
On-the-Fly Model Checking of Program Runs for Automated Debugging

M. Frey B.-H. Schlingloff
Institut für Informatik Technologie–Zentrum Informatik (TZI–BISS)

Technische Universität München Universität Bremen
Orleansstr. 34 D-81 667 Munich, Germany Bibliothekstr. 1, D-28 359 Bremen, Germany

Abstract
In this paper, an on-the-fly algorithm is developed for

model checking of temporal logic safety properties on par-
tially ordered occurrence net structures. This algorithm is
used for the automated debugging of parallel programs. Dur-
ing the monitoring of a program run, a state action net is
constructed from the program trace. Temporal specifications
are evaluated on-the-fly with respect to this net. The speci-
fications can express e.g. that an error has occurred, or that
certain control locations have been reached. When the speci-
fied condition can occur, the execution is halted. Since we use
a partial order logic, specification violations can be detected
even if they did not actually occur in the particular interleav-
ing of the program run.

1 Introduction
Model checking is an automated technique which has suc-

cessfully been used to verify small and medium sized finite-
state systems. Because of the state explosion problem, ver-
ification of large parallel and distributed programs is often
impossible. Generally, the number of reachable states is ex-
ponential in the number of state variables of the system. Es-
pecially, often the size of the input space of a parallel or dis-
tributed algorithm is too large for a complete traversal. The
input space is defined by the number of input variables and
their ranges. When a system has n input variables, each of
which has domain D, then the size of the input space is jDjn.
For example, in a sorting algorithm for a field of ��� inte-
ger variables, where each integer is represented by �� bits,
the size of the input space is �������� � ������. Even with
symbolic methods, automatic verification of the unabstracted
sorting algorithm is not possible.

A common practice to increase the reliability of such al-
gorithms is testing. Several commercial tools exist for the
systematic generation and execution of test cases. In these
tools, the expected result of each test case usually is specified
by a table. For parallel and distributed reactive systems this is
not appropriate, since the correctness not only depends on the
functional value, but also on the relative order of events. Re-
cently, a number of researchers [12, 4, 13] have proposed test-

ing based on formal specifications. In this approach, for each
test case the result of the program run is checked whether it
matches a formal description in some specification language.

The “result” of a reactive program run often is modelled as
a finite or infinite sequence of events. For parallel programs,
it is sometimes more appropriate to model the program be-
haviour as a partial order. Model checking can be used to de-
termine whether a specific property formulated in an appro-
priate temporal logic holds for the given program run. This
checking can either be done after termination or abortion of
the program, or “on-the-fly” during the execution.

Several authors [3, 2] proposed to use formal specifications
also for the debugging of parallel programs. In contrast to
testing, during the debugging process it is possible to observe
and modify internal variables of the system. Model checking
can be used to determine the possible causes of an error. Hy-
potheses about the causes of an error are specified in temporal
logic. If the hypotheses are not satisfied, a counter example is
generated to explain why the specification fails.

A first implementation of this idea was integrated by Har-
ter, Heimbigner and King in the debugging tool IDD [11]. Re-
quirements on the sequence of events of handling a common
communication device of a distributed system were specified
in a temporal interval logic. These requirements were auto-
matically checked during runs of the system. Goldszmidt,
Yemini and Katz [10] used a linear time temporal logic for
the specification of debugging assumptions. Events occurring
during a run of the system are recorded together with a time
stamp. Then the linear sequence of events, where the events
are totally ordered by their time stamp, is used for model
checking.

Both of the above approaches use a linear representation of
parallel system runs. The ordering of events by time stamps
introduces dependencies between events, which are not in-
herent in the run. For example, assume that the specification
says that event A should happen before event B. If there are
causally independent occurrences of A and B in a run, where
by chance A’s time stamp smaller than that of B, then a linear
time approach will not detect the possible error of B happen-
ing before A.



Therefore, Garg and Waldecker [9] use partially ordered
models to debug distributed program runs. They propose an
efficient algorithm for automatic model checking of a limited
temporal logic during the program run. Thus, some errors can
be detected even if they do not occur in the arbitrary interleav-
ing of independent events during the program run. Frey and
Weininger [8, 5] and Frey and Oberhuber [7] extend this ap-
proach to the full partial order temporal logic of Reisig[14].
The corresponding models are special kinds of finite causal
nets, and the logic describes properties of global states of
these models. Since models must be finite, model checking
is applied “post mortem”. To debug nonterminating reactive
programs, the execution is aborted after some random time
interval.

In this paper, we extend the results of [5] to allow model
checking of (potentially) infinite runs “on-the-fly”. Thus, the
debugging process can run in parallel to the system under de-
velopment. Execution is halted when an error is found, and
variable values can then be inspected and modified. We give
conditions for formulas which can be checked during the pro-
gram run, and develop an on-the-fly algorithm for the eval-
uation of these formulas on partial order models which are
generated by the program run.

The paper is organized as follows: Section 2 gives a short
overview of the basic definitions and results of [5]. In Sec-
tion 3, we exhibit conditions for the monitoring process and
properties for the temporal logic specifications such that the
debugging process can be conducted on-the-fly. In Section 4,
we describe a new model checking algorithm for this on-the-
fly debugging of program runs. Finally, Section 5 summarizes
the results and gives a short outlook on further work.

