Deriving Input Partitions from UML Models for
Automatic Test Generation

Stephan Weilleder and Bernd-Holger Schlingloff

Humboldt-Universitat zu Berlin, 12489, Germany,
{weissled,hs}@informatik.hu-berlin.de

Abstract. In this paper, we deal with model-based automatic test gen-
eration. We show how to use UML state machines, UML class diagrams,
and OCL expressions to automatically derive partitions of input param-
eter value ranges for boundary testing. We present a test generation
algorithm and describe an implementation of this algorithm. Finally, we
discuss our approach and compare it to commercial tools.

1 Introduction

Modeling languages like the Unified Modeling language (UML) [7] are widely
used for system development. They are supported by many tools, some of which
also provide model-based automatic generation of test suites [10,22,25]. This
is advantageous compared to conventional test suite generation because the au-
tomation increases the efficiency of the test generation process.

We argue that the current approaches neglect the generation of input parti-
tions. Therefore, we present an approach that is focused on the generation of in-
put partitions from UML state machines and UML class diagrams. It derives test
input value partitions from expressions of both diagrams, e.g. transition guards
or pre-/postconditions of the Object Constraint language (OCL) [6]. The corre-
sponding test suite is focused on detecting errors that result from differences be-
tween constraints in the model and constraints in the system under test (SUT).

The quality of test suites created with partition testing and boundary testing
depends on satisfied coverage criteria and on the adequate selection of partition
boundaries. Usually, the latter is done manually. Therefore, the boundary selec-
tion is error-prone and there is a high probability that the test effectiveness is
low. In contrast to manual selection of input value boundaries, we derive them
automatically from OCL expressions of system models. We statically analyze the
interdependence of OCL expressions within the system model and transform the
model into a transition tree and investigate the tree’s paths. We demonstrate our
approach by the example of a sorting-machine. Compared to other approaches,
the contribution of this paper is a method to generate test cases by evaluating
OCL expressions in postconditions, which are not restricted to equations.

The paper is organized as follows. Sections 2 and 3 contain preliminaries for
this paper and the used example system models. Section 4 contains the inter-
mediate transition tree. The test generation approach is described in Section 5.
Sections 6 to 8 contain evaluation, related work, and summary.

2 Preliminaries

In this section, we introduce the running example of a sorting machine and
describe the use of partition testing and boundary testing.

2.1 Example: The Sorting-Machine

Here, we briefly introduce our reoccuring example of a sorting-machine. The
context of this machine is a post office where incoming items are wrapped up. Due
to this packing, the original width of the object is doubled by foam plus two extra
size units for each side of a plastic box (m_width = (object.width + 2) x 2). The
height is handled likewise. If wrapped-up items violate the necessary sizes for the
standard shipping container, extra containers are needed. Our sorting-machine’s
task is to sort incoming items depending on the size after their wrapping so that
they fit into given transport containers.

Fig. 1 shows the state machine and class diagram of such a sorting-machine.
The sorting is fragmented into the postcondition of recognize() and in the guard
conditions of the outgoing transitions of state object recognized.

2.2 Partition Testing and Boundary Testing

Partition testing and boundary testing are well-known testing techniques and
are often used together: partitioning test input parameters into value domains
is a prerequisite of focussing tests on the corresponding domain boundaries. As
examples for partition testing we consider control systems for nuclear reactors,
Geo-information systems, or sorting machines. In such cases, the exact values of
boundaries (sticks in reactors, global position of elements, measures of objects)
are important. The corresponding test cases have to contain values that check
even small violations of the derived test input parameter boundary values. We
deal with the automatic test generation for such kind of applications.

