Performability Analysis of an Avionics-Interface

Lutz Twele, Holger Schlingloff and Helena Szczerbicka
TZI-BISS/ University of Bremen
P.O. Box 330440
28334 Bremen, Germany

ABSTRACT

This paper reports on a case study in the quantita-
tive analysis of safety-critical systems. Although for-
mal methods are becoming more and more accepted
in the development of such systems, usually they are
used in the verification of qualitative properties. How-
ever, in many cases system safety also depends on
the fact that certain quantitative requirements are
met. Therefore we are interested in statements about
quantitative properties, which can be achieved by a
rigorous formal method. Our approach is to create
a Generalized Stochastic Petri Net (GSPN) model of
the system and use it for the analysis of the system.

The object of this case study is a Fault Toler-
ant Computer (FTC) constructed by Daimler Benz
Aerospace! (DASA) for the International Space Sta-
tion (ISS). One part of the FTC is the Avionics In-
terface (AVI) which connects the FTC with a bus-
system. We want to determine the data throughput
that can be reached by the AVI and obtain informa-
tions about bus-usage-profiles which can cause the
rejection of messages. Although such rejections are
allowed according to the specification, they can cause
a significant deterioration in the overall bus perfor-
mance.

In this article we describe a GSPN model of the AVI
software and its environment. This model is used to
make predictions about the AVI performability. Since
a complete analytical solution of the model is not pos-
sible due to its complexity and the infinite state space,
a simulation is used to analyse the crucial AVI behav-
ior for several bus-usage-profiles.

INTRODUCTION

For several systems safety is an essential design prop-
erty. This holds especially for domains in which hu-
man life depends on the correct functioning of the
system, e.g. in the control of a manned space station.

Ithis work was done in cooperation with Daimler Benz
Aerospace and JP Software Consulting

The Fault-Tolerant-Computer (FTC) [9] of the
Daimler-Benz Aerospace (DASA), Bremen, is con-
structed to make sojourns in the space station as safe
as possible. The FTC is used for controlling the as-
sembly of the station and scientific experiments. Its
highly redundant structure allows an accurate opera-
tion even if some components malfunction. One part
of the FTC is the Avionics Interface (AVI) which is
responsible for the connection of the FTC with the
Awvionics Bus System (ABS) of the station.

We are interested in the throughput that can be
reached by a single AVI under different conditions, to
determine the performance of the FTC. In this case
the performance is part of the safety specification of
the system, because control of the station must be
performed under hard real-time requirements.

Therefore it is necessary to use a method which allows
a quantitative analysis and modelling of time. One
formal method that offers these features is the con-
cept of Generalized Stochastic Petri Nets (GSPN) [1].
Other concepts (e.g. queueing networks) turned out
to be not powerful enough to model the AVI. GSPNs
allow construction of models for complex concurrent
systems that represent the structure of the model in
an intelligible graphical way. This property is very
useful as an interface between model developer and
application experts. Nonetheless GSPNs are a formal
method that allows analysis of different quantitative
and qualitative properties of the model (e.g. analysis
of the underlying Markov-chain or P-invariants). Es-
pecially for the AVI the possibility of simulating the
GSPN is important since the state space that results
by the model of the AVI environment is infinite. An-
other advantage is that GSPN are an approved spec-
ification method with numerous GSPN-Tools avail-
able. We decided to use the DSPN-Express [6] and
TimeNet [4] tools because of their compatibility of
the external net representation, the possibility of nu-
merous methods for structural analysis and the fast
simulator of TimeNet.

The FTC has four Lanes, were each lane consists of
an Application Layer (AL), Fault Management Layer
(FML) and the Awvionics Interface Layer (AVI). The
structure of the FTC is displayed in fig. 1.

