
Improving Test Coverage for UML State
Machines Using Transition Instrumentation

Mario Friske and Bernd-Holger Schlingloff

Fraunhofer FIRST, Kekuléstraße 7, 12489 Berlin, Germany
{mario.friske|holger.schlingloff}@first.fraunhofer.de

Abstract. We discuss the problem of generating test suites from UML
state machines and present a method to extend the capabilities of exist-
ing automated test case generators. Current tools provide only a limited
coverage for different testing objectives. We argue that a better coverage
can be achieved by instrumenting transitions, and performing an appro-
priate pre- and postprocessing. We describe the necessary enhancements
of the UML model and demonstrate our method on a simple example. We
further report on an industrial case study where we successfully applied
our method for generating a validation test suite for a safety-relevant
communication protocol.

1 Introduction

Testing is one of the most time-consuming tasks in the development of complex
reactive systems. Thus, it is highly desirable to obtain as much tool support as
possible. In code-based testing, the tester derives test sequences from the ac-
tual program code of the implementation. Code-based testing has some major
drawbacks: First, mere code-based testing cannot ensure that the observed be-
haviour is equivalent to the intended behaviour, second, testing can only start
when an actual implementation is available, which is usually rather late in the
development process, and third, whenever the implementation is modified, the
test suite has to be adapted anew. In contrast, specification-based testing focuses
on required properties rather than on a particular implementation. The tester
regards the implementation as a black box with hidden content. The develop-
ment of specification-based tests can begin as soon as there is a requirements
document (i. e., even before writing the first line of code).

The effectiveness of automated specification-based test case derivation meth-
ods largely depends on the specification formalism, which is used to denote
system properties. Model-based testing assumes that system properties are rep-
resented in a formal or semiformal modelling language. Often, state-based for-
malisms such as finite state machines [1], Statecharts [2], UML state machines
[3] or Stateflow models [4] are used. These formalisms are easy to use and have
a well-understood semantics. Moreover, in a model-based development process
diagrams can be used to derive an implementation by stepwise refinement. In
such a context, the system model should represent the specification (i. e., focus on



the functional requirements only). The implementation model is a refinement of
the system model and takes implementation aspects such as data representation,
efficiency, and scheduling into account.

For several modelling formalisms there exist code and test generation tools.
Whereas for the generation of production code a detailed implementation model
is necessary, test cases can already be generated from the system model. Various
algorithms can be used for the construction of test cases. For example, one strat-
egy is to use a breadth-first or depth-first search to generate all paths through
the state graph up to a certain length. More elaborated strategies try to sat-
isfy coverage criteria such as All Transitions [5] or Modified Condition / Decision
Coverage (MCDC) [6] on the model. Even more advanced techniques use tem-
poral logic model checking and fault injection to generate error traces, which
can then be used as test sequences. A main topic in all of these approaches is to
construct test suites which are both meaningful and manageable (i. e., provide a
sufficient coverage and can be generated, executed and evaluated in reasonable
time).

In the literature, many methods for generating test cases from state-based
specifications have been proposed. Among them are methods based on FSM (e. g.
[7, 8]), extended FSM (e. g. [9, 10]) or various variations of Statecharts (e. g. [11,
12]). For practical application, there are a few commercial tools (Rhapsody/ATG
[13], Conformiq [14], and Reactis [15]) and a number of experimental research
tools (Agedis [16], Teager [17], TGV [18], TORX [19], AGATHA [20], and others)
available. While research prototypes cover a wide range of coverage criteria,
commercial tools only support a very limited selection of coverage criteria.

In this paper, we present two methods for improving the test coverage of test
case generators, Transparent Transition Instrumentation and Extended Transi-
tion Instrumentation. We achieve a better coverage than the originally supported
criterion MCDC by instrumenting transitions, and performing an appropriate
pre- and postprocessing. Transition Instrumentation allows us to realize addi-
tional transition-based coverage criteria (e. g., All n-Transition Sequences [5])
without modifying the generator. We describe the necessary enhancements of
the model and demonstrate our method on a simple example. We further re-
port on an industrial case study where we successfully applied our method for
generating a validation test suite for a safety-relevant communication protocol.

