
Model based dependability evaluation
 for automotive control functions

Saša Vulinovic 1, Bernd-Holger Schlingloff 2,3

1: Institut für Technische Informatik und Mikroelektronik, Technische Universität Berlin, 10587 Berlin, Germany
sasa@vulinovic.de

2: Fraunhofer Institut für Rechnerarchitektur und Softwaretechnik FIRST, Kekulèstr. 7, 12489 Berlin, Germany
holger.schlingloff@first.fraunhofer.de

3: Institut für Informatik, Humboldt-Universität zu Berlin, Rudower Chaussee 25, 12489 Berlin, Germany
hs@informatik.hu-berlin.de

Abstract
In this paper, we study the evaluation of reliability for
embedded functions in automotive software. With the
decrease of circuit size the probability of hardware
failures within a chip increases. In order to assess fault
tolerant designs for automotive software it is essential
to be able to predict the failure rate of the realized
function. We present a model based fault injection
technique, where faults are injected according to a dis-
tribution of probabilities in the function model. Using
the MATLAB/SimuLink® tool chain, we are able to
simulate the faulty behavior of a function even if the
realization is distributed amongst several embedded
processorsr. The results allow assessing the depend-
ability of certain safety critical functions in the overall
system design.

Keywords : Model simulation, fault injection, multi-
level model based testing, verification plan, SWIFI,
automotive ECU, Soft-CPUs.

1. Introduction
Today, automotive embedded control units (ECUs) are
increasingly designed using model-based methods.
Starting from informal requirements, a graphical model
is constructed, which then is refined in various ways.

The first step in the design is the construction of a
platform independent model (PIM) which reflects the
original requirements. The PIM is transformed into a
platform specific model (PSM) by stepwise refining
and implementing parts of the original model. Finally,
a code generator can automatically produce target-
specific C-code from the model. Other downstream
tools include software- and hardware-in-the-loop (SIL
and HIL) test environments as well as rapid prototyp-
ing and onboard testing solutions.

A major problem in automotive software engineer-
ing today is the number and variety of ECUs within a
vehicle. Moreover, software functionalities are increas-
ingly interwoven with each other, yielding an addi-
tional level of design complexity.

A possible solution for these problems is to use an
interconnected network of multifunctional and stan-
dardized ECUs. For such a solution, in the early design
stages functionalities must be developed in a processor
independent manner. Later, the sub-functions and their
implementations are distributed within the network.
This approach simplifies the var iety and the number of
necessary ECUs. However, due to the high interdepen-
dency, failures can spread across the whole system and
can have unforeseen cons equences for the behavior of
the vehicle.

In this paper, we consider failures of safety-critical
systems that arise from random faults in the hardware
or execution of the software. That is, we are not deal-
ing with systematic faults in the design of the system,
but with exceptional behavior which origins from
anomalies in its operating environment. We present
software implemented fault injection techniques to
simulate the effects of errors on different abstraction
levels. This way we are able to determine the behavior
of the system in the presence of faults and to identify
design weaknesses in order to improve the overall de-
pendability.

This paper is organized as follows. In section 2, we
define the process of software implemented fault injec-
tion. Subsequently, we describe which types of errors
can be injected at the various levels in the design proc-
ess. In section 4, we discuss the need and realiz ation of
co-simulation between different modeling levels. Fi-
nally, we conceive an integrated fault injection tool en-
vironment and summarize our results.

2. Software Implemented Fault In-
jection

The reliability of embedded safety-critical systems can
be assessed by fault injection: the system is run in
normal operating mode while selected faults are delib-
erately imposed onto the system and its behavior is
measured. In this way, the robustness of the system and
its ability to prevent negative consequences of random
faults can be determined.

One possibility to realize this approach is by soft-
ware implemented fault injection (SWIFI). Here, the
system under test (SUT) is exposed to faults, which are
simulated by software and injected via a CPU debug-
ger or by additional low-level code. In section 3, we
describe how this can be done in a model-based soft-
ware development process. The faults are carefully se-
lected to cover systematically all possible malfunctions
that could occur.