context: Selector:recognize() AbstractSelector
object inserted post: if(m_height@pre < 20) then ° =
<Statas> frecognize()] recognized = true else recognized = false & _recognized : boolean
idle endif % recognize() : boolean
&5
PP object ‘I [recognized = false] / setState(4) % _initialize()
. p)
A A AA detecttemEvent(object ; ftem) g&lemﬂem(ubjsclj g i
context: Selector::detectitem(object : tem) . Selector
post: (m_height = (cbject height * 2) + 2) [recognized =true] / setSige(3) A Hiocinar P
and (m_width = (okject width + 2) * 2) recognized L Wi
i object <<State>> % recognize() : boolean
pecngnieed % initialize()
[m_wvidth == 20 and m_width <= 30] { \wictth = 30] / setState(5) ¥ setState(int)
fin_wicth < 20] / setState(s) . y e
object is S/ object is too big ftem
‘2&;2}?“ context: Selector:: setState(x : Integer) <<State>> A
post: steteVar = x &> height: int
&5 width - int

Fig. 1. State machine and class diagram for a sorting-machine.

3 The UML Models: Class Diagram and State Machine

Our test generation approach uses UML class diagrams, UML state machines,
and OCL to generate test code. A formalization of UML and OCL has been
given in [6,7]. Subsequently, we recall the definitions that are most important
for our purpose. For an example, consider the sorting-machine given in Fig. 1.

Class Diagram. A class diagram c¢d = (CLS, REL) cousists of classes CLS and
relations REL between classes. The right part of Fig. 1 shows boxes depicting
classes and arrows depicting relations between them. A class ¢ € CLS contains a
set of attributes AT and a set of operations OP: ¢ = (AT, OP). Each operation
op € OP has an optional precondition op.pre and an optional postcondition
op.post. The condition op.pre must be met before the op’s execution, op.post
defines the condition that is met after op’s execution.

State Machine. A state machine sm contains a set of regions REG, which in
turn contain a set of vertices VERT and a set of transitions TRS: sm = (REG),
REG = (VERT, TRS). On the left side of Fig. 1, arrows denote transitions,
which connect vertices. Each vertex v € VERT may possess a name v.sn, a set
of incoming transitions v.INC, a set of outgoing transitions v.OUT, and an
invariant v.inv. Each transition ¢ € TRS has a source vertex t.sv € VERT, a
target vertex t.tv € VERT, an event t.ev, a guard t.guard, and an effect ¢.ef. We
interpret events ev solely as call events, since in most object-oriented languages
events are realized by operation calls. A guard is a Boolean expression without
side-effects. The effect ef is of type Behavior - in our approach, an operation
call of the associated class (see Fig. 1). The example in Fig. 1 does not comprise
parallelism and, therefore, contains just one region.

Conditions. The conditions COND are Boolean OCL expressions contained
in state machines or class diagrams. They consist of basic predicates like arith-
metic conditions, which are connected by Boolean operators. The elements of the
predicates are used to navigate along association relations between classes. In
Fig. 1, the folded boxes contain OCL expressions. The attached lines show their
assignment to effects of transitions. Furthermore, OCL provides expressions on
operation calls and collections. To check the test result, OCL expressions are
evaluated at run time with respect to the created objects and attributes.

Coupled Models. As shown in Fig. 1, we use models consisting of a pair
of state machine and class diagram. We call such pairs coupled models. They
are connected by references from transitions to operation calls. The constraints
of both models are evaluated together. Navigation along inheritance relations
helps reusing state machines. According to Liskov’s substitution principle [15],
properties of a class also hold for its subclasses. State machines are behavioral
properties of a class. Thus, they can be reused in the subclass of a class (this time
referencing the operations and the attached OCL expressions of the subclass).

4 Test Case Tree

In this section, we define a finite tree for test case generation. It contains all
necessary information to derive test sequences and test input boundary values. It
simplifies the evaluation because all constraints are ordered according to control
flow information. This approach also allows to use another source model if an
appropriate model transformation is defined.