‘FTC

| I AL

1 1

1 1

1 1
cross- | | L | i |
strapping ——1 20 S0 SH o | s

T 2[1 211 €[] &) =HMME

L | S Oy a3l 3| 1 T

navigation —1—] = u = ! |
interrupts |] i] |

1 1

!) — AVI [

avionics bus system

Figure 1: Four-lane FTC

The FTC can be configured to access the ABS as bus-
master. The applications are running on the AL. If
an application communicates with the station envi-
ronment this is done via the AVI, which is connected
to the Awionics Bus System (ABS). For this the AVI
has to receive asynchronous messages from the AL
and send them to the synchronous working ABS. On
the other side the AVI receives messages from the
ABS and sends them to the AL. Between AL and
AVI resides the FML, which compares the messages
that are exchanged between its AL and AV with the
other FMLs for error detection. Therefore all FMLs
are connected among each other.

The maximal throughput of the system is primally
determined by the AVI for the requirements of com-
munication with the ABS. The AVI is implemented
in OCCAM and for every lane of the FTC one Trans-
puter T805 is reserved just for the AVI.

The FTC communicates with its environment by
Messages. These Messages consist of twelve Bozcars
were each consist of a header and 64 Byte of data.
Every Boxcar can be set as Reading Bozcar (RB) or
as Writing Boxcar (WB), these notation expresses the
action that is performed on the ABS by the Boxcar.
The Messages and their composition of RB and WB
are generated by the AL. The task of the AVI is to
send the Messages to the bus. The ABS consists of 8
MIL 1553-busses were each bus can process one mes-
sage at every clock cycle of 12.5ms. The main flow
of messages through the AVI is shown in fig. 2 (taken
from [3]).

The AVI has to put the data of WBs of a Message
into the Hybrid at a given time and to get the RBs

S L G e L

dual-ported ram which is used by the ABS to receive
and send Messages. So the processing of one Message
takes three bus cycles after getting it from the Input-
Output-Table (I0T).

Process p1.1 receives Messages from the AL via FML
and writes them into the IOT. For every Message
there is a designated bus cycle during which it is to
be processed on the ABS. The Message stays in the
IOT until its bus cycle starts.

One cycle ahead of the designated cycle, p3.1 reads
the Message from the IOT and sends it to p0.2, from
where it is send to p0.1. Process p0.1 writes the mes-
sage into the Hybrid.

In the following cycle the Messages previously writ-
ten into the Hybrid are processed on the ABS. This
means sending and receiving the Boxcars of the Mes-
sages.

During the remaining time of this and the next cycle
p0.2 reads the RB of the Message from the Hybrid
and sends them to the FML via p4.1 and p4.2.

Since every Message is processed in three cycles, the
Hybrid is organized as a triplex buffer. The Hybrid
contains buffers for writing, processing on the bus
and reading. The states of each single buffer changes
automatically with every bus cycle.

L
10T |
| — |
from _ g O'_;»
FML | P
|
’ |

Figure 2: Main data flow within the AVI

|
|
|
|
|
|
************* I Hybrid :
|
|
|
|
|
|

It is important that WBs of Messages which were read
from the IOT are written into the Hybrid before the
next ABS bus cycle starts, otherwise the Message is
rejected because the buffer is used for the processing
on the bus. RBs of Messages that are received from
the ABS must be ready while the next bus cycle is
processed, otherwise the Message can not be received
correctly.

A bus error watchdog is contained in the AVI, which
supervises that Messages are received by the ABS in
time. If the delay of the watchdog is expired, the Mes-
sage is considered to be late and the watchdog initi-
ates an exception. This exception causes an empty

=00 -0/ T/ =" —J/memmmemesm_ s T T O T T T T T P

cessing in p0.2, p4.1 and p4.2.

For further sections it is necessary to mention that
the AVI can handle two different types of Messages,
(normal) Messages and Flezblocks which differ in the
way they are written into the IOT. Normal Messages
which enter the AVI contain all necessary informa-
tions for further processing. For Flexblocks the AVI
has to determine some of this information while writ-
ing it into the IOT, therefore Flexblocks need about
20% more time to be processed in pI.1 than normal
Messages.

In addition to these tasks, the AVI has to react on
several different interrupts that can be generated by
the navigation system.

