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Abstract 

 
There are two main aspects of quality assurance in 

computational systems development and maintenance 
projects: the process and product view. Several 
standard models have been proposed for a systematic 
process improvement, e.g., CMM/CMMI, Agile, 
SPICE, or the ISO 9000 family.  However, even the 
best process can not guarantee that the resulting 
products are as expected. For a rigorous analysis of 
the products, formal specification based development 
methods have been proposed. Examples are VDM, Z, 
LOTOS, CSP and CASL. 

In this paper we connect these two aspects by 
showing how to integrate formal specification based 
methods in process improvement models. In particular, 
we investigate the use of the specification language 
CSP-CASL for the implementation of CMMI within an 
organization. CMMI is based on the notion of process 
area, which is a cluster of best practices with 
particular goals in a certain area. For each of the 
relevant process areas, we show in detail how using 
formal specifications can help to achieve specific 
goals. This is a first step to systematically combine 
product based quality assurance methods with process 
improvement models. 
 
1. Introduction 
 
Currently, computational systems (hard- and software) 
are incorporating more and more functionality, which 
leads to an ever increasing complexity. This is the 
main reason for errors in the development of these 
systems. For the development of a complex 
computational system which nevertheless is reliable 
both product and process based quality assurance 
methods are necessary.  CMMI (Capability Maturity 
Model® Integration) [6] [13] is a well-established 
process improvement model which has proved its 
benefits in hundreds of companies and thousands of 
projects. For product based software quality 

improvement, formal specification methods have been 
in existence for many years. Several of these methods 
have proven to be of advantage for the development of 
safety-critical systems, e.g. in aerospace or in the 
medical industry.  

In this paper we describe the use of formal 
specifications for the implementation of CMMI in an 
organization. This way, the benefits of a broadly 
accepted, standardized process improvement model 
can be combined with the advantages of formal 
specification for product assurance. CMMI is the 
enhanced model of CMM, the Carnegie Mellon 
Software Engineering Institute’s Capability Maturity 
Model, which was introduced in 1991. The latest 
version is “CMMI for Development 1.2”, which is a 
process improvement maturity model for the 
development of products and services. It consists of 
best practices that address development and 
maintenance activities which cover the whole product 
lifecycle, from conception through delivery until 
maintenance [14] [7] [8] [9] [10]. 

A formal specification language consists of a well-
defined syntax and a mathematical semantics. A formal 
method based on a specification language includes 
some transformation algorithm, which makes it 
appropriate for specifying, verifying and validating 
systems. Examples for formal methods which are 
being used in industry include VDM [17] and Z [12], 
Larch or, more recently, CASL [1]. These methods 
focus on the specification of structural properties, 
whereas CSP [2] [3], CCS [19], LOTOS, StateCharts, 
or Temporal Logic focus on behavioral properties. 
Many research papers have been published on the 
application of these or other formal languages in 
industrial practice [24][23][20]. 

In this paper we use CSP-CASL, which is a rather 
new algebraic / process algebraic specification 
language [22]. This choice is based on the fact that it 
includes means for both structural and behavioral 
properties. CSP (Communicating Sequential Process) 



has been in existence since decades. It is a language 
well suited for the specification of reactive behavior. 
CASL (the Common Algebraic Specification 
Language) has been developed by CoFI, the common 
framework initiative, and can be used to specify 
structural properties of systems such as data types, 
functions and objects.  

Using CMMI and CSP-CASL as an example, we 
analyze the integration of formal specification methods 
into process improvement models. We discuss how 
formal specification can contribute in the 
implementation of a process area, and, in particular, to 
achieve the specific goals associated to that process 
area. 

Our paper is organized as follows. In the next 
section we will give a brief overview of CMMI, and in 
section three we will present the required details of 
CSP-CASL. In a subsection of this section we describe 
a case study which will be referred throughout the 
paper. Section four contains the main results about the 
potential contribution of a formal specification 
language in a CMMI implementation. In section five 
we give a conclusion and describe future work. 

