Modelling Message Buffers with Binary Decision
Diagrams

Bernd—Holger Schlingloff
Universitat Bremen, TZI-BISS

hs@tzi.de

0 Introduction

Binary decision diagrams (BDDs, [Bry92]) have been recognized as an extremely
efficient data structure for the representation of transition relations in the veri-
fication of finite-state reactive systems. With BDDs, it is possible to represent
relations over domains with more than 2% elements ([BCDM91]), provided
the represented relation is well-structured. Asynchronous parallel systems such
as communication protocols often use implicit or explicit buffering of messages
which are sent between the processes. In these notes, we analyze the complexity
of various possibilities to model the transition relation of a bounded buffer with
BDDs, and discuss alternative approaches to this problem.

1 Binary Decision Diagrams

To make these notes self-contained, we quickly describe the symbolic represen-
tation of sets and relations with BDDs. For a detailed survey, the reader is

referred to [Bry92]. Consider a sequence of variables V = (vy,...,v;) over do-
mains (Dy, ..., Dy), where each D; is finite. An ordered decision diagram (ODD)
or deterministic branching program for V is a tuple (N, L, E, ng), where

e N is a finite set of nodes,
e L:N —VU{T,L}is alabelling of nodes,
e ECN x D x N is aset of edges (D = J; D;), and
e 19 is the initial node.
The following conditions are imposed:

e E is functional on D;: If £L(n) = v;, then for each (n,d,n') € E it holds
that d € D;, and for each d € D; there is exactly one ng such that
(n,d,ng) € E, and

e Eis acyclic: If (n,d,n') € E with £(n) = v; and £(n') = v;, then i < j.

It is easy to see that this definition is equivalent to the one given, e.g., in [Bry92].
Any ODD accepts (defines) a subset of (D; X ...x Dy,) via the following definition:

(N,ﬁ,E,’rL()) |: (dl,...,dk) lf (N,E,E,TL[)) ':1 (dl,...,dk).

In this definition, the notion |=,, is declared by:

(N,L,E,n) Em (dyi, ..., dy,) if
e L(n)=T,or
e L(n)=v; and m <iand (N,L,E,n) Emy1 (di,...,d), or

e L(n) = v; and m = i and (n,dp,n') € E and (N,L,E,n') Emnt1
(dla'“adk)'

In other words, given a specific tuple, it can be determined whether it belongs
to the set represented by an ODD by traversing its edges according to the
components of the tuple.

When drawing ODDs, we usually omit the node labelled L and all edges
leading to it. For example, the ODD with two variables v, v' over D; = Dy =
{a,b,¢,d} given in Figure 1 below represents the set of tuples {(a,a), (a,b),
(a,c¢), (a,d), (b,b), (b,d), (c,c), (¢,d), (d,a), (d,d)}. Binary decision diagrams
(BDDs) are ODDs where all domains are {0,1}. Given any ODD, there exists
a BDD of the same order of size which represents the same set: Choose any
binary encoding of the domains, and replace each m-ary branch by a logm-
depth binary decision tree. Thus, in practice only BDDs are used; ODDs can
be understood as abbreviations of the respective binary encoded BDDs. For
example, choosing the encoding a — 00, b — 10, ¢ — 01, and d — 11, the BDD
given in the right half of Figure 1 represents the same set as the respective ODD
on its left.

Figure 1: An ordered decision diagram and its binary encoding

The size of an ODD is the number of nodes it consists of. For a given
ordering of the domains, and any set of values, there is a unique minimal ODD
representing this set of values. The size of this minimal representation is not
dependent on the size, but only on the structure of the represented set of values.
E.g., the empty set and the set of all tuples both have an ODD representation
of size one.

As another example, consider the elementship relation between a set S =
{a,b,c} and its powerset 2°. The table and BDD are given in Figure 2. As
can be seen, the table has no “regular” structure, thus both table and BDD
are of order S -2°. If we choose a different encoding as shown in Figure 3, the
BDD representation exploits the fact that the matrix can be decomposed into
isomorphic and constant submatrices.

