
1. INTRODUCTION

Whenever malfunctioning of a system can
cause extensive damage, the need for
consistently and correctly specified systems
exists. Therefore, relevant standards require
methods and techniques to reduce the risk of
hazardous system failures to an acceptable level
of possible failure occurrence (IEC61508, 2003).
For instance, to achieve a sufficient safety level,
fault tolerance measures as e.g. hardware
redundancy should be implemented.

However, the mechanisms of fault tolerance
are compensated, if the system design is
systematically incorrect. One reason arises from
specification errors as a result of e.g. ambiguities
or inherent design contradictions. In order to
decrease the likelihood of failure occurrence due
to design errors, a system has to be specified and
tested properly. Elaborated specification and
verification techniques aim at reducing design
errors and allow tool-based model checking
(Schneider, 2004).

But irrespectively of formal techniques, it is
still necessary to specify and review a system
specification on a top-level of system refinement
by those persons, who are familiar with the
required behavior of the system. Normally, the
specification on top-level is based on natural
language, which is understandable by different
stakeholders. Therefore, a specification shall
include modes of expression and descriptions
which are understandable for the responsible
personnel involved in the whole life cycle of the
system. The common basis of communication

between differently trained specialists seems to
be natural language, although it is known, that it
lacks unambiguity and completeness. However,
that informal type of meaning representation
represents the current state-of-the-art of
requirements and systems specification.

To narrow the gap between natural language
and formal methods, we propose the
specification language CCNet (Causal-Context
Net). This language is based on meaning
representation and provides a formal semantic
and syntactic layer. It decomposes natural
language sentences revealing the causal deep
structure within a given context. The included
causality semantic provides a framework for
reasoning about causes and their effects within a
given context.

1.2 Related works

Starting with Hume’s regularity theory, a
huge number of proposals to model and reason
about causality has been proposed in the past
(Pearl, 2000).

Decomposing natural language formally was
tried in (Jackendoff, 1990) and (Helbig, 2000),
but without explaining the semantics of
causality.

Most of the formal techniques applied to
technical systems focus on state-event based
modelling using temporal logic, whereas the
meaning of causality of the state changes ist not
taken into account.

CCNET- A SPECIFICATION LANGUAGE FOR MODELING CAUSAL ITY

Lazos Filippidis1), Holger Schlingloff2)
Fraunhofer Institut für Rechnerarchitektur und Softwaretechnik FIRST
Address: Kekulèstr. 7, Berlin, Germany, D-12489,
E-mail: FiPublic@online.de1), hs@informatik.hu-berlin.de2)

Abstract: In the paper, the specification method CCNet is presented. The ontology, the signature and
structure of the language of CCNet is given, i.e. its syntax and semantic. The language is based on the
decomposition of natural language sentences and basically models causal relations by means of an
information transfer between objects. CCNet is applied to an actual example.
Keywords:formal specification, natural language, causality

In (Bitsch, 2007), safety patterns were given,
which concentrate on temporal aspects.
However, these patterns do not analyze the
semantic structure of the safety design.

Modelling causal dependencies regarding
system failure analysis, to the best of our
knowledge as a formal technique only WBA
(Why-Because-Analysis) has been used (Ladkin,
2001). WBA is based on Lewis’ counterfactual
interpretation of causality considering the closest
word assumption (Lewis, 1973). This method is
not related to natural language meaning
representation.

Our approach aims at specifying causal
structures within a system, which should be
closed as possible to natural meaning
representation, in order to reason about the
behaviour of a system. Our approach is based on
a modified type of the relatively new or rather
newly discovered transference theory of
causality due to its intuitive nearness to physical
and technical systems (Dowe, 2000) (Kistler,
2002). We assume, that - within a causal field
(Mackie, 1980) - a technical system can be
decomposed into atomic causal relations between
states, whereas information is transferred
between entities.

2. SYNTAX UND SEMANTICS OF CCNet

We define the signature and structure of
CCNet and connect them with natural language
meaning representation. We restrict the language
CCNet to a subset of possible words which we
call physical word.

