
Quality of Automatically Generated Test Cases based on OCL Expressions

Stephan Weißleder
Humboldt-Universität zu Berlin

Rudower Chaussee 25, 12489 Berlin, Germany
weissled@informatik.hu-berlin.de

Bernd-Holger Schlingloff
Humboldt-Universität zu Berlin

Rudower Chaussee 25, 12489 Berlin, Germany
hs@informatik.hu-berlin.de

Abstract

In this paper, we deal with coverage criteria for bound-
ary testing. We focus on the automatic generation of bound-
ary tests based on OCL expressions and evaluate the qual-
ity of these tests with established coverage criteria like
MC/DC. We define and apply new coverage criteria, evalu-
ate their efficiency via mutation testing, and substantiate all
explanations by an example, part of a model of an elevator
control.

1 Introduction

In specification-based testing, each test run validates the
system under test (SUT) corresponding to reference specifi-
cations, e.g. models [19]. Additionally, these specifications
can be used to provide information about the generation of
test input sequences, expected behavior of the SUT, or both.
Commercial tools are available which automatically gener-
ate test sets based on models [10, 18, 20].

In order to quantify the quality of test sets, coverage cri-
teria are necessary [5, 11, 14]. There are many widely ap-
proved coverage criteria, each of which is focused on cer-
tain aspects of the specification or the SUT. Whereas most
coverage criteria have been defined and investigated in the
area of code-based test generation, we focus on coverage of
the specification. We investigate coverage criteria that ei-
ther focus on conditions [5] or partition boundaries [11, 12]
of the specification. To combine the advantages of both kind
of criteria, we also define new coverage criteria. We gener-
ate test sets which satisfy such coverage criteria automati-
cally [21] and introduce a prototype [16] that realizes our
approach based on the Object Constraint Language (OCL).

This paper is structured as follows. We introduce the ex-
ample in Section 2. Following, we sketch the intermediate
test case tree. In Section 4, we review existing coverage cri-
teria and define new coverage criteria. Then, we evaluate
the criteria’s efficiency via mutation testing. We summarize
our results in Section 6.

Related Work. A detailed survey about model-based test-
ing can be found in [19]. The Unified Modeling Language
(UML) is a well-known means for specifying test mod-
els [2, 17, 19]. For example, Offutt and Abdurazik derive
test cases from UML state machines [13]. Our approach
deviates in that we focus on deriving test input value parti-
tions. Other formalisms than the UML (e.g. extended finite
state machines [1, 4]) also support test generation but do not
adequately support object-oriented systems.

The Object Constraint Language (OCL) is a language
to express constraints on models [15, 23]. Hamie et al.
consider OCL in combination with state machines and
classes [8]. We analyze and transform OCL expressions of
a test case tree [21] to generate test input value partitions
and corresponding test sets.

Many approaches validate given input partitions and
their boundaries [6, 9]. However, they provide no means
to also derive them from models. As an exception, Leg-
eard, Peureux, and Utting develop a method for automated
boundary testing from the textual languages Z and B [12].
In contrast to this, our work about the automatic generation
of test input partitions is based on UML and OCL [21].

Gutjahr [7], Weyuker, and Jeng [22] compare the qual-
ity of random tests and partition tests. In [3], Briand et al.
consider data flow for testing criteria. Kosmatov et al. [11]
define coverage criteria for boundary testing. Additionally,
we also consider the relationship of such criteria to cover-
age criteria that handle conditions (e.g. MC/DC [5]). We
do not restrict ourselves to finite partitions. Furthermore,
we focus on how to achieve partitions and corresponding
coverage criteria for boundary testing from UML models.

2 Example

As an example, we consider part of the functionality of
an freight elevator control (figure 1). The elevator can check
the weight inside. Accordingly, it gains extra speed to reach
its destination earlier if the elevator is empty and it refuses
to move if it is overloaded. The full version of the model
can be found at [16].



Figure 1. Model of an elevator control.