There are two major advantages of software im-
plemented fault injection as compared to approaches
that utilize physical fault injection. Firstly, the method
is nondestructive, and reproducible results are obtained
at minimal cost. Secondly, the method can be tuned
such that it produces statistically significant results
which can be used in a certification and validation
process. However, since it requires additional calcula-
tions, the injection process can alter the performance or
timing of the SUT.

3. Model Levels and Associated
Faults

According to the level of abstraction, SWIFI makes it
possible to analyze the effects of faults onto the various
artifacts in the model-based design flow. In such a
process, the target is developed via several stages at
decreasing levels of abstraction. Each level offers spe-
cific degrees of freedom and therefore different possi-
bilities for faults to be injected. We distinguish the fol-
lowing four levels.

• Functional level
• Block level
• Code level
• Gate level

3.1 Functional Level

The functional level consists of abstract blocks
(e.g. ACC (adaptive cruise control), ABC (active body
control), digital ignition system, or airbag control sys-
tem) and models the interconnections between these
blocks. Commercial simulation tools allow the test en-
gineer to mark individual components as faulty, run the
simulation and monitor the effects on other functions.

Basic faults can be defined by specifying data domains
and their associated ranges together with faulty behav-
ior on blocks, sensors or ac tuators. The results of these
simulations can be used to build a complete fault-tree
for an FMEA.

Figure 1: A network of ECUs and peripherals

This figure shows an example of the interconnection
between different sensors, actuators and embedded
control units, where the realized functions are distrib-
uted between the various components. With suitable
tool support, it is possible to simulate e.g. the effects of
a sensor failure.

In an ongoing work, we propose to combine func-
tion-level fault injection with formal specification
methods. We give a formula in some temporal logic
which reflects the correctness conditions to be checked.
Then, random faults are injected into the functional
model as described above. We propose to use model
checking techniques to evaluate the satisfaction of the
safety requirements in the faulty model. The resulting
counterexamples of the model checker can serve for
threat analysis in the FMEA.

Moreover, the formal specification can help in the
selection of faults to be injected. Model checking a ne-
gation of the specification formula on an abstract level
gives all combinations of simple faults which lead to
the violation of safety. These combinations can be used
in a simulation on the more concrete level to assess the
associated risk.

3.2 Block Level

The block level represents the algorithmic realization
of the functions. In a block-level model, the abstract
macro blocks are present as concrete implementations
of the functions. Both a platform independent and a
platform dependent model consist of blocks, where the
latter is enhanced with allocation of blocks to the given
hardware topology. Basic blocks like constants, condi-
tional decisions, or simple logic functions may be
nested to form algorithms that are more complex.

There are two classes of possible faults for injec-
tion on the block level: Mutants and saboteurs. A mu-
tant is a distorted block which replaces an original
block with a slightly modified functionality. A sabo-

teur disturbs the original communication between (ba-
sic) blocks by some additional functionality.
In accordance with [10] we distinguish between the
following classes of mutants

• Mixing Lines
Permutation of connections between basic
blocks

• Random Selection
Substitution of a basic block with another ba-
sic block, guided by a substitution list

Saboteurs are selected from the following classes:
• Break Line

Cutting of a connection between two basic
blocks. The emitting block is terminated with a
sink element, and the receiving block is con-
nected to a constant.

• Gain/Offset
Amplification of the original signal or adding
of a static offset

• Noise/Chirp
Adding of a dynamic signal to an original sig-
nal. The additional signal ranges from periodic
functions to random noise, defined in tables or
arithmetic functions.

In a large model, there are numerous possibilities for
mutants and saboteurs to be injected. Moreover, there
is an astronomically large number of combinations of
such faults. Therefore, it is essential to establish a real-
istic fault distribution model. Here “realistic” means
that the fault distribution model guarantees that the
chosen faults reflect actual faults, which are likely to
occur in an average operational usage.

To be applicable for a quantitative estimation of
the reliability of the system, the selection of faults has
to be statistically independent. Fault distribution mod-
els can be designed from experimental data, or from
data extracted from error memories in customer vehi-
cles. Such a fault model can also be used for generation
of test cases or the evaluation of other verific ation
tools.