Definition 2.1 (Physical Worlds) The

physical world P contains all worlds p out of
possible worlds, in which the currently known
physical laws hold. A physical world of discourse
p’ is an element of P. □

2.1 SYNTAX OF CCNet

Definition 2.2 (Possible Words and

Sentences of CCNet) Let w œ ΣW an arbitrary
sequence of characters out of the alphabet Σ={a,
b, … z, 1, 0, 2, …9,-} and ΣW the set of all
possible sequence of characters. w is termed a
word out of ΣW.
An arbitrary concatenation of words s’Ø s±_w’
with concatenation symbol ‘_’, a starting word
wœΣW with s0Øw±_w’, w’œΣW, {s0, s, s’}œΣS is

termed a sentence (italic written), ΣS the set of
sentences. □

We connect natural language and physical
worlds p, resulting in a formal language and
being a subset of the union set ΣW»ΣS. But
before, in order to define well-formed words and
sentences, we define the entities and entity types.

Definition 2.3 (Entity types, entities and

atomic entities of CCNet)
� Entity types [et] are sets containing entities.
� Elements of the sets are termed entities

|ent> and represent all facts or objects of a
physical world, about which one can make
statements. □

The next two definitions give the signature

and structure of CCNet. We define both a textual
and graphical syntax for elements of the
language.

Definition 2.4 (Signature of CCNet)
The signature of CCNet is a triple

SCCNet=(D,R,F) with:
� D is a non-empty set of entity types [et]œD.
� R is a non empty set of binary relations

RELœR: REL:‚et1, et2Ú; [et1], [et2]œD.
� F is a non-empty set of functions

*FUNC∈F: *FUNC:[et1]…[etn]ö[et];
[et],…, [etn]œD. □

The structure of CCNet is given by the

following definition:

Definition 2.5 (Structure for CCNet) Let

SCCNet=(D,R,F) be the signature of CCNet.
Τhe SCCNet-structure over the signature SCCNet is a
triple <ACCNet=((A[et])[et]œD, (*FUNCA)*FUNCœF,
(RELA)RELœR)> with:
� For each [et]œD there exits a non-empty set

A[et] with elements |ent>œ[et].
� For each binary relation symbol RELA œ R

there exists a relation RELA with
RELAŒA[et1]×A[et2]ÕA[et].

� For each n-ary function symbol *FUNCAœF
there exists a function *FUNC with
*FUNC:A[et1]×…×A[etn]öA[et].

A[et], RELA, *FUNCA are written [et], REL and
FUNC. Entity types and their subsets are
enclosed by []. □

The textual and graphical syntax of CCNet
is based on the representation formalism of
semantic networks (Helbig, 2001). In principle,

the network contains node symbols for entities
and directed arcs for relations and functions,
which connect entities and in turn reveal new
entities.

Definition 2.6 (Syntax of CCNet)
Let SCCNet=(D,R,F) be the signature of

CCNet.
� ‘;’ ‘,’ ‘(‘ ‘)’ ‘[‘ ‘]’ ‘=’ ‘?’ ‘!’ ‘<>’ ‘=>’ ‘=’

‘<=’ ‘<’ ‘>’ are symbols.
� An entity (|ent>) is a formula and is

graphically represented by a node symbol
(filled circle).

� (|?ent>) is an entity.
� (|!ent>) is an entity.
� (|ent>)=(<ent1|REL|ent2>), RELœR, is a

formula and is graphically represented by
an arrow between the related entities |ent1>
and |ent2> with an open circle as a new
node symbol for (|ent>).

� (|ent>)=(|*FUNC(|ent1>,…, |entn>)>),
*FUNCœF, is a formula and is graphically
represented by a bundle of arrows directed
to the co-domain |ent>. (*FUNC(.)) and
(|*FUNC(.)>) is used synonymously.

� A formula (|form>) is an entity and is
recursively defined. If form1, form2 are
formulae, then (|form>)=(|form1>);
(|form2>); is a formula. Graphically a
formula is enclosed by a dotted-bordered
area with an entity symbol for (|form>).

� A set of formulae is a system S. A graphical
representation of a system S is named a
semantic network. □

If it is clear by context, we suppress the

parentheses, e.g. (|ent>) is substituted by |ent>.
The parentheses are used as usual.