A Test Case Tree ict consists of nodes NOD and directed arcs ARC:
tct = (NOD, ARC'). Some nodes reference a state in the state machine. They are
called anchor nodes ANOD. Furthermore, each n € tct. NOD references incom-
ing arcs n.IN, outgoing arcs n.OUT, and contains parameter ranges n. RANGE:
n=(IN,OUT,RANGE). n.RANGE maps each input event parameter used on
the path from the root to n to a range of values. Each combination of representa-
tives of these value ranges applied to the current input event sequence parameters
results in reaching n. We focus on the boundary values. The tree’s root is a node
sroot € tct. ANOD with sroot.IN = (). For all other states as € NOD it holds
that |as.IN| = 1. All leaves [are elements of ANOD and satisfy I.OUT = (). The
arcs of the tree arc € tct. ARC possess a precondition arc.pre € COND (default:
true), a postcondition arc.post € COND (default: true), and an event arc.ev
parameterized with instances of primitive or abstract data types.

An example for the general structure of a test case tree is shown in Fig. 2.
The tree contains seven nodes connected by arcs. Each arc contains a transition
event, a transition guard, an operation’s precondition, or its postcondition. Each
path leads from sroot to a leaf. All nodes on a path are ordered. So, m € tct. ARC
is a preceding arc of arc n € tct. ARC iff n can be reached from m and n # m.

Each Test Case corresponds to a path from sroot to a leaf [€ ANOD. The
input for a test case is a parameterized operation call sequence corresponding
to the event sequence of the selected path and one representative of each input
parameter range [.RANGE. Expected and actual system behavior are compared
by evaluating the conditions along the path from sroot to I.

Each test case has to satisfy all expressions along its corresponding path. Each
arc of the tree contains just one expression. This allows to form the disjunctive
normal form (DNF) of the contained expressions and split up the containing
arc into several arcs corresponding to the resulting conjunctions. Since this re-
places all complex Boolean expressions with conjunctions, the evaluation of all
expressions of one path is simplified. We describe the generation algorithm of
[.RANGE in Step 2 of section 5.2.

arc2 arc4

arcO
arc0.ev,
arc0.pre

arc2.pre

arc4.post

sroot, s6, s7 : ANOD
sroot is the tree's root
s6 and s7 are leaves

arc3 arch

rc1
arcl.ev

arc3.pre arc5.post

Fig. 2. General structure of a test case tree.

5 Test Generation

This section describes the test generation algorithm. First, a coupled model
is transformed into a test case tree. Then, test input partitions are derived
by categorizing and transforming OCL expressions of the tree. Afterwards, the
algorithm generates concrete test input values from these partitions.

5.1 Classification of variables in OCL expressions

In this section, we present a classification of OCL expressions, which is par-
tially similar to the one used in the Leirios methodology [14]. Predicates in
LTG/UML are either active or passive: Only active predicates can alter the
value of attributes, the passive ones can only read. Leirios claims that their
tool LTG/UML [24] can evaluate OCL expressions like pre-/postconditions or
transition guards. They use an operational interpretation of equations in OCL
postconditions. In contrast, our approach is not restricted to equations but can
also evaluate inequations. In future work, we will aim at evaluating more com-
plex operations on collections in OCL postconditions. Additionally, Leirios de-
fines new interpretations for OCL constraints. For instance, in active contexts
of a postcondition the mere equation X = Y is interpreted as an assignment of
the value of Y to X, which can lead to confusions. The OCL specification [6]
does not provide such an interpretation. A corresponding assignment would be
X = Y@pre. In our approach, we stick to the OCL specification without addi-
tional interpretations. To recognize the variables that can change and those that
can not, we provide a classification of the variables in OCL expressions.

Since we focus on the values of input variables, our classification differs from
the one of Leirios: our atomic classification units are variables var. They are
part of an atomic predicate, which is in turn the context predicate of var. Each
predicate consists of variables, relations between them, and operations on them.
We classify the system model’s variables (attributes, input parameters, or con-
stants) and introduce dependent and independent variables. As in LTG/UML,
we assume that variables not stated in postconditions are unchanged.