 
2. CMMI, Capability Maturity Model 
Integration 

 
CMMI is a framework for assisting organizations to 

improve their development and maintenance processes 
for software product development. CMMI is based on 
the notion of process area (PA). A process area is a 
cluster of related practices in an area. A typical process 
area is requirements management, which subsumes all 
practices necessary for dealing with demands the 
software has to fulfill. When a process area is 
implemented, it satisfies several goals which are 
considered important for making improvements in that 
area. CMMI offers two representations for its 
implementation, a continuous representation and a 
staged representation. The continuous representation 
offers more flexibility for process improvement. An 
organization can choose a focused process area, 
determine the dependent process areas, improve these 
at priority, and then concentrate on other process areas. 
In the staged representation, process areas are grouped 
together into capability maturity levels. 

In this paper we are considering the staged 
representation. Since the notion of process area is 
independent from the representation, our results hold 
for the continuous representation as well. CMMI has 
22 process areas which are considered important for 

the improvement of an organization. Generally, the 
domain of work which is performed within the 
organization can be divided into four groups: process 
management, project management, engineering and 
support. Each of these groups has a set of process areas 
for improving the capabilities of its processes. 
Associated with each process area is a set of goals 
which have to be satisfied as a measure for 
improvement in that process area. 
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help to initiate the approach the required and 
informative model component. Figure 1 shows the 
groups of process areas and its model components. 

CMMI has a specific approach to describe the 
process areas. The description of a process area starts 
with introduction, purpose and relation with other 
process areas. These are informative components. 
Main characteristics of a process area are described by 
using specific goals (SG) and generic goals (GG). The 
specific goals are unique characteristics that must be 
present to satisfy the associated process area. A 
specific goal is a required model component. A 
specific practice (SP) is the description of an activity 
that is considered important in achieving the associated 
specific goal. A specific practice is an expected model 
component. 

The generic goals are the characteristics that must 
be present to institutionalize the processes which 
implement a process area. Generic goals are called 
“generic” because the same goal applies to multiple 
process areas. A generic practice is the description of 
an activity that is considered important in achieving 
the associated generic goal. Thus, a generic practice is 
an expected model component. For analyzing the 
integration of formal specification methods into 
process improvement models we only have to consider 
specific goals and its specific practices of the process 
areas. Generic goals are mainly for institutionalization 
of each process areas.  
 
3. CSP-CASL, Formal Specification 
Language 

 
CSP-CASL is a process algebraic specification 

language. For the specification of any system, 
processes of the system are specified by CSP and 
communications between these processes are the 
values of CASL data types. All the required features of 
CSP and CASL are supported by the combination [22]. 
The basic syntax of CSP-CASL is an integration of the 
CSP syntax and the CASL syntax. Syntactically a 
CSP-CASL specification Sp consists of a data part D, 
which is a CASL specification, an (optional) channel 
part Ch to declare channels, which are typed according 
to the data specification, and a process part P written in 
CSP, where CASL terms are used as communications. 
Thus, the generic format of a CSP-CASL specification 
is 

(ccspecification Sp = data D channel Ch process P). 
The semantics of CSP-CASL is defined in three steps. 
In the first step each channel is encoded in CASL. In 

the second step CASL data types are evaluated, where 
families of processes are generated according to the 
data model. In the last step the evaluation according to 
CSP is taking place. 

 
3.1. CSP, Communicating Sequential Processes 

 
CSP is a formal language for describing reactive 

systems. Such systems often have complex interactions 
among their processes which make them difficult to 
comprehend. CSP provides a set of mathematical 
symbols to analyze such complex systems with clarity 
and preciseness.  

In CSP, an object (e P) is described with an event 
e and process P, which states that the object first 
engages in an event e and then behaves like process P. 
The meaning of a CSP process P is given by its traces 
tr(P), which is the set of sequences of events that a 
process may possibly perform. Two primitive 
processes of CSP are STOP and SKIP, where STOP is 
the process which never engages in any event and 
SKIP is the process which does nothing but terminate 
successfully. CSP has a rich syntax for describing 
processes; some of the syntactic features are described 
subsequently.  

An event can be combined with a process using the 
prefix operator ( ). A process may be defined in 
terms of itself using recursion [3].  There are CSP 
operations which combine processes in a sequential or 
parallel manner. CSP supports two types of choice 
operators, external and internal choice. The 
interleaving form of parallel combination is supported 
by CSP where processes don’t communicate with each 
other. One of the important features for abstract 
specification of systems in CSP is nondeterminism, 
where a process can choose amongst several 
alternatives. Hiding of events is supported for 
abstraction; this may also lead to nondeterminism.    

For CSP, several semantics have been defined: 
operational, denotational, and algebraic semantics. The 
semantics can be based on a trace model, where a trace 
is sequence of communications between the 
environment and the system’s processes.  

 
3.2. CASL, Common Algebraic Specification 
Language 

 
CASL has been developed by the international CoFI 

(Common Framework Initiative). It subsumes most of 
the previous approaches in algebraic specification 
[1][22]. The CASL can be separated into four parts, 



which facilitates the description of systems with an 
appropriate detail. These parts are basic specifications, 
structured specifications, architectural specification 
and library based specification. A basic specification 
includes first-order total functions, partial functions 
and predicates. To describe a system completely, 
subsorts, axioms and datatype declarations are 
integrated into the basic specification. Keywords of 
basic specification are sorts, ops, preds, vars etc. A 
structured specification is a combination of such basic 
specifications into a larger specification in a 
hierarchical and modular fashion. It mainly allows 
translation (keyword with), reduction (keyword hide), 
union (keyword and) and extension (keyword then) of 
specifications.  An architectural specification allows 
systems to be developed with reusable components. A 
library based specification allows easy distribution and 
reusability in a user friendly way.  

A small example of a CSP-CASL specification is 
the case study given below. The keywords in this 
example are interpreted as follows. Keyword op and 
ops are used to declare the operations, keyword pred 
and preds are used to declare the predicates. The 
keyword sort is interpreted as data type, similar to data 
types in any programming language. The keyword then 
facilitates the specification extension with more 
features. Further sections will elaborate more about the 
case study and its applicability in our approach. 

 
3.3. Case study 

In this subsection we describe a small case 
study of a basic remote control for electronic devices 
such as TV, VCR etc. The example is used to 
demonstrate the approach of specification based 
development in a CMMI environment, in particular the 
relationship among requirements, design documents, 
test cases and implementation. This case study is too 
small to demonstrate all necessary details for the 
compliance of CMMI with a formal specification 
based development, but it gives an intuitive idea of the 
ideas. To assess in which way formal specifications 
can contribute to a CMMI implementation, we have 
applied this approach in an industrial case study of a 
medical embedded system [20]. For sake of simplicity, 
in this paper we restrain ourselves to the basic remote 
control case study. A more elaborate version of this 
example can be found in [27] 

 
3.3.1. Informal description. The basic remote control 
unit (RCU) can be described as follows. It has 12 
buttons which are button_0, …, button_9, button_on 

and button_off. Whenever any button is pressed, the 
corresponding sixteen bits stream of signal, in specific 
pattern is send via an LED (Light Emitting Diode). 
The remote control has an internal table for 
determining the key code of the respective buttons. 
 
3.3.2. CSP-CASL specification (Requirement 
Analysis) 
library Basic/Numbers get Nat, Int 
Ccspec BasicRCU 

data 
 sort Button 

sort Signal = {s:Signal  ●  #s = 16} 
 op button_0, button_1, …, button_9: Button 

   op button_on, button_off : Button 
 op responseSignal : Button  Signal  
 

channel 
 Keypad: Button 
 Infrared: Signal 
process 

Control =  Keypad ? x:Button   Infrared !    
                 responseSignal (x)   Control  

end 
The above description is a formal specification of 

the RCU which is informally defined above. The 
complete specification is divided into three parts, 
namely data, channel and process part. In the data part 
sorts, operations and predicates are declared. The first 
line of specification includes the basic library of data 
types. The specification name is given in the next line. 
After that, Button and Signal are declared as data type 
of sort which is further used to declare all the buttons 
of RCU. In the last lines of the data part the operation 
responseSignal, is declared which takes Button as 
input and returns Signal as output. 

 The next part of the specification declares the 
channels which are used by the CSP processes for 
communication with the environment. Here Keypad 
and Infrared are declared as channels of type Button 
and Signal, respectively. The last part of the 
specification declares the CSP processes which define 
the reactive behavior of the RCU. Whenever a remote 
control button is pressed, the respective signal is 
passed on the channel. This is described by the 
recursive process Control.  This process waits for an 
event (of type Button) to occur. After execution of this 
event it   performs the operation responseSignal, which 
accepts a pressed button as input, outputs the 
respective signal on the channel Infrared and then 
continues recursively. 

 
 



3.3.3 CSP-CASL specification (Design Document) 
 A software development process can be 
understood as the construction of a sequence of 
increasingly more detailed descriptions from an initial 
requirements document, until an executable program is 
reached. At each step design decisions are fixed 
coherent with the requirements. The process of fixing 
design decision is referred as refinement. In our case 
study, the pattern of 16 bits signal is fixed according to 
the standard guideline: The initial four bits are a 
company ID, the next four bits are a device ID and the 
other remaining bits represent the control signal for the 
functionality of a particular button. Subsequently we 
give the refinement of our earlier specification, 
according to this pattern for a specific company.  
 
library Basic/Numbers get Nat, Int 
Ccspec BasicRCU 

data 
 sort Button 

op button_0, button_1, …, button_9: Button 
op button_on, button_off : Button 

 free type Bit ::= 0 | 1 
 then List[Bit] 
 then 

sort Signal = {l:List[Bit]  ●  #l = 16} 
DeviceId :  List[Bit] = [0010] 
CompanyId : List[Bit] = [1000] 

 op responseSignal : Button  Signal  
axioms 
responseSignal(button_0) = DeviceId ++ 
CompanyId ++ [00000000] 
responseSignal(button_1) = DeviceId ++ 
CompanyId ++ [00000001 
… 
responseSignal(button_On) = DeviceId ++ 
CompanyId ++ [00000100] 
∀ b : Button  ●  ∃ L : List[Bit] ●  
responseSignal (b)= DeviceId ++ CompanyId ++ L 
●  #L=8 

channel 
 Keypad: Button 
 Infrared: Signal 
process 

Control =  Keypad ? x:Button   Infrared !    
                 responseSignal (x)   Control  

end 
 

In the design document, data types are refined, and 
additional constraints are added to satisfy certain 
product properties. The operation responseSignal is 
extended with details of the button and its 
corresponding signal is defined by axioms on the 

operation level.  An initial group of axioms fixes the 
responseSignal for a set of buttons. The last axiom in 
this specification confirms that all the buttons of the 
RCU follow the pattern of signal which is decided by 
the company.  We will refer this specification to 
demonstrate which features are well suited for CMMI 
compliance.  

 
4. Formal specification and CMMI 
 

To analyze the contribution of formal specification 
for the implementation of CMMI in an organization we 
developed the following the grading scale.  

1) Fully Contributed (FC): A process area is 
satisfied as FC if 90-100% of its specific goals are 
achieved using formal specification. A specific goal is 
achieved as FC when 90-100% of its specific practices 
can be performed by formal specification.  

2) Largely Contributed (LC): A process area is 
satisfied as LC if 60-89% of its specific goals are 
achieved using formal specification. A specific goal is 
achieved as LC when 60-89% of its specific practices 
can be performed by formal specification.  

3) Partially Contributed (PC): A process area is 
satisfied as PC if 30-59% of its specific goals are 
achieved using formal specification. A specific goal is 
achieved as PC when 30-59% of its specific practices 
can be performed by formal specification.  

4) Not Contributed (NC): A process area is NC if 
0-29 % of its specific goals is achieved using formal 
specification. A specific goal is NC when 0-29% of its 
specific practices can be performed by formal 
specification.  

Table 1, 2 and 3 show an overview of our 
categorization on a process area which demonstrates 
the contribution of formal specification to it. 
 

