
1. INTRODUCTION 
 

Whenever malfunctioning of a system can 
cause extensive damage, the need for 
consistently and correctly specified systems 
exists. Therefore, relevant standards require 
methods and techniques to reduce the risk of 
hazardous system failures to an acceptable level 
of possible failure occurrence (IEC61508, 2003). 
For instance, to achieve a sufficient safety level, 
fault tolerance measures as e.g. hardware 
redundancy should be implemented.  

However, the mechanisms of fault tolerance 
are compensated, if the system design is 
systematically incorrect. One reason arises from 
specification errors as a result of e.g. ambiguities 
or inherent design contradictions. In order to 
decrease the likelihood of failure occurrence due 
to design errors, a system has to be specified and 
tested properly. Elaborated specification and 
verification techniques aim at reducing design 
errors and allow tool-based model checking 
(Schneider, 2004).  

But irrespectively of formal techniques, it is 
still necessary to specify and review a system 
specification on a top-level of system refinement 
by those persons, who are familiar with the 
required behavior of the system. Normally, the 
specification on top-level is based on natural 
language, which is understandable by different 
stakeholders. Therefore, a specification shall 
include modes of expression and descriptions 
which are understandable for the responsible 
personnel involved in the whole life cycle of the 
system. The common basis of communication 

between differently trained specialists seems to 
be natural language, although it is known, that it 
lacks unambiguity and completeness. However, 
that informal type of meaning representation 
represents the current state-of-the-art of 
requirements and systems specification.  

To narrow the gap between natural language 
and formal methods, we propose the 
specification language CCNet (Causal-Context 
Net). This language is based on meaning 
representation and provides a formal semantic 
and syntactic layer. It decomposes natural 
language sentences revealing the causal deep 
structure within a given context. The included 
causality semantic provides a framework for 
reasoning about causes and their effects within a 
given context. 

 
 

1.2 Related works 
 

Starting with Hume’s regularity theory, a 
huge number of proposals to model and reason 
about causality has been proposed in the past 
(Pearl, 2000). 

Decomposing natural language formally was 
tried in (Jackendoff, 1990) and (Helbig, 2000), 
but without explaining the semantics of 
causality.  

Most of the formal techniques applied to 
technical systems focus on state-event based 
modelling using temporal logic, whereas the 
meaning of causality of the state changes ist not 
taken into account. 
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In (Bitsch, 2007), safety patterns were given, 
which concentrate on temporal aspects. 
However, these patterns do not analyze the 
semantic structure of the safety design.  

Modelling causal dependencies regarding 
system failure analysis, to the best of our 
knowledge as a formal technique only WBA 
(Why-Because-Analysis) has been used (Ladkin, 
2001). WBA is based on Lewis’ counterfactual 
interpretation of causality considering the closest 
word assumption (Lewis, 1973). This method is 
not related to natural language meaning 
representation. 

Our approach aims at specifying causal 
structures within a system, which should be 
closed as possible to natural meaning 
representation, in order to reason about the 
behaviour of a system. Our approach is based on 
a modified type of the relatively new or rather 
newly discovered transference theory of 
causality due to its intuitive nearness to physical 
and technical systems (Dowe, 2000) (Kistler, 
2002). We assume, that - within a causal field 
(Mackie, 1980) - a technical system can be 
decomposed into atomic causal relations between 
states, whereas information is transferred 
between entities. 

 
 

2. SYNTAX UND SEMANTICS OF CCNet 
 

We define the signature and structure of 
CCNet and connect them with natural language 
meaning representation. We restrict the language 
CCNet to a subset of possible words which we 
call physical word. 

 
Definition 2.1 (Physical Worlds) The 

physical world P contains all worlds p out of 
possible worlds, in which the currently known 
physical laws hold. A physical world of discourse 
p’ is an element of P. □ 

 
 

2.1 SYNTAX OF CCNet 
 
Definition 2.2 (Possible Words and 

Sentences of CCNet) Let w œ ΣW an arbitrary 
sequence of characters out of the alphabet Σ={a, 
b, … z, 1, 0, 2, …9,-} and ΣW the set of all 
possible sequence of characters. w is termed a 
word out of ΣW.  
An arbitrary concatenation of words s’Ø s±_w’ 
with concatenation symbol ‘_’, a starting word 
wœΣW with s0Øw±_w’, w’œΣW, {s0, s, s’}œΣS is 

termed a sentence (italic written), ΣS the set of 
sentences.    □ 
 

We connect natural language and physical 
worlds p, resulting in a formal language and 
being a subset of the union set  ΣW»ΣS. But 
before, in order to define well-formed words and 
sentences, we define the entities and entity types. 