THE MODEL

In building a formal model of the AVI (see [8]) we
used a top-down system specification provided by the
developer [3]. It describes the system in pseudo-code
at a low level. Furthermore we used the OCCAM-
Code which implemented this description and a CSP-
abstraction that was derived from the OCCAM-Code
for other purposes [2]. These descriptions contain suf-
ficient information about the AVI environment for our
model.

In [7] amethod of transforming CSP-code into generic
Petri nets is proposed. For our problem such a trans-
formation is not useful. Firstly, the complexity of the
AVI CSP-code would result in a Petri net which is too
large for an analysis. Secondly, the timing informa-
tion would be missing in the automatically generated
net.

The base of our model was the main data flow de-
scribed in fig. 2 above. The essential structures that
were necessary to construct a GSPN model of the AVI
which allows the desired analysis are:

e models of single processes,

e dataflow of messages,

e scheduling of the processes,

e triplex-buffering,

e message generation unit as the interface to FML,

e behavior of the Hybrid as interface to the ABS
and

e rejection of messages

e & I S

probabilities of message distribution are contained in
our starting specification, this information was ob-
tained by estimation on the length of the code and
measurement with the actual FTC. The formal time-
less specification and the timing measurements were
put together to build a Petri net model.

Figure 3 shows the structure and main data flow of
the modelled system. The layout of the figure cor-
responds to the structure of the Petri net in fig. 6
below.

MGU
Hybrid

to FML

Figure 3: Overview of components

The OCCAM-processes pz.y displayed in fig. 2 and 3
are all modelled with a similar structure. This struc-
ture implements the data flow of Messages through
the processes, the scheduling and the possibility of
interruption of the processes. Fig. 4 shows the struc-
ture of such processes.

incoming \éO O outgoing
messages C ﬂ@ messages

to
scheduler

from / I—>O_>

scheduler
Figure 4: Structure of OCCAM process

Incoming Messages are stored stored in P38 and P/,
at the same time z token were put into P5, where z
is the number of steps which are necessary to pro-
cess one Message. When the scheduler provides the
scheduling-token and a Message is to be processed, a
token can be put into place P6. Now one step of the
Message can be processed, a token is put in place P7
to mark one more processed step, and the Scheduler

e S e

Message is finished and sent to outgoing Messages.
For some OCCAM processes extensions were made
to implement different properties (e.g. only one Mes-
sage is allowed to be processed at a time).

Process p0.2 is the one which differs most from this
generic scheme. It implements one part of the triplex
buffer. First the Messages enter a similar structure
as in fig. 4 and are processed as usual. With every
tick of the bus clock the state of this first process is
completely put into a second one which represents the
access to the third buffer of the triplex buffer.

The task of the Scheduler is to guarantee that at most
one OCCAM process is active at one time. There-
fore the scheduler contains a single token which is
made available to the OCCAM processes. As de-
scribed above, the OCCAM process concur for this
token. The process which receives it can continue its
calculation. After returning the token from the OC-
CAM processes it is delayed for a determined time
before becoming available again. The Scheduler in-
troduces a global dependency between all (potentially
parallel) processes. Although this global dependency
complicates the analysis, it is necessary to model a
fair scheduling because it influences the timing of the
system.

The Message Generation Unit (MGU) (fig. 5) cre-
ates Messages which should be processed by the AVI.
The MGU is part of the AVI environment. It em-
ulates the AL and FML of the actual system. The
MGU produces messages with a deterministic rather
than an exponential rate. The deterministic rate is
an adequate choice, because the FTC partly synchro-
nises with the ABS. This is caused by a frequently
appearing scheme of information exchange between
FTC and the station: the FTS is sending requests to
the station components and then awaits the answers
for further processing.

The MGU is constructed to generate up to two differ-
ent message types in one simulation pass. The mes-
sage types are generated by transitions T3 and T4.
The structure of the messages depends on the arc val-
ues a,b resp. ¢,d which determine the number of RB
and WB for the message. The transition that is en-
abled to produce messages is determined by a token
which is toggled between the places PI and P2, where
a token on the place inhibits the enabling of the cor-
responding transition to generate its message type.
The duration a message type is generated depends
on the delay of the transitions 77 and T2 which tog-
gle the token determinining the message type. With
exponential distributed delay at high rate (compared
to the message generation rate) a nondeterministic
change of the message types can be simulated.