Table 1. Formal specification contribution 
categorization on CMMI 

Process 
Area 
(PA) 

  Specific Goals 
of a PA 

(% of total)  

Specific  
Practices of 

SG 
(% of total) 

Fully Contributed 
(FC) 

90 to 100 90 to 100 

Largely Contributed 
(LC) 

60 to 89 60 to 89 

Partially Contributed 
(PC) 

30 to 59 30 to 59 

Not Contributed (NC) 0 to 29 0 to 29 
 

 



 
Table 2. Categorization overview on Specific Goal and 

Specific Practice 
Specific Goal Specific  

Practices 
(% of total) 

Fully Contributed 
(FC) 

90 to 100 

Largely Contributed 
(LC) 

60 to 89 

Partially Contributed 
(PC) 

30 to 59 

Not Contributed (NC) 0 to 29 
 
 
 
Table 3. Categorization overview on Specific Practice 

and its Activity   
Specific Practice % of Activity 

 
Fully Contributed 

(FC) 
90 to 100 

Largely Contributed 
(LC) 

60 to 89 

Partially Contributed 
(PC) 

30 to 59 

Not Contributed (NC) 0 to 29 
 
 

Formal specification has many features which can 
contribute for the compliance of CMMI in an 
organization. Model development, model complexity 
analysis, refinement of model, structured development, 
verification and validation are the main features.  In 
the subsequent parts of this paper we illustrate the 
integration of these features for the compliance of 
CMMI practices with the help of our example.  
 
4.1 Contribution of formal specification at 
CMMI maturity level 2 

 
At maturity level 2 of CMMI, it is required that 

there is a written policy such that all the project related 
processes are planned and used. All the projects of an 
organization derive the processes according to a 
defined policy for the organization. Project employees 
must have proper understanding of the processes and 
their controlling behavior.  Processes must be 
reviewed, controlled and monitored at specific 
milestones. Once planned processes are in place, 
projects are managed according to these plans. This 
maturity level is referred as the managed level.  At this 
level of maturity there are seven processes areas. In 

this paper we just show results for a single process 
area, namely “Requirements Management”. There are 
similarly many contributions of formal specification to 
the compliance of other process areas such as “Process 
and Product Quality Assurance”, “Project Monitoring 
and Control”, and “Measurement and Analysis”.  

 
4.1.1 Requirement Management 

 
The process area “Requirements Management” 

provides guidelines for dealing with demands for 
product features and product component features. In 
addition to this, it also provides guidelines for 
removing inconsistencies between requirements and 
other work products. Formal specification methods can 
contribute to a specific goal and a specific practice of 
this process area as shown in Table 4. 

 
 

Table 4. Requirement management process area  
Specific goals and specific practices FSC 

SG 1 Manage Requirements LC 
SP 1.1 Obtain an Understanding of  
Requirements 

FC 

SP 1.2 Obtain Commitment to  
Requirements 

LC 

SP 1.3 Manage Requirements Changes LC 
SP 1.4 Maintain Bidirectional  
Traceability of Requirements 

LC 

SP 1.5 Identify Inconsistencies Between  
Project Work and Requirements 

LC 

 
 

In this table, we present the contribution of formal 
specification for each Specific Practice (SP). Each of 
these estimations is based on our experiences with 
CSP-CASL; for space reasons, in this paper we give 
only some example justifications.  

Since the formulation of requirements in a formal 
specification has a precise and unambiguous 
semantics, it provides a way to ensure specific 
practices of this specific goal. The refinement relation 
among requirement, detailed design and 
implementation provides an approach for maintaining 
consistency and traceability of the requirement 
throughout the software development lifecycle. Once a 
requirement is formally specified, many aspects of the 
development life cycle and work products can be 
automated.  

 
 
 



 
 

Table 5. Refinement relation 
In requirement 
responseSignal: Button  Signal 
In design document 
responseSignal: Button  Signal 
   axioms 

  responseSignal(button_0) = DeviceId + +    
                                           CompanyId ++ [00000000] 
  responseSignal(button_1) = DeviceId + +   
                                           CompanyId ++ [00000001] 
  ……………. 

 
In test case 
Inp: button_0 out: DeviceId ++ CompanyId ++   
                               00000000 
Inp: button_1 out: DeviceId ++ CompanyId ++   
                               00000001 
Etc 
 
Table 5 shows selected part of the case study. This 

formal specification demonstrates the refinement 
relation between requirement and design document. 
The operation responseSignal is refined into detailed 
design by restricting its models with the help of 
axioms. Axioms are added in detail design to ensure 
that the output of a pressed button produces a specific 
value of the signal.  There have been various 
approaches for the derivation of test case from formal 
specifications [24][6][24]. Here, we consider the case 
that each axiom leads to a test case, and then we 
deduce some test cases which are shown in the Table 
5. Each axiom is a template for test cases; we can 
derive test cases from the design document or the 
requirements. In addition, a formal specification also 
provides an approach for establishing a relation among 
requirements, design and test cases which gives the 
possibility for bidirectional traceability among the 
work products. 

Verification and validation activities can also be 
automated by using formal specifications. This allows 
maintaining consistency between requirements and 
verification / validation related work products. 

 
4.2 Contribution of formal specification at 
CMMI maturity level 3 

 
At maturity level 3, processes are well understood 

within the organization. At this level, an organization 
must possess and maintain a set of standard processes 
which is used by all projects. Tailoring of processes is 
permitted, to tackle the specific requirement of a 

specific project, but it has to follow certain fixed 
tailoring guidelines. In this way the organization is 
able to preserve consistency amongst the processes 
used in the projects.  Maturity level 3 is the defined 
level and has eleven process areas. In this paper we 
consider five engineering related process areas for our 
study. 

 
4.2.1 Product Integration 

 
The process area “Product Integration” guides the 

integration of component’s functions according to the 
requirements, and the integration of components into a 
complete product. Formal specification can contribute 
to the specific goals and the specific practices of this 
process area as shown in the table below. 

 
Table 6. Product integration process area detail 

Specific goals and specific practices FSC 
SG 1 Prepare for Product Integration LC 

SP 1.1 Determine Integration Sequence LC 
SP 1.2 Establish the Product Integration  
Environment 

LC 

SP 1.3 Establish Product Integration  
Procedures and Criteria 

LC 

SG 2 Ensure Interface Compatibility PC 
SP 2.1 Review Interface Descriptions  
for  Completeness 

LC 

SP 2.2 Manage Interfaces LC 
SG 3 Assemble Product Components  
and Deliver  the Product 

PC 

SP 3.1 Confirm Readiness of Product  
Components for Integration 

PC 

SP 3.2 Assemble Product Components PC 
SP 3.3 Evaluate Assembled Product  
Components 

PC 

SP 3.4 Package and Deliver the Product  
or Product Component 

PC 

 
Formal specification has been proposed for 

component based development, e.g., in [26]. Specially, 
CSP-CASL provides significant features for 
component based development, such as giving a 
structural and architectural approach to requirements 
engineering [1].  In addition, the advantage of CSP-
CASL for product line based development has been 
studied in [22]. Process algebra has very powerful 
features for mastering the complexity of processes via 
parallel and sequential composition. An unambiguous 
definition of interfaces and its behaviors reduces the 
complexity of implementing the whole system. Formal 
specification plays a significant role for the verification 
and validation of safety-critical software systems. Test 



suite reusability has been studied for component based 
development in [24].  Formal specification based 
development guarantees various quality aspects for a 
product which is composed of many components. 
 
4.2.2 Requirement Development 

 
Customer, product and product component 

requirements are analyzed and produced using the 
“Requirement Development” process area guidelines. 
This process area describes customer requirements, 
product requirements and product component 
requirements. The contribution of formal specifications 
to this process area is shown in the Table 7. 

 
Table 7. Requirement development process area 

detail 
Specific goals and specific practices FSC 

SG 1 Develop Customer Requirements FC 
SP 1.1 Elicit Needs LC 
SP 1.2 Develop the Customer  
Requirements 

FC 

SG 2 Develop Product Requirements FC 
SP 2.1 Establish Product and Product  
Component  Requirements 

FC 

SP 2.2 Allocate Product Component  
Requirements 

FC 

SP 2.3 Identify Interface Requirements LC 
SG 3 Analyze and Validate Requirements LC 

SP 3.1 Establish Operational Concepts  
and  Scenarios 

LC 

SP 3.2 Establish a Definition of  
Required  Functionality 

LC 

SP 3.3 Analyze Requirements LC 
SP 3.4 Analyze Requirements to  
Achieve Balance 

PC 

SP 3.5 Validate Requirements FC 
 
The main advantage of a formal specification is its 

unambiguous and precise description of the system. 
Formal specification of a requirement starts by 
specifying it abstractly. Then the abstract specification 
is augmented with more details to fix the system 
properties. This process of stepwise refinement is 
repeated until all design decisions are fixed. Formal 
specification also uses refinement to establish the 
consistency between requirement, design and test 
cases. Formal specification has shown significant 
benefits when generating frameworks for the 
validation and verification of products and product 
components.  In the case of the “Requirements 
Development” process area, the specification language 

can make major contributions by ensuring various 
specific practices of SG 1, SG 2 and SG 3. It can 
support various approaches for modeling and 
analyzing the requirements. This is essential for 
prototyping a product before proceeding to product 
development.  In safety-critical systems development 
[16], the use of formal specification for achieving a 
better product quality has been extensively studied. 