Definition 2.7 (Node label of CCNet) Let

the signature and structure of CCNet be defined
and |ent>œ[et].

Node labels nl1,…, nln with values vl1,…, vln,
written (|ent>[nl1@vl1,…,nln@vln]) with the
symbol @ standing for the symbols
{>,<,=>,=<,<>,=} can be assigned to entities.
 □

In order to illustrate both the textual and
graphical syntax, in (Figure 1) we give some
examples. |a> represents any entity, graphically
symbolized by a circle. The relation <a|R|b>
connects |a> and |b> yielding a new entity,
graphically symbolized by an arrow with an open
circle. The function *F maps the two entities |a>

and |b> to the entity |c>, which is graphically
symbolized by two connected arrows.
These elements may be combined in a more
complex specification: |d> is related to |a> by the
relation Q. |a> and |b> are mapped to |c> by the
function *F, which is related to |e> by the
relation R. |x> is a formula comprising the
enclosed elements.

 a

b a

a

b

R

*F

|a>; Ø

<a|R|b>; Ø

*F(|a>,|b>); Ø

<*F(|a>,|b>)|R|c>;
<a|Q|d>; Ø

b

*F
a R

c

d

Q

c

x

e

Fig.1. Examples of both textual and graphical
syntax of CCNet.

2.2 SEMANTICS OF CCNET

Beside their existence and non-emptiness of

the sets of entity types, so far nothing is said
about the carrier sets themselves. On the basis of
the ontology of natural language provided in
(Helbig, 2001), we give a definition of entity
types by means of its relational or functional use.

Before we start defining entity types, we
define the symbols ‘!’, ‘;’ and ‘?’ semantically.

Definition 2.8 (Substitute ‘!’,
Unspecified ‘?’)

Let wœΣW be a word.
� An entity |!w> is a substitute for an entity

|x> termed by |!w>=|x>.
� An entity |?w> is a not further specified

entity of a given entity type. □

Definition 2.9 (Observable Formula)

� If formulae |form1> and |form2> hold, then
|form1>; |form2> conjunctively hold.

� A formula holds, if it is observable in the
physical world of discourse p’. □

In the following, the ontology of CCNet is

defined. The ontology underlies the defined

structure: Objects and facts of the physical world
are mapped to CCNet entities.

Definition 2.10 (Object [o]) The carrier

set [o] contains all entities of a stable physical
or mental characteristic within space-time,
which might be linked to each other. [o] is the
union set of [op]=[opm]»[opnm]»[opca] and
[om]=[omq]»[omab] with disjoint sets:
� [opm] not-animated physical objects with a

measurable extension in space-time and
mass density.

� [opnm] not-animated physical objects with a
measurable extension in space-time without
a mass density with {|time>,
|space>}œ[opnc].

� [opa] animated physical object with a
measurable extension in space-time and
mass density.

� [omab] abstract object standing for an
arrangement or constellation of objects.

� [omq] abstract object, which are a
quantitative or qualitative attribute or
property, associable to an physical object.

Elements of [o] are specified by a word of
natural language and are associated to nouns.
 □

The next two definitions give the central

entities of situations, called processes, and
situation carrier.

Definition 2.11 (Process [pr]) The carrier
set process [pr] contains all entities, which
reflect a constellation of objects or their
behavior within space-time within a physical
world. [pr] is the union set of the disjoint entity
types event [ev] and state [st] with
»iœô(|evi>; sti>)œ[pr], |st i>œ[st], |evi>œ[ev]

(iœô):
� [st]: state of constellation of objects or

being of object within space time without
timely change (state) and with
»iœô|sti>œ[st], |sti>œ[st].

� [ev]: change of constellation of objects or
change of object within space (event) and
with »iœô|evi>œ[ev], |ev>œ[ev].

A process is also called a situation. □

Definition 2.12 (Situation Carrier [sic])
The carrier set [sic] contains all entities, which
determine (‘carry’) the constellation of an object
in respect to other objects within space-time.