This paper is structured as follows: In the next section, we discuss capabil-
ities and limitations of currently available test case generators for UML state
machines. In Sect. 3, we present the two methods Transparent Transition Instru-
mentation and Extended Transition Instrumentation. Section 4 describes the
industrial application of these methods. Finally, in Sect. 5 we draw some conclu-
sions and give an outlook on future research work.

2 Test Generation from UML State Machines

We use the sample state machine shown in Fig. 1 to discuss abilities and limi-
tations of current commercial test case generators for deterministic UML state



Control

Motor

Button

PositionSensor

OneAxis

Idle

bp_release

SystemReaction
p_max/GEN(m_stop);

p_min/GEN(m_stop);

bp_release/GEN(m_stop);

[else]/GEN(m_back);
bp_back

[IS_IN(maximum)]

[else]/GEN(m_forward);bp_forward
[IS_IN(minimum)]

Control

bp_release
p_max/GEN(m_stop);

p_min/GEN(m_stop);

bp_release/GEN(m_stop);

[else]/GEN(m_back);
bp_back

[IS_IN(maximum)]

[else]/GEN(m_forward);bp_forward
[IS_IN(minimum)]

forward

m_limit/itsEnv->GEN(env_limit);

stop

m_forward/itsEnv->GEN(env_forward);

m_stop/itsEnv->GEN(env_stop);

back

m_back/itsEnv->GEN(env_back);

m_stop/itsEnv->GEN(env_stop);

m_limit/itsEnv->GEN(env_limit);

Motor

m_limit/itsEnv->GEN(env_limit);

m_forward/itsEnv->GEN(env_forward);

m_stop/itsEnv->GEN(env_stop); m_back/itsEnv->GEN(env_back);

m_stop/itsEnv->GEN(env_stop);

m_limit/itsEnv->GEN(env_limit);

forward backcenter

b_forward/GEN(bp_forward);

b_center/GEN(bp_release);

b_center/GEN(bp_release);

b_back/GEN(bp_back);

Button b_forward/GEN(bp_forward);

b_center/GEN(bp_release);

b_center/GEN(bp_release);

b_back/GEN(bp_back);

maximumminimum normal
pos_min/GEN(p_min);

pos_normal

pos_normal

pos_max/GEN(p_max);

PositionSensor
pos_min/GEN(p_min);

pos_normal

pos_normal

pos_max/GEN(p_max);

bp_release
p_max/GEN(m_stop);

p_min/GEN(m_stop);

bp_release/GEN(m_stop);

[else]/GEN(m_back);
bp_back

[IS_IN(maximum)]

[else]/GEN(m_forward);bp_forward
[IS_IN(minimum)]

m_limit/itsEnv->GEN(env_limit);

m_forward/itsEnv->GEN(env_forward);

m_stop/itsEnv->GEN(env_stop); m_back/itsEnv->GEN(env_back);

m_stop/itsEnv->GEN(env_stop);

m_limit/itsEnv->GEN(env_limit);

b_forward/GEN(bp_forward);

b_center/GEN(bp_release);

b_center/GEN(bp_release);

b_back/GEN(bp_back);

pos_min/GEN(p_min);

pos_normal

pos_normal

pos_max/GEN(p_max);

StatechartOfSeatControl

Page 1 of 1

Fig. 1. State machine of simplified seat control (one axis)

machines. The state machine is a realization of one axis of the seat control
specified in [21]. It allows moving a seat forward or backward by pressing a
three-positions-button. When the button is pressed, the seat should move in the
corresponding direction. The seat should stop moving when it reaches the final
position. The seat should not move further in this direction before it has moved
back into the opposite direction.

We manually created the model in a systematic approach following the mod-
elling guidelines described in [22]. In contrast to the original guidelines, which
suggest creating separate classes with their own Statechart for the control and
for each sensor and actuator, we created just one class and one state machine
with an orthogonal state comprising concurrent regions. As a modelling tool,
we used Rhapsody in C++ [23], which utilizes C++ statements and macros
as action language in UML state machines. For each sensor and each actuator,
we modelled possible transitions between valid equivalence classes of input and
output in a state machine. An additional state machine models the reactive be-



forward none

env_forward

env_stop
backward

env_stop

env_back

max_limit

env_limit/itsSC->GEN(pos_max);
env_forward/itsSC->GEN(pos_normal);

min_limit

env_limit/itsSC->GEN(pos_min);

env_back/itsSC->GEN(pos_normal);

StatechartOfEnvironment

Page 1 of 1

Fig. 2. Environment model of seat control

TestSetup

itsSC:SeatControl1 itsEnv:Environment1
«requiredInterface»

«providedInterface»

TestSetup

Page 1 of 1

Fig. 3. Test setup including system model and environment model

haviour of the controller. The parallel composition of these four state machines
(see Fig. 1) models the overall behaviour of the seat control.

