
Modelling Message Bu�ers with Binary Decision

Diagrams

Bernd�Holger Schlinglo�

Universit�at Bremen� TZI�BISS

hs�tzi�de

� Introduction

Binary decision diagrams �BDDs� �Bry���� have been recognized as an extremely
e	cient data structure for the representation of transition relations in the veri

�cation of �nite
state reactive systems� With BDDs� it is possible to represent
relations over domains with more than ���� elements ��BCDM���� provided
the represented relation is well
structured� Asynchronous parallel systems such
as communication protocols often use implicit or explicit bu�ering of messages
which are sent between the processes� In these notes� we analyze the complexity
of various possibilities to model the transition relation of a bounded bu�er with
BDDs� and discuss alternative approaches to this problem�

� Binary Decision Diagrams

To make these notes self
contained� we quickly describe the symbolic represen

tation of sets and relations with BDDs� For a detailed survey� the reader is

referred to �Bry���� Consider a sequence of variables V
�
� �v�� ���� vk� over do

mains �D�� ���� Dk�� where each Di is �nite� An ordered decision diagram �ODD�
or deterministic branching program for V is a tuple �N�L� E� n��� where

� N is a �nite set of nodes�

� L � N � V � f���g is a labelling of nodes�

� E � N �D �N is a set of edges �D �
S
iDi�� and

� n� is the initial node�

The following conditions are imposed�

� E is functional on Di� If L�n� � vi� then for each �n� d� n�� 	 E it holds
that d 	 Di� and for each d 	 Di there is exactly one nd such that
�n� d� nd� 	 E� and

� E is acyclic� If �n� d� n�� 	 E with L�n� � vi and L�n
�� � vj � then i � j�

It is easy to see that this de�nition is equivalent to the one given� e�g�� in �Bry����
Any ODD accepts �de�nes� a subset of �D������Dk� via the following de�nition�

�N�L� E� n�� j� �d�� ���� dk� if �N�L� E� n�� j�� �d�� ���� dk��

In this de�nition� the notion j�m is declared by�

�N�L� E� n� j�m �d�� ���� dk� if

� L�n� � �� or

� L�n� � vi and m � i and �N�L� E� n� j�m�� �d�� ���� dk�� or

� L�n� � vi and m � i and �n� dm� n
�� 	 E and �N�L� E� n�� j�m��

�d�� ���� dk��

In other words� given a speci�c tuple� it can be determined whether it belongs
to the set represented by an ODD by traversing its edges according to the
components of the tuple�

When drawing ODDs� we usually omit the node labelled � and all edges
leading to it� For example� the ODD with two variables v� v� over D� � D� �
fa� b� c� dg given in Figure below represents the set of tuples f�a� a�� �a� b��
�a� c�� �a� d�� �b� b�� �b� d�� �c� c�� �c� d�� �d� a�� �d� d�g� Binary decision diagrams
�BDDs� are ODDs where all domains are f�� g� Given any ODD� there exists
a BDD of the same order of size which represents the same set� Choose any
binary encoding of the domains� and replace each m
ary branch by a logm

depth binary decision tree� Thus� in practice only BDDs are used� ODDs can
be understood as abbreviations of the respective binary encoded BDDs� For
example� choosing the encoding a
� ��� b
� �� c
� �� and d
� � the BDD
given in the right half of Figure represents the same set as the respective ODD
on its left�

iv

�

a

i�

A
A
AAU
b

iv�
�
�
���

b� d

Q
Q
Q
Q
QQs
c

iv�
�

�
�

�
���

c� d

PPPPPPPPPPPq
d

iv�������������
a� d

is������
�

is�
PPPPq

is�

�

is��PPPPq

J
J
J
J
J
JJ�

�

i�

	
	

�

is��
�
�
�
��

R

is�������������
 ��is��������� �

Figure � An ordered decision diagram and its binary encoding

The size of an ODD is the number of nodes it consists of� For a given
ordering of the domains� and any set of values� there is a unique minimal ODD
representing this set of values� The size of this minimal representation is not
dependent on the size� but only on the structure of the represented set of values�
E�g�� the empty set and the set of all tuples both have an ODD representation
of size one�

As another example� consider the elementship relation between a set S �
fa� b� cg and its powerset �S � The table and BDD are given in Figure �� As
can be seen� the table has no �regular� structure� thus both table and BDD
are of order S � �S � If we choose a di�erent encoding as shown in Figure �� the
BDD representation exploits the fact that the matrix can be decomposed into
isomorphic and constant submatrices�

Given a process P with state space D� Then the transition relation of P is a
subset of D�D� If P consists of k parallel processes P�� ���� Pk with state spaces
D�� ���� Dk� then the global state space of P is D� � � � � � Dk� Therefore the
transition relation can be described by �k variables s�� ���� sk� s

�

�� ���� s
�

k� where si
and s�i are over domain Di and describe the current and next state of process
Pi� Again� if each Di has up to m states� the global transition relation has up

�

s�s�s� ��� �� �� � �� � �
s�s� fg fag fbg fcg fabg fa� cg fb� cg fa� b� cg
���a� x x x x
��b� x x x x
��c� x x x x

is������
�

is�
PPPPq

is�
	
	

is�

R
�

is�

R
�

is�
�
���
�

is�
B
BBN

is�
�
���
�

is�
B
BBN

is�
	

		

�

is� �

is�
B
BBN

 �
���
�

is�

Z
Z
Z
ZZ�

� S
SSw

 �
���

�
�

�
��

�

is���

J
JJ�
 �
���
�

����������i�
Figure �� Power set relation and corresponding BDD

s�s�s� ��� �� �� � �� � �
s�s� fg fag fbg fa� bg fcg fa� cg fb� cg fa� b� cg

���a�

��b�

x x
x x

x x
x x

��c� x x x x

is������
�

is�
PPPPq

is�
	
	

�

is�

R

is�

R
�

is�
HHHHj

�
 ���������

i�

Figure �� Power set relation and BDD with di�erent encoding

�

s��s
�

� a b c d

s�� s�� s�� s��
s�s� s�� s�� s�� s��

a � s��s�� x x x x
b � s��s�� x x
c � s��s�� x x
d � s��s�� x x

��
��

��
��

��
��

k

k

k

��
��
k

�

�

�
�

�
�

���

Q
Q
Q
Q
QQs

Q
Q
Q
Q
QQs

�
�

�
�

���

I

�

R

�

�������������

�������������

a

cb

d

s��s��

s��s��

s��s��

s��s��

Figure �� Matrix and graph of the encoded relation

to m�k elements and can be described by a BDD over �k � dlog jmje boolean
variables� For example� consider the elementary net of Figure �� it models two
processes synchronizing on a common transition� The states of the �rst process
are D� � fs��� s��g� the states of the second are D� � fs��� s��g� Since these
domains are binary� we can use boolean variables s�� s�� s

�

�� s
�

� to describe the

current and next state of the processes� The global states are a
�
� �s��� s����

b
�
� �s��� s���� c

�
� �s��� s���� and d

�
� �s��� s���� In state d� either both processes

idle or both processes synchronize and go to state a� in each other state� process
Pi can either idle or make a step from si� to si�� independently of the other
process� The transition relation of this system is the one represented by our
example�

�
�

�� ��
�� �

�

����
����

��
s��

��
��
s��

��
��
s��

��
��
s��

P� P

Figure �� An elementary net model of synchronization

The set of reachable states of a system is the image set of the initial state�s�
under the re�exive transitive closure of the transition relation� With BDDs� the
transitive closure of a relation usually is calculated as the smallest �xed point
of the recursive equation R� � I � R�R�� Relational composition is calculated
by the de�nition xR�Sy i� �z�xRz zRy�� and existential quanti�cation over

�

�nite �binary� domains is replaced by a disjunction of the possible values of the
domain�

Therefore� to calculate the set of reachable states with BDDs it is necessary
to represent the complete transition relation� Since BDDs are graphs with a
nonlocal connection structure� usually it is not possible to use virtual storage for
BDD nodes� present technology limits the number of BDD nodes representing
a transition function to approx� ��� The size of the BDD representation of
the reachable states or re�exive transitive closure of a relation is often totally
unrelated to the size of the representation of the relation itself� in our example�
the transitive closure is the universal relation� and thus all states are reachable�
with a BDD representation of size �

However� the size of a BDD crucially depends on the number and ordering
of variables� In our example� consider the two processes as producer and con

sumer of messages which are passed at the synchronization step via handshake�
That is� each process has an additional variable� m� and m�� which are both
over a domain M of� e�g�� � messages fnil� x�� x�� x�g� Process P� produces a
message� i�e� sets variable m� to an arbitrary non
nil value� in the transition
from s�� to s��� On transition from �s��� s��� to �s��� s��� the value of m� is
transferred to m�� and m� is reset to nil� Process P� consumes �resets� vari

able m� in the transition from s�� to s��� On idling transitions� the value of
the message
variables is stable� The SMV
code �for SMV� see �McM���� for
this system is given in Figure �� and the resulting BDD for variable ordering
�s�� s

�

�� s�� s
�

��m��m
�

��m��m
�

�� is shown in Figure ��

MODULE main

VAR s� � boolean� s� � boolean� m� � �nil	x�	x
	x��� m� � �nil	x�	x
	x���

INIT s� � � � s� � ��

TRANS s� � � � s� � � �� nexts�� � ��

� s� � � � s� � � �� nexts�� � ��

� s� � � � s� � � �� nexts�� � � � nexts�� � � �

nexts�� � � � nexts�� � ��

� s� � � � nexts�� � � �� nextm�� in �x�	x
	x��� �� produce

� s� � � � nexts�� � � �� nextm�� � nil� �� reset

� s� � nexts�� �� nextm�� � m�� �� stable

� s� � � � nexts�� � � �� nextm�� � m�� �� transfer

� s� � � � nexts�� � � �� nextm�� � nil� �� consume

� s� � nexts�� �� nextm�� � m�� �� stable

Figure �� SMV
code for message passing between two processes

As can be seen� the size of this BDD is linear in the number m
�
� jMj of

possible messages� In this example� the linear complexity is caused only by �local
diamonds�� i�e�� nodes branching into m successor nodes� which again join into
one successor� This structure arises by the copying instructions next�m���m��
next�m���m� and next�m���m�� Variables m� and m� can be seen as consisting

of w boolean variables m�����m�w and m�����m�w� where w
�
� dlogme is the

message width� If we interleave the order of these variables� i�e�� use variable
ordering �m��� m

�

��� m��� m
�

��� ���� m�w� m
�

�w� m�w� m
�

�w�� local diamonds are
represented with complexity linear in w� see Figure �� Thus� for the ordering
�s�� s

�
�� s�� s

�
�� m��� m

�
��� m��� m

�
��� ���� m�w� m

�
�w� m�w� m

�
�w�� the BDDs for

the above SMV
code are logarithmic in m�

�

k
k
k

k
k

k
k k

kk k

kk k k kk
k

k k kkk kkk
kkk kk k k

			
 HHHj
PPPq ����
			

HHHj
PPPq ���� HHHj

�
			
 HHHj

����XXXzj

PPq�
�

XXXXXXXXz HHHj
HHHj�

��R
�

���
S
SSw

XXXXXXXXz

����XXzj

PPq�
�

����XXzj
PPPPPPPPPPq

A
AAU�
�
���
�
���

�
�
�
�� �

C
C
C
CW

QQs �����������������������������

A
A
A
AU

���

s�

s�
�

s�
�

s� s� s�

s�
�

s�
�

s�
�

s�
� s�

�

m� m� m�

m�

�
m�

�
m�

�
m�

�
m�

�
m�

�
m�

�
m�

�

m�

m�

�
m�

�
m�

�
m�

�
m�

�
m�

�
m�

�

� � �

� �

� �

� �
� �

�

�

�
� � �

� � �

nil

x�� x�� x�

x�� x�� x�

��� ���

������

Figure �� BDD for synchronous message passing

��
��

��
����

��
��
��

��
����

��
��
����

����
��

��
��

��
��

��
��

��
��
��
��

��
��

��
��

��� QQs

QQs ���

��� QQs

QQs ���

��� QQs

QQs ���

�
�
��� �

R

J
J
JJ�

S
S
SSw�

�
�
��

�
�

�
���

�

�

�

v��

v��

v
�

�� v
�

��

�
�

� �

� �

�
�

� �

� �

v��

v�k

v
�

�k v
�

�k

v�

v
�

�� v
�

��

���

v�

v
�

� v
�

� v
�

�

x�

x�

xm

xm

v�

Figure �� Interleaved encoding of a local diamond

�

� Modelling of Message Bu�ers

Distributed parallel processes often use asynchronous �bu�ered� communication�
Asynchronous message passing can be modelled with global variables by intro

