
Using Formal Specifications in the Implementation of CMMI

Bernd-Holger Schlingloff, Satish Mishra*
Fraunhofer FIRST and Humboldt University, * Institut für Informatik, HU Berlin

{holger.schlingloff,mishra}@first.fraunhofer.de

Abstract

There are two main aspects of quality assurance in

computational systems development and maintenance
projects: the process and product view. Several
standard models have been proposed for a systematic
process improvement, e.g., CMM/CMMI, Agile,
SPICE, or the ISO 9000 family. However, even the
best process can not guarantee that the resulting
products are as expected. For a rigorous analysis of
the products, formal specification based development
methods have been proposed. Examples are VDM, Z,
LOTOS, CSP and CASL.

In this paper we connect these two aspects by
showing how to integrate formal specification based
methods in process improvement models. In particular,
we investigate the use of the specification language
CSP-CASL for the implementation of CMMI within an
organization. CMMI is based on the notion of process
area, which is a cluster of best practices with
particular goals in a certain area. For each of the
relevant process areas, we show in detail how using
formal specifications can help to achieve specific
goals. This is a first step to systematically combine
product based quality assurance methods with process
improvement models.

1. Introduction

Currently, computational systems (hard- and software)
are incorporating more and more functionality, which
leads to an ever increasing complexity. This is the
main reason for errors in the development of these
systems. For the development of a complex
computational system which nevertheless is reliable
both product and process based quality assurance
methods are necessary. CMMI (Capability Maturity
Model® Integration) [6] [13] is a well-established
process improvement model which has proved its
benefits in hundreds of companies and thousands of
projects. For product based software quality

improvement, formal specification methods have been
in existence for many years. Several of these methods
have proven to be of advantage for the development of
safety-critical systems, e.g. in aerospace or in the
medical industry.

In this paper we describe the use of formal
specifications for the implementation of CMMI in an
organization. This way, the benefits of a broadly
accepted, standardized process improvement model
can be combined with the advantages of formal
specification for product assurance. CMMI is the
enhanced model of CMM, the Carnegie Mellon
Software Engineering Institute’s Capability Maturity
Model, which was introduced in 1991. The latest
version is “CMMI for Development 1.2”, which is a
process improvement maturity model for the
development of products and services. It consists of
best practices that address development and
maintenance activities which cover the whole product
lifecycle, from conception through delivery until
maintenance [14] [7] [8] [9] [10].

A formal specification language consists of a well-
defined syntax and a mathematical semantics. A formal
method based on a specification language includes
some transformation algorithm, which makes it
appropriate for specifying, verifying and validating
systems. Examples for formal methods which are
being used in industry include VDM [17] and Z [12],
Larch or, more recently, CASL [1]. These methods
focus on the specification of structural properties,
whereas CSP [2] [3], CCS [19], LOTOS, StateCharts,
or Temporal Logic focus on behavioral properties.
Many research papers have been published on the
application of these or other formal languages in
industrial practice [24][23][20].

In this paper we use CSP-CASL, which is a rather
new algebraic / process algebraic specification
language [22]. This choice is based on the fact that it
includes means for both structural and behavioral
properties. CSP (Communicating Sequential Process)

has been in existence since decades. It is a language
well suited for the specification of reactive behavior.
CASL (the Common Algebraic Specification
Language) has been developed by CoFI, the common
framework initiative, and can be used to specify
structural properties of systems such as data types,
functions and objects.

Using CMMI and CSP-CASL as an example, we
analyze the integration of formal specification methods
into process improvement models. We discuss how
formal specification can contribute in the
implementation of a process area, and, in particular, to
achieve the specific goals associated to that process
area.

Our paper is organized as follows. In the next
section we will give a brief overview of CMMI, and in
section three we will present the required details of
CSP-CASL. In a subsection of this section we describe
a case study which will be referred throughout the
paper. Section four contains the main results about the
potential contribution of a formal specification
language in a CMMI implementation. In section five
we give a conclusion and describe future work.

2. CMMI, Capability Maturity Model
Integration

CMMI is a framework for assisting organizations to

improve their development and maintenance processes
for software product development. CMMI is based on
the notion of process area (PA). A process area is a
cluster of related practices in an area. A typical process
area is requirements management, which subsumes all
practices necessary for dealing with demands the
software has to fulfill. When a process area is
implemented, it satisfies several goals which are
considered important for making improvements in that
area. CMMI offers two representations for its
implementation, a continuous representation and a
staged representation. The continuous representation
offers more flexibility for process improvement. An
organization can choose a focused process area,
determine the dependent process areas, improve these
at priority, and then concentrate on other process areas.
In the staged representation, process areas are grouped
together into capability maturity levels.

In this paper we are considering the staged
representation. Since the notion of process area is
independent from the representation, our results hold
for the continuous representation as well. CMMI has
22 process areas which are considered important for

the improvement of an organization. Generally, the
domain of work which is performed within the
organization can be divided into four groups: process
management, project management, engineering and
support. Each of these groups has a set of process areas
for improving the capabilities of its processes.
Associated with each process area is a set of goals
which have to be satisfied as a measure for
improvement in that process area.

Figure 1. Category of Process Area and its

components

Support Process
management

Project
management

Engineering
(5 PA) (6 PA)

 (5 PA) (6 PA)

Subpractices

GP
elaborations

Process areas are detailed by so-called model

components. There are three types of model
components. Required model components describe
what an organization must achieve to satisfy a process
area. Expected model components describe what it may
implement to achieve the required components.
Informative model components provide details which

Subpractices

Process area
 (PA)

Generic
goals

Specific
goals

Generic
practices

Specific
practices

Typical work
products

Required Expected Informative
Notations:

help to initiate the approach the required and
informative model component. Figure 1 shows the
groups of process areas and its model components.

CMMI has a specific approach to describe the
process areas. The description of a process area starts
with introduction, purpose and relation with other
process areas. These are informative components.
Main characteristics of a process area are described by
using specific goals (SG) and generic goals (GG). The
specific goals are unique characteristics that must be
present to satisfy the associated process area. A
specific goal is a required model component. A
specific practice (SP) is the description of an activity
that is considered important in achieving the associated
specific goal. A specific practice is an expected model
component.

The generic goals are the characteristics that must
be present to institutionalize the processes which
implement a process area. Generic goals are called
“generic” because the same goal applies to multiple
process areas. A generic practice is the description of
an activity that is considered important in achieving
the associated generic goal. Thus, a generic practice is
an expected model component. For analyzing the
integration of formal specification methods into
process improvement models we only have to consider
specific goals and its specific practices of the process
areas. Generic goals are mainly for institutionalization
of each process areas.

3. CSP-CASL, Formal Specification
Language

CSP-CASL is a process algebraic specification

language. For the specification of any system,
processes of the system are specified by CSP and
communications between these processes are the
values of CASL data types. All the required features of
CSP and CASL are supported by the combination [22].
The basic syntax of CSP-CASL is an integration of the
CSP syntax and the CASL syntax. Syntactically a
CSP-CASL specification Sp consists of a data part D,
which is a CASL specification, an (optional) channel
part Ch to declare channels, which are typed according
to the data specification, and a process part P written in
CSP, where CASL terms are used as communications.
Thus, the generic format of a CSP-CASL specification
is

(ccspecification Sp = data D channel Ch process P).
The semantics of CSP-CASL is defined in three steps.
In the first step each channel is encoded in CASL. In

the second step CASL data types are evaluated, where
families of processes are generated according to the
data model. In the last step the evaluation according to
CSP is taking place.

3.1. CSP, Communicating Sequential Processes

CSP is a formal language for describing reactive

systems. Such systems often have complex interactions
among their processes which make them difficult to
comprehend. CSP provides a set of mathematical
symbols to analyze such complex systems with clarity
and preciseness.

In CSP, an object (e P) is described with an event
e and process P, which states that the object first
engages in an event e and then behaves like process P.
The meaning of a CSP process P is given by its traces
tr(P), which is the set of sequences of events that a
process may possibly perform. Two primitive
processes of CSP are STOP and SKIP, where STOP is
the process which never engages in any event and
SKIP is the process which does nothing but terminate
successfully. CSP has a rich syntax for describing
processes; some of the syntactic features are described
subsequently.

An event can be combined with a process using the
prefix operator (). A process may be defined in
terms of itself using recursion [3]. There are CSP
operations which combine processes in a sequential or
parallel manner. CSP supports two types of choice
operators, external and internal choice. The
interleaving form of parallel combination is supported
by CSP where processes don’t communicate with each
other. One of the important features for abstract
specification of systems in CSP is nondeterminism,
where a process can choose amongst several
alternatives. Hiding of events is supported for
abstraction; this may also lead to nondeterminism.

For CSP, several semantics have been defined:
operational, denotational, and algebraic semantics. The
semantics can be based on a trace model, where a trace
is sequence of communications between the
environment and the system’s processes.

3.2. CASL, Common Algebraic Specification
Language

CASL has been developed by the international CoFI

(Common Framework Initiative). It subsumes most of
the previous approaches in algebraic specification
[1][22]. The CASL can be separated into four parts,

which facilitates the description of systems with an
appropriate detail. These parts are basic specifications,
structured specifications, architectural specification
and library based specification. A basic specification
includes first-order total functions, partial functions
and predicates. To describe a system completely,
subsorts, axioms and datatype declarations are
integrated into the basic specification. Keywords of
basic specification are sorts, ops, preds, vars etc. A
structured specification is a combination of such basic
specifications into a larger specification in a
hierarchical and modular fashion. It mainly allows
translation (keyword with), reduction (keyword hide),
union (keyword and) and extension (keyword then) of
specifications. An architectural specification allows
systems to be developed with reusable components. A
library based specification allows easy distribution and
reusability in a user friendly way.

A small example of a CSP-CASL specification is
the case study given below. The keywords in this
example are interpreted as follows. Keyword op and
ops are used to declare the operations, keyword pred
and preds are used to declare the predicates. The
keyword sort is interpreted as data type, similar to data
types in any programming language. The keyword then
facilitates the specification extension with more
features. Further sections will elaborate more about the
case study and its applicability in our approach.

3.3. Case study

In this subsection we describe a small case
study of a basic remote control for electronic devices
such as TV, VCR etc. The example is used to
demonstrate the approach of specification based
development in a CMMI environment, in particular the
relationship among requirements, design documents,
test cases and implementation. This case study is too
small to demonstrate all necessary details for the
compliance of CMMI with a formal specification
based development, but it gives an intuitive idea of the
ideas. To assess in which way formal specifications
can contribute to a CMMI implementation, we have
applied this approach in an industrial case study of a
medical embedded system [20]. For sake of simplicity,
in this paper we restrain ourselves to the basic remote
control case study. A more elaborate version of this
example can be found in [27]

3.3.1. Informal description. The basic remote control
unit (RCU) can be described as follows. It has 12
buttons which are button_0, …, button_9, button_on

and button_off. Whenever any button is pressed, the
corresponding sixteen bits stream of signal, in specific
pattern is send via an LED (Light Emitting Diode).
The remote control has an internal table for
determining the key code of the respective buttons.

3.3.2. CSP-CASL specification (Requirement
Analysis)
library Basic/Numbers get Nat, Int
Ccspec BasicRCU

data
 sort Button

sort Signal = {s:Signal ● #s = 16}
 op button_0, button_1, …, button_9: Button

 op button_on, button_off : Button
 op responseSignal : Button Signal

channel
 Keypad: Button
 Infrared: Signal
process

Control = Keypad ? x:Button Infrared !
 responseSignal (x) Control

end
The above description is a formal specification of

the RCU which is informally defined above. The
complete specification is divided into three parts,
namely data, channel and process part. In the data part
sorts, operations and predicates are declared. The first
line of specification includes the basic library of data
types. The specification name is given in the next line.
After that, Button and Signal are declared as data type
of sort which is further used to declare all the buttons
of RCU. In the last lines of the data part the operation
responseSignal, is declared which takes Button as
input and returns Signal as output.

 The next part of the specification declares the
channels which are used by the CSP processes for
communication with the environment. Here Keypad
and Infrared are declared as channels of type Button
and Signal, respectively. The last part of the
specification declares the CSP processes which define
the reactive behavior of the RCU. Whenever a remote
control button is pressed, the respective signal is
passed on the channel. This is described by the
recursive process Control. This process waits for an
event (of type Button) to occur. After execution of this
event it performs the operation responseSignal, which
accepts a pressed button as input, outputs the
respective signal on the channel Infrared and then
continues recursively.

3.3.3 CSP-CASL specification (Design Document)
 A software development process can be
understood as the construction of a sequence of
increasingly more detailed descriptions from an initial
requirements document, until an executable program is
reached. At each step design decisions are fixed
coherent with the requirements. The process of fixing
design decision is referred as refinement. In our case
study, the pattern of 16 bits signal is fixed according to
the standard guideline: The initial four bits are a
company ID, the next four bits are a device ID and the
other remaining bits represent the control signal for the
functionality of a particular button. Subsequently we
give the refinement of our earlier specification,
according to this pattern for a specific company.

library Basic/Numbers get Nat, Int
Ccspec BasicRCU

data
 sort Button

op button_0, button_1, …, button_9: Button
op button_on, button_off : Button

 free type Bit ::= 0 | 1
 then List[Bit]
 then

sort Signal = {l:List[Bit] ● #l = 16}
DeviceId : List[Bit] = [0010]
CompanyId : List[Bit] = [1000]

 op responseSignal : Button Signal
axioms
responseSignal(button_0) = DeviceId ++
CompanyId ++ [00000000]
responseSignal(button_1) = DeviceId ++
CompanyId ++ [00000001
…
responseSignal(button_On) = DeviceId ++
CompanyId ++ [00000100]
∀ b : Button ● ∃ L : List[Bit] ●
responseSignal (b)= DeviceId ++ CompanyId ++ L
● #L=8

channel
 Keypad: Button
 Infrared: Signal
process

Control = Keypad ? x:Button Infrared !
 responseSignal (x) Control

end

In the design document, data types are refined, and
additional constraints are added to satisfy certain
product properties. The operation responseSignal is
extended with details of the button and its
corresponding signal is defined by axioms on the

operation level. An initial group of axioms fixes the
responseSignal for a set of buttons. The last axiom in
this specification confirms that all the buttons of the
RCU follow the pattern of signal which is decided by
the company. We will refer this specification to
demonstrate which features are well suited for CMMI
compliance.

4. Formal specification and CMMI

To analyze the contribution of formal specification
for the implementation of CMMI in an organization we
developed the following the grading scale.

1) Fully Contributed (FC): A process area is
satisfied as FC if 90-100% of its specific goals are
achieved using formal specification. A specific goal is
achieved as FC when 90-100% of its specific practices
can be performed by formal specification.

2) Largely Contributed (LC): A process area is
satisfied as LC if 60-89% of its specific goals are
achieved using formal specification. A specific goal is
achieved as LC when 60-89% of its specific practices
can be performed by formal specification.

3) Partially Contributed (PC): A process area is
satisfied as PC if 30-59% of its specific goals are
achieved using formal specification. A specific goal is
achieved as PC when 30-59% of its specific practices
can be performed by formal specification.

4) Not Contributed (NC): A process area is NC if
0-29 % of its specific goals is achieved using formal
specification. A specific goal is NC when 0-29% of its
specific practices can be performed by formal
specification.

Table 1, 2 and 3 show an overview of our
categorization on a process area which demonstrates
the contribution of formal specification to it.

Table 1. Formal specification contribution
categorization on CMMI

Process
Area
(PA)

 Specific Goals
of a PA

(% of total)

Specific
Practices of

SG
(% of total)

Fully Contributed
(FC)

90 to 100 90 to 100

Largely Contributed
(LC)

60 to 89 60 to 89

Partially Contributed
(PC)

30 to 59 30 to 59

Not Contributed (NC) 0 to 29 0 to 29

Table 2. Categorization overview on Specific Goal and

Specific Practice
Specific Goal Specific

Practices
(% of total)

Fully Contributed
(FC)

90 to 100

Largely Contributed
(LC)

60 to 89

Partially Contributed
(PC)

30 to 59

Not Contributed (NC) 0 to 29

Table 3. Categorization overview on Specific Practice

and its Activity
Specific Practice % of Activity

Fully Contributed

(FC)
90 to 100

Largely Contributed
(LC)

60 to 89

Partially Contributed
(PC)

30 to 59

Not Contributed (NC) 0 to 29

Formal specification has many features which can
contribute for the compliance of CMMI in an
organization. Model development, model complexity
analysis, refinement of model, structured development,
verification and validation are the main features. In
the subsequent parts of this paper we illustrate the
integration of these features for the compliance of
CMMI practices with the help of our example.

4.1 Contribution of formal specification at
CMMI maturity level 2

At maturity level 2 of CMMI, it is required that

there is a written policy such that all the project related
processes are planned and used. All the projects of an
organization derive the processes according to a
defined policy for the organization. Project employees
must have proper understanding of the processes and
their controlling behavior. Processes must be
reviewed, controlled and monitored at specific
milestones. Once planned processes are in place,
projects are managed according to these plans. This
maturity level is referred as the managed level. At this
level of maturity there are seven processes areas. In

this paper we just show results for a single process
area, namely “Requirements Management”. There are
similarly many contributions of formal specification to
the compliance of other process areas such as “Process
and Product Quality Assurance”, “Project Monitoring
and Control”, and “Measurement and Analysis”.

4.1.1 Requirement Management

The process area “Requirements Management”

provides guidelines for dealing with demands for
product features and product component features. In
addition to this, it also provides guidelines for
removing inconsistencies between requirements and
other work products. Formal specification methods can
contribute to a specific goal and a specific practice of
this process area as shown in Table 4.

Table 4. Requirement management process area
Specific goals and specific practices FSC

SG 1 Manage Requirements LC
SP 1.1 Obtain an Understanding of
Requirements

FC

SP 1.2 Obtain Commitment to
Requirements

LC

SP 1.3 Manage Requirements Changes LC
SP 1.4 Maintain Bidirectional
Traceability of Requirements

LC

SP 1.5 Identify Inconsistencies Between
Project Work and Requirements

LC

In this table, we present the contribution of formal
specification for each Specific Practice (SP). Each of
these estimations is based on our experiences with
CSP-CASL; for space reasons, in this paper we give
only some example justifications.

Since the formulation of requirements in a formal
specification has a precise and unambiguous
semantics, it provides a way to ensure specific
practices of this specific goal. The refinement relation
among requirement, detailed design and
implementation provides an approach for maintaining
consistency and traceability of the requirement
throughout the software development lifecycle. Once a
requirement is formally specified, many aspects of the
development life cycle and work products can be
automated.

Table 5. Refinement relation
In requirement
responseSignal: Button Signal
In design document
responseSignal: Button Signal
 axioms

 responseSignal(button_0) = DeviceId + +
 CompanyId ++ [00000000]
 responseSignal(button_1) = DeviceId + +
 CompanyId ++ [00000001]
 …………….

In test case
Inp: button_0 out: DeviceId ++ CompanyId ++
 00000000
Inp: button_1 out: DeviceId ++ CompanyId ++
 00000001
Etc

Table 5 shows selected part of the case study. This

formal specification demonstrates the refinement
relation between requirement and design document.
The operation responseSignal is refined into detailed
design by restricting its models with the help of
axioms. Axioms are added in detail design to ensure
that the output of a pressed button produces a specific
value of the signal. There have been various
approaches for the derivation of test case from formal
specifications [24][6][24]. Here, we consider the case
that each axiom leads to a test case, and then we
deduce some test cases which are shown in the Table
5. Each axiom is a template for test cases; we can
derive test cases from the design document or the
requirements. In addition, a formal specification also
provides an approach for establishing a relation among
requirements, design and test cases which gives the
possibility for bidirectional traceability among the
work products.

Verification and validation activities can also be
automated by using formal specifications. This allows
maintaining consistency between requirements and
verification / validation related work products.

4.2 Contribution of formal specification at
CMMI maturity level 3

At maturity level 3, processes are well understood

within the organization. At this level, an organization
must possess and maintain a set of standard processes
which is used by all projects. Tailoring of processes is
permitted, to tackle the specific requirement of a

specific project, but it has to follow certain fixed
tailoring guidelines. In this way the organization is
able to preserve consistency amongst the processes
used in the projects. Maturity level 3 is the defined
level and has eleven process areas. In this paper we
consider five engineering related process areas for our
study.

4.2.1 Product Integration

The process area “Product Integration” guides the

integration of component’s functions according to the
requirements, and the integration of components into a
complete product. Formal specification can contribute
to the specific goals and the specific practices of this
process area as shown in the table below.

Table 6. Product integration process area detail

Specific goals and specific practices FSC
SG 1 Prepare for Product Integration LC

SP 1.1 Determine Integration Sequence LC
SP 1.2 Establish the Product Integration
Environment

LC

SP 1.3 Establish Product Integration
Procedures and Criteria

LC

SG 2 Ensure Interface Compatibility PC
SP 2.1 Review Interface Descriptions
for Completeness

LC

SP 2.2 Manage Interfaces LC
SG 3 Assemble Product Components
and Deliver the Product

PC

SP 3.1 Confirm Readiness of Product
Components for Integration

PC

SP 3.2 Assemble Product Components PC
SP 3.3 Evaluate Assembled Product
Components

PC

SP 3.4 Package and Deliver the Product
or Product Component

PC

Formal specification has been proposed for

component based development, e.g., in [26]. Specially,
CSP-CASL provides significant features for
component based development, such as giving a
structural and architectural approach to requirements
engineering [1]. In addition, the advantage of CSP-
CASL for product line based development has been
studied in [22]. Process algebra has very powerful
features for mastering the complexity of processes via
parallel and sequential composition. An unambiguous
definition of interfaces and its behaviors reduces the
complexity of implementing the whole system. Formal
specification plays a significant role for the verification
and validation of safety-critical software systems. Test

suite reusability has been studied for component based
development in [24]. Formal specification based
development guarantees various quality aspects for a
product which is composed of many components.

4.2.2 Requirement Development

Customer, product and product component

requirements are analyzed and produced using the
“Requirement Development” process area guidelines.
This process area describes customer requirements,
product requirements and product component
requirements. The contribution of formal specifications
to this process area is shown in the Table 7.

Table 7. Requirement development process area

detail
Specific goals and specific practices FSC

SG 1 Develop Customer Requirements FC
SP 1.1 Elicit Needs LC
SP 1.2 Develop the Customer
Requirements

FC

SG 2 Develop Product Requirements FC
SP 2.1 Establish Product and Product
Component Requirements

FC

SP 2.2 Allocate Product Component
Requirements

FC

SP 2.3 Identify Interface Requirements LC
SG 3 Analyze and Validate Requirements LC

SP 3.1 Establish Operational Concepts
and Scenarios

LC

SP 3.2 Establish a Definition of
Required Functionality

LC

SP 3.3 Analyze Requirements LC
SP 3.4 Analyze Requirements to
Achieve Balance

PC

SP 3.5 Validate Requirements FC

The main advantage of a formal specification is its

unambiguous and precise description of the system.
Formal specification of a requirement starts by
specifying it abstractly. Then the abstract specification
is augmented with more details to fix the system
properties. This process of stepwise refinement is
repeated until all design decisions are fixed. Formal
specification also uses refinement to establish the
consistency between requirement, design and test
cases. Formal specification has shown significant
benefits when generating frameworks for the
validation and verification of products and product
components. In the case of the “Requirements
Development” process area, the specification language

can make major contributions by ensuring various
specific practices of SG 1, SG 2 and SG 3. It can
support various approaches for modeling and
analyzing the requirements. This is essential for
prototyping a product before proceeding to product
development. In safety-critical systems development
[16], the use of formal specification for achieving a
better product quality has been extensively studied.

4.2.3 Technical Solutions

The “Technical Solution” process area provides

guidance for design, development and implementation
of solutions of the given requirements. The technical
solution process area must be applied at any level of
the product architecture, to every product and product
component. The main focus of this process area is to
evaluate and select a solution, to develop a detailed
design of the selected solution and to implement the
design as a product or product component. The
contribution of formal specification methods is
presented in Table 8.

Table 8. Technical solutions process area detail

 Specific goals and specific practices FSC
SG 1 Select Product Component Solutions LC

SP 1.1 Develop Alternative Solutions
and Selection Criteria

LC

SP 1.2 Select Product Component
Solutions

LC

SG 2 Develop the Design PC
SP 2.1 Design the Product or Product
Component

LC

SP 2.2 Establish a Technical Data
Package

PC

SP 2.3 Design Interfaces Using Criteria PC
SP 2.4 Perform Make, Buy, or Reuse
Analyses

PC

SG 3 Implement the Product Design PC
SP 3.1 Implement the Design PC
SP 3.2 Develop Product Support
Documentation

PC

To implement a product requirement in the best

possible way, ideally the system should be designed
and analyzed with several different approaches. After
proper analysis, the best approach should be selected
for further implementation. Formal specification can
serve as one way for prototyping the model before its
implementation. Once a system is specified formally,
the formal specification can be refined into a product
design specification, such that the consistency is

automatically maintained.
However, since this ideal is seldom followed in

practice. In practice software development is
constrained with time and cost which generally
restricts our ideal approach until it is not attached to
the safety critical aspects.

The specification language CSP-CASL is well
suited for specifying industrial applications [23]. CSP-
CASL features are supported by step wise refinement.
This is appropriate for specifying requirements,
starting with a loose specification and later fixing the
design properties to reach a deterministic specification.
Refinement for parts of our case study specification is
shown in Table 9. In this table, it is shown how a
loosely defined requirement is refined into a design
specification. Here, Signal of type sort is refined such
that its value will be the concatenation of 0 and 1. The
transformation of a design specification into an
implementation can also be regarded as a (provable)
refinement step. However, this refinement is rather
specific to the particular implementation language.
Here conformance testing plays a significant role to
guarantee that the implementation conforms to the
specification. Conformance testing for CSP-CASL has
been studied in [27].

Table 9. Refinement in development lifecycle

Requirement Formal Design Implementation

Sort Signal =
{s:Signal ● #s
= 16}

free type Bit ::=
0 | 1
then List[Bit]
Sort Signal =
{l:List[Bit] ●
#l = 16}

In implementation
language according
to their syntax

4.2.4 Validation

The purpose of the activities in the “Validation”
process area is to demonstrate that a product or product
component fulfills its intended use when placed in its
intended environment. The contribution of formal
specifications for the validation process area is as
follows.

Table 10. Validation process area detail

Specific goals and specific practices FSC
SG 1 Prepare for Validation FC

SP 1.1 Select Products for Validation LC

SP 1.2 Establish the Validation
Environment

FC

SP 1.3 Establish Validation
Procedures and Criteria

FC

SG 2 Validate Product or Product Components FC
SP 2.1 Perform Validation FC
SP 2.2 Analyze Validation Results LC

The formal specification based system development

approach can make major contributions to this process
area. It can help to achieve all specific goals by
satisfying the specific practices. Each SG1 of process
is implementation requires that an environment is set
up for the validation of the product. To validate a
product in an early stage of the project life cycle,
specification based model development can contribute
as a prototype for the complete product.

Figure 2. Testing architecture

In the complete life cycle of a product, the process

area demands that a validation framework is set up.
Given a formal specification, in such a validation
framework certain aspects of testing such as test
generation, test execution and test evaluation can be
automated. Therefore, the formal specification
approach can help to achieve the goals of this process

Informal
requirement

Formal
requirement

Formal design
document

Implementation

Detailed design
document

Verdict

Root cause
analysis

Corrective action

Test suite
generation
algorithm

Test Suite
Processing
Algorithm

Formal testing
environment

Test oracle
generation
algorithm

area. Specification based test case generation has been
studied in many research papers, and has been found
one of the most important advantages of specification
based development[21][24]. Test generation and
reusability of test suites and various testing
environments are being investigated for CSP-CASL in
[20][4]. The specification language also provides ways
to analyze the results from the test execution for
specific test cases. The automatic generation of test
oracles has been found useful in recent industrial case
studies [4]. Figure 2 shows a typical arrangement for
test automation. This ongoing research will enhance
the applicability of CSP-CASL in the testing domain.

4.2.5 Verification

he “Verification” process area ensures that the
pr

on process area detail
Spe

T
oducts which are the result of the processes under

improvement meet their specified requirements.
Formal specification methods contribute to this process
area as follows in table 11.

Table 11. Verificati
cific goals and specific practices FSC

SG 1 Prepare for Verification LC
SP 1.1 Select Work Products for
Verification

LC

SP 1.2 Establish the Verification LC
Environment
SP 1.3 Establish Verification LC
Procedures and Criteria

SG 2 Perform Peer Reviews NC
SP 2.1 Prepare for Peer Reviews NC
SP 2.2 Conduct Peer Reviews NC
SP 2.3 Analyze Peer Review Data NC

SG 3 Verify Selected Work Products PC
SP 3.1 Perform Verification LC
SP 3.2 Analyze Verification Results PC

ormal specification methods have various ways to

co

5. Conclusion

 this paper, we have studied the contribution of
fo

able 12: CMMI Process Area and formal
sp

FSC

F
ntribute to the verification process area, the main

two being model checking and theorem proving.
Model checking is the process of building a model of a
system and checking whether desired properties hold
in this model [18] [15]. Theorem proving is the process
of finding a proof of a property from the axioms of a
system, where the property and the system are
expressed in the formal specification language [11].
These two properties are well suited for SG1 and SG3
and its specific practices. Presently, the application
area and size of products which can be verified by
model checking and theorem proving is rather limited.
However, advancements in technologies will facilitate

the development of tools which will be able to verify
many system properties with reasonable time, resource
and effort. For CSP-CASL, model checking and
theorem proving has been investigated in detail [28].
Therefore, this specification language is well-suited for
the achievement of specific goals in this process area.

In
rmal specifications for the implementation of the

CMMI process improvement model. Formal
specification based process area satisfaction is
investigated via the process algebraic specification
language CSP-CASL. A small case study is presented
to illustrate the applicability of a specification
language for achieving goals of the process areas. Out
of 22 process areas from CMMI, six process areas can
be significantly improved with the help of formal
specification methods. These process areas and
respective contribution from formal specification are
summarized in Table 12.

T
ecification contribution

Process area
Requirement Management LC
Product Integration LC
Requirement Development LC
Technical Solutions LC
Verification LC
Validation LC

In our research, we concentrated on the contribution

of

is the quantitative
an

 CSP_CASL as a formal specification language.
Although we believe this language to be particularly
well-suited, most of our results hold for other
specification formalisms as well..

What is left open in this paper
alysis of cost and benefits in practical examples. In

particular, for CMMI level 4 (Quantitatively Managed)
a quantitative measurement of the process area
implementation level is required. In CMMI level 5
(optimizing) a continuous improvement is targeted.
How to fit the present approach with these
requirements needs more research.

6. References.

. D. Mosses The Common Algebraic

] C. A. R. Hoare: Communicating Sequential Processes.

] A. W. Roscoe, The Theory and Practices of Concurrency.

] Patricia D. L. Machado Springer, Testing from Structured

] J. A. Bergstra, A. Ponse, and S.A. Smolka, Handbook of

] http://www.sei.cmu.edu/CMMI/ Software Engineering

] Ahern, Dennis M. : CMMI distilled : a practical

] Walker Royce, Software Project Management A unified

 engineering : a practioner's

0] David J. Anderson, Stretching Agile to fit CMMI Level

1] Nagoya F, Shaoying Liu, Yuting Chen, A tool and

2] Kreuz, D, Formal specification of CORBA services

3] David J. Anderson, Stretching Agile to fit CMMI Level

4] Yoo, Junho Yoon, Byungjeong Lee, Chongwon Lee, An

] Michel Bidoit, P[1

Specification Language Users/Reference Manual LNCS
2900/2960.

[2
Commun. ACM 21(8): 666-677 (1978).

[3
Prentice Hall, 1998.

[4
Algebraic Specifications, LNCS 1816/2000.

[5
process algebra, Elsevier, 2001.

[6
Institute, Carnegie Mellon , Pittusburgh, PA.

[7
introduction to integrated process improvement / Dennis M.
Ahern; Aaron Clouse; Richard Turner. - 2. ed. . - Boston
[u.a.] : Addison-Wesley.

[8
framework, Addison Wesley.

] Pressman, Roger, Software[9
approach, , McGraw-Hill, 2000.

[1
3 - the story of creating MSF for CMMI® Process
Improvement at Microsoft Corporation, IEEE, ADC 05.

[1
case study for specification-based program review,
COMPSAC 2005. 29th Annual International
Volume 1, 26-28 July 2005 Page(s):375 - 380 Vol. 2.

[1
using Object-Z Formal Engineering Methods, 1998.
Proceedings, Second International Conference on 9-11 Dec.
1998 Page(s) :180 – 189.

[1
3 - the story of creating MSF for CMMI® Process
Improvement at Microsoft Corporation, ADC05, 193-201.

[1
Integrated Model of ISO 9001:2000 and CMMI for ISO
Registered Organizations, APSEC 04, 150-157.

5] Alur R Henzinger, Automatic symbolic verification of [1
embedded systems IEEE Transactions on Software
Engineering 22,3, 181-201.

[16] Craigen D, Gerhart, Formal methods in critical systems
IEEE Software 11,1 Jan.

[17] Jones C B, Systematic Software Development Using
VDM Prentice Hall , International New York ,1986

[18] Roscoe A, Model checking CSP In A Roscoe Ed A
Classical Mind Essays in Honor of C A R Hoare Prentice
Hall 1994.

[19] Milner A, A Calculus of Communicating Systems
Volume 92 of Lecture Notes in Computer Science_ Springer,
1980.

[20] Satish Mishra, Specification Based Software Product
Line Testing: “Concurrency, Specification and
Programming" CSP2006.

[21] M. C. Gaudel, Perry R James, Testing Algebraic Data
Types and Processes: A Unifying Theory, Formal Aspect of
Computing 10(5-6): 436-451 (1998).

[22] M. Roggenbach, CSP-CASL, A New Integration of
Process Algebra and Algebraic Specification, Theoretical
Computer Science 354 (2006), 42-71.

[23] A. Gimblett, M. Roggenbach, and H. Schlingloff,
Towards a formal specification of electronic payment
systems in CSP-CASL, WADT 2004.

[24] Jan Tretmans, Axel Belinfante, Automatic Testing with
Formal Methods, In Proceedings of the 7th European
International Conference on Software Testing.

[25] M.-C. Gaudel, Testing can be formal, too, LNCS 915,
pages 82–96. Springer, 1995. .

[26] Elsa Estevez, Pablo Fillottrani, Algebraic Specifications
and Refinement for Component-Based Development using
RAISE, JCTS 2000

[27] Temesghen Kahsai, Markus Roggenbach, and Bernd-
Holger Schlingloff, Specification-Based Testing for
Refinement, SEFM 2007

[28] Y.Isobe, M.Roggenbach: A generic theorem prover of
CSPrefinement, Proceedings of TACAS 2005

http://www.informatik.uni-trier.de/~ley/db/journals/cacm/cacm21.html#Hoare78

	1. Introduction
	2. CMMI, Capability Maturity Model Integration
	3. CSP-CASL, Formal Specification Language
	3.1. CSP, Communicating Sequential Processes
	3.2. CASL, Common Algebraic Specification Language
	3.3. Case study
	3.3.2. CSP-CASL specification (Requirement Analysis)
	3.3.3 CSP-CASL specification (Design Document)

	4. Formal specification and CMMI
	4.1 Contribution of formal specification at CMMI maturity level 2
	4.1.1 Requirement Management

	4.2 Contribution of formal specification at CMMI maturity level 3
	4.2.1 Product Integration
	4.2.2 Requirement Development
	4.2.3 Technical Solutions
	4.2.4 Validation
	4.2.5 Verification

	5. Conclusion
	6. References.