Elements of [sic] are specified by a word of
natural language and are associated to verbs.
 □

If a process has no resulting state, it is a
state. If the resulting state is specified by a
change relation, a process is an event. Therefore,
it is possible to integrate time without the
distinction between telic and atelic verb phrases,
i.e. situations are always atelic as long as the
resulting states are not specified.

Definition 2.13 (Situation specifier [ss])
The carrier set [ss] contains all entities,

which determines the context of an object or
process. [ss] is the union of [sslc], [sstmp] and
[sspr], where
� [sslc]=[sslcl]»[sslcp] is a local

specification of a process or an object.
[sslcp] specifies a point location and [sslcd]
a direction.

� [sstp]=[sstpp]»[sstpd] is a time
specification of a process or an object.
[sstpp] specifies a time point and [sstpd] a
time duration.

� [sspr]={|probability>, |rate>} specifies the
occurrence rate or probability of a process.
 □

We give some examples to illustrate the use of
the situation specifier. For that, we use the
functions *dist(.,.) for the generation of a local
distance, *above(.) for indicating, that something
is above something, and the relation LOC for
locating a process or an object at a locality. The
relations EXP describes an experiencing relation,
*timedist (.,.) the time distance function and
TIME the time relation. CHNL indicates a
change of a node label.

Example 2.1 (Location Specifier)
� ‘The distance between a and b is 20 m’:
*dist(|a>, |b>)=20_m;
� ‘20 m above a’:
<b|LOC|*above(|a>)>; *dist(|a>,
|b>)=20_m>;

Example 2.2 (Time Specifier)
� ‘a starts after 20 time ticks’:
|!x>=<<a[valid=no]|EXP|start>|CHNL|a[valid
=yes]>;
 *timedist(|!x>, |?b>)=20_timeticks;
<!x|TIME|*before(|?b>);

In Example 2.2, the use of the unspecified
entity |?b> is necessary, in order to define the
time distance between the starting of a fictive
process and the occurrence of |a> (see Figure 2).

 *before(|a>)

|a>

|?b>

20_timetick

time
Fig.2. Examples of both textual and graphical
syntax of CCNet.

The specification language CCNet avoids

imprecise use of local or temporal phrases not
allowing adverbial phrases like ‘here’, ‘ there’ or
‘now’, ‘ yesterday’.

An attribute or a situation specifier may
have a qualitative or quantitative value. The
following entity types consider that aspect.

Definition 2.14 (Quality and Quantities)
The carrier set [q] is the union of [qlv], [qn]
where
� [qlv] is a qualitative value of an attribute.
� [qn] is quantity value of an attribute.
The entity type [qn] is substituted by the types
[qnv] and [qnu], the value and the unit of the
quantity. □

2.3 NODE LABEL SEMANTICS

Adopted from (Helbig, 2001), the language
of CCNet assigns node labels to entities. Node
labels are required for further specification of
entities on a meta-level. The following definition
gives their semantic and uses the Definition 2.7.

Definition 2.15 (Node Labels)
Let the signature and structure of CCNet be

given. The semantics of node labels are as
follows:
� The node label ‘valid’ can be assigned to

entities of entity type [o], [sic], [ss], and
[pr] with:
o The default label ‘valid=yes’ assigns an

entity an observable existence in a
physical world.

o The label ‘valid=no’ assigns an entity
an observable non-existence in a
physical world.

o The label ‘valid=hypo yes’ assigns an
entity a hypothetical observable
existence in a physical world.

o The label ‘valid=hypo no’ assigns an
entity a hypothetical observable non-
existence in a physical world.

� The node label quant can be assigned to
entities of entity type [o]\[omq] with (m,
n œ ô0).
o default ‘quant=all’ (all elements of

referenced set of entities).
o ‘quant=n’ (exactly n elements of

referenced set of entities).
o ‘quant=(>=m | n)’ (more than/ equal m

out of n entities referenced set of
entities).

o and further.
� The node label time can be assigned to

entities of entity type [pr] with (n œ ô0):
o ‘time=n’ (n times of occurrence, default

n=1)
o ‘time<>n’ (not n times of occurrence).
o and further.