Given a process P with state space D. Then the transition relation of P is a
subset of D x D. If P consists of k parallel processes P, ..., P, with state spaces
Dy, ..., Dy, then the global state space of P is Dy X --- X Dy. Therefore the
transition relation can be described by 2k variables si, ..., sg, s1, ..., 5},, where s;
and s} are over domain D; and describe the current and next state of process
P;. Again, if each D; has up to m states, the global transition relation has up

s3s3584 | 000 001 010 011 100 101 110 111

{ {a} {0} fc} {ab} {ac} fbe} {abc}

00(a) X X
01(b) X X b'e b'e
10(c) X X b'e b'e

Figure 2: Power set relation and corresponding BDD

s28354 | 000 001 010 011 100 101 110 111
5051 {3 fap {b} {ab} {c} {ac; {bc} {abc}
00(a) x X X X
01(b) X X b'e X
10(c) | E b'e X X

Figure 3: Power set relation and BDD with different encoding

5081 a b c d

Soo0 So1 Soo So1

5051 S10 S10 S11 S11
a = SppS10 X X X X
b= S01510 X X
C = Spo0S11 X X
d= S01S511 X X

Figure 4: Matrix and graph of the encoded relation

to m?* elements and can be described by a BDD over 2k - [log|m|] boolean

variables. For example, consider the elementary net of Figure 5; it models two
processes synchronizing on a common transition. The states of the first process
are Do = {s00, S01}, the states of the second are D; = {s19,511}. Since these
domains are binary, we can use boolean variables s, s1, 8g, s; to describe the
current and next state of the processes. The global states are a 2 (s00, S10),
b= (so1, $10), € e (s00, $11), and d = (so1,s11)- In state d, either both processes
idle or both processes synchronize and go to state a; in each other state, process
P; can either idle or make a step from s;y to s;;, independently of the other
process. The transition relation of this system is the one represented by our
example.

/ /

Ry _‘\

Figure 5: An elementary net model of synchronization

The set of reachable states of a system is the image set of the initial state(s)
under the reflexive transitive closure of the transition relation. With BDDs, the
transitive closure of a relation usually is calculated as the smallest fixed point
of the recursive equation R* = I U R:R*. Relational composition is calculated
by the definition zR:Sy iff 3z(xRz A zRy), and existential quantification over

finite (binary) domains is replaced by a disjunction of the possible values of the
domain.

Therefore, to calculate the set of reachable states with BDDs it is necessary
to represent the complete transition relation. Since BDDs are graphs with a
nonlocal connection structure, usually it is not possible to use virtual storage for
BDD nodes; present technology limits the number of BDD nodes representing
a transition function to approx. 10%. The size of the BDD representation of
the reachable states or reflexive transitive closure of a relation is often totally
unrelated to the size of the representation of the relation itself; in our example,
the transitive closure is the universal relation, and thus all states are reachable,
with a BDD representation of size 1.

However, the size of a BDD crucially depends on the number and ordering
of variables. In our example, consider the two processes as producer and con-
sumer of messages which are passed at the synchronization step via handshake.
That is, each process has an additional variable, mg and m;, which are both
over a domain M of, e.g., 4 messages {nil,z;,x2,23}. Process Py produces a
message, i.e. sets variable mg to an arbitrary non-nil value, in the transition
from sgg t0 Sp1. On transition from (so1,$11) to (so0, s10) the value of myg is
transferred to my, and my is reset to nil. Process P; consumes (resets) vari-
able my in the transition from sjg to s;;. On idling transitions, the value of
the message-variables is stable. The SMV-code (for SMV, see [McM93]) for
this system is given in Figure 6, and the resulting BDD for variable ordering
(s0, 80, S1, 81, Mo, Mgy, m1,m}) is shown in Figure 7.