 
Definition 2.3 (Entity types, entities and 

atomic entities of CCNet)  
� Entity types [et] are sets containing entities. 
� Elements of the sets are termed entities 

|ent> and represent all facts or objects of a 
physical world, about which one can make 
statements.   □ 

 
The next two definitions give the signature 

and structure of CCNet. We define both a textual 
and graphical syntax for elements of the 
language. 

 
Definition 2.4  (Signature of CCNet)  
The signature of CCNet is a triple 

SCCNet=(D,R,F) with:  
� D is a non-empty set of entity types [et]œD.  
� R is a non empty set of binary relations 

RELœR: REL:‚et1, et2Ú; [et1], [et2]œD.  
� F is a non-empty set of functions 

*FUNC∈F: *FUNC:[et1]…[etn]ö[et]; 
[et],…, [etn]œD.   □ 

 
The structure of CCNet is given by the 

following definition: 
 
Definition 2.5 (Structure for CCNet) Let 

SCCNet=(D,R,F) be the signature of CCNet. 
Τhe SCCNet-structure over the signature SCCNet is a 
triple <ACCNet=((A[et])[et]œD, (*FUNCA)*FUNCœF, 
(RELA)RELœR)> with: 
� For each [et]œD there exits a non-empty set 

A[et] with elements |ent>œ[et]. 
� For each binary relation symbol RELA œ R 

there exists a relation RELA with 
RELAŒA[et1]×A[et2]ÕA[et]. 

� For each n-ary function symbol *FUNCAœF 
there exists a function *FUNC with 
*FUNC:A[et1]×…×A[etn]öA[et]. 

A[et], RELA, *FUNCA are written [et], REL and 
FUNC. Entity types and their subsets are 
enclosed by [ ].   □ 
 

The textual and graphical syntax of CCNet 
is based on the representation formalism of 
semantic networks (Helbig, 2001). In principle, 



 

 

the network contains node symbols for entities 
and directed arcs for relations and functions, 
which connect entities and in turn reveal new 
entities. 

 
Definition 2.6 (Syntax of CCNet)  
Let SCCNet=(D,R,F) be the signature of 

CCNet. 
� ‘;’ ‘,’ ‘(‘ ‘)’ ‘[‘ ‘]’ ‘=’ ‘?’ ‘!’ ‘<>’ ‘=>’ ‘=’ 

‘<=’ ‘<’ ‘>’ are symbols. 
� An entity (|ent>) is a formula and is 

graphically represented by a node symbol 
(filled circle). 

� (|?ent>) is an entity. 
� (|!ent>) is an entity. 
� (|ent>)=(<ent1|REL|ent2>), RELœR, is a 

formula and is graphically represented by 
an arrow between the related entities |ent1> 
and |ent2> with an open circle as a new 
node symbol for (|ent>). 

� (|ent>)=(|*FUNC(|ent1>,…, |entn>)>), 
*FUNCœF, is a formula and is graphically 
represented by a bundle of arrows directed 
to the co-domain |ent>. (*FUNC(.)) and 
(|*FUNC(.)>) is used synonymously. 

� A formula (|form>) is an entity and is 
recursively defined. If form1, form2 are 
formulae, then (|form>)=(|form1>); 
(|form2>); is a formula. Graphically a 
formula is enclosed by a dotted-bordered 
area with an entity symbol for (|form>). 

� A set of formulae is a system S. A graphical 
representation of a system S is named a 
semantic network.    □ 

 
If it is clear by context, we suppress the 

parentheses, e.g. (|ent>) is substituted by |ent>. 
The parentheses are used as usual. 