An environment model, which describes how the environment behaves if the
system is integrated into it, complements the system model. The environment
model covers only physical feedback but does not include behaviour of the user.
The state machine of the environment model displayed in Fig. 2 defines possi-
ble transitions between equivalence classes of seat movement (i. e., the feedback
between motor movement and resulting positions detected by the position sen-
sor). Whenever the motor is switched on or off, an indicating event is sent from
the seat control to the environment model. There it causes a transition between
states indicating the current position of the seat. Transitions in the environment
model define valid changes of positions. For example, only when the seat moves
backward it will reach its maximum position.

As displayed in Fig. 3, the test setup consists of one instance itsSC of the
class SeatControl which communicates with an instance itsEnv of the class
Environment. The state machines displayed in Fig. 1 and Fig. 2 define the be-
haviour of the classes SeatControl and Environment, respectively. Stereotyped
dependencies specify provided interfaces (inputs) and required interfaces (out-
puts) for test case generation.

We used Rhapsody’s event generation mechanism [23] to realize the commu-
nication between these concurrent state machines. For example, the expression
m_forward/itsEnv->GEN(env_forward) in the upper left corner of Fig. 1 sig-
nifies that the corresponding transition fires when the trigger event m_forward



occurs and as a result, an event env_forward is generated and sent to the en-
vironment model itsEnv. Using such a combination of system and environment
model allows modelling the interaction resulting from feedback between actua-
tors and sensors.

For the following experiment, we use the commercially available test case
generator ATG [13] to generate test cases from the combined model. The gener-
ator supports the coverage criterion MCDC [6] on the code generated from the
state machine. MCDC means that every point of entry and exit in the program
has been reached at least once, every condition in a decision in the program
has taken on each possible outcome at least once, and each condition has been
shown to affect that decision outcome independently [24]. This includes the cov-
erage criterion All Transitions [5] which in turn includes the coverage criteria
All States [5] and All Events [5]. MCDC is the generally acknowledged coverage
criterion for white box testing of safety critical systems in avionics, as required
by certain standards such as DO178B [24]. ATG does not explicitly handle the
state machine’s data space.

We convert the resulting test suite into simple sequences of events observable
at the interfaces of the black box, which is the system under test. Then we free
this test suite from duplicates and inclusions. Figure 4 shows the resulting test
suite. It consists of six test cases which specify sequences of input events to be
generated and output events to be observed. They are shown in six columns and
should be read top-down.

b_back

m_back

m_limit

m_stop

b_center

b_forward

m_forward

b_forward

m_forward

b_center

m_stop

b_forward

m_forward

m_limit

m_stop

b_center

b_back

m_back

b_back

m_back

b_center

m_stop

b_forward

m_forward

m_limit

m_stop

b_center

b_forward

b_back

m_back

m_limit

m_stop

b_center

b_back

Fig. 4. Test cases generated from Fig. 1 according to coverage criterion MCDC

Although the test suite shown in Fig. 4 satisfies the coverage criteria MCDC,
All States, All Events and All Transitions in the specification, it is not sufficient
for black box testing. In particular, the normal behaviour of the system is only
tested in very short sequences. Many typical testing objectives for black box test-
ing such as detecting missing or invalid states are not covered by this approach.
For example, the test suite would not detect an erroneous implementation of
the upper right transition with trigger event m_stop in Fig. 1 that leads to a
different state than specified. The test suite does not contain a test case that
shows the feasibility of moving the seat back again after reaching it’s maximum
position and subsequently moving it forward. Hence executing this test suite
and observing input-output-conformance is not sufficient for ensuring that the
transition reaches its target state.