The task of the Hybrid in our GSPN model is to be

Figure 5: Structure of MGU

one part of the triplex buffer. A Message which enters
the preprocessing phase by process p3.1 is simultane-
ously put into the Hybrid. The Message is delayed
until the next tick of the bus clock. During this bus
cycle the Message is delayed for a time which depends
on the number of RB, then it is made available to p0.2
for postprocessing.

The rejection of Messages is implemented in two Re-
jection Units (RU). If a Message resides in a critical
part of the data flow when a tick of the bus clock
occors the RU removes this Message and puts it into
special places for rejected Messages.

A graphical representation of the complete model is
shown in fig. 6. Main data flow, OCCAM-processes,
message generation and rejection can be identified by
comparison with fig. 3.

SIMULATION

The main goal of this project was to determine a lower
bound for the throughput of the system under differ-
ent message types (normal Messages and Flexblocks),
message structures (number of reading/writing Box-
cars) and message traces. This lower bound is neces-
sary to be able to guarantee certain system properties
for all possible load distributions. Since the actual
load is generated by software modules which were not
available, no average distribution or bounds could be
predicted. Therefore it is important to deliver ex-
act simulation results together with the system, such
that certain timing requirements of the application
software can be verified.

Furthermore, we wanted to determine an optimal
value for the delay of the bus error watchdog.
Validation of the model

Before starting the analysis we had to test and vali-
date our model for consistency with the actual system

(O WRsjected

WSLbFrames

4owaoxcars

FMLb42 FMLp4L

X
l Hlecple g0z

REOXCars

{@x

Rﬂésc(ad

Figure 6: Model for the complete AVI-module

[5]. First the main data flow was tested using the to-
ken game of TimeNet. This was important especially
for the marking dependent labels that were used in
the model. Then the token game was used to test the
scheduling and rejection of messages. Several prop-
erties could be shown by the analysis of submodels
(e.g. the correct functioning of the message buffer),
for others the whole model was needed (e.g. the cor-
rect functioning of the scheduler). Structural analysis
was used to show that the postprocessing of messages
does not change the message structures.

After validation of these qualitative aspects we tested
the timed behavior of the Petri net model with the
simulation component of TimeNet. First we sent sin-
gle messages through the system, later on we use more
complex message traces whose behavior was critical.
Then we compared our simulation results with the ex-
pected results from the OCCAM-implementation and
the measurements in the actual system.

The main problem of the validation was to locate
model inconsistencies with the actual system. Some-
times the token game turned out to be insufficient
due to the model complexity. In these cases, it was
necessary to define additional reward measures which
allowed to analyse the critical behavior of the model.

Simulation objectives and methods
The following values were to be determined:

e Maximal throughput with normal Messages.
e Maximal throughput for Flexblocks.

e Maximal throughput if messages with only read-
ing or only writing Boxcars enter the AVI in an
indefinite order. This situation is called Load
change.

e Capable delay for the bus error watchdog.

Since the rejection of Messages leads to an eventual
retransmission by software layers above we were only
interested in throughput values where no messages
are rejected.

Most of the results were obtained by the station-
ary simulation component of TimeNet. The main
paramters of the simulation were the confidence level
for the results and the length of time for one simu-
lation pass. We decided to use a confidence level of
95% as an optimal compromise between computation
time and accuracy. We wanted to use 1 sec. of system
time to get our results and added 10% of this time for
the transient part at the beginning of the simulation.
We observed the places which contain the number of
sent and received Messages and Boxcars and the num-
ber of rejected Messages. With the number of token
in this places we could determine the desired values.

G R A e S

rameters for the different conditions. Then in several
passes the message generation rate was increased un-
til the threshold value was reached at which messages
were rejected. The throughput could then be calcu-
lated from the number of sent and received Boxcars.