2 Debugging by Model Checking
Figure 1 shows an overview of our approach [5] for check-

ing whether an execution of a parallel program satisfies a tem-
poral logic specification.

parallel program

trace SAN
(state action net)

specificationtest case

model checking
monitoring

Figure 1. Specification-based debugging

We are given a parallel program, a test case of the pro-
gram, and a temporal logic specification of properties for this
test case. We execute the program and record a trace of this
execution. Whenever during the test run synchronizations,
communications, or accesses to variables are taking place,
whenever executions of methods are starting or ending, and

whenever new threads are generated or terminated, informa-
tions about these events is included in the trace. If the exe-
cution of the program is nonterminating, we abort it as soon
as the trace reaches a certain length. The trace is then used to
generate a special causal net called state action net, which is
an abstract model of the program run. We then apply model
checking to determine whether the specification is satisfied
by the state action net. If we find that the specification is not
valid, we exhibit the events which lead to the fatal situation.

The construction of a partial order model from the linear
trace gives an important advantage. Only those dependen-
cies between threads are included in the model which repre-
sent synchronizations in the program run. Thus, errors can be
detected even if they did not actually occur in the particular
scheduling or interleaving of the program run.

2.1 State Action Nets
State action nets (SANs) are a special kind of finite causal

nets, consisting of nodes and transitions. In SANs, transitions
are called actions. Each action represents an atomic step in
the program, i.e., the execution of a single program statement
or a set of synchronized program statements. SAN nodes are
called local states. Each local state is a description of one
thread of control at a particular moment in the execution of
the program. It contains the identification of the thread, the
name of the method executed at the preceding action, and the
values of variables in this thread.

Formally, a state action net is a tuple N � �S�A�R�,
where

� S is a nonempty and finite set of local states,
�A is a nonempty and finite set of actions, and
�R � �S�A�� �A�S� is the causal dependency relation.

The causal dependency relation satisfies the following condi-
tions:

� the transitive closure of R is acyclic, and
� the preset and postset of each local state contains at most

one action.

st=/S.put

st=/I.put/S.update

st=/S.get

st=/I.get/S.update

st=/T.put

st=/T.get

st=/I.put/T.update

st=/I.get/T.update

st=/I.put/I.update

st=/I.get/I.update

Figure 2. A state action net

Figure 2 shows an example of a state action net. At each
local state the executed methods are annotated. The variable
st contains all executed methods in the order in which they



have been called. The prefixes “S.” and “T.” indicate that the
execution of a method is starting or terminating, respectively.
Otherwise, the prefix is “I.”.

State action nets can be generated from traces, which are
recorded during a particular program run. Each traced event
consists of an event name and a set of parameters. In order
to relate an event to a specific thread, each event contains the
identification of the thread as a parameter. Further parame-
ters describe dependencies between pairs of events of differ-
ent threads. For example, the generation of a thread can be
described by two events: the event create thread(x.i)
for the creator, and the event new thread(x.i) for the
created thread. Both events contain a parameter x.i which
uniquely identifies this generation of threads. This unique
identification is done by the thread identification x of the cre-
ator and a unique number i with respect to the creator.

Other events are traced whenever shared variables are gen-
erated, deleted, read or written. Synchronizations are also de-
scribed by read and write access to shared variables, together
with an event describing that the read access was done dur-
ing examination of a waiting condition. Furthermore, there
are events which describe the entering and leaving of method
bodies, and events to describe the beginning of the execution
of a new statement.

SANs are generated from traces by examining the traced
events and reconstructing from them causal dependencies in
the program run. Sequential dependencies between actions
and local states within a single thread are generated accord-
ing to the order in which they occur in the trace. Depen-
dencies between actions of different threads are generated by
synchronizing the traced events of both threads according to
the causal dependency within the program run. For example,
each event which describes the reading of a variable value is
causally dependent on the event where this value was writ-
ten. Thus, in the SAN a dependency is introduced between
the corresponding actions.

Since the SAN of a program run is generated by a linear
traversal of the program trace, it can be generated on-the-fly,
during the program run. More information about traces and
the generation of SANs can be found in [7].

2.2 Temporal Logic
Our temporal logic provides means to express local prop-

erties of single threads in an execution, as well as temporal
dependency operators. For the intended application in debug-
ging, we extended classical temporal logic in three ways:

� The logic consists of two tiers: a local and a global tier.

– The local tier describes requirements on local states.
We can express that variable values satisfy specific
predicates and relations within a local state, for exam-
ple, that x � � or x � y. Moreover, the predicate in.m
expresses that a methods m is executed in the action
preceding the local state, and the starting state and the

terminating state of the execution of m can be distin-
guished by the predicates start.m and term.m, respec-
tively.
Relational terms and predicates can be combined using
the logical operators not and and.

– The global tier has formulas of the local tier as atomic
formulas. In addition to boolean operations it contains
the temporal connectives next, sometime and until.