3.3 Code Level

An important advantage in model-based software de-
sign is the possibility of automatically generating tar-
get-specific C-code. Code generation allows maintain-
ing design consistency through the various modeling
levels. A modification on an abstract level causes the
corresponding changes on the more concrete level at
the push of a button. Existing code generators trans-
form basic blocks to highly optimized code, which is
comparable in efficiency to manually written code.
However, the optimization complicates the tracing of
faults on the target to the model.

To induce erroneous behavior on the instruction level
we use the approach we proposed in [11]:

The instruction level is modeled as sequence of in-
structions. Each instruction consists of three major
parts:

• Operands
• Pointer to operands
• Functionality

We take the single bit-flip model as basis for all modi-
fications of the instruction parts. The programmed
functionality is mutated by flipping a single bit in the
machine instruction word. Operands and pointers are
mutated by inducing a single bit flip on CPU registers
or memory locations. By applying these mutations to
all instructions of the application, a fault dictionary is
built.

By stimulating the application with realistic loads,
the execution flow is recorded and profiled. The profil-
ing data provides the weights for creating a list of
faults to be injected. Every entry in the fault list con-
tains:

• the location of the fault to be injected
• a particular point in time for fault activation
• a fault type, that is feasible for this particular

instruction, and
• an application load

The fault list is read and transformed to create executa-
ble debugger scripts. The debugger applies the scripts;
the system behavior and its output is recorded in a fault
effect data base. This data base is evaluated off-line to
determine the simulation results.

3.4 Gate Level

The concrete hardware of the system is analyzed at the
register-transfer level. Fault injection can help to assess
the reliability of certain integrated circuits. The system
can be seen as consisting of switching elements and
memory cells or memory contents. Thus, faults con-
cern latches (bi-stables) and logic gates. The faults are
injected by modification of memory cell contents and
gate functionalities in a HDL-description of the circuit.
In order to be able to do so, it is necessary that such a
model is available. For many commercially-off-the-
shelf processors, such a description is not available
since it is a core intellectual property of the chip manu-
facturer. However, for certain CPUs such as the
LEON2 processor [18] the gate level design is freely
available.

The number of possible faults to be injected is on
the gate level even larger than on the levels above.
Therefore, selection of faults is done by random choice
or according to some assumptions on the spatial distri-
bution of switching elements. The fault injection is
done by modification of the processor description and

execution of the modified code in a HDL simulation
tool.
The possible faults in a gate-level fault injection are
strongly dependent on the hardware technology of the
integrated circuit. Faults in switching elements are only
relevant for technologies below 65 nm; thus for pre-
sent-day technology only memory errors have to be
considered. In CMOS circuits, the majority of faults
consists of single-bit-flips; see next section.

Figure 2: Faults on the level of gates

4. Co-Simulation
Today most innovations in the automotive sector are
realized by software-intensive systems. New function-
alit ies require more and more computing power. Sys-
tem designers must achieve more performance, but
with less power consumption and fewer cabling, while
still maintaining reliability and availability. These
goals can be reached by integrating more than one
function on each ECU. To this end, each ECU must be
equipped with a high performance CPU or even with a
multi-core CPU. Integrated circuits with 400 million of
transistors and more are possible, especially with the
emerging 65nm technologies. We expect that the rea-
sonable low-price per MIPS will also be used for spare
on-chip blocks, to enhance the reliability of ECUs and
to reduce maintenance cost.

Another possibility is the use of configurable de-
vices (e.g. FPGAs) in ECUs. This could solve several
major problems at once:

• Obsolescence of CPUs and MCUs: Soft-cores
can be used with almost any FPGA.

• Configurable interfacing with standardized or
custom busses: Interfaces for most busses can
be easily integrated and replicated by demand.

• Field upgradeability: Hardware updates which
improve reliability or performance can be
done as easily as software updates.

For the current mainstream semiconductor technolo-
gies at 130nm and larger, it is sufficient to inject faults
at instruction level to imitate the Single Event Upset
Event in a CPU core. A study [14] has shown that 95%
of all faults at the gate level can be modeled by induc-
ing a single bit flip at the instruction level. This holds
true for technologies where the vast majority of faults
happens in a flip-flop. However, for the newer tec h-
nologies studies like [15, 16] showed that logic gates

are susceptible to errors at the same order of magnitude
as the flip-flops. This results in multi bit flips in the
memory elements and has to be considered.