MODULE main
VAR sO : boolean; sl : boolean; mO : {nil,x1,x2,x3}; ml : {nil,x1,x2,x3};
INIT (sO =0 & s1 =0)

TRANS (s0 =0 & s1 =1 -> next(sl) = 1)
& (sO0 =1 & s1 =0 -> next(s0) = 1)
& (sO0 =1 & s1 =1 -> next(s0) = 0 & next(sl) =0 |

next(s0) = 1 & next(sl) = 1)
& (s0 = 0 & next(s0) = 1 -> next(m0) in {x1,x2,x3}) -- produce
& (sO =1 & next(s0) = 0 -> next(m0) = nil) -- reset
& (s0 = next(s0) -> next(m0) = m0) -- stable
& (s1 =1 & next(sl) = 0 -> next(ml) = mO0) -- transfer
& (s1 = 0 & next(sl) = 1 -> next(ml) = nil) —-- consume
& (s1 = next(sl) -> next(ml) = mil) -- stable

Figure 6: SMV-code for message passing between two processes

As can be seen, the size of this BDD is linear in the number m = |M| of
possible messages. In this example, the linear complexity is caused only by “local
diamonds”, i.e., nodes branching into m successor nodes, which again join into
one successor. This structure arises by the copying instructions next (m0) =m0,
next (m1)=ml and next (m1)=m0. Variables my and m; can be seen as consisting
of w boolean variables myg;...mg, and myy...Mmyy,, where w = [logm] is the
message width. If we interleave the order of these variables, i.e., use variable
ordering (mo1, Mgy, M11, Mg, ey Mow, MYy, Miw, M},,), local diamonds are
represented with complexity linear in w, see Figure 8. Thus, for the ordering
(S0, Shs S1, S1, Mo1, M1, M1, Mg, ey Mo, My, Miw, M,,), the BDDs for
the above SMV-code are logarithmic in m.

Figure 7: BDD for synchronous message passing

Figure 8: Interleaved encoding of a local diamond

2 Modelling of Message Buffers

Distributed parallel processes often use asynchronous (buffered) communication.
Asynchronous message passing can be modelled with global variables by intro-
ducing a separate buffer process for each communication line. In many systems,
the amount of messages which can be buffered is finite; in such systems buffer
overflow often indicates erroneous behaviour of the system. For a fixed message
alphabet M = {nil, zy, ..., £, 1}, the formal specification of a bounded buffer
of length n with input and output variables ¢ and o over M is given in Table 1
on page 7.

i b 0 1! o' o
nil () nil O nil
x () nil nil O x
nil (z1,..,z,) nil (1,0, Ty_1) T,
x (x1,. 1) mil nil (T, T1, .., Tu_1) T,

nil () y ()

x () y nil (z)

nil (x1,..,z,) ¥ (T1,...,2,)
T (T1,eny) Y w<n | nid (z,x1,..,7,)
z <1’1,...,1‘n> Y z <1'1,...,1‘n>

Table 1: Specification of the transition relation of a bounded buffer

In the right half of this table, an empty entry means that the respective
variable is set by the environment. An input value of nil in 7 indicates that
there is no message to be sent; in this case the next value of i is determined by
the producer. If this process has put a non-nil value x € M into i, then this
value is appended to the buffer, and ¢ is reset to nil. The last line indicates a
condition of buffer overflow: If a message is to be sent with the message buffer
already filled, 7 remains stable. If the output variable o is nil and there is a
message to deliver, it is copied into 0. The consumer receives a message y from
o by resetting o to nil.

The content of the buffer b is given as a sequence (x1, ..., x,) of messages,
where () denotes the empty buffer. There are various possibilities to implement
sequences of messages with BDDs. The most obvious choice is to use n vari-
ables by, ..., b, over M, such that b; contains the front element of the message
queue, and incoming messages are appended into the smallest b, which is empty
(contains nil as value). The necessary assignment operation for this modelling
is given in Figure 9.

next(b[j]) := case
(i=nil) & !'(o=nil) : b[jl;
(i=nil) & (o=nil) : b[j+1];
! (i=nil) & !(o=nil) : if !(b[j-1]=nil) & b[j]=nil then i
else b[j] fi;
! (i=nil) & (o=nil) : if b[jl=nil then nil
else if b[j+1]=nil then i
else b[j+1] fi fi;
esac;

