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Abstract 
In this paper, we study the evaluation of reliability for 
embedded functions in automotive software. With the 
decrease of circuit size the probability of hardware 
failures within a chip increases. In order to assess fault 
tolerant designs for automotive software it is essential 
to be able to predict the failure rate of the realized 
function. We present a model based fault injection 
technique, where faults are injected according to a dis-
tribution of probabilities in the function model. Using 
the MATLAB/SimuLink® tool chain, we are able to 
simulate the faulty behavior of a function even if the 
realization is distributed amongst several embedded 
processorsr. The results allow assessing the depend-
ability of certain safety critical functions in the overall 
system design.   

Keywords : Model simulation, fault injection, multi-
level model based testing, verification plan, SWIFI, 
automotive ECU, Soft-CPUs. 

1. Introduction 
Today, automotive embedded control units (ECUs) are 
increasingly designed using model-based methods. 
Starting from informal requirements, a graphical model 
is constructed, which then is refined in various ways. 

The first step in the design is the construction of a 
platform independent model (PIM) which reflects the 
original requirements. The PIM is transformed into a 
platform specific model (PSM) by stepwise refining 
and implementing parts of the original model. Finally, 
a code generator can automatically produce target-
specific C-code from the model. Other downstream 
tools include software- and hardware-in-the-loop (SIL 
and HIL) test environments as well as rapid prototyp-
ing and onboard testing solutions. 

A major problem in automotive software engineer-
ing today is the number and variety of ECUs within a 
vehicle. Moreover, software functionalities are increas-
ingly interwoven with each other, yielding an addi-
tional level of design complexity. 

A possible solution for these problems is to use an 
interconnected network of multifunctional and stan-
dardized ECUs. For such a solution, in the early design 
stages functionalities must be developed in a processor 
independent manner. Later, the sub-functions and their 
implementations are distributed within the network. 
This approach simplifies the var iety and the number of 
necessary ECUs. However, due to the high interdepen-
dency, failures can spread across the whole system and 
can have unforeseen cons equences for the behavior of 
the vehicle. 

In this paper, we consider failures of safety-critical 
systems that arise from random faults in the hardware 
or execution of the software. That is, we are not deal-
ing with systematic faults in the design of the system, 
but with exceptional behavior which origins from 
anomalies in its operating environment. We present 
software implemented fault injection techniques to 
simulate the effects of errors on different abstraction 
levels. This way we are able to determine the behavior 
of the system in the presence of faults and to identify 
design weaknesses in order to improve the overall de-
pendability. 

This paper is organized as follows. In section 2, we 
define the process of software implemented fault injec-
tion. Subsequently, we describe which types of errors 
can be injected at the various levels in the design proc-
ess. In section 4, we discuss the need and realiz ation of 
co-simulation between different modeling levels. Fi-
nally, we conceive an integrated fault injection tool en-
vironment and summarize our results.  



2. Software Implemented Fault In-
jection 

The reliability of embedded safety-critical systems can 
be assessed by fault injection: the system is run in 
normal operating mode while selected faults are delib-
erately imposed onto the system and its behavior is 
measured. In this way, the robustness of the system and 
its ability to prevent negative consequences of random 
faults can be determined. 

One possibility to realize this approach is by soft-
ware implemented fault injection (SWIFI). Here, the 
system under test (SUT) is exposed to faults, which are 
simulated by software and injected via a CPU debug-
ger or by additional low-level code. In section 3, we 
describe how this can be done in a model-based soft-
ware development process. The faults are carefully se-
lected to cover systematically all possible malfunctions 
that could occur. 

There are two major advantages of software im-
plemented fault injection as compared to approaches 
that utilize physical fault injection. Firstly, the method 
is nondestructive, and reproducible results are obtained 
at minimal cost. Secondly, the method can be tuned 
such that it produces statistically significant results 
which can be used in a certification and validation 
process. However, since it requires additional calcula-
tions, the injection process can alter the performance or 
timing of the SUT. 

3. Model Levels and Associated 
Faults 

According to the level of abstraction, SWIFI makes it 
possible to analyze the effects of faults onto the various 
artifacts in the model-based design flow. In such a 
process, the target is developed via several stages at 
decreasing levels of abstraction. Each level offers spe-
cific  degrees of freedom and therefore different possi-
bilities for faults to be injected. We distinguish the fol-
lowing four levels. 

• Functional level 
• Block level 
• Code level 
• Gate level 

3.1 Functional Level 

The functional level consists of abstract blocks 
(e.g. ACC (adaptive cruise control), ABC (active body 
control), digital ignition system, or airbag control sys-
tem) and models the interconnections between these 
blocks. Commercial simulation tools allow the test en-
gineer to mark individual components as faulty, run the 
simulation and monitor the effects on other functions. 

Basic faults can be defined by specifying data domains 
and their associated ranges together with faulty behav-
ior on blocks, sensors or ac tuators. The results of these 
simulations can be used to build a complete fault-tree 
for an FMEA. 

 
Figure 1: A network of ECUs and peripherals 

This figure shows an example of the interconnection 
between different sensors, actuators and embedded 
control units, where the realized functions are distrib-
uted between the various components. With suitable 
tool support, it is possible to simulate e.g. the effects of 
a sensor failure. 

In an ongoing work, we propose to combine func-
tion-level fault injection with formal specification 
methods. We give a formula in some temporal logic 
which reflects the correctness conditions to be checked. 
Then, random faults are injected into the functional 
model as described above. We propose to use model 
checking techniques to evaluate the satisfaction of the 
safety requirements in the faulty model. The resulting 
counterexamples of the model checker can serve for 
threat analysis in the FMEA.  

Moreover, the formal specification can help in the 
selection of faults to be injected. Model checking a ne-
gation of the specification formula on an abstract level 
gives all combinations of simple faults which lead to 
the violation of safety. These combinations can be used 
in a simulation on the more concrete level to assess the 
associated risk. 

3.2 Block Level 

The block level represents the algorithmic realization 
of the functions. In a block-level model, the abstract 
macro blocks are present as concrete implementations 
of the functions. Both a platform independent and a 
platform dependent model consist of blocks, where the 
latter is enhanced with allocation of blocks to the given 
hardware topology. Basic blocks like constants, condi-
tional decisions, or simple logic functions may be 
nested to form algorithms that are more complex. 

There are two classes of possible faults for injec-
tion on the block level: Mutants and saboteurs. A mu-
tant is a distorted block which replaces an original 
block with a slightly modified functionality. A sabo-



teur disturbs the original communication between (ba-
sic) blocks by some additional functionality. 
In accordance with [10] we distinguish between the 
following classes of mutants  

• Mixing Lines 
Permutation of connections between basic 
blocks 

• Random Selection 
Substitution of a basic block with another ba-
sic block, guided by a substitution list 

Saboteurs are selected from the following classes: 
• Break Line  

Cutting of a connection between two basic 
blocks. The emitting block is terminated with a 
sink element, and the receiving block is con-
nected to a constant. 

• Gain/Offset 
Amplification of the original signal or adding 
of a static offset 

• Noise/Chirp  
Adding of a dynamic signal to an original sig-
nal. The additional signal ranges from periodic 
functions to random noise, defined in tables or 
arithmetic functions. 

In a large model, there are numerous possibilities for 
mutants and saboteurs to be injected. Moreover, there 
is an astronomically large number of combinations of 
such faults. Therefore, it is essential to establish a real-
istic fault distribution model. Here “realistic” means 
that the fault distribution model guarantees that the 
chosen faults reflect actual faults, which are likely to 
occur in an average operational usage. 

To be applicable for a quantitative estimation of 
the reliability of the system, the selection of faults has 
to be statistically independent. Fault distribution mod-
els can be designed from experimental data, or from 
data extracted from error memories in customer vehi-
cles. Such a fault model can also be used for generation 
of test cases or the evaluation of other verific ation 
tools. 

3.3  Code Level 

An important advantage in model-based software de-
sign is the possibility of automatically generating tar-
get-specific C-code. Code generation allows maintain-
ing design consistency through the various modeling 
levels. A modification on an abstract level causes the 
corresponding changes on the more concrete level at 
the push of a button. Existing code generators trans-
form basic blocks to highly optimized code, which is 
comparable in efficiency to manually written code. 
However, the optimization complicates the tracing of 
faults on the target to the model. 

To induce erroneous behavior on the instruction level 
we use the approach we proposed in [11]: 

The instruction level is modeled as sequence of in-
structions. Each instruction consists of three major 
parts: 

• Operands 
• Pointer to operands 
• Functionality 

We take the single bit-flip model as basis for all modi-
fications of the instruction parts. The programmed 
functionality is mutated by flipping a single bit in the 
machine instruction word. Operands and pointers are 
mutated by inducing a single bit flip on CPU registers 
or memory locations. By applying these mutations to 
all instructions of the application, a fault dictionary is 
built. 

By stimulating the application with realistic loads, 
the execution flow is recorded and profiled. The profil-
ing data provides the weights for creating a list of 
faults to be injected. Every entry in the fault list con-
tains: 

• the location of the fault to be injected 
• a particular point in time for fault activation 
• a fault type, that is feasible for this particular  

instruction, and 
• an application load 

The fault list is read and transformed to create executa-
ble debugger scripts. The debugger applies the scripts; 
the system behavior and its output is recorded in a fault 
effect data base. This data base is evaluated off-line to 
determine the simulation results. 

3.4  Gate Level 

The concrete hardware of the system is analyzed at the 
register-transfer level. Fault injection can help to assess 
the reliability of certain integrated circuits. The system 
can be seen as consisting of switching elements and 
memory cells or memory contents. Thus, faults con-
cern latches (bi-stables) and logic gates. The faults are 
injected by modification of memory cell contents and 
gate functionalities in a HDL-description of the circuit. 
In order to be able to do so, it is necessary that such a 
model is available. For many commercially-off-the-
shelf processors, such a description is not available 
since it is a core intellectual property of the chip manu-
facturer. However, for certain CPUs such as the 
LEON2 processor [18] the gate level design is freely 
available. 

The number of possible faults to be injected is on 
the gate level even larger than on the levels above. 
Therefore, selection of faults is done by random choice 
or according to some assumptions on the spatial distri-
bution of switching elements. The fault injection is 
done by modification of the processor description and 



execution of the modified code in a HDL simulation 
tool. 
The possible faults in a gate-level fault injection are 
strongly dependent on the hardware technology of the 
integrated circuit. Faults in switching elements are only 
relevant for technologies below 65 nm; thus for pre-
sent-day technology only memory errors have to be 
considered. In CMOS circuits, the majority of faults 
consists of single-bit-flips; see next section. 

 
Figure 2: Faults on the level of gates 

4. Co-Simulation 
Today most innovations in the automotive sector are 
realized by software-intensive systems. New function-
alit ies require more and more computing power. Sys-
tem designers must achieve more performance, but 
with less power consumption and fewer cabling, while 
still maintaining reliability and availability. These 
goals can be reached by integrating more than one 
function on each ECU. To this end, each ECU must be 
equipped with a high performance CPU or even with a 
multi-core CPU. Integrated circuits with 400 million of 
transistors and more are possible, especially with the 
emerging 65nm technologies. We expect that the rea-
sonable low-price per MIPS will also be used for spare 
on-chip blocks, to enhance the reliability of ECUs and 
to reduce maintenance cost.  

Another possibility is the use of configurable de-
vices (e.g. FPGAs) in ECUs. This could solve several 
major problems at once: 

• Obsolescence of CPUs and MCUs: Soft-cores 
can be used with almost any FPGA.  

• Configurable interfacing with standardized or 
custom busses: Interfaces for most busses can 
be easily integrated and replicated by demand. 

• Field upgradeability: Hardware updates which 
improve reliability or performance can be 
done as easily as software updates. 

For the current mainstream semiconductor technolo-
gies at 130nm and larger, it is sufficient to inject faults 
at instruction level to imitate the Single Event Upset 
Event in a CPU core. A study [14] has shown that 95% 
of all faults at the gate level can be modeled by induc-
ing a single bit flip at the instruction level. This holds 
true for technologies where the vast majority of faults 
happens in a flip-flop. However, for the newer tec h-
nologies studies like [15, 16] showed that logic gates 

are susceptible to errors at the same order of magnitude 
as the flip-flops. This results in multi bit flips in the 
memory elements and has to be considered. 