 
Definition 2.7 (Node label of CCNet) Let 

the signature and structure of CCNet be defined 
and |ent>œ[et].  

Node labels nl1,…, nln with values vl1,…, vln, 
written (|ent>[nl1@vl1,…,nln@vln]) with the 
symbol @ standing for the symbols 
{>,<,=>,=<,<>,=} can be assigned to entities.
   □ 
 

In order to illustrate both the textual and 
graphical syntax, in (Figure 1) we give some 
examples. |a> represents any entity, graphically 
symbolized by a circle. The relation <a|R|b> 
connects |a> and |b> yielding a new entity, 
graphically symbolized by an arrow with an open 
circle. The function *F maps the two entities |a> 

and |b> to the entity |c>, which is graphically 
symbolized by two connected arrows.  
These elements may be combined in a more 
complex specification: |d> is related to |a> by the 
relation Q. |a> and |b> are mapped to |c> by the 
function *F, which is related to |e> by the 
relation R. |x> is a formula comprising the 
enclosed elements.  
 
 a 

b a 
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*F 

|a>;  Ø 

<a|R|b>; Ø 

*F(|a>,|b>); Ø 
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b 
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d 

Q 
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Fig.1. Examples of both textual and graphical 
syntax of CCNet. 

 
 

2.2 SEMANTICS OF CCNET 
 
Beside their existence and non-emptiness of 

the sets of entity types, so far nothing is said 
about the carrier sets themselves. On the basis of 
the ontology of natural language provided in 
(Helbig, 2001), we give a definition of entity 
types by means of its relational or functional use.  

Before we start defining entity types, we 
define the symbols ‘!’, ‘;’ and ‘?’ semantically. 
 

Definition 2.8  (Substitute ‘!’, 
Unspecified ‘?’)  

Let wœΣW be a word. 
� An entity |!w> is a substitute for an entity 

|x> termed by |!w>=|x>.  
� An entity |?w> is a not further specified 

entity of a given entity type.  □ 
 
 
Definition 2.9  (Observable Formula) 

� If formulae |form1> and |form2> hold, then 
|form1>; |form2> conjunctively hold. 

� A formula holds, if it is observable in the 
physical world of discourse p’.   □ 

 
In the following, the ontology of CCNet is 

defined. The ontology underlies the defined 



 

 

structure: Objects and facts of the physical world 
are mapped to CCNet entities.  

 
Definition 2.10  (Object [o]) The carrier 

set [o] contains all entities of a stable physical 
or mental characteristic within space-time, 
which might be linked to each other. [o] is the 
union set of [op]=[opm]»[opnm]»[opca] and 
[om]=[omq]»[omab] with disjoint sets: 
� [opm] not-animated physical objects with a 

measurable extension in space-time and 
mass density. 

� [opnm] not-animated physical objects with a 
measurable extension in space-time without 
a mass density with {|time>, 
|space>}œ[opnc]. 

� [opa] animated physical object with a 
measurable extension in space-time and 
mass density. 

� [omab] abstract object standing for an 
arrangement or constellation of objects. 

� [omq] abstract object, which are a 
quantitative or qualitative attribute or 
property, associable to an physical object. 

Elements of [o] are specified by a word of 
natural language and are associated to nouns.
   □ 

 
The next two definitions give the central 

entities of situations, called processes, and 
situation carrier. 
 

Definition 2.11 (Process [pr]) The carrier 
set process [pr] contains all entities, which 
reflect a constellation of objects or their 
behavior within space-time within a physical 
world. [pr] is the union set of the disjoint entity 
types event [ev] and state [st] with 
»iœô(|evi>; sti>)œ[pr], |st i>œ[st], |evi>œ[ev] 

(iœô): 
� [st]: state of constellation of objects or 

being of object within space time without 
timely change (state) and with 
»iœô|sti>œ[st], |sti>œ[st]. 

� [ev]: change of constellation of objects or 
change of object within space (event) and 
with »iœô|evi>œ[ev], |ev>œ[ev].  

A process is also called a situation.  □ 
 

Definition 2.12 (Situation Carrier [sic]) 
The carrier set [sic] contains all entities, which 
determine (‘carry’) the constellation of an object 
in respect to other objects within space-time.  