Subsequently, we define kinds of variables and their mutual relations.

Definition 1 (Independent and Dependent Variables). An independent
variable is either an event input parameter or a constant class attribute. Its value
is constant. A dependent variable is a non-constant class attribute.

We state that a variable var is active or passive depending on wvar’s context
predicate. If the context predicate of war is a postcondition and no @Qpre is

Expression Kind Dependent Variahle Independent Variahle
Postcondition (without (@pre) active passive
Postcondition (with [@pre) passive passive
Any other kind passive passive

Fig. 3. Active and passive variables.

attached to var then the value of var can be changed - it is active. In all other
cases, the value of var can not be changed - var is passive. Fig. 3 shows the
corresponding classification.

Using Definition 1, we are able to describe the dependency between the OCL
expressions along a given path. If an arc a € tct. ARC contains a condition con-
sisting amongst others of a variable var, then a is said to contain var.

Definition 2 (Next Preceding Arc). Assume, an arc al € tct. ARC contains
a dependent passive variable var. Then, the next preceding arc a2 € tct. ARC of
al w.r.t. var is al’s preceding arc that is closest to al and contains var as an
active variable. The value of the active variable var at the next preceding arc
corresponds to the value of var at al.

Definition 3 (Defined Variables). Independent variables are defined. Active
variables are defined if all remaining variables contained in its context predicate
are defined. Fach dependent passive variable depvar contained in a condition
cond € COND used in an arc a2 € tct. ARC is defined iff the next preceding arc
al € tct.ARC of a2 w.r.t. depvar exists and the corresponding active variable is
defined.

A condition cond used in an arc a2 is defined iff each variable in cond is defined.
The set consisting of cond and all conditions of all next preceding arcs w.r.t. each
dependent variable along the path from the root to a2 is the defined condition
set of cond.

These definitions exclude the existence of two active variables in one atomic
condition. Obviously, variables can be defined in atomic conditions connected by
conjunctions, respectively. Consequently, the presented definitions are applicable
to conjunctions. All conditions in DNF are only connected by conjunctions.
Hence, expressing OCL conditions in DNF is necessary for their evaluation.

Theorem 1 (Reducible Variables). In a defined condition set of a condition,
each included dependent variable can be reduced to independent variables.

Proof. A variable var is defined iff var’s context predicate of the next pre-
ceding arc mparc w.r.t. var contains only passive defined variables besides the
corresponding active variable var. These variables are dependent or indepen-
dent. Since all variables are defined (Definition 3), such defined variables initvar
can only be dependent as long as there is a next preceding arc w.r.t. initvar.
Otherwise, initvar’s context predicate in nparc contains only independent vari-
ables. Each outgoing arc oarc € sroot.OUT has no next preceding arc, because
sroot.IN = (). Consequently, oarc contains no dependent passive initialized vari-
ables. Since all paths are of finite length, all dependent variables of an defined
condition set depend directly or indirectly on independent variables. O

For instance, in a postcondition X > XQpre + Z@pre, the values of X and
X @pre are different if ZQpre > 0. Roughly speaking, we consider X and X Qpre
as different variables with different values. X is initialized iff X@Qpre and Z@Qpre
are also initialized, which in turn depends on their next preceding arcs. In the
following, we assume that all variables are initialized.

5.2 Creating the Test Case Tree

The presented algorithm is similar to existing transformation approaches pre-
sented in [2]. Within each step of the transformation, the algorithm evaluates
the OCL expressions of the test case tree tct. We split up the transformation
in two steps: the creation of the test case tree tct in Step 1 and the creation of
input value partitions in Step 2.