� The node label ref can be assigned to
entities to entities of entity type [o]\[omq],
[ss], and [pr] with:
o ref œ ΣW and ‘ref=ref’ a unique

reference to elements of entities within
the physical word of discourse.

If the node label ref is not assigned, the
entity references to all possible entities of
the physical world of discourse.

Node labels of different types can be
conjunctively assigned to an entity. □

We conclude the definitions of the syntax
and semantics of CCNet with an example, where
node labels are used.

Example 2.3 (Node label time)
‘a occurs less than n times in time intervals of 20 ms’
|!x>=<<a[valid=no]|EXP|occur>
|CHNL|a[valid=yes]>;
|!x’>=<<a[valid=yes]|EXP|occur>
|CHNL|a[valid=no]>;
*timedist(|!x>, |!x’>)=20_ ms;
<!x|TIME|*before(|!x’>)>[time<n];

a[valid=no]
EXP

occur

CHNL
a[valid=yes]

a[valid=yes]
EXP

occur

CHNL
a[valid=no]

*timedist 20_ms

*before

TIME

!x

!x’

[time<n]

Fig.3. Example for the use of node labels.

3 EXAMPLE – A REDUNDANT
SENSOR SYSTEM FOR SWITCHING ON A

PROTECTION

In order to show the expressiveness of

CCNet, we give a fictive example of a control
unit of a fuel tank filled with gas. If the internal
gas pressure exceeds a critical level, a protection
mechanism shall reduce the gas pressure. To
achieve an acceptable low risk level, we assume,
that two sensors, which measure the gas
pressure, are redundantly connected (2oo2
system). The redundantly connected sensors are
part of the control unit. Furthermore, a micro
controller shall receive the output of both
sensors. In emergency case, the micro controller
initiates a process for reducing the gas pressure
(e.g. by opening a gas valve).

In the following example, the underlined
words reflect the natural language representation.
The relations and functions become clear by
comparing the natural language sentences and
the graphical representation. Beside the relations
defined above, PART describes a part relation,
CTXT a context relation, TR a transmit relation
and CST a causing relation. The symbols ‘->’
and ‘~’ stand for ‘containing information’ and
‘ in occurrence of’, respectively. The functions
are self-explanatory.

The example is reduced step by step:

� state(1):
<*and(sensor[ref=sensor#1],
sensor[ref=sensor#2])|PART|control_unit>;

sensor[ref=sensor#1]

sensor[ref=sensor#2]

PART

*and

control_unit

The sensor referenced by sensor#1 and the
sensor referenced by sensor#2 are part of
the control unit.

� process(2):
<gas.pressure|EXP|increase>;
<<gas.pressure|CST|press>
|TR|energy[ref=ref#1]~pressure->
gas_pressure_too_high>;

EXP

increase

gas.pressure CST

press

TR

energy[ref=ref#1]~pressure
->gas_pressure_too_high)

The gas pressure (pressure is an attribute of
the gas) experiences an increasing. Due to
the state change of the gas pressure (not
presented here) the gas pressure causes a
pressing by transmitting pressure; the
transmitted energy contains the information
content ‘the pressure is too high’.

� process(3):
<energy[ref=ref#1]~pressure->
gas_pressure_too_high|TR|
<*or(sensor[ref=sensor#1],
sensor[ref=sensor#2])|EXP|press>>

sensor[ref=#1
]

*or

sensor[ref=#2]

EXP press

TR

energy[ref=ref#1]~pressure
->gas_pressur_too_high

The sensor referenced by sensor#1 or the
sensor referenced by sensor#2 experience a
pressing by means of the transmitted gas
pressure; the transmitted energy contains
the information content ‘the pressure is too
high’.

� process(4):
<!c|CTXT|(<gas.pressure|LOC|
*at(*or(sensor[ref=sensor#1],
sensor[ref=sensor#2])>)>

sensor[ref=#1]

*or

sensor[ref=#2]

*at

LOC

gas.pressure

The causation process (process(2) and
process(3) referenced by the unspecified
entity |!c>) happen in the context, that the
gas pressure is at the sensor referenced by
sensor#1 or at the sensor referenced by
sensor#2.