Other conformance criteria and test case generation algorithms have been
proposed in the literature. Amongst these are the transition tour method [25],
the W-method [7] and UIO-method [8]. These methods construct test sequences
to check the isomorphism or bisimilarity of finite IO-automata; that is, for each
state, possible input and corresponding output of one automaton there must
be an appropriate state in the other automaton which under the same input
yields the same output and goes to an appropriate successor state. For black box
testing these methods are only partially adequate. Firstly, they assume that both
specification and implementation are given as finite automata. In our case, the
specification is given as a UML state machine which may contain local variables
and parameterized events, and the implementation is a black box. Secondly, these
methods aim at the construction of test sequences of minimal length; during
test execution, the implementation is reset after each sequence. In our case,
reset is a costly operation which requires manual intervention and should be
avoided. Thirdly, the goal of these methods is to construct test suites which
are “complete” for some conformance criterion, such that the testing process
must stop when all test cases are executed. In our case, we want to be able to
adjust the coverage criterion such that the implementation can be exercised for
a certain amount of time with well-defined test coverage.

In summary, for black box test generation from UML state machines the
coverage which can be achieved by current commercial test case generators or
other available tools is not sufficient. Hence, we are looking for ways to achieve
a better coverage. Two options are apparent: One is to build a homemade test
case generator. Another one is to modify a commercial test case generator.

Unfortunately, these two approaches are normally not applicable. On the
one hand, it takes too much effort to build a test case generator. On the other
hand, source code of commercial generators and extension APIs are mostly not
available. Another aspect is that certification requires applying tools which are
proven-in-use. Certification normally prevents engineers from using homemade
or academic prototypes and forbids modifications of established test case gen-
erators. Hence, we have been looking for an alternative option for improving
test coverage of commercial test generators. As a result, we have developed two
methods that we present in the next section.

3 Improving Test Coverage

As discussed in the previous section, the coverage that can be achieved using
currently available commercial test case generators is not sufficient for black
box testing. Therefore, we developed an alternative approach that offers a third
option. First, we present the overall approach and then we present two specific
methods relying on this approach.

3.1 Extending Coverage Functions of Test Case Generators

Applying a coverage criterion to a model results in a set of test goals. A test
generator generates a corresponding test suite by generating a test case for each



test goal. Test case generation might fail for some of these goals, for example
resulting from unreachable code.

The basic idea of our approach is as follows: As depicted in Fig. 5, first, we
enhance the state machine using a preprocessor by inserting additional elements
to the model. The additional elements result in additional test goals for a test
case generator leading to an enhanced coverage on the model. Then we generate
test cases with an available test case generator, and finally we process the result-
ing test cases using a postprocessor. This allows us to generate test suites that
satisfy more complex coverage criteria than the test case generator originally
provides.

Fig. 5. Extending capabilities of test case generators through pre- and postprocessing

A test case generator provides a generator coverage function on a model.
We augmented the input model by using an enhancement function. Then we
generated test cases from the enhanced model. The test coverage of the resulting
model is the composition of both functions, the extended coverage function.

In order to apply this general approach to our state-machine-based example
shown in Fig. 1, we need to find a reasonable enhancement function. The gen-
erator coverage function of ATG [13] is MCDC on the generated code. MCDC
includes coverage of all states, all transitions and all events in the model. Hence
augmenting the state machine by including additional states, transitions, events
or conditions would possibly result in larger test suites. Using additional states
and transitions has the drawback of resulting in larger models while not directly
leading to a larger coverage. Therefore, we did pursue the following two options
for enhancing the state machine:

1. Additional variables and conditions in action code, and
2. additional events.

The first option can be used to implement counters. The main advantage
of this option is transparency (i. e., no structural modification of the model
is necessary and there are no extra events in the generated output). This is
similar to the idea of User Defined Test Goals in Reactis [15], which are boolean
expressions augmenting a test model.

The second option can be used to write additional information into event
traces in test cases for further processing. Such information can be for instance
information on the current allocation of global variables. It can also be used to
pass other meta information (e. g., information about traversed paths) into test
cases.

Based on these results we developed two methods for achieving extended
coverage criteria: (1) Transparent Transition Instrumentation, resulting in test



cases, which contain longer sequences of events and comply with a given cover-
age criteria without changing the set of used events, and (2) Extended Transition
Instrumentation, including additional events providing information for postpro-
cessing. In the following subsections, we present these two methods in detail.