� To handle unknown variable values we use a three-valued
interpretation. A formula containing a variable whose
value is not visible in a certain state has the truth value
undefined. The semantics of boolean operations is given
by Lukasiewicz’ classical three-valued interpretation of
boolean algebra[15].

� To describe requirements of programs with dynamic gen-
eration of threads, we use thread identifier variables
(TIVs) as placeholder for threads. Each atomic formula
of the global tier is prefixed with a TIV. Formulas can be
relativized by equality and other conditions between TIVs:
(p if cond�t�t’�). The semantics of TIVs is defined by
a thread identifier variable assignment (TIVA) which as-
signs a thread T�t� in the program run to every TIV t.

In section 3 we introduce on-the-fly model checking of pro-
gram runs with our temporal logic. Therefore, we give the
formal definition of the three-valued semantics of the global
tier. A slice is a maximal set of local states which are not
causally ordered. The step-relation between slices is defined
by firing of transitions. Formally, the global model of an SAN
N is defined by GN � �S�R� sI � sT �, where S is the set of
all slices of N , and R � S � S describes the firing of ac-
tions. Here �l� l�� � R, if an action a exists, which is activated
in l and l� is generated from l by firing a. The initial slice is
sI , and the terminal slice is sT . The existence of initial and
terminal slice is guaranteed since the slice-graph is a finite
lattice.

For a given slice l and TIVA T, a formula p of the global
tier can be either true (�l�T� j� p), or false (�l�T� �j� p)
or undefined (�l�T� j�� p). Formally, these three relations are
defined as follows:

� �l�T� j� t � pl, if a local state s � l exists where T�t� �
tid�s�, and s j� pl; �l�T� �j� t � pl, if s � l exists where
T(t)= tid�s�, and s �j� pl; �l�T� j�� t � pl, otherwise.

� �l�T j� not p if �l�T� �j� p; �l�T� �j� not p if �l�T� j�
p; �l�T� j�� not p, otherwise.

� �l�T� j� (p and q) if �l�T� j� p and �l�T� j� q; �l�T� �j�
(p and q) if �l�T� �j� p or �l�T� �j� q; �l�T� j�� (p and q),
otherwise.

� �l�T� j� next p if a slice l� exists where �l� l�� � R and
�l��T� j� p; �l�T� �j� next p, otherwise, i.e., if for all
slices l� with �l� l�� � R either �l��T� �j� p or �l��T� j�� p.

� �l�T� j� sometime p if a slice l� exists such that �l� l�� �
R
� and �l��T� j� p; �l�T� �j� sometime p, otherwise.



� �l�T� j� (p until q) if a slice l� exists where [�l� l�� � R�,
and �l��T� j� q], and for all slices l�� where [�l� l��� �
R� and �l��� l�� � R�], either �l���T� j� p, or �l���T�

j�� p; �l�T� �j� (p until q), otherwise.
� �l�T� j� (p if cond�t�t’�) if �l�T� j� p and
cond�T�t��T�t’��; �l�T� �j� (p if cond�t�t’�) if �l�T� �j� p
and cond�T�t��T�t’��; �l�T� j�� (p if cond�t�t’�), other-
wise.

According to this definition, all formulas next p, sometime p
or (p until q) are either true or false in any slice l and TIV T.
A formula p is defined to be valid in an SANN , if always p is
true in the initial slice of N , where always p is not sometime
not p. Since the truth value of always p in any slice is not
undefined, the notion of validity in state action nets is two
valued: A formula p is valid in an SAN N if for all l and T of
N either �l�T� j� p or �l�T� j�� p.
For example, consider the formula

((t�:(in.get and term.update) before
t�:(in.put and start.update)) if t� 	� t�)

Here (p before q)=not (not p until q). The formula speci-
fies a precedence order on executions of the method update
which has to be true if update is executed in parallel by sev-
eral threads. It turns out that this formula is not valid in the
SAN of Figure 2. In the next section, we describe an algo-
rithm for automatically checking such properties.

2.3 Model Checking
The model checking procedure of [5] is a global and

bottom-up evaluation of formulas. The checking is done by
calculating all slices and TIVAs in which the formula is false.
The formula is valid if the result is empty; otherwise the cal-
culated slice and TIVA indicates where the formula is not sat-
isfied. Since it is difficult to calculate slices and TIVAs in
which subformulas of the given formula are undefined, we
avoid the negation during model checking by further transfor-
mation of the input formulas. We use the dual temporal op-
erators or, all next, always, and before and replace negated
subformulas by the respective dual formulas. For example,
not sometime p is replaced by always not p.

The slices are calculated bottom-up using the syntactical
structure of the negated and transformed formula. This syn-
tactical structure can be described by the syntax tree. To avoid
the calculation of slices in which subformulas are undefined,
we slightly change the syntax tree into a formula tree. The
difference between both trees is that a child node of a node
labelled by always p, all next p or (p before q) is labelled by
the transformed formula logically equivalent to not p. Leaf
nodes of the formula tree may contain arbitrary formulas of
the local tier. Figure 3 shows the formula tree of our example
formula.