Step 1. The algorithm starts at the root sroot of tct and at the state SI after
the initial pseudostate of the state machine (see Fig. 4). For each t € S1.0UT,
we insert a node nl into tct.NOD and an arc arcl into tct.ARC, so that
arcl € sroot.OUT and arcl € n1.IN. The triggering event of ¢ and t’s guard
are attached to arcl: arcl.ev = t.ev;arcl.pre = t.gquard. Subsequently, we in-
sert the new node n2 and the state s into tct.ST and add the arcs arc2 and
arc8 into tct.ARC, so that arc2 € n1.0OUT, arc2 € n2.IN, arc3 € n2.0UT,
and arcd € s.IN. The conditions of t’s effect t.ef are assigned to arc2 and
arc8: arc2.pre = t.ef .pre and arc3.post = t.ef .post. We copy sroot. RANGE to
nl.RANGE, n2.RANGE, and s. RANGFE and let s refer to t’s target vertex ¢.tv.

Subsequently, we transform the added expressions into DNF and split up
the test case tree corresponding to the resulting conjunctions (see Fig. 5). This
is reasonable because a path selection is similar to a disjunction. Dealing just
with conjunctions simplifies the evaluation process, because we do not have to
consider dependencies between expressions like in conditioned constraints. For
instance, in if (A) then B else C endif we have to evaluate the value of A before
knowing whether to consider B or C. Fig. 4 shows the creation process for one
transition. It terminates if the transformed transitions form a circle. Although
this process seems to be similar to simple unfolding, the test case tree makes the
test generation algorithm in Step 2 independent of UML. It could be reused for
other formalisms.

._)_ 51 1
cestaterr -

(o) ——w ()
ev [guard] 3

B arcl.ev=tev
arei.pre = t.guard
s.ref = ttv

arct arc2 arc3
ccmers arcl.ev =tev arc2pre=tefpre arc3.post = tefpost

arci.pre = t.guard

Fig. 4. Creation of the test case tree for one transition of the coupled model.

if Athen B else C endif

O —

(notA)and C

Fig. 5. Exemplary transforming an expression in DNF and adapting the test case tree.

O arci arc2
s1 | 52 -{ 53
N\

arc1.post: arc2.post:
m_height = (object.height * 2) + 2 m_height@pre < 20 and recognized = true

Fig. 6. Part of the test case tree for the sorting machine.

Step | Conditions as transformation rules Evaluated condition
1 m_height@pre < 20
2 m_height= {object height * 2) + 2
3 {object height *2) +2 < 20
4 object height = 9

Fig. 7. Stepwise transformation of the evaluated condition.

Step 2. In this step, we evaluate the expressions of each arc € tct. ARC that
was just inserted into the test case tree. Starting from arc’s condition cond,
we compute the initialized condition set of cond. We use this condition set to
transform the condition cond until it just contains independent variables. The
postconditions of cond’s initialized condition set are used as the corresponding
transformation rules.

The test generation process identifies the active variables in these postcon-
ditions. The values of active variables depend on the values of passive ones.
Consequently, the conditions on dependent variables can be expressed as con-
ditions on independent variables (see Fig. 3). This results in partitions of the
value ranges of input parameters.

In the example in Fig. 1, we consider a short path from idle via object in-
serted to object evaluated. We insert the postcondition of Selector::recognize()
and evaluate it using the postcondition of Selector::detectitem(). We split up
the postcondition of Selector::recognize() in DNF conjunctions and just consider
the case that m_height@pre < 20 is true. Fig. 6 shows a part of the correspond-
ing test case tree. The algorithm transforms m_height@pre < 20 by using the
postcondition of the next preceding arc as transformation rule (see Fig. 7).

The transformed condition contains new restrictions for the value ranges of
the input parameter object.height to reach the corresponding target node. Such
new conditions are intersected with n.RANGE, which was created in Step 1.

Creating the Test Cases. To create test cases from the test case tree tct, we
iterate over all leaf nodes [€ tct. ANOD. For each leaf [, we create a test input
sequence corresponding to a path from tct’s root to [and parameterize each
event with representatives of the value range [.RANGE. We use the boundary
testing method [19] to select these representatives: e.g., boundary values, next
inner values, and random values from within the value range. The result is a test
suite that satisfies boundary-based coverage criteria [13]. Expected and actual
system behavior are compared by evaluating all conditions available along the
path. The resulting test cases comprise just the deducible input partitions of the
variables in our system model (see completeness in [23]).

6 Evaluation of ParTeG

The described algorithm is implemented in the prototype ParTeG (Partition
Test Generator) [18]. This tool is capable of handling arithmetic and Boolean
operations within OCL expressions. The SUT is on the level of source code. In
the current version, the generated test code is a JUnit test suite.

We use the example in Fig. 1 to compare ParTeG with Rhapsody’s ATG
and Leirios’ Test Designer, which are popular tools in the field of automated
test generation. We compare all generated test suites via mutation analysis. For
that, we first define mutation operators to inject errors in the SUT. After that,
we compare the generated test suites of all tools by the amount of killed mutants.
At the end of this section, we discuss advantages and limitations of ParTeG.

Mutation Operators. Since we use mutation testing to compare the generated
test suites, the selection of the mutation operators is critical for the quality of the
comparison. We put emphasis on the recognition of changes to the OCL expres-
sions. Consequently, our mutation operators change such expressions in the SUT.
We define two mutation operators that exchange relation symbols (< for < and
> for >) respectively shift the boundaries of the conditions by small values like
2 or 6. We combine both mutation operators and receive 24 distinct, identifiable
mutants (3 inequations with 9 mutants each: 4 for shifting boundaries, 5 for also
changing the relation symbol; 3 mutants overall are not distinguishable from the
original). For instance, mutating the inequation m_heightQpre < 20 results in
the mutated conditions of the SUT that are shown in Fig. 8.

Comparison to Commercial Tools. We modeled the example of Fig. 1 in
Rhapsody’s ATG, in Leirios’ Test Designer, and in ParTeG. The latter two
support all OCL expressions needed for this example. Since ATG is restricted
to the domain of C++ and does not support pre-/postconditions of OCL, we
added all expressions as implementation code to the model.

Rhapsody’s ATG generated 4 loop-free test cases that cover all transitions
but killed only 10 out of 24 mutants (see Fig. 9). Leirios Test Designer also
generated 4 loop-free test cases that cover all transitions and killed 10 of 24
mutants. Interestingly, both sets of killed mutants differ from each other.

ParTeG’s implementation can generate test suites that satisfy different test
criteria like State Coverage [24] and Multi-Dimensional [12]. With minimal con-
figuration, ParTeG created 5 loop-free test cases overall that killed all 24 mu-

Mutation Operators No relation change Exchange < for =
-6 m_height@pre < 14 m_height@pre = 14
-2 m_height@pre < 18 m_height@pre = 18
+0 original tn_height@pre < 20
+2 m_height@pre < 22 m_height@pre < 22
+6 m_height@pre < 26 m_height@pre £ 26

Fig. 8. Mutated conditions in the SUT.

Tool Generated Test Cases | Indentified Mutants
Ehapsody AT G 4 10424
Leirios Test Designer 4 10424
ParTe G 5 24424

Fig. 9. Results of the comparison.

tants. Manual inspection showed that the generated test suite contains no redun-
dant test cases. For this example, ParTeG killed all mutants with the minimum
number of loop-free test cases. Higher effectiveness could be reached by, e.g.,
concatenating all test cases.