These low-level faults can no longer be injected on a 
MATLAB/Simulink® basis. Therefore we need an ad-
ditional HDL- simulator (e.g. ModelSim® [17]), which 
is able to handle this modeling level. By applying a 
fault model to the HDL-Code of the CPU we are able 
imitate the CPU function in presence of low-level 
faults. 

The realization of a fault injection at register-
transfer or gate level can be easily done. Consequently, 
simulation time will rapidly increase.  

4.1 Speeding-up Fault Injection Campaigns  

 To address the problem of fatiguing simulation times  
we are currently investigating the relationship between 
different modeling levels and implementing some im-
provements in the fault selection process. This will en-
able us to estimate the reliability on a lower level by 
simulating at a more abstract level. 

We start with the implemented model as described 
above. Is has to contain enough details to be able to 
generate the fully working optimized C- source code. 
The generated code should be annotated for the fault 
injection process. This allows defining different failure 
rates for each sub-block. 

Presently we are developing a tool for fault injec-
tion on code and gate level. We choose a couple of 
software applications and categorize the system outputs 
in presence of faults as shown in the following figure. 

 
Figure 3: Classification of induced malfunctions 

A fault selector module chooses the faults, which will 
be injected by a fault injector module and logged in the 
fault effect databases. This will be applied for each 
level separately. In order to asses the quality of the 

 



fault selector module the fault effects are classified into 
these categories:  

• silent failure: fault is not activated yet, remains 
latently present, not masked 

• erroneous failure: fault was activated and 
showed deviation from the reference 

• masked failure: fault was activated, but got 
masked  

At instruction level, the procedure is conducted as 
described in the previous section 3. For obtaining re-
sults at the gate level, the capabilities of the HDL-
Simulator are used to implement  mutations and sabo-
teurs for the gate level elements, while executing the 
applications on a HDL soft core CPU (e.g. LEON2 
[18], ARM). Again, it is important to keep in mind 
which technology will be used for the real system. For 
example, the 65nm technologies have to be simulated 
with faults that are chosen equally from gates and flip 
flops to obtain a realistic fault behavior [19, 20]. A 
comparison between the different fault classes for both 
levels generates results in the demanded relationship. 

The key element to conducting a fast and accurate 
simulation is the fault selector. We could speed up the 
whole system simulation if it is possible to identify 
faults for which the error result is already known. To 
decide whether the error is to be injected we evaluate 
the gate net list and consider the instruction that shall 
be executed. An error will be masked if some other in-
put of the selected gate is sufficient for keeping the 
fault from spreading to the following gates. Figure 2 
shows an example. The output of the or-gate is always 
“1”, because the other input is known to be “1” also. 
Hence any potential fault induced by the other input 
has no effect and does not need to be simulated. Simi-
lar rules can be defined for each basic gate and combi-
nation of gates. 

 
Figure 4: Bit flip on „in[0]” is masked by other input, 

the result does not change 

 
The logical values for this algorithm are obtained 

by a statistical approach. For a simple RISC the net list 
values are sampled for some clock cycles, while exe-
cuting predetermined test instructions. These include 

structured tests, with dedicated combinations of in-
structions with operands. The performing of a cross 
correlation results in a logic value marked with a prob-
ability, which depends on the instruction, the address-
ing mode and the operands. This has to be done only 
once for the desired CPU.  

A further advantage is given by comparing the re-
sults to the “no operation” state of the CPU. Signals 
that differ from the “no operational” value indicate that 
the component connected to this signal is active during 
a particular instruction execution. Faults at gates with a 
high activity probability need to be simulated, while 
others can be ignored. Usually the gate activity list is 
not available from the CPU manufacturer. However, 
for soft core CPUs gate-level descriptions are available 
to the customer. This enables us to obtain this data us-
ing the method described above. 