In [5], model checking is done “post mortem”, after gener-
ating the whole SAN of the program run. Therefore, the for-

t1:(not (in.get and
term.update))

t2:(in.put and 
start.update)

:=q

((p before q) if t1!=t2)

(p before q)

:=not p

Figure 3. A formula tree

mula tree can be evaluated bottom-up. All slices and TIVAs
of the child nodes of a node in the formula tree have to be
calculated before the slices and TIVAs of a node can be cal-
culated. To do so, we need the global structure of the net. The
generation of the SAN can be done on-the-fly during the pro-
gram run. For checking infinite runs on-the-fly, only part of
the global structure is available. Therefore it is necessary to
restrict the logic appropriately.

3 Safety Requirement
We want to extend the post mortem model checking ap-

proach to reactive programs with potentially infinite exe-
cutions. We propose to execute the program an unlimited
amount of time and to check the validity of the formula for
this run on-the-fly. This means that model checking can be
done simultaneously during the program run. If a slice and a
TIVA is generated for the root node of the formula tree, the
run is stopped and user interaction can take place. Unfortu-
nately, not all properties can be checked in this manner.

As described in subsection 3.1, SANs can be generated on-
the-fly. For our purposes, this creation has to satisfy the fol-
lowing two properties: Firstly, the information in local states
must be completed before successors of the local state are
generated. Otherwise, the valuation of formulas of the lo-
cal tier may change depending on the changing values of the
state. Thus, we could not guarantee that properties which are
false will be remain false during all continuations of the run.
Secondly, any continuation of an execution must lead to an
extension of the SAN, in which all parts of the previously
generated net are unchanged. Otherwise, new slices could be
introduced in the old part of the net. This could lead to a
change in the sequences of slices of the old part which could
affect the valuation of formulas.

Both conditions on the generation of nets can be fulfilled in
the generation of state action nets, if all traced variable values
belong to different threads of the program. This condition
is trivially satisfied in message passing programs. In shared
memory programs, we can trace “local copies” of variables
shared between several threads.

In addition to the conditions on SANs, we now exhibit a
condition for the properties which are to be model checked
on-the-fly. Only those properties can be examined which, af-
ter they are found to be false in a slice and a TIVA during part
of the run, can not become true by the same slice and TIVA



in a continuation of this run. A formula p is called a safety
property, if for every SAN N ,

N j� p if �
M � N���N � � M� N � j� p

In this definition (which originates from [1]), M is an initial
subnet of N , and N � is any continuation of this subnet M . In
other words, p is a safety property if for every net not satisfy-
ing p there is a slice and TIVA such that �l�T� �j� p and there
is no extension N � such that �l�T� j� p in N �. Stated dif-
ferently, for every net dissatisfying p something “bad” must
have happened after some finite amount of time which cannot
be remedied by any future good behaviour.

For linear and branching time temporal logics, there are
various syntactical characterizations of safety and liveness
properties. However, these characterizations are not appropri-
ate for our logic, since it is interpreted on partial order struc-
tures.

All formulas describing properties of finite parts of an in-
finite computation are safety-properties. If the length of the
finite part is bounded by the property, then only those slices
of a net extension have to be checked for which a succeeding
sequence of slices exists which is bounded by the property. In
particular, each formula of the local tier is a safety property.

If p is a safety property, then the formula always p, which
is equivalent to not sometime not p, is a safety property. In
general, sometime p is not a safety property: if in a net no
slice exists in which p is satisfied, then sometime p is false
in the initial slice. However, if an extension is constructed in
which p is true, then sometime p is true in the initial slice.
Similarly, the formula (p before q) is a safety property, but (p
until q) is not a safety property.

As an example for a formula p such that neither p nor not
p is a safety property, consider p � sometime (q and always
q). Since sometime q is not a safety property, p is not a safety
property. The formula not p = always (not q or sometime not
q) is also not a safety property: always sometime q may be
true in the initial slice of a net extension, because the terminal
slice of the extension is the only one satisfying not q. In all
initial subnets, always (not q or sometime not q) is false,
because in all of its slices q is satisfied.

To describe the formulas specifying safety properties, we
characterize the set of formula trees of the negated and trans-
formed formulas. A negated and transformed formula in the
formula tree is called slice-stable, if for every SAN N , for
every slice l and for every TIVA T of N

�l�T� j�N p if 
M � N�l�T� j�M p

The relation j�N is defined with respect to the SAN N ; j�M

is defined with respect to an extension M of N . Formulas (p
and q), (p or q), next p, all next p�, sometime p and (p� until
q) are slice-stable if p and q are slice-stable and p� specifies a
property of a finite part of the SAN. If p is slice-stable, then

its negation specifies a safety property. Thus, slice-stability
is a sufficient criterion for the algorithm described in the next
section to be applicable.

4 On-the-Fly Model Checking
In this section, we give a parallel algorithm for model

checking safety properties on-the-fly. The evaluation of the
specification can run in parallel with the program to be de-
bugged, and independent subformulas can be evaluated in par-
allel.