These low-level faults can no longer be injected on a
MATLAB/Simulink® basis. Therefore we need an ad-
ditional HDL- simulator (e.g. ModelSim® [17]), which
is able to handle this modeling level. By applying a
fault model to the HDL-Code of the CPU we are able
imitate the CPU function in presence of low-level
faults.

The realization of a fault injection at register-
transfer or gate level can be easily done. Consequently,
simulation time will rapidly increase.

4.1 Speeding-up Fault Injection Campaigns

 To address the problem of fatiguing simulation times
we are currently investigating the relationship between
different modeling levels and implementing some im-
provements in the fault selection process. This will en-
able us to estimate the reliability on a lower level by
simulating at a more abstract level.

We start with the implemented model as described
above. Is has to contain enough details to be able to
generate the fully working optimized C- source code.
The generated code should be annotated for the fault
injection process. This allows defining different failure
rates for each sub-block.

Presently we are developing a tool for fault injec-
tion on code and gate level. We choose a couple of
software applications and categorize the system outputs
in presence of faults as shown in the following figure.

Figure 3: Classification of induced malfunctions

A fault selector module chooses the faults, which will
be injected by a fault injector module and logged in the
fault effect databases. This will be applied for each
level separately. In order to asses the quality of the

fault selector module the fault effects are classified into
these categories:

• silent failure: fault is not activated yet, remains
latently present, not masked

• erroneous failure: fault was activated and
showed deviation from the reference

• masked failure: fault was activated, but got
masked

At instruction level, the procedure is conducted as
described in the previous section 3. For obtaining re-
sults at the gate level, the capabilities of the HDL-
Simulator are used to implement mutations and sabo-
teurs for the gate level elements, while executing the
applications on a HDL soft core CPU (e.g. LEON2
[18], ARM). Again, it is important to keep in mind
which technology will be used for the real system. For
example, the 65nm technologies have to be simulated
with faults that are chosen equally from gates and flip
flops to obtain a realistic fault behavior [19, 20]. A
comparison between the different fault classes for both
levels generates results in the demanded relationship.

The key element to conducting a fast and accurate
simulation is the fault selector. We could speed up the
whole system simulation if it is possible to identify
faults for which the error result is already known. To
decide whether the error is to be injected we evaluate
the gate net list and consider the instruction that shall
be executed. An error will be masked if some other in-
put of the selected gate is sufficient for keeping the
fault from spreading to the following gates. Figure 2
shows an example. The output of the or-gate is always
“1”, because the other input is known to be “1” also.
Hence any potential fault induced by the other input
has no effect and does not need to be simulated. Simi-
lar rules can be defined for each basic gate and combi-
nation of gates.

Figure 4: Bit flip on „in[0]” is masked by other input,

the result does not change

The logical values for this algorithm are obtained

by a statistical approach. For a simple RISC the net list
values are sampled for some clock cycles, while exe-
cuting predetermined test instructions. These include

structured tests, with dedicated combinations of in-
structions with operands. The performing of a cross
correlation results in a logic value marked with a prob-
ability, which depends on the instruction, the address-
ing mode and the operands. This has to be done only
once for the desired CPU.

A further advantage is given by comparing the re-
sults to the “no operation” state of the CPU. Signals
that differ from the “no operational” value indicate that
the component connected to this signal is active during
a particular instruction execution. Faults at gates with a
high activity probability need to be simulated, while
others can be ignored. Usually the gate activity list is
not available from the CPU manufacturer. However,
for soft core CPUs gate-level descriptions are available
to the customer. This enables us to obtain this data us-
ing the method described above.

4.2 Integration into MATLAB/SimuLink®:

 Finally we create an abstract model with all the gath-
ered information. A possible realization could be a
modification of the internal MATLAB debugger,
which imitates a faulty gate level model of the CPU.
With an extended examination under different condi-
tions the additional debugger functionality can be pa-
rameterized by

• CPU model,
• layout technology,
• operational frequency,
• operating temperature, and
• ageing of the hardware.

In order to calibrate these parameters, however, appro-
priate data from a large number of measurements is
needed. At present, these data are not available; thus,
reasonable assumptions on the influence of the parame-
ters must be made.