3.2 Transparent Transition Instrumentation

The test case generator generates test suites satisfying the coverage criterion
MCDC. This means that for each condition in the action code two test cases
are generated: in one the condition evaluates to true and in the other to false.
Adding a C++-Statement to the action code of a transition that compares an
additional variable with a given value results in two extra test goals for the test
case generator. We can exploit this fact to implement a counter mechanism that
allows sets of extra test goals resulting in generation of a desired sequence of
transitions.

For a desired sequence of transitions, we use a counter variable and compare
this variable with given values within condition statements and conditionally
increment the variable. In other words, we add C++-Statements in the form
if(counter==n){counter++;} to the action code of each transition in the se-
quence, where n is set according to the position of the transition within the
sequence. These additional statements let a desired sequence of transitions be-
come a goal for the test case generator. The mechanism can be exploited to force
the test case generator to generate test cases that cover designated sequences
of transitions and consequently to generate test suites that satisfy other test
coverage criteria than MCDC.

Being able to generate specific sequences of transitions allows realizing all
test case generation strategies relying on sequences of transitions. Sequences of
transitions can be calculated based on the length of sequences as in the gen-
eration strategy All n-Transition Sequences [5], characterization sets as in the
W-method [7], unique input/output sequences as in the UIO-method [8], or other
criteria.

Most of these strategies based on sequences of transitions originally have
been proposed for FSMs. Specific problems arise when applying these strate-
gies to UML state machines which can be hierarchical and parallel. A strategy
can be applied to either the entire state machine model with interleaved firing
of transitions from all regions or to a single region. Calculation of transition
sequences for complex hierarchical and parallel state machines is a non-trivial
task and usually requires simulation of the state machine. Executing a transition
sequence in a single region requires execution of the overall state machine and
usually requires firing of several transitions in all regions.

Applying a transition-sequence-based strategy to one or more regions appears
very eligible from the tester’s perspective. Testers usually give more importance
to certain aspects than to other aspects. Often a state machine has regions
providing synchronization of other regions by communicating with them. For
the previously presented state machine realizing a one-axis seat control, such
central part is the region Control which processes inputs provided by the two



sensors (regions Button and PositionSensor) and controls the actuator (region
Motor). The task of determining a transition sequence resulting from the overall
state machine that contains the specific transition sequence in a region will be
delegated to the test case generator.

In the following we explain Transition Instrumentation by applying the strat-
egy All n-Transition Sequences [5] with n = 2 to the region Control. All 2-
Transition Sequences requires that every specified transition sequence of length
two has to be exercised at least once. The resulting test suite will achieve this
coverage criterion on the region Control in addition to the previously achieved
coverage criterion MCDC on the model.

Therefore, we create a more abstract alternative representation of this region
with all transitions labelled using letters as shown in Fig. 6. Then we determine
all sequences of length two from this representation: ad, ae, af, ag, ah, bd, be,
bf, bg, bh, cd, ce, cf, cg, ch, da, db, dc, ea, eb, ec, fd, fe, ff, fg, fh, gd, ge,
gf, gg, gh, hd, he, hf, hg, hh.

Idle

f

h

g

SystemReactiona
b
c

e
d

StatechartOfTSG

Page 1 of 1

Fig. 6. Abstraction of seat control

Now we enhance the model with one counter variable of type integer for
each sequence simply naming the variable after the sequence (e. g., ad). Then
we instrument the transitions with extra code resulting in additional test goals
required for achieving MCDC. The code is added using the following algorithm:

for each sequence of transitions
for each transition within the sequence

add if(counter==n){counter++;}

In the pseudo code counter stands for the integer counting variable and
n for the number of transitions firing. For example applying this algorithm to
determine the instrumentation code for exercising the transition sequence ad
yields the following result: to the state machine presented in Fig. 1 we have to add
to transition a the additional statement if(ad==0){ad++;}, and to transition d
the statement if(ad==1){ad++;}.

In case that a transition has to fire twice or more, sequential order of addi-
tional statements is important, because it has to be ensured that the counter is
not incremented to the maximum by a single firing. For example for achieving
transition sequence hh the statement if(hh==1){hh++;} must appear before
if(hh==0){hh++;} within the action code added to transition h.



After all transitions have been instrumented, generating test cases with the
test case generator again will result in an extended test suite. If all transition
sequences required for achieving a strategy have been coded into the model,
then the resulting test suite will also fulfil the corresponding coverage criterion.
The extended test suite resulting from instrumenting the state machine in Fig. 1
according to All n-Transition Sequences with n = 2 is shown in Fig. 7.