Discussion. The above result shows the prospective strengths of our approach.
Furthermore, there are many interesting points to discuss. For instance, the
effect of a triggered transition can trigger other transitions. Since all events of
state machines are handled in a pool, the triggered event can simply be added to
this pool. Furthermore, the relative completeness of pre-/postconditions strongly
influences the quality of the generated test suite. As any other model-based ap-
proach, our apporoach can only transform expressions into input value partitions
if the model comprises the corresponding dependencies. Another important as-
pect is the effectiveness of our approach. The selected coverage criterion plays an
important role for the overall costs: satisfying All-One-Loop-Paths is definitely
more costly than satisfying All-States. Furthermore, it seems reasonable to com-
bine boundary-based coverage criteria with transition-based coverage criteria.
The size of the modeled systems is another important aspect. Until now, we
have not performed larger case studies. The generation of test suites that satisfy
criteria like All-One-Loop-Paths for state machines with many parallel regions
can exceed the available memory. On the one hand, this might be a problem of
ParTeG’s memory management. However, for future versions of ParTeG we are
planning further improvements. On the other hand, this seems to be a problem
related to the selected coverage criterion: we are currently investigating the im-
pact of the coverage criterion on the size and fault detection capabilities of the
test suite. Since there is no proof that coverage criteria have an impact on the
number of identified faults, the effect of coverage criteria needs to be examined.

7 Related Work

References to model-based testing and partition testing can be found in [1, 2,
24]. Hierons et al. [9] use conditioned slicing to check given input partitions. Dai
et al. [5] use partition testing and rely on the user to provide input partitions.
Our approach differs in that we create input partitions instead of relying on pre-
defined ones. Legeard, Peureux and Utting [13] develop a method for automated
boundary testing from the textual languages Z and B based on set-oriented con-
straint technology. They execute all operations with all input boundary values
on each reachable boundary state. In contrast, our approach uses the languages
UML and OCL. It is based on transformations instead of constraint solving.

OCL is object of many studies [17,26]. It can be used for contract-based
design, for which Traon [23] also defines vigilance and diagnosibility but does
not use it for test case generation. Hamie et al. [8] consider OCL in the con-
text of state machines and classes. Our approach analyzes OCL expressions to
automatically generate test input value partitions.

Formalisms from outside the UML (e.g., extended finite state machines [3,4])
also support automatic test generation but are not designed for object-oriented
systems. Offutt and Abdurazik [16] generate test cases from state machines.
However, they focus on single transitions and random source state initialization
paths. Sokenou [20] alters the initialization by using sequence diagrams. Further-
more, she translates OCL constraints of the model into Java code to use them as
a test oracle. Our algorithm deviates in that we also evaluate OCL constraints
and use them to derive test input value partitions.

To derive test cases, we create an intermediate control-flow tree: the test case
tree. In [11], Kansomkeat and Rivepiboon introduce a Test Flow Graph gener-
ated from a UML statechart diagram. Their generated test suites satisfy state
coverage and transition coverage. In contrast, our tree also contains conditions
from class diagrams; the nodes contain input value boundaries. This allows to
generate test suites that also satisfy boundary-based coverage criteria.

Many commercial tools support testing. The Conformiq Test Generator [25]
supports parallelism and concurrency in UML state machines but input values
are created manually. The algorithm of the tool AETG [21] also depends on
user-defined values and boundaries. In contrast, we derive input partitions au-
tomatically. The tool Rhapsody ATG [22] is based on UML state machines. It
generates and executes test cases with respect to coverage criteria like MC/DC.
The tool LTG/UML [24] from Leirios [14] evaluates OCL expressions to generate
test cases. It interprets equations in postconditions as assignments, which allows
to perform a symbolic execution of the model. In contrast to that, our approach
is not restricted to active equations but can also evaluate active inequations in
OCL postconditions. In future work, we also aim at evaluating more complex ac-
tive OCL expressions in OCL postconditions. To our knowledge, no commercial
tool creates test cases by explicitely deriving input partitions from conditions.

8 Conclusion and Future Work

In this paper, we used UML state machines and class diagrams to derive test
input partitions automatically. We pointed out the importance of partition test-
ing when dealing with numeric data, named application fields, and showed the
potential of our approach with a prototype. In the future, we will evaluate a
broader range of constraints in OCL postconditions, and we will use our method
in the domain of Geo-information systems. We will also examine the satisfied
coverage criteria of the generated test suite and, if necessary, define new ones.