Elements of [sic] are specified by a word of 
natural language and are associated to verbs. 
   □ 
 

If a process has no resulting state, it is a 
state. If the resulting state is specified by a 
change relation, a process is an event. Therefore, 
it is possible to integrate time without the 
distinction between telic and atelic verb phrases, 
i.e. situations are always atelic as long as the 
resulting states are not specified.  

 
Definition 2.13 (Situation specifier [ss]) 
The carrier set [ss] contains all entities, 

which determines the context of an object or 
process. [ss] is the union of [sslc], [sstmp] and 
[sspr], where 
� [sslc]=[sslcl]»[sslcp] is a local 

specification of a process or an object. 
[sslcp] specifies a point location and [sslcd] 
a direction. 

� [sstp]=[sstpp]»[sstpd] is a time 
specification of a process or an object. 
[sstpp] specifies a time point and [sstpd] a 
time duration. 

� [sspr]={|probability>, |rate>} specifies the 
occurrence rate or probability of a process.
   □ 

 
We give some examples to illustrate the use of 
the situation specifier. For that, we use the 
functions *dist(.,.) for the generation of a local 
distance, *above(.) for indicating, that something 
is above something, and the relation LOC for 
locating a process or an object at a locality. The 
relations EXP describes an experiencing relation, 
*timedist (.,.) the time distance function and 
TIME the time relation. CHNL indicates a 
change of a node label. 
 
Example 2.1 (Location Specifier) 
� ‘The distance between a and b is 20 m’: 
*dist(|a>, |b>)=20_m; 
� ‘20 m above a’: 
<b|LOC|*above(|a>)>; *dist(|a>, 
|b>)=20_m>;  
 
Example 2.2  (Time Specifier) 
�  ‘a starts after 20 time ticks’: 
|!x>=<<a[valid=no]|EXP|start>|CHNL|a[valid
=yes]>; 
 *timedist(|!x>, |?b>)=20_timeticks; 
<!x|TIME|*before(|?b>); 

 



 

 

In Example 2.2, the use of the unspecified 
entity |?b> is necessary, in order to define the 
time distance between the starting of a fictive 
process and the occurrence of |a> (see Figure 2). 

 *before(|a>) 

|a> 

|?b> 

20_timetick 

time  
Fig.2. Examples of both textual and graphical 
syntax of CCNet. 

 
The specification language CCNet avoids 

imprecise use of local or temporal phrases not 
allowing adverbial phrases like ‘here’, ‘ there’ or 
‘now’, ‘ yesterday’.  

An attribute or a situation specifier may 
have a qualitative or quantitative value. The 
following entity types consider that aspect.  
 

Definition 2.14  (Quality and Quantities) 
The carrier set [q] is the union of [qlv], [qn] 
where 
� [qlv] is a qualitative value of an attribute. 
� [qn] is quantity value of an attribute. 
The entity type [qn] is substituted by the types 
[qnv] and [qnu], the value and the unit of the 
quantity.   □ 
 
 

2.3 NODE LABEL SEMANTICS  
 

Adopted from (Helbig, 2001), the language 
of CCNet assigns node labels to entities. Node 
labels are required for further specification of 
entities on a meta-level. The following definition 
gives their semantic and uses the Definition 2.7. 

 
Definition 2.15 (Node Labels)  
Let the signature and structure of CCNet be 

given. The semantics of node labels are as 
follows: 
� The node label ‘valid’ can be assigned to 

entities of entity type [o], [sic], [ss], and 
[pr] with: 
o The default label ‘valid=yes’ assigns an 

entity an observable existence in a 
physical world. 

o The label ‘valid=no’ assigns an entity 
an observable non-existence in a 
physical world. 

o The label ‘valid=hypo yes’ assigns an 
entity a hypothetical observable 
existence in a physical world. 

o The label ‘valid=hypo no’ assigns an 
entity a hypothetical observable non-
existence in a physical world. 