3 Test Case Tree

In this section, we quickly recall the test case tree struc-
ture from [21]. The tree is automatically generated from
UML state machines and UML class diagrams. It con-
tains all expressions from both models (e.g. operation
pre-/postconditions or transition guards). Each path in the
tree corresponds to a logical test case for a path in the UML
state machine. The expressions of each path in the tree are
transformed into conditions on input values. These con-
ditions correspond to input value partitions for logical test
cases. Values near the boundaries of these partitions are se-
lected for the concrete test cases. Further on, we use the ex-
pressions of a path as an oracle for the generated test cases.

The branching of the tree results from the transition
branches of the UML state machine and the conjunctions of
the disjunctive normal form (DNF) of the included expres-
sions: Consider the fragment of the state machine in figure 2
and the part of the test case tree in figure 3. The test case
tree’s left path outgoing from idle 1 in figure 3 corresponds
to the outgoing transition of state idle triggered by insert-
Weight(w) in figure 2. The DNF of the guard condition of
the transition leading from state idle to state button pressed
in figure 2 contains two conjunctions. Consequently, the
test case tree contains two corresponding paths (middle and
right one). A complete description of the construction al-
gorithm can be found at [16]. The tree size will grow ex-
ponentially depending on the number of transitions and the
number of conjunctions in DNF. It’s size is potentially infi-
nite. Therefore, we plan to substitute the presented tree by
a finite graph that unites the nodes that represent the same
state of the state machine.

Figure 2. Fragment of the elevator model.

Figure 3. Part of the test case tree.

4 Quality of Generated Test Set

Coverage criteria can be categorized in groups that focus
on certain aspects like conditions or partition boundaries,
each. Criteria inside such groups are connected via the sub-
sumption relation. For instance, Multiple Condition Cov-
erage subsumes MC/DC [5] and Multi-Dimensional sub-
sumes One-Boundary [11]. Criteria from different groups
are often unconnected. To our knowledge, there is no
approach to combine condition-based and boundary-based
coverage criteria in the area of specification-based testing.

In the following, we introduce coverage criteria from
both groups and combine them to new coverage criteria.
The generated test sets satify such criteria. However, their
concrete test values are generated from input value parti-
tions of the test case tree. Consequently, the tree has to
provide corresponding input value partitions. Such parti-
tions are said to be generated to satisfy a condition-based
criterion. In the following, we show how to adapt the tree
in figure 3 to generate test sets for condition-based criteria.

4.1 Boundary-based Coverage Criteria

Test suites satisfy boundary-based coverage criteria
like All-Boundaries (AB), All-Edges (AE), or Multi-
Dimensional (MD) [11] iff the concrete values are se-
lected close to the boundaries of a given partition. For
specification-based testing, however, we do not restrict our-
selves to discrete or finite domains.

Our approach is focused on the generation of partition
boundaries [16]. The generated concrete test suites are
aimed at satisfying MD. In [11], MD coverage has the high-
est fault-detection effectiveness for given partitions. How-
ever, MD does not include condition-based coverage criteria
because boundary-based criteria do not consider the origin
of the underlying partitions. Consequently, we define new
criteria to combine the advantages of both groups of crite-
ria. We use the tree in figure 3 to demonstrate the necessary
adaptions to our test generation process.



4.2 Condition Coverage (CC)

The condition coverage criterion is focused on atomic
conditions of expressions. To satisfy this criterion, a test
suite has to satisfy and violate each atomic condition at
least once, respectively. The test suite generated from the
test case tree in figure 3 does not satisfy condition cov-
erage. As each generated test case of the tree satisfies
the expressions of one path of the tree, e.g. the condition
b <> currentF loor is never false if the event pressBut-
ton(b,r) is triggered.

For the generated test suite to satisfy condition coverage,
the test tree generation process adds expressions to the tree
that violate the contained atomic conditions. It is not suffi-
cient to generate test cases with values outside of partitions
because in general it is undecidable, which conditions and
expressions of the control flow will be violated. Figure 4
shows the new expressions at additional outgoing arcs from
the node idle 1 in figure 3. With these new expressions, the
generated concrete test cases also contain input values that
violate the conditions. Consequently, the generated test set
satisfies condition coverage. This is of vital importance for
the selection process of input partition boundaries. It en-
hances the quality of our automatically generated test suites
which already satisfy boundary-based coverage criteria.