In principle, the bottom-up model checking procedure de-
scribed in section 2.3 could be applied. Whenever a new sub-
net is generated during the construction of the SAN from a
trace, we could evaluate the formula tree from scratch on this
subnet. However, with this procedure, for each net extension
and each node of the formula tree all slices and TIVAs cal-
culated in the previous net extension would have to be recal-
culated. This is not necessary: we can reuse the information
from the previous subnet. For each extension and formula-
tree node we have to deal only with those slices, which arise
from the addition of further local states to the net.

For each node and each new slice we have to determine
whether the respective subformula is false in the slice. In
contrast to the post-mortem evaluation of the SAN, slices and
TIVAs of all children of a node can be calculated at the same
time. Conceptually, all nodes of the formula tree can be exam-
ined independently and, on a multiprocessor system, in paral-
lel. This can be done by starting a thread for each node which
calculates the slices of this node. To avoid recalculation, for
each node we use a queue of slices and TIVAs, in which they
are inserted in a consecutive order.

If all nodes are processed independently, it is necessary to
synchronize the evaluation. Version numbers are assigned to
each newly generated net extension. For each node, evalua-
tion of the slices of a new net extension can begin when all
child nodes have finished the calculation of these slices.

The following method describes the synchronization pro-
tocol for each node:

thread calc slices�n�
pversion �� �;
while (not san.terminated and

version�san.last version)
pawait(version � san.version);
await(version � n.childs.version);
calc operation(n,version	��;
version		;xx

For each node n a new thread is generated executing the
method calc slices. The object san contains the state action
net, with a boolean variable terminated which indicates when
the program run is interrupted or terminated. In this case the
variable last version contains the final version number of the



program run. The variable version contains the version num-
ber of the last generated net extension.

The first statement of the loop waits for the generation of
a new net extension. The second statements enforces wait-
ing until all child nodes have finished calculating the slices
of the new net extension. Then, the method specified by the
logical operator in the node is called. Additional slices and
TIVAs of the net extension defined by the value of version	�
are calculated. If a slice and TIVA falsify the subformula of
a node, then they are inserted in the corresponding queue. Fi-
nally, version is incremented to signal the parent node that the
slices of the net extension are calculated for the node n.

In the following we describe the methods which are called
by calc slices to calculate the new value of the queue of a
node. For space reasons, cases sometime p, always p, (p
before q), and (p if cond�t� t��), which are similar to other
cases, are omitted.
4.1 Nodes labelled with atomic formulas

Leaf nodes of the formula tree are labelled with atomic for-
mulas. When the method calc slices is called for a leaf node,
there are no waiting conditions for the child nodes. After a
new net extension is generated, the method calc leaf is called
with node and version number of the net extension as param-
eters.

calc leaf�n� version�
pfor all s � san�new states
version� do

for all s� � satisfying states do
pif �s jj s�� then
psl �� states�slices�fs� s�g� san�all states
version���
for all l � sl do
n�queue
version� �� n�queue
version��

f�l�make tiva�s��tid� n�var��g;x

if check ll�s� then
pnew sat states �� new sat states � fsg
sl �� states�slices�fsg� san�all states
version��;
for all l � sl do
n�queue
version� �� n�queue
version��

f�l�make tiva�s�tid� n�var��g;x

satisfying states �� new sat states;xx

New slices and TIVAs can arise from two different sources.
Firstly, new slices have to be built if the extension contains
a state which is concurrent (not causally ordered) to a local
state of a previous extension. Secondly, if the extension con-
tains a state in which the local formula of the node is satisfied,
all slices with this state have to be added. Therefore, the leaf
node contains a variable satisfying states which contains all
states of previous extensions in which the formula of the node
is satisfied. The variable san.new states is an array of sets of
states containing the new states of all extensions. The variable
san.all states is also such an array of sets of states containing

all local states of a version. The method states2slices calcu-
lates all slices which must contain the states of the first param-
eter, and all other states of the slices are states of the second
parameter. The method make tiva generates the TIVA which
assigns to the first parameter a TIV of the second parameter.
n.var is the set of TIVs of the node n, and s�.tid is the thread
identification of the local state s�. Method check ll�s� checks
whether in the local state of the parameter the formula of the
node is satisfied.

4.2 Nodes labelled with (p and q)
Slices of a node labelled with (p and q) are calculated by

an intersection of slice sets of both nodes. This intersection
has to take care of the TIVA associated with a slice.

simple and�varp� varq � slp� slq� slres�
pfor all �l�T� � slp do

for all �l��T�� � slq ) do
if l � l� and comp�T�T�� varp � varq� then
pT
 � merge�T� varp�T

�� varq�;
slres �� slres � �l�T
�;xx

The parameters of simple and are the set of variables and the
set of slices and TIVAs of both child nodes. To calculate the
intersection, it has to be checked whether the TIVA of the
slice of one child node and the TIVA of the slice of the other
child node can be merged together. This is similar to the cal-
culation of a most general unifier in automated theorem prov-
ing. We have to check that no TIV exists to which both TIVAs
assign a different thread identification. This check is done
by the method comp. The merging of TIVAs is done by the
method merge.

