Dynamic Upload of Model-Based Diagnosis for Pico-Satellites

Rolf Hänisch, Holger Schlingloff

Fraunhofer Institute of Computer Architecture and Software Technology (FIRST)

Kekulèstr. 7, D-12489 Berlin, Germany

{rolf.haenisch,holger.schlingloff}@first.fraunhofer.de

phone: +49 30 6392 1836, fax: +49 30 6392 1805

Introduction

In the specification of pico-satellites there are extreme limitations on weight, dimensions, and cost. Therefore, often it is not possible to provide full hardware redundancy for all sensors, actors and control units in the design. Nevertheless, it is desirable to achieve the maximal resilience and recoverability possible under the given constraints. Even for non-redundant systems a certain fault tolerance can be achieved by appropriate software fault handling measures. For example, often it is possible to recover a defect system by deteriorating or shifting part of the functionality. In order to choose an appropriate exception handling, it is necessary to conduct extensive diagnostic measures. For example, if a sensor value is obviously out of bounds, the exception handler might construct a “best guess” approximation from previous values and continue. However, this basic concept is not viable in the present setting of pico-satellite control software: Within its lifetime, almost all parts of the satellite can fail or change their functional behaviour. It is impossible to predict all possible combinations of faults in advance and to implement appropriate corrective measures within the satellite. For cost reasons even an approximation to this ideal often is not feasible. Moreover, in pico-satellites such all-embracing exception handlers would put high demands on the available memory, but actually use only a small part of it. Thus flexible diagnosis and fault handling mechanisms which dynamically can adapt to specific situations would be desirable.

Again for cost reasons it is important that these mechanisms are fully automated. In particular, this is mandatory for swarm pico-satellites which are to be orbiting in large quantities.

In this note, we propose a method to generate and dynamically upload diagnosis procedures for pico-satellites. This proposal is an extension of a monitoring system for the pico-satellite BeeSat [BS06] which is being developed at TU Berlin, where Fraunhofer FIRST provided the concept of dynamic uploading of monitoring procedures [IAA6]. In our concept, if abnormal flight situations occur, the ground control will send appropriate diagnosis code to the satellite which installs and executes them fully automatic. For this approach to be feasible, the operations software on the satellite is augmented by a scripting engine which executes the dynamic modules, see Figure 1. According to the diagnostics, certain modules in the flight software can be replaced dynamically via the same mechanism.
[image: image1.jpg]Space Segment

Pay- | o
load | i
Satellite | &
system | 3

Ground Segment

Mission exploitation

Payload control

Operation control

Figure 1: Satellite setup with payload, operations software and scripting engine

State of the Art Telemetric / telecommanding are standard procedures in the operation of satellites. Mostly, the telecommanding includes facilities to upload and replace the complete flight software; this is important for fixing errors in the original programming. So far, dynamic reload of software modules during normal operation has been implemented only for deep-space satellites and probes such as Rosetta [SO06] and others. However, these examples are solitary solutions which have been designed for a specific purpose only. Moreover, only application modules can be dynamically reloaded; this must be done by explicit telecommanding. In our proposal, the dynamic upload of diagnosis and exception handling routines is part of the standard programming paradigm; therefore the concept can be ported to different platforms and programming environments.

Model-Based Diagnosis
In model-based design requirements are translated into a platform-independent system model, which is then refined stepwise into more and more platform-specific models. As a modelling language, Simulink/StateFlow® by The MathWorks Inc. is widely used. The final result of the refinement process is an implementation model, from which production code can be generated fully automatic [FS07]. This concept can also be used for model-based dependability evaluation and diagnosis as shown in [SV05]. In the present setting, we assume a model which contains all potentially erroneous components of the satellite. Via a simulation of the model with fault-injection, failure modes and effects can be analysed. From this analysis, appropriate measures can be designed and verified in the model. In particular, a detailed diagnosis procedure which uniquely identifies faults from failure modes can be extracted semi-automatically. In our view, the result of this extraction is again a platform-specific model which can be refined into an implementation model. However, it is also possible to directly extract code in some programming language.
To generate diagnostic code for a pico-satellite, we propose to use a standard programming language, e.g. Pluto [ECSS]. This language is currently used in ground control stations and well-accepted in the domain. Models can be translated into Pluto by a specific model-compiler. As a standard for programming satellites, the Object Management Group OMG proposed the 'Spacecraft Operations Language Metamodel' [OMG6]. In our approach, Pluto programs are mapped into XML terms which are serialisations of such models. Since the metamodel describes instances which are independent of the specific satellite architecture, these XML terms are portable. They must be either compiled into machine code for the satellite, or transformed into some interpretable virtual machine code. In our approach, we suggest to map the XML operation procedures into Java classes using the template provided by the OMG. Java programs are compiled into Java byte code by a standard Java compiler. The Java byte code is executed on a specific Java virtual machine on the satellite. The flow of artefacts and languages is shown in Figure 2.
[image: image2.jpg][Testoased]

[PdoSerpe]~
A.@

[Java Classes|

[Java ByteCode

Figure 2: Transformation of diagnosis routines

With this setup, we reach two benefits:

· We use well-established standards as far as possible, with available compilers an tools,

· All transformations and compilations are fully automatic; even the generation of transformation rules and compilers is to a large extent supported by tools.

We preferred to generate Pluto scripts from models instead of directly going to one of the levels below, since manual improvements, inspections and reviews are attached to this step. Another important reason is that Pluto provides an elaborated watchdog concept. We use watchdogs to react to exceptions occurring in user-modules. This way, the software can be diagnosed dynamically, and appropriate exception handling can be initialised automatically.
To execute the diagnosis routines on the satellite, a specific scripting engine is used. This scripting engine is a special JVM (Java virtual machine) which is able to handle Pluto watchdogs. It can be controlled by specific telecommanding, and used specific telemetric messages for communication to ground control. Furthermore, the scripting engine can transmit commands to the satellite and execute exception handling software. An overview of the scripting engine’s interfaces is given in Figure 3.
[image: image3.jpg]script | | script

command
interpreter

Interpreter
Java VM

Script_Engine

extended TC T extended TM l

Figure 3: The interfaces of the scripting engine
Currently, the above scenario is under development at Fraunhofer FIRST. The mapping from Pluto into Java is described in the full paper. Before starting the implementation, we conducted some feasibility studies on the load overhead and execution times. Each watchdog triggering uses approximately 50 high-level instructions or 400 machine instructions, which amounts to approximately 20 microseconds. Thus, the analysis shows that the setup is feasible in terms of computational overhead. We intend to experiment with this setup in a prototype of the BeeSat pico-satellite [BS06].
Currently it is planned that the task of commanding the diagnosis and exception handling is done by ground control. However, in a further iteration this should also be automated as far as possible, such that manual interaction by an operator is only needed in special rare occasions. This is particularly important for swarms of hundreds of pico-satellites manufactured with COTS hardware, where component failures are rather frequent. In order to design an expert system which commands and operates such a swarm, more research is needed.
References

[BS06] Klaus Brieß, Hakan Kayal: BeeSat – Berlin Experimental and Educational Satellite, TU-Berlin, Germany,

[CSA5] Walter A. Dos Santos, Adilson M. da Cunha: An MDA Approach for a Multi-Layered Satallite On-Board Software Architecture, Proceedings of the 5th Working IEEE/IFIP Conference on Software Architecture, 2005

[ECSS] ECSS: Space engineering, Test and Operations Procedures Language, ECSS-E-70-32A, April 2006

[FS07] Mario Friske, Holger Schlingloff: Generation of UML Models from Formalized Use Case Descriptions (in German); Proc 3rd Dagstuhl Workshop on Model-Based Engineering of Embedded Systems (MBEES), 15.-18.1.2007, Informatik-Bericht 2007-01, TU Braunschweig 2007

[IAA6] Rolf Hänisch, Sergio Montenegro: Command-Scripts for Pico Satellites, 6th IAA Symposium on Small Satellites for Earth Observation, 2007, to appear.

[IE06] Stuart James Cater, David Quigley: Automation of Satellite Requirement Verification, IEEE Aerospace Conference 2006

[OMG6] Object Management Group: Spacecraft Operations Language Metamodel, space/2006-04-04, 2006

[SO06] Jose Morales, Christoph Steiger, Elsa Montagnon, Paolo Ferri, Andrea Accomazzo: On-Board Software Maintenance at the Control Centre, SpaceOps 2006

[SV05] Holger Schlingloff, Sasa Vulinovic: Model-Based Dependability Evaluation for Automotive Control Functions; SimSafe05, Modeling and Simulation for Public Safety, P. Fritzson (ed.), Linköping, May 2005.