 
4.2.3 Technical Solutions 

 
The “Technical Solution” process area provides 

guidance for design, development and implementation 
of solutions of the given requirements. The technical 
solution process area must be applied at any level of 
the product architecture, to every product and product 
component. The main focus of this process area is to 
evaluate and select a solution, to develop a detailed 
design of the selected solution and to implement the 
design as a product or product component. The 
contribution of formal specification methods is 
presented in Table 8. 

 
Table 8. Technical solutions process area detail 

 Specific goals and specific practices FSC 
SG 1 Select Product Component Solutions LC 

SP 1.1 Develop Alternative Solutions  
and  Selection Criteria 

LC 

SP 1.2 Select Product Component  
Solutions 

LC 

SG 2 Develop the Design PC 
SP 2.1 Design the Product or Product   
Component 

LC 

SP 2.2 Establish a Technical Data  
Package 

PC 

SP 2.3 Design Interfaces Using Criteria PC 
SP 2.4 Perform Make, Buy, or Reuse  
Analyses 

PC 

SG 3 Implement the Product Design PC 
SP 3.1 Implement the Design PC 
SP 3.2 Develop Product Support  
Documentation 

PC 

 
To implement a product requirement in the best 

possible way, ideally the system should be designed 
and analyzed with several different approaches. After 
proper analysis, the best approach should be selected 
for further implementation. Formal specification can 
serve as one way for prototyping the model before its 
implementation. Once a system is specified formally, 
the formal specification can be refined into a product 
design specification, such that the consistency is 



automatically maintained. 
However, since this ideal is seldom followed in 

practice. In practice software development is 
constrained with time and cost which generally 
restricts our ideal approach until it is not attached to 
the safety critical aspects.  

The specification language CSP-CASL is well 
suited for specifying industrial applications [23]. CSP-
CASL features are supported by step wise refinement. 
This is appropriate for specifying requirements, 
starting with a loose specification and later fixing the 
design properties to reach a deterministic specification. 
Refinement for parts of our case study specification is 
shown in Table 9. In this table, it is shown how a 
loosely defined requirement is refined into a design 
specification. Here, Signal of type sort is refined such 
that its value will be the concatenation of 0 and 1. The 
transformation of a design specification into an 
implementation can also be regarded as a (provable) 
refinement step. However, this refinement is rather 
specific to the particular implementation language. 
Here conformance testing plays a significant role to 
guarantee that the implementation conforms to the 
specification. Conformance testing for CSP-CASL has 
been studied in [27]. 

 
Table 9. Refinement in development lifecycle 

Requirement Formal Design Implementation 

Sort Signal = 
{s:Signal  ●  #s 
= 16} 

 

free type Bit ::= 
0 | 1 
then List[Bit] 
Sort Signal = 
{l:List[Bit]  ●  
#l = 16} 

 

In implementation  
language according 
to their syntax 

 
4.2.4 Validation 
 

The purpose of the activities in the “Validation” 
process area is to demonstrate that a product or product 
component fulfills its intended use when placed in its 
intended environment. The contribution of formal 
specifications for the validation process area is as 
follows. 

 
Table 10. Validation process area detail 

Specific goals and specific practices FSC 
SG 1 Prepare for Validation FC 

SP 1.1 Select Products for Validation LC 

SP 1.2 Establish the Validation  
Environment 

FC 

SP 1.3 Establish Validation  
Procedures and  Criteria 

FC 

SG 2 Validate Product or Product Components FC 
SP 2.1 Perform Validation FC 
SP 2.2 Analyze Validation Results LC 

 
The formal specification based system development 

approach can make major contributions to this process 
area. It can help to achieve all specific goals by 
satisfying the specific practices. Each SG1 of process 
is implementation requires that an environment is set 
up for the validation of the product. To validate a 
product in an early stage of the project life cycle, 
specification based model development can contribute 
as a prototype for the complete product.   