Figure 4. Additional conditions in the tree.

4.3 Decision Coverage (DC)

The decision coverage criterion is focused on values of
expressions. A test suite that satisfies this criterion has to
satisfy and violate each expression at least once. The test
suite generated from the test case tree in figure 3 does not
satisfy this criterion. For instance, no test case has input
values that result in the violation of the guard condition for
the event pressButton(b,r) in figure 2. Adding the negated
existing expressions to the tree is sufficient to modify the
coverage of the generated test set correspondingly. Figure 5
shows the additional expression that conflicts with the value
of the existing guard condition in figure 2. With such ad-
ditional expressions, the test case tree contains all original
expressions and their conflictive counterparts. Since each
generated test case satisfies the expressions of one path, the
whole test set satisfies decision coverage. Again, this en-
hances the quality of the test suite generated from the test
case tree.

Figure 5. Additional decisions in the tree.

4.4 Modified Condition/Decision Cover-
age (MC/DC)

A test suite that contains every permutation of atomic
condition values for each expression satisfies Multiple Con-
dition Coverage (MCC). This criterion is considered inef-
ficient because it usually contains many unnecessary test
cases with value permutations, for which small deviations
have no impact on the expression value (decision).

The Modified Condition/Decision Coverage criterion
(MC/DC) [5] only requires that relevant condition value
combinations are included. A condition value combination
is relevant if changing one certain condition value leads to
a different decision value. After adding all condition value
permutations to the tree like in section 4.2 and 4.3, the gen-
erated test set satisfies MCC. Without the irrelevant value
combinations, the remaining test suite satisfies MC/DC.
MC/DC is very important and, for instance, required for
software quality in airborne systems and equipment certifi-
cation (standard RTCA/DO-178B). Since MC/DC is so im-
portant, the satisfaction of this criterion is of high impor-
tance for the selection of input partitions. This is another
quality improvement of the test suite generated from the test
case tree.

4.5 Definition of New Coverage Criteria

In the previous sections, we showed how to incorporate
well-known coverage criteria into our test-generation pro-
cess. For specification-based testing, however, these crite-
ria are only partially adequate. Therefore, we combine both
boundary-based coverage criteria and condition-based cov-
erage criteria. This is motivated by the lack of condition-
based coverage criteria to focus on boundaries and by the
lack of boundary-based coverage criteria to consider the ori-
gin of partitions.

We define that a test set satisfies the Multi-Dimensional
Condition Coverage (MDCC) if it contains all boundary
values satisfying MD for partitions generated to satisfy CC.
Likewise, we define Multi-Dimensional Decision Cover-
age (MDDC) for partitions generated to satisfy DC and
Multi-Dimensional Modified Condition/Decision Coverage
(MDMC/DC) for MC/DC. The advantage of the test sets
that satisfy such criteria is the focus on the boundaries for
partitions that are relevant for the model’s conditions.



5 Evaluation

In this section, we evaluate the efficiency of the refer-
enced coverage criteria via mutation testing. We use the
example model and evaluate the criteria’s efficiency with
ParTeG [16]. For that, we define mutation operators to in-
ject errors in the SUT. They change the relation symbol
of conditions (e.g. b > basement to b < basement) or
change the constant values of basement, currentFloor, and
minRank by 1, which results in 10 mutants.

We compare (1) MD for partitions that just satisfy Tran-
sition Coverage, (2) MC/DC without boundary testing, and
(3) MDMC/DC.

The test suite generated for (1) contains 7 test cases
and kills 4 out of 10 mutants. Errors that imply a wrong
value for minRank cannot be found with this test set (e.g.
minRank = 3 in the model, minRank = 2 in the SUT).

The test suite satisfying (2) contains 9 test cases with val-
ues randomly selected from the generated partitions. Since
these values are chosen randomly, the test set cannot guar-
antee to find especially the changes near the boundaries. In
our test run, this test suite kills 6 mutants.