Figure 9: Bottom-version of buffer slot assignment

In this modelling, we rely on the fact that whenever b; = nil, then for all
k > j, also by = nil. This assumption only holds for the reachable states
of a buffer which is initially empty; there are many transitions from illegal,
i.e., nonreachable states to other illegal states in this model. In an explicit
representation of the transition relation, one should try to avoid these redundant
entrys. With BDDs, however, even though the size of the transition relation is
much bigger than the transition relation restricted to the reachable states, its
representation is much smaller. Since the value of each buffer slot depends only
on its immediate neighbours, in fact the size of the representation is linear in
the number of slots.

next(b[j]) := case
(i=nil) & !(o=nil) : b[j];
(i=nil) & (o=nil) : if (b[j-1]=nil) then nil else b[j];
! (i=nil) & !(o=nil) : if (b[1]=nil) then b[j+1] else b[j] fi;
! (i=nil) & (o=nil) : if b[jl=nil then nil else b[j+1] fi;
esac;

Figure 10: Top-version of buffer slot assignment

In the above implementation, the buffer content is shifted upon output. We
refer to this modelling as the bottom version, because sent messages can be
imagined to “sink to the ground”. A dual implementation of the buffer shifts
down the content one slot whenever an input is performed, and inserts the new
element into the topmost slot b,. Consequently, we call this modelling, where
messages “float to the surface”, the top-version of a bounded buffer. To perform
an output in this version, the content of the lowest non-nil slot is copied into
the output variable o. The respective code segment is given in Figure 10.

A third possibility is to use a circular implementation of the buffer: On
input, the value of the input variable is copied into slot b;, where b; = nil and
bi—1 # mil; on output, o is set to b;, where b; # nil and b;_; = nil. To be able to
distinguish between first and last element of the queue in this version, we have
to make sure that there is at least one slot with content nil; therefore there has
to be one more place than the actual capacity of the buffer. In the assignment
clause in Figure 11, subtraction and addition of one is to be understood modulo
n.

next(b[j]) := case
(i=nil) & !'(o=nil) : b[jl;
(i=nil) & (o=nil) : if b[j-1]=nil then nil else b[j];
!'(i=nil) & !(o=nil) : if !'(b[j-1]=nil) & b[jl=nil & b[j+1]=nil
then i else b[j] fi;
! (i=nil) & (o=nil) : if b[j-1]=nil then nil
else if b[jl=nil then i else b[j] fi;
esac;

Figure 11: Circular version of buffer slot assignment

An alternative to the use of an empty slot would be to introduce queue-
pointers for the position of the first and/or last element of the queue; this idea
can be applied to all three of the above modellings. However, these alternative

versions turn out to be worse than the direct encoding via nil-test which is given
above. In general, the queue-pointers would be functionally dependent of the
content of the buffer; such functional dependencies can blow up the BDD size
significantly ([HD93]).

Similarly, we can introduce additional BDD-variables indicating whether the
buffer is empty or full; however, these variables tend to increase the size of the
representation by a linear factor and usually can be replaced by appropriate
boolean macro definitions. On the other hand, such variables can be important
if the BDD is represented as a conjunction of partitioned transition relations,
see [BCLI1].

Finally, it is not always advisable to test whether a slot b; contains the value
nil by the test b[i]=nil. As we will see in the next section, it can be better to
increase the message width w by one, such that the first bit of each message is
a kind of checksum, indicating whether this message is nil or not.

3 Complexity Considerations

The BDD for the bottom version of a buffer of size n consists of two parts,
one for the case that the buffer content remains stable, and one for the case
that the buffer content is shifted down by one slot. The first part consists of a
sequence of local diamonds for each slot, similar as in the example above. The
BDD for the second part is depicted in Figure 12 for the special case n = 2 and
M = {x1, 22,23}

As can be seen, for a new buffer slot b,, 11, O(m?) nodes are added to the BDD
for a buffer of length n. Therefore the representation is of order n-m?, i.e., linear
in the length and exponential in the width of the buffer. Since the transition
relation is “almost” a function, a matrix representation would require O(m™)
entrys, whereas a boolean algebra or programming language representation such
as the SMV code above, is of order m + n (or even constant, if array subscripts
are allowed).

For the top version, the complexity of the representation is comparable to
the bottom version. In the circular version, b/, depends on by, i, b,_1, and on
b1. This non-local dependency causes a blowup of factor 2, since the emptyness
of b; has to be decided while testing b],. Moreover, to test whether a buffer is
full or not we have to test whether any two adjacent slots are nil. This nonlocal
test again blows up the complexity of this modelling.