For an on-the-fly generation of the slices of nodes labelled
with (p and q) it is not sufficient to calculate the intersection
of the new slices of one extension. One of the child nodes
could be the node of a temporal operator. A new slice can be
generated for a new extension even if the slice itself did oc-
cur in prior extensions. As an example, consider the formula
sometime p: If a slice of the new extension satisfies p, all
slices which are predecessors of it satisfy sometime p. Some
of these slices can also be slices of prior extensions. This
leads to the following method for an on-the-fly calculation:

calc and�n� version�
pn�childp�slice set �� n�childp�slice set�

n�childp�queue
version�;
n�childq�slice set �� n�childq�slice set�

n�childq�queue
version�;
simple and�n�childp�var� n�childq�var�

n�childp�queue
version�� n�childq�slice set� sl�;
simple and�n�childp�var� n�childq�var�

n�childp�slice set� n�childq�queue
version�� sl��;
n�queue
version� �� sl � sl�;x



The method consists of two symmetrical parts, where each
part calculates the intersection between the new slices of one
node and all slices of the other node. It can be easily general-
ized to deal with arbitrary finite conjunctions.

4.3 Nodes labelled with (p or q)
The slices and TIVAs of a node labelled with (p or q)

are the union of the slices and TIVAs of the respective child
nodes. To calculate this union, TIVAs have to be generated
which assign TIVs to each variable of the respective subfor-
mula. The union is calculated by the following method:

simple or�varp� varq � tivap� tivaq� slp� slq � slres�
pfor all �l�T� � slq do

for all T� � tivap do
if comp�T�T�� varp � varq� then
pT
 � merge�T� varp�T

�� varq�;
slres �� slres � �l�T
�;x

for all �l�T� � slp do
for all T� � tivaq do
if comp�T�T�� varp � varq� then
pT
 � merge�T� varp�T

�� varq�;
slres �� slres � �l�T
�;xx

The parameters tivap and tivaq contain the possible TIVAs for
the formula p and q of both child nodes. For on-the-fly model
checking the following sources for new slices and TIVAs have
to be taken into account: First, new identifications for thread
identifiers can occur in the new net extension. TIVAs of prior
extensions in one child nodes have to be merged with TIVAs
containing at most one new thread identification. Second, new
slices of the new extension in the child nodes may exist. For
these slices the union has to be calculated. The following
method takes both sources into account:

calc or�n� version�
ptivap � generate tiva�san�new tiv
version��

san�all tiv
version
 ��� n�childp�var�;
tivaq � generate tiva�san�new tiv
version��

san�all tiv
version
 ��� n�childq�var�;
simple or�tivap� tivaq � n�childp�slice set�

n�childq�slice set� sl�;
tivap � generate tiva�empty� san�all tiv
version��

n�childp�var�;
tivaq � generate tiva�empty� san�all tiv
version��

n�childq�var�;
simple or�tivap� tivaq � n�childp�queue
version��

n�childq�queue
version�� sl��;
n�queue
version� �� sl � sl�;
n�childp�slice set �� n�childp�slice set�

n�childp�queue
version�;
n�childq�slice set �� n�childq�slice set�

n�childq�queue
version�;x

The variable san.new tiv is an array of sets of thread identifi-
cations which contains for each net extension the new thread
identifications. Likewise, san.all tiv is an array of sets of
thread identifications which contains all thread identifications
of each net extension. The first part of the method calculates
the slices and TIVAs induced by new thread identifications.
The second part of the method calculated the slices and TIVAs
induced by new slices calculated for the child nodes.
4.4 Nodes labelled with next p

The slices of a node labelled with next p are calculated by
generating the predecessors (w.r.t.R) of the slices of the child
node. For on-the-fly model checking, new slices of the child
node are the only source of new slices in the parent node. This
holds since the TIVA of the predecessor is the same as that of
the slice of the child node. Furthermore, new extensions can-
not insert new actions which are predecessors of a local state
in a slice from a prior extension. Assuming that the predeces-
sors of a slice are calculated by the method pred slices, on-
the-fly model checking is performed by the following method:

calc next�n� version�
pfor all �l�T� � n�child�queue
version� do

for all l� � pred slices�l� do
n�queue
version� �� n�queue
version� � �l��T�;x

4.5 Nodes labelled with all next p
To calculate the slices and TIVAs for all next p, the com-

plement of the predecessors of the slices of the child node
satisfying not p has to be calculated.

simple all next�slall� tivaall� sl� slres�
pfor all �l�T� � slall � tivaall do
pC �� true;
for all �l��T�� � sl do
if T� � T then
for all l�� � pred slices�l�� do
if l � l� then C �� false;

if C then slres �� slres � �l�T�xx

The parameters slall and tivaall contain all slices and all
TIVAs. sl contains the slices and TIVAs of the child node.
When calculating the difference on-the-fly, it can not be cal-
culated for the whole extension because of temporal relations
of temporal operators. For example, assume that the subfor-
mula to be checked is all next p, where p is an atomic for-
mula. In this case only those slices can be examined, which
contain no local state which is also a local state of the termi-
nating slice of the net extension. Otherwise, the next exten-
sion could contain a successor slice l of a slice in the differ-
ence of the actual net extension w.r.t.R such that p is satisfied
in l. Therefore, the method calc all next has an additional
parameter length which depends on the formula tree and de-
scribes how many successor slices which do not contain any



local state together with the terminating slice, a slice has to
have to be included in the result.