5. Tool Environment
In this final section, we discuss the conception of an in-
tegrated tool environment for model based software
implemented fault injection. This method shows differ-
ent results on different levels. For a particular assess-
ment, it is important to choose the appropriate level of
abstraction. On the functional level, it is possible to in-
vestigate the linkage of failures of macro blocks,
whereas the robustness of the utilized algorithms is as-
sessed on the implementation block level. The effects
of random hardware failures can be modeled at the in-
struction or gate level. Ideally, an integrated tool
should support all of these levels to an appropriate
level of detail.
For an encompassing overview of the system reliability
it is important to be able to plan in advance which enti-
ties should be assessed and how this should be done.

This planning process should also be supported by an
integrated tool.

On the abstract level, the top-level behaviors can
be identified. The supporting system should automati-
cally extract domains and co-domains from the design
and should offer them for fault injection. The support-
ing system could automatically specify an interface
test, following the guidelines given by the tester.

On the implementation level the tester should be
able to define “hot spots” where he can identify the
most important points in the design and adjust the
“simulation depth”, ranging from simple number of
test cases to marking of components for formal verifi-
cation.

The defined test cases must be kept in an appropri-
ate database. They are needed by an evaluator module,
which constructs an executable test plan at the push of
a button.

A report generator module could complete the
framework. It would document the effort of the test
plans by providing exact information about the speci-
fied and generated test results. To be more expressive
coverage metrics could be calculated and included:

• Structural coverage: Shows which specified
modules, blocks, and functions are tested.
Common best practice coverage metrics are
assigned to standard library blocks.

• Data coverage : Shows the amount of tested
input values compared to the specified (co-)
domains and the coverage of boundary cases

• Code coverage: Shows which part of the C-
code is left untested

• User-defined coverage metrics

In summary, the complete framework could assist the
systems designer to determine which parts of the appli-
cation should be simulated in which way. The frame-
work could also support the systems engineer by auto-
matically extracting structural information from the
model and offering him the possibility to specify all
relevant simulation constraints. The framework then
would run the simulations, inject faults on different
levels and log the system behavior in a fault effect da-
tabase. A report generator would document the specifi-
cations, the injected faults and their consequences.
These results would be accompanied by appropriate
coverage metrics in order to confirm their statistical
relevance for the quantitative assessment of reliability.

6. Conclusion and Further Work
In this paper we presented model-based software im-
plemented fault injection approaches for the reliability
evaluation of automotive embedded control units. The
methods can be applied on different modeling levels

throughout the design cycle, yielding qualitative differ-
ent results on each stage.

We also described in detail the implementation of
the code-level fault injection augmented by a gate-level
co-simulation, and gave concepts for an integrated tool
environment. We have already begun to implement an
academic prototype of such an environment.

More work, however, is needed on some of the is-
sues raised here. The relationship between the faults
and their effects within a level and between different
levels needs to be further investigated. The influence of
parameters such as environmental conditions on the as-
sessment of the system under test has to be established
by appropriate research and measurements.

New technologies and the increasing demand for
computational performance require the development of
new abstract models which need to be integrated in the
existing design tool chain.

Finally, the relation between quantitative and
qualitative assessments is yet to be researched. Cur-
rently, we are implementing some of the described
methods and apply them on an embedded control sys-
tem with a LEON2 CPU in a VIRTEX2 FPGA board.
The results of this study will help to refine the used
models and enhance the universality of the proposed
approach.

7. References
[1] J.-C. Fabre, F. Salles, M. Rodriguez-Moreno, J. Ar-

lat: Assessment of COTS Microkernels by Fault
Injection; Technical Report, LAAS-CNRS, Toulouse
2001

[2] M.-C. Hsueh, T. Tsai and R. Iyer, Fault Injec-
tion Techniques and Tools, Computer, vol. 30, pp.
75-82, 1997.

[3] J. Clark, D. Pradhan; Fault Injection: A method for
Validating Computer-System Dependability, IEEE
Computer, June 1995, pp. 47-56

[4] M.C.Calzarossa and S. Tucci (Eds.): Measurement-
Based Analysis of System Dependability Using
Fault Injection and Field Failure Data. Perform-
ance 2002, LNCS 2459, pp.290-317, 2002.