Acknowledgements. This work was supported by grants from the DFG (Ger-
man Research Foundation, research training group METRIK).

References

1.
2.

3.

10.
11.

12.

13.

14.
15.

16.

17.

18.
19.

20.
21.
22.
23.
24.

25.
26.

B. Beizer. Software Testing Techniques. John Wiley & Sons, Inc., 1990.

R. V. Binder. Testing object-oriented systems: models, patterns, and tools. Addison-
Wesley Longman Publishing Co., Inc., 1999.

C. Bourhfir, R. Dssouli, E. Aboulhamid, and N. Rico. Automatic executable test
case generation for extended finite state machine protocols. In IWTCS’97, pages
75-90, 1997.

K. T. Cheng and A. S. Krishnakumar. Automatic functional test generation using
the extended finite state machine model. In DAC’93, pages 86-91. ACM Press.
Z. R. Dai, P. H. Deussen, M. Busch, L. P. Lacmene, T. Ngwangwen, J. Herrmann,
and M. Schmidt. Automatic Test Data Generation for TTCN-3 using CTE. In
ICSSEA, 2005.

Object Management Group. Object Constraint Language (OCL), version 2.0, 2005.
Object Management Group. Unified Modeling Language (UML), version 2.1, 2007.
A. Hamie, F. Civello, J. Howse, S. J. H. Kent, and R. Mitchell. Reflections on the
object constraint language. In UML 1998, Mulhouse, France, pages 162-172, 1999.
R. Hierons, M. Harman, C. Fox, L. Ouarbya, and M. Daoudi. Conditioned slicing
supports partition testing. In Software Testing, Verification and Reliability, 2002.
Reactive Systems Inc. Reactis. http://www.reactive-systems.com.

S. Kansomkeat and W. Rivepiboon. Automated-generating test case using UML
statechart diagrams. In SAICSIT ’03, pages 296-300, 2003.

N. Kosmatov, B. Legeard, F. Peureux, and M. Utting. Boundary coverage criteria
for test generation from formal models. In ISSRFE 04, pages 139-150. IEEE, 2004.
B. Legeard, F. Peureux, and M. Utting. Automated Boundary Testing from Z and
B. In FME, pages 21-40, 2002.

Leirios. LTG/UML. http://www.leirios.com.

B. Liskov. Keynote address - data abstraction and hierarchy. SIGPLAN, pages
17-34, 1988.

J. Offutt and A. Abdurazik. Generating tests from UML specifications. In UML’99,
pages 416429, 1999.

M. Richters and M. Gogolla. On formalizing the UML object constraint language
OCL. In ER, pages 449-464, 1998.

S. WeiBleder. ParTeG (Partition Test Generator). http://parteg.sourceforge.net.
P. Samuel and R. Mall. Boundary Value Testing based on UML Models. In ATS 05,
pages 94-99. IEEE Computer Society, 2005.

D. Sokenou. Generating Test Sequences from UML Sequence Diagrams and State
Diagrams. In INFORMATIK 2006, pages 236240, 2006.

Telcordia Technologies. AETG. http://aetgweb.argreenhouse.com.

Telelogic. Rhapsody Automated Test Generation. http://www.telelogic.com.

Y. Le Traon. Design by contract to improve software vigilance. IEEE Trans. Softw.
Eng., 32(8):571-586, 2006.

M. Utting and B. Legeard. Practical Model-Based Testing: A Tools Approach.
Morgan Kaufmann Publishers Inc., 2006.

VerifySoft Technology. Conformiq Test Generator. http://www.verifysoft.com/.
P. Ziemann and M. Gogolla. Validating OCL specifications with the USE tool —
an example based on the BART case study. In FMICS’2003, 2003.