The watchdog delay was determined by setting the
parameters of the message generator and increasing
the delay until messages were rejected.

Achieved Simulation Results

For the simulation of about 1 sec. system time each
single run used up to half an hour of CPU time on an
average Sun workstation. Since the simulation does
not require to build the complete state space of the
model, the memory requirements could be neglected.
Our analysis resulted in throughput values for the dif-
ferent conditions which are accurate enough for the
developer and user of the AVI. All results are within a
given tolerance, compared to the actual system. The
investigation particularly showed that the through-
put of the system is only partly influenced by the
distribution of RB and WB, but mainly depends on
the dynamic change of load.

CONCLUSION

The results show that performance and performabil-
ity analysis even of complex software is feasible with
GSPNs. We found applicable methods for the con-
struction of a GSPN model for a large software sys-
tem that is implemented in OCCAM.

The advantage of using a simulation with GSPNs in-
stead of measuring the actual system is the possibility
to obtain data from points in the model which could
not be accessed within the actual system. This facil-
itates the search for weak points of a system. Since
the model is represented in a graphical way it could
be used as a basis for discussions with the developers.
Besides the quantitative simulation results other
properties of the system were exhibited and analysed
with our model. To enable an efficient simulation it
was necessary to choose a high abstraction level for
the model. For this it was necessary to obtain de-
tailled insight into the structure of the system. With
this insight a complex but still intelligible model has
been built.

Nevertheless, the question of finding an appropri-
ate abstraction level is an important further research
topic. For many complex systems, a complete analy-
sis on a detailled level is not feasible. With a coarse
abstraction, however, important system properties
may be lost. Therefore, it is advantageous to model
a system on several levels, and to validate each level
in a compositional way.

We would like to thank G. Urban, DASA AG Bremen,
and Prof. Dr. J. Peleska, JP Software Consulting, for
the continuing support during this study.

REFERENCES

[1] M. Ajmone Marsan, G. Balbo, G. Conte, S. Do-
natelli, G. Franceschinis: Modelling with Gen-
eralized Stochastic Petri Nets, Chichester, John
Wiley and Sons, 1995

[2] Bettina Buth, Michel Kouvaras, Jan Peleska,
Hui Shi: Deadlock Analysis for a Fault-Tolerant
System, In Michael Johnson (Ed.): Algebraic
Methodology and Software Technology. Proceed-
ings of the AMAST’97, Sidney, Australia, De-
cember 1997, Springer LNCS 1349, 1997, pp. 60-
75.

[3] DASA Daimler Benz Aerospace AG, DMS-R
FTC SW DDD wol. 1,2, Doc. DMS-R-RIBRE-
DDD-0001, 1996.

[4] R. German, Ch. Kelling, A. Zimmermann, G.
Hommel: TimeNET - A Toolkit for Evaluating
Stochastic Petri Nets with Non-Ezponential Fir-
ing Times. Journal of Performance Evaluation,
Elsevier, The Netherlands, Vol. 24, 1995, pp. 69-
87.

[5] Jack P.C. Kleijnen: Verification and Validation
of Simulation Models, Furopean Journal of Op-
erational Research 82, 1995, pp. 145-162

[6] Christoph Lindemann: Performance Modelling
with Deterministic and Stochastic Petri Nets,
Chichester, John Wiley and Sons, 1998.

[7] Ernst-Riidiger Olderog: Operational Petri Net
Semantics for CCSP, In Grzegorz Rozenberg
(Ed.): Advances in Petri Nets, Berlin, Springer
LNCS 266, 1987, pp. 196-223.

[8] Holger Schlingloff, Lutz Twele: DASA Project
FTC - Stochastic Load Analysis of AVI, Univer-
sity Bremen, TZI-BISS, Internal Report, 1998.

[9] Gerd Urban, Hans-Joachim Kolinowitz, Jan Pe-
leska: A Survivable Avionics System for Space
Applications. To appear in: FTCS-28, 28th An-
nual Symposium on Fault-Tolerant Computing,
Munich, Germany, 1998.