As was to be expected, the number of reachable states is identical in the
bottom and top modellings; of course, this number is exponential in the length
of the buffer. For the circular implementation, the number of reachable states
is approximately m times as much, since it contains an additional slot.

Table 2 summarizes the size of the BDDs of the transition relation for m = 4
(i.e., w = 2), and order i < b, < ... < by < o. All results were obtained with
the public-domain SMV system; other BDD-based verification tools yield similar
results. The buffers were embedded in a simple producer-consumer environment,
where the producer and consumer are asynchronous, and the message to be sent
or received does not depend upon or influence the state of the sender or receiver,
respectively.

In this example, the size of the representation of the set of reachable states
was of the same order of magnitude as the representation of the transition
relation. Some considerations about this size are given below.

A critical factor in our approach is the message width w. As indicated in
Table 2, e.g. the bottom implementation of a buffer of length 5 and width 2 has
size 1458. For w = 3, this size is 11774, and for w = 4, it is 108357. In [BS90]

T

U2

/\

3 xr r3 T 2 z
2 x3 3
\ r1 ‘
z 3 z 3 z o >
2 T3 T3
) o1 ‘
z] /.

Figure 12: BDD for shifting down the buffer content

Tp
Tp

/A'A

it is proved that for any finite function, a BDD of polynomial size exists iff the
function can be realized by a polynomially bounded depth circuit. For message
buffer, certainly the transition function can be realized by such a circuit; thus
there exists a BDD which is polynomial both in n and w.

If there is no constraint on the order of variables, then such a BDD can be
constructed by interleaving the bits of all slots: Let i = ¢1...iw, bj = bj1...0juw,
and o = 0y...0,. Then for each k < w, (i, buk, ..., b1k, 0r) can be regarded as a
buffer of width 1. The only “nonlocal test” in this buffer of length 1 is whether
some slot b; is empty: if this is determined by comparison of b;; and ... and
bjn, then we still have an exponential growth. If we introduce additional bits
(20, bno, -+, b10, 00) which are 0 iff the corresponding message is nil, then each bit-
slice is linear in the length of the buffer. For the order iy < byo < ... < by < 09 <
11 <bpp < .. <bpp <01 < oot <y <bpyw < ... <byy < 0y, these small BDDs

[(Tength [3] 5] 7] 9] 11]
bottom 714 1458 | 2204 | 2950 | 3696

top 599 1113 | 1627 | 2141 | 2655
circular || 1038 2350 | 3999 | 5307 | 6833

| reach || 1400 [12740 | 26] 29[223]

Table 2: BDD size of transition relation and reachable state set

are simply added, and the overall complexity is O(w - n).

Unfortunately, in many practical examples it is not possible to choose such a
bitwise interleaved order. Usually, the input and output variables are imported
from other processes, and their order cannot be chosen arbitrarily. An argument
similar to the one from Section 1 on page 5 shows that for any order, in which
i is before all buffer bits, the representation is exponential in w. Therefore, in
practical verification, w should be kept as small as possible. There are several
ways to do so:

e For every channel, define a separate message alphabet;

e replace a parametrized message m(t) with ¢ € {¢1,...,t;} by a list of mes-
Sages M1y «..y Miks

e replace a compound message by a sequence of messages, and
e abstract several different messages into one.

When using the latter two methods, one has to be careful to preserve the se-
mantics of the original model ([CGL92]). Using these techniques, we have been
able to verify systems with up to 27 different messages.

4 Alternative Approaches

In [GL96],[BGI6] it is suggested to extend the BDD data structure for the
representation of message buffers. The new data structures are called QBDDs
and QDDs, respectively. The basic idea is to replace the consecutive testing
of buffer variables by a repeated test of one and only one variable. Therefore,
the representation of the transition relation is independent of the buffer size.
Moreover, even systems of which the maximum amount of buffer space is not
statically known can be verified.