ducing a separate bu�er process for each communication line� In many systems�
the amount of messages which can be bu�ered is �nite� in such systems bu�er
over�ow often indicates erroneous behaviour of the system� For a �xed message

alphabet M
�
� fnil� x�� ���� xm��g� the formal speci�cation of a bounded bu�er

of length n with input and output variables i and o over M is given in Table
on page ��

i b o i� b� o�

nil hi nil hi nil

x hi nil nil hi x

nil hx�� ���� x�i nil hx�� ���� x���i x�
x hx�� ���� x�i nil nil hx� x�� ���� x���i x�
nil hi y hi
x hi y nil hxi
nil hx�� ���� x�i y hx�� ���� x�i
x hx�� ���� x�i y �� � n� nil hx� x�� ���� x�i
x hx�� ���� xni y x hx�� ���� xni

Table � Speci�cation of the transition relation of a bounded bu�er

In the right half of this table� an empty entry means that the respective
variable is set by the environment� An input value of nil in i indicates that
there is no message to be sent� in this case the next value of i is determined by
the producer� If this process has put a non
nil value x 	 M into i� then this
value is appended to the bu�er� and i is reset to nil� The last line indicates a
condition of bu�er over�ow� If a message is to be sent with the message bu�er
already �lled� i remains stable� If the output variable o is nil and there is a
message to deliver� it is copied into o� The consumer receives a message y from
o by resetting o to nil�

The content of the bu�er b is given as a sequence hx�� ���� x�i of messages�
where hi denotes the empty bu�er� There are various possibilities to implement
sequences of messages with BDDs� The most obvious choice is to use n vari

ables b�� ���� bn over M� such that b� contains the front element of the message
queue� and incoming messages are appended into the smallest b� which is empty
�contains nil as value�� The necessary assignment operation for this modelling
is given in Figure ��

next�b�j�� 	� case

�i�nil�
 ��o�nil� 	 b�j��

�i�nil�
 �o�nil� 	 b�j���

��i�nil�
 ��o�nil� 	 if ��b�j����nil�
 b�j��nil then i

else b�j� fi�

��i�nil�
 �o�nil� 	 if b�j��nil then nil

else if b�j���nil then i

else b�j�� fi fi�

esac�

Figure �� Bottom
version of bu�er slot assignment

�

In this modelling� we rely on the fact that whenever bj � nil� then for all
k � j� also bk � nil� This assumption only holds for the reachable states
of a bu�er which is initially empty� there are many transitions from illegal�
i�e�� nonreachable states to other illegal states in this model� In an explicit
representation of the transition relation� one should try to avoid these redundant
entrys� With BDDs� however� even though the size of the transition relation is
much bigger than the transition relation restricted to the reachable states� its
representation is much smaller� Since the value of each bu�er slot depends only
on its immediate neighbours� in fact the size of the representation is linear in
the number of slots�

next�b�j�� 	� case

�i�nil�
 ��o�nil� 	 b�j��

�i�nil�
 �o�nil� 	 if �b�j����nil� then nil else b�j��

��i�nil�
 ��o�nil� 	 if �b����nil� then b�j�� else b�j� fi�

��i�nil�
 �o�nil� 	 if b�j��nil then nil else b�j�� fi�

esac�

Figure �� Top
version of bu�er slot assignment

In the above implementation� the bu�er content is shifted upon output� We
refer to this modelling as the bottom version� because sent messages can be
imagined to �sink to the ground�� A dual implementation of the bu�er shifts
down the content one slot whenever an input is performed� and inserts the new
element into the topmost slot bn� Consequently� we call this modelling� where
messages ��oat to the surface�� the top�version of a bounded bu�er� To perform
an output in this version� the content of the lowest non
nil slot is copied into
the output variable o� The respective code segment is given in Figure ��

A third possibility is to use a circular implementation of the bu�er� On
input� the value of the input variable is copied into slot bi� where bi � nil and
bi�� �� nil� on output� o is set to bj � where bj �� nil and bj�� � nil� To be able to
distinguish between �rst and last element of the queue in this version� we have
to make sure that there is at least one slot with content nil� therefore there has
to be one more place than the actual capacity of the bu�er� In the assignment
clause in Figure � subtraction and addition of one is to be understood modulo
n�

next�b�j�� 	� case

�i�nil�
 ��o�nil� 	 b�j��

�i�nil�
 �o�nil� 	 if b�j����nil then nil else b�j��

��i�nil�
 ��o�nil� 	 if ��b�j����nil�
 b�j��nil
 b�j���nil

then i else b�j� fi�

��i�nil�
 �o�nil� 	 if b�j����nil then nil

else if b�j��nil then i else b�j� fi�

esac�

Figure � Circular version of bu�er slot assignment

An alternative to the use of an empty slot would be to introduce queue

pointers for the position of the �rst and�or last element of the queue� this idea
can be applied to all three of the above modellings� However� these alternative

�

versions turn out to be worse than the direct encoding via nil
test which is given
above� In general� the queue
pointers would be functionally dependent of the
content of the bu�er� such functional dependencies can blow up the BDD size
signi�cantly ��HD�����

Similarly� we can introduce additional BDD
variables indicating whether the
bu�er is empty or full� however� these variables tend to increase the size of the
representation by a linear factor and usually can be replaced by appropriate
boolean macro de�nitions� On the other hand� such variables can be important
if the BDD is represented as a conjunction of partitioned transition relations�
see �BCL���

Finally� it is not always advisable to test whether a slot bi contains the value
nil by the test b�i��nil� As we will see in the next section� it can be better to
increase the message width w by one� such that the �rst bit of each message is
a kind of checksum� indicating whether this message is nil or not�

� Complexity Considerations

The BDD for the bottom version of a bu�er of size n consists of two parts�
one for the case that the bu�er content remains stable� and one for the case
that the bu�er content is shifted down by one slot� The �rst part consists of a
sequence of local diamonds for each slot� similar as in the example above� The
BDD for the second part is depicted in Figure � for the special case n � � and
M � fx�� x�� x�g�

As can be seen� for a new bu�er slot bn��� O�m
�� nodes are added to the BDD

for a bu�er of length n� Therefore the representation is of order n�m�� i�e�� linear
in the length and exponential in the width of the bu�er� Since the transition
relation is �almost� a function� a matrix representation would require O�mn�
entrys� whereas a boolean algebra or programming language representation such
as the SMV code above� is of order m� n �or even constant� if array subscripts
are allowed��

For the top version� the complexity of the representation is comparable to
the bottom version� In the circular version� b�n depends on bn� i� bn��� and on
b�� This non
local dependency causes a blowup of factor �� since the emptyness
of b� has to be decided while testing b�n� Moreover� to test whether a bu�er is
full or not we have to test whether any two adjacent slots are nil� This nonlocal
test again blows up the complexity of this modelling�

As was to be expected� the number of reachable states is identical in the
bottom and top modellings� of course� this number is exponential in the length
of the bu�er� For the circular implementation� the number of reachable states
is approximately m times as much� since it contains an additional slot�

Table � summarizes the size of the BDDs of the transition relation for m � �
�i�e�� w � ��� and order i � bn � ��� � b� � o� All results were obtained with
the public
domain SMV system� other BDD
based veri�cation tools yield similar
results� The bu�ers were embedded in a simple producer
consumer environment�
where the producer and consumer are asynchronous� and the message to be sent
or received does not depend upon or in�uence the state of the sender or receiver�
respectively�

In this example� the size of the representation of the set of reachable states
was of the same order of magnitude as the representation of the transition
relation� Some considerations about this size are given below�

A critical factor in our approach is the message width w� As indicated in
Table �� e�g� the bottom implementation of a bu�er of length � and width � has
size ���� For w � �� this size is ���� and for w � �� it is ������ In �BS���

�

nn n n n n n n n

n n n

�

HHHHHHHHHHHHj

												

J
J
J
J
J�

XXXXXXXXXXXXXXXXXXXXXz

�
�
�
�
���

�
�

�
�

�
�

���

Q
Q
Q
Q
Q
Q
QQs

�
�

�
�� �

Q
Q
Q
Qs

�
�

�
�� �

Q
Q
Q
Qs

�
�

�
�� �

Q
Q
Q
Qs

x� x� x� x� x� x� x� x� x�

x� x� x�x�
x�

x�
x� x� x�

nn n n n n n n n

n n n

�

HHHHHHHHHHHHj

												

J
J
J
J
J�

XXXXXXXXXXXXXXXXXXXXXz

�
�
�
�
���

�
�

�
�

�
�

���

Q
Q
Q
Q
Q
Q
QQs

�
�

�
�� �

Q
Q
Q
Qs

�
�

�
�� �

Q
Q
Q
Qs

�
�

�
�� �

Q
Q
Q
Qs

x� x� x� x� x� x� x� x� x�

x� x� x�x�
x�

x�
x� x� x�

n
nn n

n

� �

XXXXXXXXXXXXz

PPPPPPPPPPPPq �

�������������

x� x� x�

x� x� x�

i

b� b� b�

b�� b�� b�� b�� b��
b�� b�� b��

b��

b� b� b�

b�� b�� b�� b�� b�� b�� b��
b�� b��

o� o� o�

�

Figure �� BDD for shifting down the bu�er content

it is proved that for any �nite function� a BDD of polynomial size exists i� the
function can be realized by a polynomially bounded depth circuit� For message
bu�er� certainly the transition function can be realized by such a circuit� thus
there exists a BDD which is polynomial both in n and w�

If there is no constraint on the order of variables� then such a BDD can be
constructed by interleaving the bits of all slots� Let i � i����iw� bj � bj����bjw�
and o � o����ow� Then for each k � w� �ik� bnk� ���� b�k� ok� can be regarded as a
bu�er of width � The only �nonlocal test� in this bu�er of length is whether
some slot bj is empty� if this is determined by comparison of bj� and ��� and
bjn� then we still have an exponential growth� If we introduce additional bits
�i�� bn�� ���� b��� o�� which are � i� the corresponding message is nil� then each bit

slice is linear in the length of the bu�er� For the order i� � bn� � ��� � b�� � o� �

i� � bn� � ��� � b�� � o� � ��� � iw � bnw � ��� � b�w � ow� these small BDDs

length � � � �

bottom �� ��� ���� ���� ����
top ��� � ��� �� ����

circular ��� ���� ���� ���� ����

reach ��� ���� ��� ��� ���

Table �� BDD size of transition relation and reachable state set

�

are simply added� and the overall complexity is O�w � n��
Unfortunately� in many practical examples it is not possible to choose such a

bitwise interleaved order� Usually� the input and output variables are imported
from other processes� and their order cannot be chosen arbitrarily� An argument
similar to the one from Section on page � shows that for any order� in which
i is before all bu�er bits� the representation is exponential in w� Therefore� in
practical veri�cation� w should be kept as small as possible� There are several
ways to do so�

� For every channel� de�ne a separate message alphabet�

� replace a parametrized message m�t� with t 	 ft�� ���� tkg by a list of mes

sages mt�� ���� mtk�

� replace a compound message by a sequence of messages� and

� abstract several di�erent messages into one�

When using the latter two methods� one has to be careful to preserve the se

mantics of the original model ��CGL����� Using these techniques� we have been
able to verify systems with up to �� di�erent messages�

� Alternative Approaches

In �GL�����BG��� it is suggested to extend the BDD data structure for the
representation of message bu�ers� The new data structures are called QBDDs
and QDDs� respectively� The basic idea is to replace the consecutive testing
of bu�er variables by a repeated test of one and only one variable� Therefore�
the representation of the transition relation is independent of the bu�er size�
Moreover� even systems of which the maximum amount of bu�er space is not
statically known can be veri�ed�

However� as we have shown above� the �static� length of a bu�er may not
be the most important factor in the representation of the transition relation�
Moreover� �bu�er over�ow� errors in the system can only be detected with a
bounded bu�er� Even worse� in systems on which a full bu�er forces delay of
the sender� with QBDDs we have to introduce an additional counter variable�
For these type of systems� BDDs seem to be more adequate than QBDDs or
QDDs�

Being able to represent the transition relation is only a necessary prerequisite
for the veri�cation of a system� Equally important is the size of the representa

tion of the reachable states R of the system� Unfortunately� the size of the BDD
for R has no predictable connection to the size of the BDD for the transition
relation�

In many systems both the number of reachable states and its representation
are linear in the number of iteration steps of the model� i� the system is cor

rect� This is due to the fact that on reachable states� the transition relation
is �almost� functional� yielding either a single or a small number of successor
states� On the other hand� from an �impossible� state usually many other �im

possible� states are reachable� A drastic example is Valmari�s elevator for which
the reachable state set �in any representation� explodes as the elevator breaks
through the ceiling and skyrockets into the air� Thus an exponential increase in
�the representation of� R after some number of steps almost certainly indicates
an error�

In �GL��� it is claimed that �there are cases where the QBDD representation
is strictly more concise than the BDD representation�� Assume our bu�er in a

context where the producer sends one �xed sequence of messages x�� x�� ��� x� �
That is� the reachable bu�er content is fhi� hx�i� hx�x�i� ���� hx� ���x�x�i� hx�i� ���
hx� ���x�i� ���� hx�ig� With the top
 and bottom version of the bu�er� the repre

sentation of this set is quadratic in �� whereas with the circular representation
and also with QBDDs it is linear in ��

On the other hand� consider the case that the producer can send an arbi

trary sequence of messages� In this case� the top
 and bottom
versions are of
constant size� whereas the QBDD implementation is linear in the number of
sent messages�

In practical examples� such extreme cases are rare� In our experiments�
we have found no signi�cant di�erence in the size of the reachability sets of
the various alternatives� The number of parallel processes and their relative
order has a much bigger impact on the size of the BDD for R than the actual
implementation of the bu�er� Typically we can handle systems of up to �
processes� each with approx� ����	 local states� where each process is equipped
with a bu�er of n�w � �� However� there still is a need for heuristics which use
dependencies between the processes to obtain a �good� order for the process
state variables�

An important observation is that the content of a message bu�er used to
coordinate processes shows regular patterns� which also depend on the state of
the processes� E�g�� in a certain process state the bu�er might always contain
only copies of two di�erent messages fromM� As another example� some speci�c
message might always be followed by some other speci�c message in the bu�er�
Currently we are investigating methods how these regularities can be exploited
to further reduce the size of the representation of the reachability set�

References

�BCDM�� J� Burch� E� M� Clarke� D� Dill� and K� McMillan� Symbolic model
checking� ��� states and beyond� In �th IEEE LICS� June ���

�BCL�� J� Burch� E� M� Clarke� and D� Long� Symbolic model checking
with partitioned transition relations� In Proc� IFIP Conf� on VLSI�
Edinburgh� August ���

�BG��� B� Boigelot and P� Godefroid� Symbolic veri�cation of communica

tion protocols with in�nite state spaces using QDDs� In Proceedings
of �th CAV� New Brunswick� July ����

�Bry��� R� Bryant� Symbolic boolean manipulation with ordered binary
decision diagrams� ACM Comp� Surv�� Vol ��� No ��������� ����

�BS��� R� Boppana and M� Sipser� The complexity of �nite functions� In
J van Leeuwen� editor� Handbook of theoretical computer science�
Vol� A� chapter �� pages �������� Elsevier� Amsterdam� ����

�CGL��� E� M� Clarke� O� Grumberg� and D� Long� Model checking and
abstraction� In �th ACM POPL� January ����

�GL��� P� Godefroid and D� Long� Symbolic protocol veri�cation with queue
BDDs� In Proceedings of IEEE LICS� New Brunswick� July ����

�HD��� A� Hu and D� Dill� Reducing BDD size by exploiting functional
dependencies� In Proc� ��th ACM�IEEE DAC� ����

�McM��� K� McMillan� Symbolic model checking� Kluwer� ����

�

