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Abstract. In this paper, we deal with model-based automatic test gen-
eration. We show how to use coupled models consisting of UML state
machines, class diagrams, and OCL expressions to automatically derive
partitions of input ranges for boundary testing. We present a test gen-
eration algorithm, describe an implementation of this algorithm, and
compare this implementation to Rhapsody’s ATG.

1 Introduction

Modeling languages like UML [8] are widely used for system development. They
are supported by many tools, some of which also provide model-based automatic
generation of test suites [22, 11, 25]. This is advantageous compared to conven-
tional test suite generation, because the automation increases efficiency during
product evolution.

We argue that the current approaches neglect the generation of input parti-
tions. Therefore, we present an approach that focuses on the generation of input
partitions from UML state machines and class diagrams. We use the OCL ex-
pressions [7] of both diagrams to generate test input value partitions, which can
be used to find deviations of these constraints in the system under test.

The effect of partition testing and boundary testing depends on appropriate
coverage criteria (e.g. all-edges [13]) and on the adequate selection of partition
boundaries. Usually, this selection is done manually. Therefore, it is error-prone
and there is a high probability that the tests are ineffective. In contrast to the
manual selection of input value boundaries, we derive them automatically from
OCL expressions of system models. First, we statically analyze the interdepen-
dence between the elements of different OCL expressions within the system mod-
els. Then, we transform system models into a transition tree and investigate the
tree’s paths. We demonstrate our approach by the example of a sorting-machine.
The main contribution of this paper is the model-based automatic generation of
input value partitions.

The paper is organized as follows. In section 2, we introduce the system
models which are used in this paper. We introduce the intermediate transition
tree in section 3, and describe our test generation algorithm in section 4. We
evaluate our approach in section 5 and summarize our results in section 6.1

1 Our work is part of the Graduate School METRIK and founded by the Deutsche
Forschungsgemeinschaft DFG.
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Related Work. References to model-based testing and partition testing
can be found in [1, 2, 24]. Hierons et al. [10] use conditioned slicing to check
given input partitions. Dai et al. [6] use partition testing and rely on the user
to provide the input partitions. Our approach differs in that we create input
partitions, instead of relying on given ones. Legeard, Peureux and Utting [14]
develop a method for automated boundary testing from the textual languages Z
and B. In contrast, we focus on the graphical language UML.

OCL is the object of many studies [18, 26]. It can be used for contract-
based design for which Traon [23] also defines vigilance and diagnosibility but
does not use it for test case generation. Hamie et al. [9] consider OCL in the
context of state machines and classes. Our approach analyzes OCL expressions
to automatically generate test input value partitions.

Formalisms from outside the UML (e.g. extended finite state machines [3, 5])
also support automatic test generation but are not designed for object-oriented
systems. Offutt and Abdurazik [17] generate test cases from state machines.
However, they focus on single transitions and random source state initialization
paths. Sokenou [20] alters this random approach and uses sequence diagrams.
Our algorithm deviates in that we derive test input value partitions. In [4],
Briand et al. consider data flow for testing criteria. We also extract the data
flow along paths of the state machine, but use it for test generation.

To derive test cases, we create an intermediate control-flow tree, the test case
tree. Kansomkeat and Rivepiboon introduce a Test Flow Graph in [12]. Our tree
contains also pre/post conditions of operations, all its transitions may possess
conditions. Besides that, each node of our tree holds information about the input
values that are necessary for reaching the respective node.

Many commercial tools support testing. The Conformiq Test Generator [25]
focuses on UML state machines. Its main strengths are parallelism and concur-
rency, but input values are created manually. The tool AETG [21] also examines
input values, but its boundary testing algorithm depends on user-defined values
and boundaries. In contrast, we derive input partitions automatically. Rhapsody
ATG [22] is a tool with which test cases can be generated and executed with re-
spect to UML state machines. These test cases are selected according to certain
coverage criteria like MC/DC. The tool LTG/UML [24] from Leirios [15] also in-
cludes OCL expressions to generate test cases. To our knowledge, no commercial
tool creates test cases by explicitely deriving input partitions from conditions.

1.1 Example: The Sorting-Machine

Here, we briefly introduce our reoccuring example of a sorting-machine. The
context of this machine is a post office where incoming items are wrapped up. Due
to this packing, the original width of the object is doubled by foam plus two extra
size units for each side of a plastic box (m width = (object .width + 2 ) ∗ 2 ). The
height is handled likewise. If wrapped-up items violate the necessary sizes for the
standard shipping container, extra containers are needed. Our sorting-machine’s
task is to sort incoming items depending on the size after their wrapping so that
they fit into given containers.
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Fig. 1. Sorting-machine

Fig. 1 shows the state machine and class diagram of such a sorting-machine.
The sorting is realized once in the postcondition of recognize() and once in the
guard conditions of the outgoing transitions of state object recognized.

Automating the comparison of expected and actual behavior of a system is
important for automatic test generation. It can be realized by checking the out-
put of behavior or by checking its corresponding conditions. Unfortunately, these
checks often do not hold true for just one operation and, thus, the satisfaction
of a condition does not identify an operation (i.e. the system behavior) unam-
biguously. We fix this by extending model and system (e.g. with aspect-oriented
techniques). In Fig. 1, we inserted an additional operation setState(x : Integer)
whose effect identifies the corresponding target state unambiguously.

1.2 Partition Testing and Boundary Testing

Partition testing and boundary testing are well-known testing techniques and
are often used together: partitioning test input into domains is a prerequisite
of focussing tests on the corresponding domain boundaries. There are many
applications for partition testing (e.g. control systems for nuclear reactors, Geo-
information systems, sorting-machines). In such cases, the exact values of bound-
aries (sticks in reactors, global position of elements, measures of objects) are
important. We deal with test generation for such kind of applications.

2 The UML Models: Class Diagrams and State Machines

Our test generation approach uses UML class diagrams, UML state machines,
and OCL. A formalization of UML and OCL has been given in [7, 8]. Subse-
quently, we recall those definitions that are most important for our purpose. For
an example, consider the sorting-machine given in Fig. 1.



4

Class Diagrams. A class diagram cd = (CLS ,REL) consists of classes CLS
and relations REL between classes (right part of Fig. 1: boxes depict classes,
arrows depict relations). A class c ∈ CLS contains a set of attributes AT and a
set of operations OP : c = (AT ,OP). Each operation op ∈ OP has a precondition
op.pre and a postcondition op.post . The condition op.pre must be met before
the op’s execution, op.post defines the condition that is met after op’s execution.

State Machines. A state machine sm consists of a set of regions r , which
consist of a set of vertices VERT and a set of transitions TRS : r = (VERT ,TRS ).
On the left side of Fig. 1, arrows denote transitions, which connect vertices
(e.g. idle). Each vertex v ∈ VERT may possess a name v .sn, a set of incom-
ing transitions v .INC , a set of outgoing transitions v .OUT , and an invariant
v .inv . Each transition t ∈ TRS has a source vertex t .sv ∈ VERT , a target ver-
tex t .tv ∈ VERT , an event t .ev , a guard t .guard , and an effect t .ef . We interpret
events ev solely as call events, because most object-oriented programming lan-
guages have to realize them by operation calls anyway. A guard is a boolean
expression without side-effects. The effect ef is of type Behavior - in our ap-
proach, an operation call of the assciated class (see Fig. 1).

Conditions. The conditions COND in our approach are Boolean OCL ex-
pressions. They consist of basic predicates (e.g. (in-)equations or Boolean at-
tributes), which are connected by Boolean operators (e.g. and , or). The ele-
ments of the predicates can navigate along association relations between classes.
In Fig. 1, the folded boxes contain OCL expressions. The attached lines show
their assignment to effects of transitions. Furthermore, OCL provides expres-
sions on operation calls and on collections. Due to space restrictions, these OCL
expressions are not examined here.

Coupling Models. As shown in Fig. 1, we use models consisting of both
state machines and class diagrams. We call a pair of state machine and class
diagram a coupled model. This pair is connected by references from the effects
of transitions to operation calls. Navigation along inheritance relations helps
reusing state machines. According to Liskov’s substitution principle [16], prop-
erties of a base class also hold for its subclasses. State machines are behavioral
properties of a class. Thus, they can be reused in the subclass of a class (this time
referencing the operations and the attached OCL conditions of the subclass).

3 Test Case Trees

In this section, we define a finite tree for test case generation.
A Test Case Tree tct consists of a set NOD of nodes and a set ARC

of directed arcs: tct = (NOD ,ARC ). Each node is either a state ST or an
intermediate state IST . Furthermore, each n ∈ tct .NOD contains a set of in-
coming arcs n.IN and a set of outgoing arcs n.OUT , and a set of parame-
ter ranges n.RANGE , which maps input event parameters to ranges of values:
n = (IN ,OUT ,RANGE ). Each s ∈ tct .ST contains an additional reference to
a corresponding state in the state machine (to refer to the state invariant).
The tree’s root is a node sroot ∈ tct .ST with sroot .IN = ∅. For all other states
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as ∈ ST ∪ IST it holds that |as.IN | = 1 . All leaves l are elements of ST and
satisfy l .OUT = ∅.

Each arc ∈ tct .ARC connects a state and an intermediate state. It may pos-
sess a precondition arc.pre ∈ COND , a postcondition arc.post ∈ COND (default:
true), and a parameterized event arc.ev (default: instant state change). A small
example of a test case tree is shown in Fig. 2.

Fig. 2. Example of a test case tree

A tree’s path leads from sroot to a leaf. All nodes on a path are ordered. So,
m ∈ tct .ARC is a preceding arc of arc n ∈ tct .ARC iff n can be reached from
m by following the arcs. The paths of the test case tree are used to derive test
cases.

Each Test Case corresponds to a path from sroot to a leaf l ∈ ST . The
input for a test is a parameterized operation call sequence corresponding to
the operation call sequence and a representative of the input parameter range
l .RANGE . Expected and actual system behavior is compared by evaluating the
conditions along the path.

We describe the generation algorithm of l .RANGE in Step 2 of section 4.2.

4 Test Generation

The test generation algorithm transforms a coupled model into a test case tree
and creates test input partitions by evaluating OCL expressions. Afterwards, the
algorithm derives concrete test input values from these partitions.

4.1 Classification of OCL expressions

In this section, we present a classification of OCL expressions, which is related
to the one used in the Leirios methodology [15]. The corresponding Leirios tool
LTG/UML [24] can evaluate OCL expressions like pre/post conditions or tran-
sition guards. All atomic predicates in LTG/UML are either active or passive:
Only active predicates can alter the value of attributes, the passive ones can only
be read. Active predicates are only allowed within postconditions of operations.

Because we focus on the values of input variables, our classification is slightly
different from the one of Leirios. Our basic unit is a variable var . It is part of
an atomic predicate, which is in turn the context predicate of var . Each predi-
cate consists of variables, relations between them, and operations on them. We
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classify the system model’s variables (attributes, input parameters, or constants)
and use Leirios’ classification to introduce dependent and independent variables.
As in LTG/UML, we assume that variables not stated in postconditions are un-
changed. In contrast to LTG/UML, we do not take equations between two active
predicates (or variables) as assignments. In OCL, the meaning of such equations
is restricted to the fact that both predicates are equal - the concrete way to
reach this equality is undefined.

Subsequently, we define kinds of variables and their mutual relations.

Definition 1 (Independent and Dependent Variables). An independent
variable is either an event input parameter or a constant class attribute. Its
value is constant. A dependent variable is a non-constant class attribute.

We define that a variable var is either active or passive corresponding to Leirios’
definition concerning var ’s context predicate: If var ’s context predicate is active
and @pre [7] is not attached to var , then var is active and can be changed in
this expression. If either var ’s context predicate is passive or @pre is attached
to var , then var is passive and cannot be changed. Fig. 3 shows the relation
between active/passive variables and dependent/independent variables.

Fig. 3. Classification of variables

With definition 1, we can now describe the dependency between the OCL
expressions along a given path. If an arc a ∈ tct .ARC contains a condition con-
sisting amongst others of a variable var , then a contains var .

Definition 2 (Next Preceding Arc). If an arc a1 ∈ tct .ARC contains a de-
pendent passive variable var, then the next preceding arc of a1 w.r.t. var is
a1 ’s preceding arc a2 ∈ tct .ARC, that is closest to a1 and contains var as an
active variable.

Definition 3 (Initialized Variables). Each independent variable is initial-
ized. A dependent passive variable depvar of a condition cond ∈ COND assigned
to an arc a2 ∈ tct .ARC is initialized iff the next preceding arc a1 ∈ tct .ARC
of a2 w.r.t. depvar exists and, except for depvar, depvar’s context predicate in
a1 .post contains only initialized passive variables.
A condition cond assigned to an arc a2 is initialized iff each variable in cond
is initialized. The set consisting of cond and all conditions of all next preceding
arcs w.r.t. each dependent variable along the path from the root to a2 is the
initialized condition set of cond.
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Theorem 1 (Reducible Variables). In an initialized condition set of a con-
dition, each included dependent variable can be reduced to independent variables.

Proof. A variable var is initialized iff var ’s context predicate of the next preced-
ing arc nparc w.r.t. var contains besides var only passive initialized variables.
These variables are dependent or independent. Because all variables are initial-
ized (definition 3), a dependent variable depvar can only occur as long as there
is a next preceding arc w.r.t. depvar . Otherwise, depvar ’s context predicate in
nparc contains only independent variables. Each outgoing arc oarc ∈ sroot .OUT
has no next preceding arc, because sroot .IN = ∅. So, each oarc contains no de-
pendent passive initialized variables, and all dependent variables of an initialized
condition set depend directly or indirectly on independent variables. ut

In the following, we assume that all variables are initialized.

4.2 Creating the Test Case Tree

The algorithm to create the test case tree is similar to existing transformation
approaches in [2]: it iterates along the state machine’s transitions and adds newly
created nodes and arcs to the test case tree. Within each step of the iteration,
the algorithm evaluates the OCL conditions in the newly created arcs of the test
case tree tct : all of cond ’s variables are classified into independent and dependent
variables (definition 1).

We detail the transformation process in two steps: the creation of the test
case tree tct (Step 1 ) and the evaluation of the OCL conditions (Step 2 ) to
create input value ranges RANGE in tct ’s nodes. At first, tct consists only of
the root node sroot .

Step 1. The algorithm starts at the root sroot of tct and at the state S1
following the initial pseudostate of the state machine (see Fig. 4). For each
transition t ∈ S1 .OUT , we insert an intermediate state is into tct .IST and
an arc arc1 into tct .ARC , so that arc1 ∈ sroot .OUT and arc1 ∈ is.IN . Sub-
sequently, t ’s triggering event t .ev and t ’s guard t .guard are attached to arc1 :
arc1 .ev = t .ev ; arc1 .pre = t .guard . After this, we insert a new state s into tct .ST
and another arc arc2 into tct .ARC , such that arc2 ∈ is.OUT and arc2 ∈ s.IN .

Fig. 4. Creation of the test case tree for one transition of the coupled model
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The conditions of t ’s effect t .ef are assigned to arc2 : arc2 .pre = t .ef .pre and
arc2 .post = t .ef .post . We copy sroot .RANGE to is.RANGE and to s.RANGE
and let s refer to t ’s target vertex t .tv . Subsequently, we execute Step 2 for is
and for s successively. The whole procedure is repeated for all outgoing arcs and
their target states. Fig. 4 shows the creation process for just one transition. The
branching in the resulting test case tree depends on the branching of the source
state machine’s transitions. The current termination criterion is forming a circle
in the control flow of the original state machine.

Step 2. In this step, we evaluate all conditions of each arc ∈ tct .ARC that
was just inserted into the test case tree. Starting from each just added condition
cond , we gather the initialized condition set of cond . We use this condition set
(except cond) together with transformation rules to transform the condition
cond until it solely contains independent variables. These transformation rules
define patterns for cond and for the conditions of the condition set, which must
be matched to create a transformed cond . The transformation rules are solely
expedient if they use the conditions from the condition set to replace dependent
variables in cond with independent variables reasonably. For instance, a is a
dependent variable and cond is a < b. Then a predeceding postcondition a = c
could be used to transform a < b into c < b, whereas a preceding postcondition
a < c is useless to relate c and b.

In our example (Fig. 1), we consider a short path from idle via object inserted
to object evaluated. We just insert the postcondition of Selector::recognize() and
evaluate it using the postcondition of Selector::detectItem. We first consider that
the if-condition in the newly inserted condition is evaluated to true. So, we
transform the if-condition with the help of the conditions in the corresponding
initialized condition set (see the steps in Fig. 5).

Fig. 5. Stepwise transformation of evaluated condition

The transformed guard conditions contain new restrictions for the value
ranges of input parameters to reach arc’s target node n ∈ tct .NOD . These new
conditions are intersected with n.RANGE , which was created in Step 1.

Creating the Test Cases. To create test cases from the test case tree tct , we
iterate over all leaf nodes l ∈ tct .ST and gather the parameter ranges l .RANGE .
Within each step, we iterate over all nodes from tct ’s root to l and trigger each
input event along the arcs with parameters corresponding to the value ranges
within l .RANGE : for the example in Fig. 5, we choose a value smaller than 9
for the input attribute object.height. We use the boundary testing method [19]
to select the exact values: the boundary values itself, the next inner values,
and some random values from within the value range. Expected and actual
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system behavior are compared by evaluating all conditions available along the
path: all referred state invariants, guards, preconditions, and the results of the
postconditions (depending on the actual input parameter values). The resulting
test cases cover the input partitions of those variables that also appear in our
system model (see completeness in [23]).

5 Comparison with ATG.

The described algorithm is realized in the prototype PARTEG (Partition Test
Generator). We use the example in Fig. 1 to compare PARTEG with Rhap-
sody’s ATG, which is a popular tool in the field of automated test generation.
We compare both tools via mutation analysis. For the commercial tool Leirios
LTG/UML, the available documentation claims that it can also generate test
cases from UML models similar to the ones in our approach. Due to licensing
restrictions, however, this tool could not be compared to our prototype.

Mutation Operators. We define two mutation operators. Both fit to bound-
ary testing and to the kind of expressions that our algorithm can evaluate: they
exchange relation symbols (≤ for < and ≥ for >) respectively shift the bound-
aries of the conditions with arbitrary values (here: 2 and 6). So, the resulting
mutants are completely killed iff the test set checks violations of the conditions
given in the model. We combine both mutation operators and receive 24 dis-
tinct, identifiable mutants (3 inequations with 9 mutants each: 4 for shifting
boundaries, 5 for also changing the relation symbol; 3 mutants overall are not
distinguishable from the original).

Comparison. We model the example of Fig. 1 in PARTEG and in Rhap-
sody’s ATG. In ATG, we can not use pre/post conditions. Additionally, ATG
is restricted to the domain of C++ and cannot evaluate OCL. So, we add the
postconditions as operation implementation code. ATG generates 4 test cases
that cover all transitions but it identifies only 10 out of 24 mutants.

PARTEG ’s implementation realizes different test criteria like all-boundaries
and all-edges [13]. With minimal configuration, PARTEG creates 5 test cases
overall that identify all 24 mutants. Manual inspection shows that no test case of
the generated test suite is redundant. For this example, our approach identifies
all mutants with the minimum number of test cases necessary. Although we still
need more elaborate studies, this result shows the prospective strengths of our
approach.

6 Conclusion and Future Work

In this paper, we used UML state machines and class diagrams to derive test
input partitions automatically. We pointed out the importance of partition test-
ing when dealing with numeric data, named application fields, and showed the
potential of our approach with a prototype. In the future, we aim at less restric-
tive approaches to use OCL and UML, and we want to use our method in the
domain of Geo-information systems.
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