� The node label quant can be assigned to 
entities of entity type [o]\[omq] with (m, 
n œ ô0). 
o default ‘quant=all’ (all elements of 

referenced set of entities). 
o ‘quant=n’ (exactly n elements of 

referenced set of entities). 
o  ‘quant=(>=m | n)’ (more than/ equal m 

out of n entities referenced set of 
entities). 

o and further. 
� The node label time can be assigned to 

entities of entity type [pr] with (n œ ô0): 
o ‘time=n’ (n times of occurrence, default 

n=1) 
o ‘time<>n’ (not n times of occurrence). 
o and further. 

� The node label ref can be assigned to 
entities to entities of entity type [o]\[omq], 
[ss], and [pr] with: 
o ref œ ΣW and ‘ref=ref’ a unique 

reference to elements of entities within 
the physical word of discourse. 

If the node label ref is not assigned, the 
entity references to all possible entities of 
the physical world of discourse.  

Node labels of different types can be 
conjunctively assigned to an entity.    □ 
 

We conclude the definitions of the syntax 
and semantics of CCNet with an example, where 
node labels are used.  

 
 

Example 2.3 (Node label time)  
‘a occurs less than n times in time intervals of 20 ms’ 
|!x>=<<a[valid=no]|EXP|occur> 
|CHNL|a[valid=yes]>; 
|!x’>=<<a[valid=yes]|EXP|occur> 
|CHNL|a[valid=no]>; 
*timedist(|!x>, |!x’>)=20_ ms; 
<!x|TIME|*before(|!x’>)>[time<n]; 
 



 

 

 

a[valid=no] 
EXP 

occur 

CHNL 
a[valid=yes] 

a[valid=yes] 
EXP 

occur 

CHNL 
a[valid=no] 

*timedist 20_ms 

*before 

TIME 

!x 

!x’ 

[time<n] 

 
Fig.3. Example for the use of node labels. 

 
 
 

3 EXAMPLE – A REDUNDANT 
SENSOR SYSTEM FOR SWITCHING ON A 

PROTECTION  
 
In order to show the expressiveness of 

CCNet, we give a fictive example of a control 
unit of a fuel tank filled with gas. If the internal 
gas pressure exceeds a critical level, a protection 
mechanism shall reduce the gas pressure. To 
achieve an acceptable low risk level, we assume, 
that two sensors, which measure the gas 
pressure, are redundantly connected (2oo2 
system). The redundantly connected sensors are 
part of the control unit. Furthermore, a micro 
controller shall receive the output of both 
sensors. In emergency case, the micro controller 
initiates a process for reducing the gas pressure 
(e.g. by opening a gas valve).   

In the following example, the underlined 
words reflect the natural language representation. 
The relations and functions become clear by 
comparing the natural language sentences and 
the graphical representation. Beside the relations 
defined above, PART describes a part relation, 
CTXT a context relation, TR a transmit relation 
and CST a causing relation. The symbols ‘->’ 
and ‘~’ stand for ‘containing information’ and 
‘ in occurrence of’, respectively. The functions 
are self-explanatory.  

The example is reduced step by step: 
 
� state(1):  
<*and(sensor[ref=sensor#1], 
sensor[ref=sensor#2])|PART|control_unit>; 

 
sensor[ref=sensor#1] 

sensor[ref=sensor#2] 

PART 

*and 

control_unit 

 
The sensor referenced by sensor#1 and the 
sensor referenced by sensor#2 are part of 
the control unit. 
 
� process(2): 
<gas.pressure|EXP|increase>; 
<<gas.pressure|CST|press> 
|TR|energy[ref=ref#1]~pressure-> 
gas_pressure_too_high>; 

 

EXP 

increase 

gas.pressure CST  

press 

TR 

energy[ref=ref#1]~pressure 
->gas_pressure_too_high) 

 
The gas pressure (pressure is an attribute of 
the gas) experiences an increasing. Due to 
the state change of the gas pressure (not 
presented here) the gas pressure causes a 
pressing by transmitting pressure; the 
transmitted energy contains the information 
content ‘the pressure is too high’. 
 