As discussed at the end of Sect. 2, the previously generated test suite dis-
played in Fig. 4 cannot detect erroneous implementations of the upper right
transition with trigger event m_stop in Fig. 1. The extended set of test cases
shown in Fig. 7 can detect this error (e. g., by the test case in the lower left
corner).

b_forward

m_forward

m_limit

m_stop

b_center

b_forward

b_center

b_forward

b_back

m_back

m_limit

m_stop

b_center

b_forward

m_forward

b_center

m_stop

b_back

m_back

m_limit

m_stop

b_forward

m_forward

b_center

m_stop

b_back

m_back

m_limit

m_stop

b_back

m_back

b_center

m_stop

b_back

m_back

b_center

m_stop

b_forward

m_forward

b_center

m_stop

b_forward

m_forward

b_forward

m_forward

m_limit

m_stop

b_center

b_back

m_back

b_center

m_stop

b_forward

m_forward

m_limit

m_stop

b_back

m_back

m_limit

m_stop

b_center

b_forward

m_forward

m_limit

m_stop

b_center

b_forward

b_back

m_back

b_center

m_stop

b_forward

m_forward

m_limit

m_stop

b_center

b_forward

b_back

m_back

m_limit

m_stop

b_center

b_back

b_center

b_forward

m_forward

m_limit

m_stop

b_center

b_forward

b_forward

m_forward

m_limit

m_stop

b_center

b_forward

b_center

b_back

m_back

b_center

m_stop

b_forward

m_forward

b_back

m_back

b_center

m_stop

b_back

m_back

m_limit

m_stop

b_center

b_back

b_forward

m_forward

m_limit

m_stop

b_center

b_back

m_back

m_limit

m_stop

b_center

b_back

b_forward

m_forward

m_limit

m_stop

b_center

b_forward

b_center

b_back

m_back

m_limit

m_stop

b_center

b_back

b_back

m_back

m_limit

m_stop

b_center

b_back

b_center

b_back

b_back

m_back

m_limit

m_stop

b_center

b_back

b_center

b_forward

m_forward

b_center

m_stop

b_back

m_back

Fig. 7. Extended set of test cases generated from Fig. 1

3.3 Extended Transition Instrumentation

The previously explained method Transparent Transition Instrumentation al-
lows to generate a set of test cases achieving a given transition-sequence-based
coverage criterion. The test generator generates one test case for each goal. Thus,
the number of test cases contained in the test suite can get large while each test



case is quite short. In certain situations, it is required to minimize the actual
number of test cases while not reducing the coverage (i. e., to have a set of few,
but long test cases). One approach to achieve this goal is concatenation of test
cases. Another aspect is that depending on the model and test strategy, apply-
ing Transparent Transition Instrumentation for very long sequences might fail
because of limited resources such as CPU-time and memory.

For example, it is possible to include all sequences of transitions of length
two presented in the previous section in one test case. One possible solution
is the sequence adaeafdbdcecffgghdagfebeahfhebfhhgecgdcdbgdbhech. This
can be done by concatenating test cases individually generated for each sequence
of length two.

Usually concatenation of generated test cases is more complex than simply
appending the sequences displayed in Fig. 7. In a UML state machine, the current
configuration of the system is not just determined by the set of current states of
all sub-automata, but also by the configuration of all global variables. Hence, the
concatenation of fragments cannot be done by overlapping transitions only. Such
overlapping without regarding global variables might result in invalid traces. For
concatenating two test cases, we must ensure that at the concatenation point
the state machine has the same configuration in both test cases.

In order to take into account information about global variables during con-
catenation, we introduce a new event with one parameter corresponding to each
global variable. We generate this event on each transition that is a potential
concatenation point. If the state machine contains concurrent regions, then for
each concurrent region we add one more parameter to this event. Each of these
parameters represents the current state of one region as enumeration. We also
introduce another type of event to record information about subsequences of
events contained in this test case. The postprocessor reads both events and uses
this information during test case concatenation. After the concatenation is fin-
ished, the postprocessor removes all additional events.