[5] M.C.Calzarossa and S. Tucci (Eds.): Measurement-
Based Analysis of System Dependability Using
Fault Injection and Field Failure Data. Perform-
ance 2002, LNCS 2459, pp.290-317, 2002.

[6] Rodriguez, M., Salles, F., Fabre, J.C., Arlat, J.:
MAFALDA: Microkernel Assessment by Fault In-
jection and Design Aid. Proceedings of the 3rd
European Dependable Computing Conference
(EDCC-3), 143–160, 1999

[7] J. Carreira, H. Madeira and J. G. Silva, Xception: A
Technique for the Experimental Evaluation of
Dependability in Modern Computers, IEEE
Transaction on Software Engineering, vol. 24, pp.
125-136, 1998.

[8] G. A. Kanawati, N. A. Kanawati and J. A. Abraham,
FERRARI: A Flexible Software-Based Fault and
Error Injection System, IEEE Trans. on Com-
puters, vol. 44, pp. 248-260, 1995.

[9] Potential and Challenges for Model-based Develo p-
ment in the Automotive Industry; in " Business Brief-
ing: Global Automotive Manufacturing and Tech-
nology", World Market Research Center, Oktober
2000

[10] Capeware Technologies GmbH: Cape/C.
http://www.capeware.de

[11] F. Geue: Automatische Fault-Injection in SIMU-
LINK Modelle; Studienarbeit, Fachhochschule für
Technik Esslingen, 2000

[12] S. Vulinovic und H. Schlingloff: Applikationsge-
führte softwareinduzierte Fehlerinjektion eines
fehlertoleranten Stellwerkscomputers; In: 16th
ITG/GI/GMM Workshop "Testmethoden und Zuver-
lässigkeit von Schaltungen und Systemen", FhG I-
AS/EAS, Dresden (Feb. 2004).

[13] S.G. Elbaum and J.C. Munson: Evaluating regres-
sion test suites based on their fault exposure capa-
bility; Journal of Software Maintenance: Research
and Practice Volume 12, Issue 3 , Pages 171 – 184

[14] P.E. Ammann, P.E. Black, W. Majurski; Using
Model Checking to Generate Test from Specifica-
tions; Proceedings of 2nd IEEE International Confe r-
ence on Formal Engineering Methods (ICFEM'98),
Brisbane, Australia (December 1998), edited by John
Staples, Michael G. Hinchey, and Shaoying Liu,
IEEE Computer Society, pages 46-54

[15 Joakim Ohlsson: On Concurrent Error Detection
and Error Propagation, Dissertation, Department of
Computer Engineering, Göteburg 1995

[16] Alfredo Benso, Paolo Prinetto edt., “Fault Injection
Techniques and Tools for Embedded Systems Re-
liability Evaluation”, Kluwer Academic Publis hers,

[17] P. Shivakumar, “Modelling the Effect of Technol-
ogy Trends on Soft Error Rate of Combinatorical
Logic”, Int. Conf on Dep Systems and Networks,
June 2002

[18] Mentor Graphics: “ModelSim” .
http://www.model.com/

[19] Gaisler Research: “LEON2”-CPU.
http://www.gaisler.com/products/leon2/leon.html

[20] Assessing the Fault Tolerance of Embedded Soft-
ware through Application of Machine Instruction
Mutations, Proceedings of the IASTED International
Conference on Modelling and Simulation MS'99 (4.-
8. Mai 1999, Philadelphia USA), S. 541-549. ISBN
0-88986-247-8

[21] Shekhar Borkar, Tanay Karnik, Vivek De: Design
and Reliability Challenges in Nanometer Tech-
nologies , DAC 2004

[22] Alan Matthews: Das rollende PLD, De-
sign&Elektronik „KFZ-Elektronik“, Feb. 2005

[23] The MathWorks: “MATLAB/Simulink “;
http://www.MathWorks.com

A preliminary version of this article has appeared at the WMSCI 9th World Multi-Conference on
Systemics, Cybernetics and Informatics, July 10-13, 2005 - Orlando, Florida, USA, © IIIS.

