�m�.

If t is in conflict with tf , then all transitions in
NEC��t�m� have to be fired as alternatives to the firing
of tf . But, there is still another class of dependent trans-
itions. We want to obtain stuttering equivalence with re-
spect to the atomic propositions in �. Therefore, we have
to take into account that� might fix an order onto the firing
of independent transitions. Usually, � contains only a few
propositions. Call a transition visible for �, if �t � t� con-
tains any place p appearing in �. If t is visible, the firing
order with other visible transitions is important. A visible



transitioncan be regarded to be in conflict withall other vis-
ible transitions. Define the conflict of t by

C�t� � ft� j �t� � �t �� �g � ftg�

The extended conflict of t is just the conflict of t, if t is in-
visible; otherwise, it is the conflict of t plus all other visible
transitions. Now a dependent set DEP �tf �m� of tf is any
set of transitions such for any t in the extended conflict of
tf there exists a set NEC�t�m� � DEP �tf �m�.

Finally, the set of transitions which are fired should be
transitively closed under dependency;
thus, let READY �m� be any (smallest) nonempty set of
firable transitions, such that

DEP �tf �m� � READY �m� if tf � READY �m��

Now, we can prove that for any firing sequence of the
net there exists a firing sequence generated only by firing
ready transitions which is stuttering equivalent with re-
spect to all safety properties of the logic.

Therefore, during the construction of the set of suc-
cessors of a state in the depth first search we can neglect all
firable transitions which are not ready. This can result in a
considerable average case reduction; in fact, for examples
with many concurrent and “almost” independent processes
it can logarithmically reduce the state space which has to be
traversed. Though the worst case complexity of construct-
ing a ready set is cubic in the size of the net, in average ex-
amples it is only linear in the number of transitions.

The above construction can be extended to deal also
with liveness properties. To do so, we need to assure that
whenever a state is reached for the second time, a differ-
ent ready set is constructed, to make sure that no eventu-
ality is delayed infinitely often. For a detailed exposition,
see [15] (of which an extended version can be obtained via
www from the author).

Further Topics

There are several extensions to each of the topics presented
here, and in many areas there is a lot of active research.

For example, it is possible to reduce the size of the sys-
tem by applying certain symmetry collapses and refinement
operations.

To verify infinite state systems, some kind of induc-
tion on state spaces is necessary. What kind of language
is of sufficiently low expressivity to be still decidable, but
allows to specify all “interesting” properties?

Another “hot” item is the verification of real time and
hybrid systems. In real time systems with each transition
a certain time bound or interval is associated, and hybrid
systems allow discrete and continuous transitions from one
state to another.

Furthermore, there is the search for compositional
proof systems, where a proof of the global system can auto-
matically be deduced from the proofs for each parallel com-
ponent against the interface specification.
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