Two sources for new slices and TIVAs exist. Firstly, ex-
tending the net can lead to slices which do not satisfy the
above length-condition on slices for prior extension but do
satisfy the condition for the new extension. Secondly, new
thread identifications can lead to new TIVAs for which all
slices of prior extension are slices and TIVAs of the node.
Both sources are calculated as follows:

calc all next�n� version� length�
pn�child�slice set �� n�child�slice set�

n�child�queue
version�;
sl �� generate slices�san�final slice
version
 ���

san�final slice
version�� length�;
tiva � generate tiva�empty� san�all tiv
version��

n�var�;
simple all next�sl� tiva� n�child�slice set� sl��;
sl �� generate slices�sI � san�final slice
version��

length�;
tiva � generate tiva�san�new tiv
version��

san�all tiv
version
 ��� n�var�;
simple all next�sl� tiva� n�child�slice set� sl��;
n�queue
version� �� sl� � sl�;x

4.6 Nodes labelled with (p until q)
There is only one source of new slices for a node labelled

(p until q): The slices l and TIVAs T of a new extension of
the child node labelled with q can lead to new slices which
are a subset of the predecessors of l w.r.t.R�.

The subset is given by all slices l� and TIVAs T� where T�

is a TIVA for all TIVs of the node and it is an extension of
T. Furthermore, no slice l�� exists between l and l� such that
�l���T�� is an element of the child node labelled with not p.
To check this condition, it is not necessary to know the slices
and TIVAs of the child node labelled with not p of further
net extensions, because only those slices of the child node
which are predecessors of l are necessary. New predecessors
of l cannot be generated in further net extensions because of
the conditions on state action nets stated in section 3. The
following method calculates the slices and TIVAs of a node
labelled with (p until q) on-the-fly:

calc until�n� version� length�
pslall �� gen slices�lI � san�final slice
version�� length�;
tivaall �� generate tiva�empty� san�all tiv
version��

n�var�;
n�childp�slice set �� n�childp�slice set�

n�childp�queue
version�;
for all �l�T� � n�childq�queue
version� do
for all (l’,T�� � slall � tivaall do
if comp�T�T�� n�childq�var� and �l�� l� � R�

then
pC �� true;

for all �l
�T
� � n�childp�slice set do
if comp�T��T
� n�childp�var� and
�l�� l
� � R� and �l��� l� � R�

then C �� false;
if C an l � slall then
n�queue
version� �� n�queue
version� � �l��T��;xx

4.7 Results
On-the-fly model checking allows to check potentially infi-

nite executions of concurrent and distributed programs. Mon-
itoring of traces, generation of state action nets and model
checking can be done simultaneously in a pipelined execution
order. If a slice and a TIVA is generated in the root node of
the formula tree, the specification is not valid for this run. In
this case, the program run is stopped, and the user has several
choices:

� variable values, control locations and generated slices can
be inspected to find the cause of an error,

� values and locations can interactively be changed by as-
signing new values to them, and

� the program run can be resumed with the same specifica-
tion and history, to reach the same condition again, or

� the specification can be changed, the history purged and
the execution restarted from the current state.

If no slice and TIVA falsifying the formula is found, the pro-
gram could run an unlimited amount of time. However, for
each program event all slices containing this event have to
be stored. Thus, an unlimited amount of memory would be
needed for this purpose. Therefore, the program can only be
run for a limited number of steps. If no error occurs within
this time, the program has to be stopped and the history must
be purged.

A typical application scenario is as follows. Assume that
the user wants to debug a parallel sorting algorithm. There
is one thread Ts executing a method split which splits the in-
put into even and odd numbers, and two threads Te and To
executing a method sort to sort the even and odd numbers,
respectively. To distinguish both threads sort has a boolean
parameter is e which has the value true for Te and the value
false for To during the execution of sort. When Te and To are
finished, the resulting sequences are merged by Tm. To con-
trol that the splitting is done correctly, the user would specify

(t�:((start.sort and is e) � even(input)) and
t�:((start.sort and not is e) � odd(input))).

Thus, whenever e.g. the thread for even numbers gets an odd
input the execution is stopped. The cause of this error can then
be found by examination of the sequence of actions leading to
this situation. The following formula assures that Te must be
terminated before Tm is started:

(t:(start.split)� (t�:(term.sort and is e)
before t��:(start.merge))).



If the synchronization between Te and Tm is faulty, the pro-
gram is stopped on the preliminary start of the merging pro-
cess. To debug the merging, the user would halt the program
when both separate sorting processes are finished:

not(t�:(term.sort and is e)
and (t�:term.sort and not is e)).

The thread for merging can be advanced a single step with the
specification

(t:(start.merge)� all next t:(term.merge)).

The whole program can be advanced n steps with the follow-
ing formula:

(t:(start.split)� all nextn t�:(term.merge)).

Since all of these specification formulas follow a fixed
scheme, we are currently investigating the possibility of stan-
dard templates for them.