� process(3):  
<energy[ref=ref#1]~pressure-> 
gas_pressure_too_high|TR| 
<*or(sensor[ref=sensor#1], 
sensor[ref=sensor#2])|EXP|press>> 

 
sensor[ref=#1
]

*or 

sensor[ref=#2] 

EXP press 

TR 

energy[ref=ref#1]~pressure 
->gas_pressur_too_high 

 
The sensor referenced by sensor#1 or the 
sensor referenced by sensor#2 experience a 
pressing by means of the transmitted gas 
pressure; the transmitted energy contains 
the information content ‘the pressure is too 
high’. 
 
� process(4):  
<!c|CTXT|(<gas.pressure|LOC| 
*at(*or(sensor[ref=sensor#1], 
sensor[ref=sensor#2])>)> 



 

 

 

sensor[ref=#1] 

*or 

sensor[ref=#2] 

*at 

LOC 

gas.pressure 

 
 
The causation process (process(2) and 
process(3) referenced by the unspecified 
entity |!c>) happen in the context, that the 
gas pressure is at the sensor referenced by 
sensor#1 or at the sensor referenced by 
sensor#2. 
 
� process(5):  
<<*or(sensor[ref=sensor#1], 
sensor[ref=sensor#2])|CST|send>|TR| 
energy[ref=ref#2]~electromagnetic_field 
->gas pressure_too_high>; 
<energy[ref=ref#2]~electromagnetic_field 
->gas pressure_too_high|TR| 
<micro_controller|EXP|receive>> 
 

*or 

TR 

micro_controller 

TR 

EXP 

send/ 
receive 

sensor[ref=#1] 

CST  

sensor[ref=#2] 

energy[ref=ref#2]~electromagnetic_field 
->gas_pressure_too_high 

 
The sensor referenced by sensor#1 or the 

sensor referenced by sensor#2 cause a sending 
and transmit the electromagnetic field containing 
the information content ‘gas pressure is too 
high’; the micro controller experiences a 
receiving by means of the transmitted 
electromagnetic field containing the information 
content ‘the gas pressure is too high’ from the 
sensor referenced by sensor#1 or the sensor 
referenced by sensor#2. 

 
Combining the specified processes (1)-(5) 

yield the following network of Fig. 4.  

 

sensor[ref=#2] 

*or 

EXP 

increase 

gas.pressure CST  

press/ 
press 

TR 

EXP 

TR 

energy[ref=ref#1]~pressure 

 ->gas_pressure_too_high 

TR 

microc_cotroller 

TR 

EXP 

CTXT 

send/ 
receive 

sensor[ref=#1] 

CST  

energy[ref=ref#2] 
~electromagnetic_field 
->gas_pressure_too_high 

sensor[ref=#1] 

*or 

sensor[ref=#2
]

*at 

LOC 

gas.pressure 

Fig. 4. Representation of the measurement of gas 
pressure detected by a 2oo2 sensor system. The 
dotted arrows reflect the causal flow. Natural 
language description is marked italic. 

 
Some further remarks may be helpful: 

Firstly, temporal aspects are suppressed in the 
graphical representation of the causal network. 
They are implicitly specified by means of the 
path of the causal process, which can be tracked 
by following the CST/EXP (causing/ 
experiencing) and TR/TR (transmitting/ 
transmitted) relations (indicated by the dotted 
arrows). 

Secondly, the entity types of the entities are 
not explicitly given in the examples. Implicitly, 
they are specified by their relational use. A 
complete definition may be given by 
implementing a lexicon containing the used 
entities and their corresponding entity types. The 
lexicon can be used for checking the correct use 
of the entities. 

 
 

4 CONCLUSION AND OUTLOOK  
 
In this paper we have defined the formal 

language CCNet by means of its syntax and 
semantics. One of the main advantages of 
CCNet is the strong connection to natural 
language. We use a minimal, but sufficient set of 
entities, relations and functions for domain-
specific representation of facts or situations 
regarding technical systems. 

We have defined some more relations and 
functions beside the given ones, which model 
standard safety architecture patterns like 
supervision or barrier functionalities. 

One of the central features of CCNet is the 
integration of causality by means of an entity 
transfer. Based on that, currently a calculus is 



 

 

developed for reasoning about failure behavior. 
The calculus is based on counterfactual 
reasoning (Pearl, 2000). 
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