� process(5):
<<*or(sensor[ref=sensor#1],
sensor[ref=sensor#2])|CST|send>|TR|
energy[ref=ref#2]~electromagnetic_field
->gas pressure_too_high>;
<energy[ref=ref#2]~electromagnetic_field
->gas pressure_too_high|TR|
<micro_controller|EXP|receive>>

*or

TR

micro_controller

TR

EXP

send/
receive

sensor[ref=#1]

CST

sensor[ref=#2]

energy[ref=ref#2]~electromagnetic_field
->gas_pressure_too_high

The sensor referenced by sensor#1 or the

sensor referenced by sensor#2 cause a sending
and transmit the electromagnetic field containing
the information content ‘gas pressure is too
high’; the micro controller experiences a
receiving by means of the transmitted
electromagnetic field containing the information
content ‘the gas pressure is too high’ from the
sensor referenced by sensor#1 or the sensor
referenced by sensor#2.

Combining the specified processes (1)-(5)

yield the following network of Fig. 4.

sensor[ref=#2]

*or

EXP

increase

gas.pressure CST

press/
press

TR

EXP

TR

energy[ref=ref#1]~pressure

 ->gas_pressure_too_high

TR

microc_cotroller

TR

EXP

CTXT

send/
receive

sensor[ref=#1]

CST

energy[ref=ref#2]
~electromagnetic_field
->gas_pressure_too_high

sensor[ref=#1]

*or

sensor[ref=#2
]

*at

LOC

gas.pressure

Fig. 4. Representation of the measurement of gas
pressure detected by a 2oo2 sensor system. The
dotted arrows reflect the causal flow. Natural
language description is marked italic.

Some further remarks may be helpful:

Firstly, temporal aspects are suppressed in the
graphical representation of the causal network.
They are implicitly specified by means of the
path of the causal process, which can be tracked
by following the CST/EXP (causing/
experiencing) and TR/TR (transmitting/
transmitted) relations (indicated by the dotted
arrows).

Secondly, the entity types of the entities are
not explicitly given in the examples. Implicitly,
they are specified by their relational use. A
complete definition may be given by
implementing a lexicon containing the used
entities and their corresponding entity types. The
lexicon can be used for checking the correct use
of the entities.

4 CONCLUSION AND OUTLOOK

In this paper we have defined the formal

language CCNet by means of its syntax and
semantics. One of the main advantages of
CCNet is the strong connection to natural
language. We use a minimal, but sufficient set of
entities, relations and functions for domain-
specific representation of facts or situations
regarding technical systems.

We have defined some more relations and
functions beside the given ones, which model
standard safety architecture patterns like
supervision or barrier functionalities.

One of the central features of CCNet is the
integration of causality by means of an entity
transfer. Based on that, currently a calculus is

developed for reasoning about failure behavior.
The calculus is based on counterfactual
reasoning (Pearl, 2000).

References

Bitsch, F. (2007). Verfahren zur Spezifikation

funktionaler Sicherheitsanforderungen für
Automatisierungssysteme in Temporallogik.
Aachen: Shaker.

IEC 61508 (2005). Functional safety of
electrical/electronic/programmable electronic
safety-related systems.

Helbig, H. (2001) Die semantische Struktur der
Sprache. Heidelberg: Springer.

Jackendorff, R. (1990). Semantic Structures.
Mass.: MIT Press.

Dowe, P. (2000). Physical causation. Cambridge:
Cambridge University Press.

Kistler, M. (2002): Erklärung und Kausalität.
Philosophica Naturalis 39, Heft 1, 89-109.

Ladkin, P.B. (2001). Causal System Analysis-
Formal Reasoning About Safety and Failures.
Heidelberg: Springer.

Lewis, D. (1973). Counterfactuals. Oxford:
Blackwell.

Mackie, J. L. (1980). The Cement of the
Universe: A Study of Causation. Oxford:
Oxford University Press (reprint of paper back
edition, 2001).

Pearl, J. (2000). Causality. Cambridge:
Cambridge University Press.

Schneider, K. (2004). Verification of Reactive
Systems. Berlin: Springer.