The sample UML state machine that we introduced in Sect. 2 does not in-
clude global variables but concurrent regions. In order to generate one sequence
that covers All n-Transition Sequences with n = 2 for the region Control, first
we generate one valid sequence1, see above, that satisfies this criterion on the
abstraction shown in Fig. 6. Then we instrument the model with counters us-
ing Transparent Transition Instrumentation as discussed in the previous section.
Furthermore, we add the action code for generating additional events providing
information about the current state of all concurrent regions.

Then we generate test cases using the test case generator and subsequently
concatenate the test cases using our postprocessor. Therefore, we pass the pre-
viously generated string representing the valid target sequence as parameter to
the postprocessor. We realized the concatenation by recursively selecting a test
case that contains the next required transition sequence, checking if global con-

1 Here we do not consider the initial transition leading into state idle. Inclusion of
the initial transition would require a minimum of five test cases for achieving All
n-Transition Sequences with n = 2.



figurations of the state machines match, cutting out the corresponding sequence
of events, and pasting it to the tail of the concatenated test case. How to ensure
matching configurations will be discussed at the end of the next section.

4 Industrial Application

We used this approach within an industrial research project to generate test
cases for the slave device for an automation protocol. Two state machines, one
for the master device and one for the slave device, details of which are under
NDA, specified the protocol. First, we translated the slave’s Statechart-like spec-
ification with pseudo action code into an executable UML state machine with
C++ action code. Then, we analysed the protocol and built an additional ab-
straction of the state machine of the slave. The original Statechart consisted of 8
states and 15 transitions, comprising two cycles, each consisting of three states.
We could create an abstraction as depicted in Fig. 8. One cycle was the normal
operation cycle without occurrence of faults and the other cycle was the fault
handling cycle.

normal_operation

d

fault_handling c

a

b
e

StatechartOfDummy

Page 1 of 1

Fig. 8. Abstraction of automation protocol

For the automated generation of test cases we defined three coverage criteria:

CC1: MCDC of the Code generated from the state machine.
CC2: All sequences of length n from the abstraction of the state machine.
CC3: Concatenations of m sequences obtained by CC2 in random order.

Coverage criterion CC1 was directly supported by the test case generator.
We could achieve coverage criterion CC2 by applying our method Transition
Instrumentation. To this end, we calculated all possible sequences of length n =
3 from the abstraction in Fig. 8. We used these sequences to instrument the
transitions of the state machine, as described above. Then, we generated a test
suite satisfying CC2 from it.

For achieving coverage criterion CC3 we applied our second method Extended
Transition Instrumentation. To this end, we extended the instrumentation for
achieving CC2 by adding extra events both for marking transitions and for writ-
ing the state of all global variables. After the test cases were generated we used
our postprocessor to extract all fragments corresponding to the sequences of
length n = 3. In order to extract fragments the postprocessor evaluated all extra
events that have been added for marking sequences.



Then we calculated valid sequences of m transitions from the abstraction in
random order and tried to concatenate the fragments accordingly. Comparing
of global state machine configurations has shown that a simple concatenation
of sequences was not always possible because of conflicting configurations. We
could solve this problem by concatenation of sequences of length n = 3 with an
overlapping of two transitions.

5 Conclusions and Further Work

We presented a method to improve the coverage capabilities of specification-
based automated test generators. Whereas our considerations have been largely
driven by particular application needs, there is the potential of extending them
to a more abstract level.

We implemented a preprocessor which calculates sequences of transitions, de-
termines counter variables and calculates corresponding instrumentation state-
ments. Currently, we manually insert results of the calculations into the model.
Although this is a relatively easy task, a further enhancement would be automat-
ing these steps (i. e., export the model using XMI [26], conduct an automated
analysis of the model, calculate counter variables and instrumentation state-
ments, instrument the model, reimport the model).

A further extension would be the realization of other test enhancement al-
gorithms within our framework. We explained Transition Instrumentation using
UML state machines, but the underlying principle is not restricted to transitions
in state machines. The principle can be applied in all situations where a func-
tional dependency between generator coverage function, enhancement function,
and extended coverage function can be found.

A more fundamental question, which is tackled by our work, is the defini-
tion of appropriate numerical coverage criteria for specification-based testing.
Currently, there are no generally acknowledged criteria for accrediting such test
suites in safety-critical systems. By giving a possibility to experiment with dif-
ferent algorithms, our work can help in establishing such quantitative values for
different safety layers.