However, as we have shown above, the (static) length of a buffer may not
be the most important factor in the representation of the transition relation.
Moreover, “buffer overflow” errors in the system can only be detected with a
bounded buffer. Even worse, in systems on which a full buffer forces delay of
the sender, with QBDDs we have to introduce an additional counter variable.
For these type of systems, BDDs seem to be more adequate than QBDDs or
QDDs.

Being able to represent the transition relation is only a necessary prerequisite
for the verification of a system. Equally important is the size of the representa-
tion of the reachable states R of the system. Unfortunately, the size of the BDD
for R has no predictable connection to the size of the BDD for the transition
relation.

In many systems both the number of reachable states and its representation
are linear in the number of iteration steps of the model, iff the system is cor-
rect. This is due to the fact that on reachable states, the transition relation
is “almost” functional, yielding either a single or a small number of successor
states. On the other hand, from an “impossible” state usually many other “im-
possible” states are reachable. A drastic example is Valmari’s elevator for which
the reachable state set (in any representation) explodes as the elevator breaks
through the ceiling and skyrockets into the air. Thus an exponential increase in
(the representation of) R after some number of steps almost certainly indicates
an error.

In [GL96] it is claimed that “there are cases where the QBDD representation
is strictly more concise than the BDD representation”. Assume our buffer in a

11

context where the producer sends one fixed sequence of messages 1, T2, ... Ty .
That is, the reachable buffer content is {(), (z1), (x221), ..., (Zp...z221), (T2), ...
(Ty...x2), ..., (z,)}. With the top- and bottom version of the buffer, the repre-
sentation of this set is quadratic in v, whereas with the circular representation
and also with QBDDs it is linear in v.

On the other hand, consider the case that the producer can send an arbi-
trary sequence of messages. In this case, the top- and bottom-versions are of
constant size, whereas the QBDD implementation is linear in the number of
sent messages.

In practical examples, such extreme cases are rare. In our experiments,
we have found no significant difference in the size of the reachability sets of
the various alternatives. The number of parallel processes and their relative
order has a much bigger impact on the size of the BDD for R than the actual
implementation of the buffer. Typically we can handle systems of up to 5
processes, each with approx. 2% —2° local states, where each process is equipped
with a buffer of n,w < 5. However, there still is a need for heuristics which use
dependencies between the processes to obtain a “good” order for the process
state variables.

An important observation is that the content of a message buffer used to
coordinate processes shows regular patterns, which also depend on the state of
the processes. E.g., in a certain process state the buffer might always contain
only copies of two different messages from M. As another example, some specific
message might always be followed by some other specific message in the buffer.
Currently we are investigating methods how these regularities can be exploited
to further reduce the size of the representation of the reachability set.

References

[BCDMO1] J. Burch, E. M. Clarke, D. Dill, and K. McMillan. Symbolic model
checking: 10%° states and beyond. In 5'* IEEE LICS, June 1991.

[BCLI91] J. Burch, E. M. Clarke, and D. Long. Symbolic model checking
with partitioned transition relations. In Proc. IFIP Conf. on VLSI,
Edinburgh, August 1991.

[BG96) B. Boigelot and P. Godefroid. Symbolic verification of communica-
tion protocols with infinite state spaces using QDDs. In Proceedings
of 5" CAV, New Brunswick, July 1996.

[Bry92] R. Bryant. Symbolic boolean manipulation with ordered binary
decision diagrams. ACM Comp. Surv., Vol 24, No 3:293-318, 1992.

[BS90] R. Boppana and M. Sipser. The complexity of finite functions. In
J van Leeuwen, editor, Handbook of theoretical computer science,
Vol. A, chapter 14, pages 757-805. Elsevier, Amsterdam, 1990.

[CGL92] E. M. Clarke, O. Grumberg, and D. Long. Model checking and
abstraction. In 19" ACM POPL, January 1992.

[GLI6] P. Godefroid and D. Long. Symbolic protocol verification with queue
BDDs. In Proceedings of IEEE LICS, New Brunswick, July 1996.

[HD93] A. Hu and D. Dill. Reducing BDD size by exploiting functional
dependencies. In Proc. 30" ACM/IEEE DAC, 1993.

[McM93] K. McMillan. Symbolic model checking. Kluwer, 1993.

12