5 Conclusion and Further Work
We have presented an efficient algorithm for on-the-fly

model checking of partial order structures. With this algo-
rithm, parallel program runs can be automatically debugged.
The execution is constantly monitored with respect to the
specification. The use of a high-level temporal logic lan-
guage allows a flexible use of the debugger. Invariance condi-
tions can be supervised, concurrent simultaneous or alterna-
tive breakpoints can be set, and specific steps can be executed
by appropriate formulas.

When the run stops at a specified breakpoint, the user can
examine whether an error has occurred. At the moment, this
check has to be performed by a manual inspection of slices. It
would be nice to have a “replay” facility which visualizes the
traced run and allows to step backward and forward within
this partial order.

Another useful extension could be the integration of as-
signments in the specification language. With such an exten-
sion, variable values could be automatically changed in de-
pendence on certain temporal logic conditions. On one hand,
this would allow to modify the behaviour of the program with-
out changing and recompiling the code. On the other hand,
input values and test cases could be specified by logical for-
mulas. This would unify and simplify the user interface of the
debugger.

We are currently implementing our algorithm for the par-
allel programming language ParMod-C [16]. One of the main
limiting factors is the size of the slice sets for each node in
the formula tree. Therefore, we need a good representation
for large sets of slices. In [6], a symbolic representation for
such sets is developed. However, some changes are necessary
to adopt this representation to the present case. Finally, we
want to include algorithms proposed by Garg and Waldecker
[9] to improve the efficiency of our method.

References
[1] B. Alpern and F. Schneider. Defining liveness. Information

Processing Letters, 21:181–185, oct 1985.
[2] F. Baiardi, N. D. Francesco, and G. Vaglini. Development of

a Debugger for a Concurrent Language. IEEE Trans. on Soft-
ware Engineering, 12(4):547–553, April 1986.

[3] P. Bates and J. Wileden. High-Level Debugging of Distributed
Systems: The Behavioral Abstraction Approach. Journal of
Systems and Software, 3(4):255–264, 1983.

[4] R. Carver and K. Tai. Test sequence generation from formal
specifications of distributed programs. In Proc. 15th Int. Conf.
on Distributed Computing Systems (ICDCS’95), Vancouver,
Canada, 30. May–2. June 1995, pages 360–367, Los Alami-
tos, CA, 1995. IEEE Computer Society Press.

[5] M. Frey. Debugging parallel programs using temporal logic
specifications. In I. Jelly, I. Gorton, and P. Croll, editors, Soft-
ware Engineering for parallel and Distributed Systems, pages
122–133, London, March 1996. IFIP, Chapman & Hall.

[6] M. Frey. Using slice sets for model checking causal nets. In
Proc. of the 5th Int. Workshop on Verification In New Orienta-
tions (VINO’96), Rottach-Egern, 16.–19. May 1996, pages 14–
26. Institut für Informatik, TU München, Bericht TUM-I9720,
1997.

[7] M. Frey and M. Oberhuber. Testing and debugging parallel and
distributed programs with temporal logic specifications. In 2nd
Int. Workshop on Software Engineering for Parallel and Dis-
tributed Systems, Boston, MA, 17.–18. May 1997, pages 62–72,
Los Alamitos, CA, 1997. IEEE Coputer Society.

[8] M. Frey and A. Weininger. A temporal logic language for
debugging parallel programs. In Proc. 20th EUROMICRO
Conference, Liverpool, England, pages 170–178. Euromicro,
IEEE, September 1994.

[9] V. Garg and B. Waldecker. Detection of weak unstable predi-
cates in distributed systems. IEEE Trans. on Parallel and Dis-
tributed Systems, 5(3):229–307, March 1994.

[10] G. Goldszmidt, S. Yemini, and S. Katz. High-level language
debugging for concurrent programs. ACM Trans. on Computer
Systems, 8(4):311–336, Nov. 1990.

[11] P. Harter, D. Heimbigner, and R. King. Idd: An Interactive Dis-
tributed Debugger. In 5th Int. Conf. on Distributed Computing
Systems, Denver, Colorado, pages 498–506, 1985.

[12] M. Hennessy. Concurrent testing of processes. Acta Informat-
ica, 32:509–543, 1995.

[13] J. Peleska. Test automation for safty-critical reactive systems.
Technical report, 3rd Winter School on Formal and Applied
Computer Science, 1.–12. July 1996, University of Cape Town,
Department of Mathematics and Applied Mathemathics and
Department of Computer Science, Kapstadt, Südafrika, 1996.

[14] W. Reisig. Temporal logic and causality in concurrent systems.
In F. Vogt, editor, Proc. Int. Conf. on Concurrency (Concur-
rency 88), Hamburg, 18.–19. October 1988, LNCS 335, pages
121–139, 1988. Springer.

[15] N. Rescher and A. Urquhart. Temporal Logic. Springer, Wien-
New York, 1971.

[16] A. Weininger, T. Schnekenburger, and M. Friedrich. Parallel
and Distributed Programming with ParMod-C. In H. Zima,
editor, Parallel Computing, First Int. ACPC Conf., Salzburg,
Austria, LNCS 591, pages 115–126, 1991. Springer.