4.2 Integration into MATLAB/SimuLink®: 

 Finally we create an abstract model with all the gath-
ered information. A possible realization could be a 
modification of the internal MATLAB debugger, 
which imitates a faulty gate level model of the CPU. 
With an extended examination under different condi-
tions the additional debugger functionality can be pa-
rameterized by 

• CPU model, 
• layout technology, 
• operational frequency, 
• operating temperature, and 
• ageing of the hardware.  

 
In order to calibrate these parameters, however, appro-
priate data from a large number of measurements is 
needed. At present, these data are not available; thus, 
reasonable assumptions on the influence of the parame-
ters must be made. 

5. Tool Environment 
In this final section, we discuss the conception of an in-
tegrated tool environment for model based software 
implemented fault injection. This method shows differ-
ent results on different levels. For a particular assess-
ment, it is important to choose the appropriate level of 
abstraction. On the functional level, it is possible to in-
vestigate the linkage of failures of macro blocks, 
whereas the robustness of the utilized algorithms is as-
sessed on the implementation block level. The effects 
of random hardware failures can be modeled at the in-
struction or gate level. Ideally, an integrated tool 
should support all of these levels to an appropriate 
level of detail. 
For an encompassing overview of the system reliability 
it is important to be able to plan in advance which enti-
ties should be assessed and how this should be done. 



This planning process should also be supported by an 
integrated tool. 

On the abstract level, the top-level behaviors can 
be identified. The supporting system should automati-
cally extract domains and co-domains from the design 
and should offer them for fault injection. The support-
ing system could automatically specify an interface 
test, following the guidelines given by the tester. 

On the implementation level the tester should be 
able to define “hot spots” where he can identify the 
most important points in the design and adjust the 
“simulation depth”, ranging from simple number of 
test cases to marking of components for formal verifi-
cation. 

The defined test cases must be kept in an appropri-
ate database. They are needed by an evaluator module, 
which constructs an executable test plan at the push of 
a button.  

A report generator module could complete the 
framework. It would document the effort of the test 
plans by providing exact information about the speci-
fied and generated test results. To be more expressive 
coverage metrics could be calculated and included: 

• Structural coverage: Shows which specified 
modules, blocks, and functions are tested. 
Common best practice coverage metrics are 
assigned to standard library blocks.  

• Data coverage : Shows the amount of tested 
input values compared to the specified (co-) 
domains and the coverage of boundary cases  

• Code coverage: Shows which part of the C- 
code is left untested 

• User-defined coverage metrics 

In summary, the complete framework could assist the 
systems designer to determine which parts of the appli-
cation should be simulated in which way. The frame-
work could also support the systems engineer by auto-
matically extracting structural information from the 
model and offering him the possibility to specify all 
relevant simulation constraints. The framework then 
would run the simulations, inject faults on different 
levels and log the system behavior in a fault effect da-
tabase. A report generator would document the specifi-
cations, the injected faults and their consequences. 
These results would be accompanied by appropriate 
coverage metrics in order to confirm their statistical 
relevance for the quantitative assessment of reliability. 

6. Conclusion and Further Work 
In this paper we presented model-based software im-
plemented fault injection approaches for the reliability 
evaluation of automotive embedded control units. The 
methods can be applied on different modeling levels 

throughout the design cycle, yielding qualitative differ-
ent results on each stage. 

We also described in detail the implementation of 
the code-level fault injection augmented by a gate-level 
co-simulation, and gave concepts for an integrated tool 
environment. We have already begun to implement an 
academic prototype of such an environment. 

More work, however, is needed on some of the is-
sues raised here. The relationship between the faults 
and their effects within a level and between different 
levels needs to be further investigated. The influence of 
parameters such as environmental conditions on the as-
sessment of the system under test has to be established 
by appropriate research and measurements.  

New technologies and the increasing demand for 
computational performance require the development of 
new abstract models which need to be integrated in the 
existing design tool chain. 

Finally, the relation between quantitative and 
qualitative assessments is yet to be researched. Cur-
rently, we are implementing some of the described 
methods and apply them on an embedded control sys-
tem with a LEON2 CPU in a VIRTEX2 FPGA board. 
The results of this study will help to refine the used 
models and enhance the universality of the proposed 
approach. 
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