References

1. Gill, A.: Introduction to Theory of Finite-state Machines. McGraw-Hill Education
(1962)

2. Harel, D.: Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming 8(3) (June 1987) 231–274

3. Object Management Group: Unified Modeling Language: Superstructure, version
2.0 (formal/05-07-04) (2005)

4. The Mathworks: Stateflow. http://www.mathworks.com/products/stateflow/

5. Binder, R.V.: Testing Object-Oriented Systems: Models, Patterns, and Tools.
Object Technology Series. Addison Wesley (1999)



6. Hayhurst, K.J., Veerhusen, D.S., Chilenski, J.J., Rierson, L.K.: A practical tuto-
rial on modified condition/decision coverage. Technical Report NASA/TM-2001-
210876, NASA (2001)

7. Chow, T.: Testing software design modeled by finite-state machines. IEEE Trans-
actions on Software Engineering SE-4 (May 1978) 178–187

8. Sabnani, K., Dahbura, A.: A protocol test generation procedure. Computer Net-
works and ISDN Systems 15(4) (1988) 285–297

9. Wang, C.J., Liu, M.T.: Generating test cases for EFSM with given fault models.
In: INFOCOM. (1993) 774–781

10. Petrenko, A., Boroday, S., Groz, R.: Confirming configurations in EFSM testing.
IEEE Trans. Softw. Eng. 30(1) (2004) 29–42

11. Hong, H.S., Kim, Y.G., Cha, S.D., Bae, D.H., Ural, H.: A test sequence selection
method for statecharts. Software Testing, Verification and Reliability 10(4) (2000)
203–227

12. Gnesi, S., Latella, D., Massink, M.: Formal test-case generation for UML stat-
echarts. In: ICECCS ’04: Proceedings of the Ninth IEEE International Confer-
ence on Engineering Complex Computer Systems Navigating Complexity in the
e-Engineering Age (ICECCS’04), Washington, DC, USA, IEEE Computer Society
(2004) 75–84

13. I-Logix: Rhapsody Automatic Test Generator, Release 2.3, User Guide. (2004)
14. Conformiq Software Ltd.: Conformiq test generator. http://www.conformiq.com/
15. Reactive Systems Inc.: Reactis. http://www.reactive-systems.com/
16. Hartman, A.: Agedis final project report. Technical report, AGEDIS Consortium

(2004)
17. Santen, T., Seifert, D.: TEAGER - test automation for UML state machines. In

Biel, B., Book, M., Gruhn, V., eds.: Software Engineering. Volume 79 of LNI., GI
(2006) 73–84

18. Fernandez, J.C., Jard, C., Jéron, T., Viho, C.: Using on-the-fly verification tech-
niques for the generation of test suites. In: CAV ’96: Proceedings of the 8th
International Conference on Computer Aided Verification, London, UK, Springer
(1996) 348–359

19. Tretmans, J., Brinksma, E.: Côte de resyste – automated model based testing. In
Schweizer, M., ed.: Progress 2002 – 3rd Workshop on Embedded Systems, Utrecht,
The Netherlands, STW Technology Foundation (October 24 2002) 246–255

20. D. Lugato and C. Bigot and Y. Valot and J.P. Gallois and S. Gerard and F.
Terrier: Validation and automatic test generation on UML models : the AGATHA
approach. Journal of Software Technology Transfer (2004)

21. Houdek, F., Paech, B.: Das Türsteuergerät - eine Beispielspezifikation. IESE-
Report Nr. 002.02/D, Fraunhofer IESE (2002)

22. Denger, C., Kerkow, D., von Knethen, A., Medina Mora, M., Paech, B.: Richtlin-
ien - Von Use Cases zu Statecharts in 7 Schritten. IESE-Report Nr. 086.02/D,
Fraunhofer IESE (2002)

23. I-Logix: Rhapsody in C++, Version 6.0, User Guide. (2004)
24. RTCA: DO-178B, Software considerations in airborne systems and equipment

certification (1992)
25. Naito, S., Tsunoyama, M.: Fault detection for sequential machines by transition

tours. In: Proccedings of the 11th. IEEE Fault Tolerant Computing Symposium.
(1981) 238–243

26. Object Management Group: XML Metadata Interchange (XMI) Specification.
OMG, http://www.omg.com/ (2003)