 

 
Figure 2. Testing architecture 
 
In the complete life cycle of a product, the process 

area demands that a validation framework is set up. 
Given a formal specification, in such a validation 
framework certain aspects of testing such as test 
generation, test execution and test evaluation can be 
automated. Therefore, the formal specification 
approach can help to achieve the goals of this process 

Informal 
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area. Specification based test case generation has been 
studied in many research papers, and has been found 
one of the most important advantages of specification 
based development[21][24]. Test generation and 
reusability of test suites and various testing 
environments are being investigated for CSP-CASL in 
[20][4]. The specification language also provides ways 
to analyze the results from the test execution for 
specific test cases. The automatic generation of test 
oracles has been found useful in recent industrial case 
studies [4].  Figure 2 shows a typical arrangement for 
test automation. This ongoing research will enhance 
the applicability of CSP-CASL in the testing domain.  

 
4.2.5 Verification 

he “Verification” process area ensures that the 
pr

on process area detail 
Spe  

 
T
oducts which are the result of the processes under 

improvement meet their specified requirements. 
Formal specification methods contribute to this process 
area as follows in table 11. 

Table 11. Verificati
cific goals and specific practices FSC

SG 1 Prepare for Verification LC 
SP 1.1 Select Work Products for 
Verification 

LC 

SP 1.2 Establish the Verification LC 
Environment 
SP 1.3 Establish Verification     LC 
Procedures and Criteria 

SG 2 Perform Peer Reviews NC 
SP 2.1 Prepare for Peer Reviews NC 
SP 2.2 Conduct Peer Reviews NC 
SP 2.3 Analyze Peer Review Data NC 

SG 3 Verify Selected Work Products PC 
SP 3.1 Perform Verification LC 
SP 3.2 Analyze Verification Results PC 

 
ormal specification methods have various ways to 

co

5. Conclusion 

 this paper, we have studied the contribution of 
fo

able 12: CMMI Process Area and formal 
sp

FSC 

F
ntribute to the verification process area, the main 

two being model checking and theorem proving. 
Model checking is the process of building a model of a 
system and checking whether desired properties hold 
in this model [18] [15]. Theorem proving is the process 
of finding a proof of a property from the axioms of a 
system, where the property and the system are 
expressed in the formal specification language [11]. 
These two properties are well suited for SG1 and SG3 
and its specific practices. Presently, the application 
area and size of products which can be verified by 
model checking and theorem proving is rather limited. 
However, advancements in technologies will facilitate 

the development of tools which will be able to verify 
many system properties with reasonable time, resource 
and effort. For CSP-CASL, model checking and 
theorem proving has been investigated in detail [28]. 
Therefore, this specification language is well-suited for 
the achievement of specific goals in this process area.  

 
 

 
In
rmal specifications for the implementation of the 

CMMI process improvement model. Formal 
specification based process area satisfaction is 
investigated via the process algebraic specification 
language CSP-CASL. A small case study is presented 
to illustrate the applicability of a specification 
language for achieving goals of the process areas. Out 
of 22 process areas from CMMI, six process areas can 
be significantly improved with the help of formal 
specification methods.  These process areas and 
respective contribution from formal specification are 
summarized in Table 12. 

 
T
ecification contribution 

Process area 
Requirement Management LC 
Product Integration LC 
Requirement Development LC 
Technical Solutions LC 
Verification LC 
Validation LC 

 
In our research, we concentrated on the contribution 

of

is the quantitative 
an

 CSP_CASL as a formal specification language. 
Although we believe this language to be particularly 
well-suited, most of our results hold for other 
specification formalisms as well..  

What is left open in this paper 
alysis of cost and benefits in practical examples. In 

particular, for CMMI level 4 (Quantitatively Managed) 
a quantitative measurement of the process area 
implementation level is required. In CMMI level 5 
(optimizing) a continuous improvement is targeted. 
How to fit the present approach with these 
requirements needs more research. 
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