The generated test suite that satisfies (3) contains 10 test
cases and kills all 10 mutants. The used input values are
closely above and closely below the values changed by the
mutants. Consequently, even small value deviations are de-
tected and MDMC/DC has the highest error-finding effi-
ciency of the referenced coverage criteria.

The support of MC/DC for our prototype is not finished
yet. For instance, the test suites would not detect changes
of the values of minWeight or maxWeight. Currently, we are
extending our tool ParTeG to support all mentioned control-
flow coverage criteria.

6 Conclusions and Future Work

In this paper, we handled coverage criteria that are fo-
cused on boundaries and conditions. We sketched how to
adapt the test case tree such that the automatically gener-
ated test sets satisfy these coverage criteria. Furthermore,
we defined new coverage criteria which are more appropri-
ate to specification-based test generation.

We also presented the current state of the prototype tool
ParTeG [16] with its support of the evaluated coverage cri-
teria.. In the future, we plan to extend this tool to sup-
port all presented combinations of coverage criteria. Since
there are many possible combinations of boundary-based
and control-flow coverage criteria, we evaluate further cri-
teria in future work.

Acknowledgements. This work was supported by grants
from the DFG (German Research Foundation, research
training group METRIK).

References

[1] C. Bourhfir, R. Dssouli, E. Aboulhamid, and N. Rico. Au-
tomatic executable test case generation for extended finite
state machine protocols. In IWTCS’97, pages 75–90, 1997.

[2] L. C. Briand, Y. Labiche, and J. Cui. Automated support for
deriving test requirements from UML statecharts. Software
and Systems Modeling, V4(4):399–423, November 2005.

[3] L. C. Briand, Y. Labiche, and Q. Lin. Improving statechart
testing criteria using data flow information. In ISSRE ’05,
pages 95–104, 2005.

[4] K. T. Cheng and A. S. Krishnakumar. Automatic func-
tional test generation using the extended finite state machine
model. In DAC’93, pages 86–91. ACM Press.

[5] J. Chilenski and S. Miller. Applicability of Modified Con-
dition/Decision Coverage to Software Testing. In Software
Engineering Journal, 1994.

[6] Z. R. Dai, P. H. Deussen, M. Busch, L. P. Lacmene, T. Ng-
wangwen, J. Herrmann, and M. Schmidt. Automatic Test
Data Generation for TTCN-3 using CTE. In ICSSEA, 2005.

[7] W. J. Gutjahr. Partition testing vs. random testing: The in-
fluence of uncertainty. IEEE Trans. Softw. Eng., 1999.

[8] A. Hamie, F. Civello, J. Howse, S. J. H. Kent, and
R. Mitchell. Reflections on the object constraint language.
In UML 1998, Mulhouse, France, pages 162–172, 1999.

[9] R. M. Hierons, M. Harman, C. Fox, L. Ouarbya, and
M. Daoudi. Conditioned slicing supports partition testing.
In Software Testing, Verification and Reliability, 2002.

[10] R. S. Inc. Reactis. http://www.reactive-systems.com.
[11] N. Kosmatov, B. Legeard, F. Peureux, and M. Utting.

Boundary coverage criteria for test generation from formal
models. In ISSRE ’04, pages 139–150. IEEE, 2004.

[12] B. Legeard, F. Peureux, and M. Utting. Automated Bound-
ary Testing from Z and B. In FME, pages 21–40, 2002.

[13] J. Offutt and A. Abdurazik. Generating tests from UML
specifications. In UML’99, pages 416–429, 1999.

[14] A. Pretschner, W. Prenninger, S. Wagner, C. Kühnel,
M. Baumgartner, B. Sostawa, R. Zölch, and T. Stauner. One
evaluation of model-based testing and its automation. In
ICSE ’05.

[15] M. Richters and M. Gogolla. On formalizing the UML ob-
ject constraint language OCL. In ER, pages 449–464, 1998.

[16] S. Weißleder. ParTeG (Partition Test Generator).
http://parteg.sourceforge.net.

[17] D. Seifert, S. Helke, and T. Santen. Test Case Generation
for UML Statecharts. In PSI03. Springer-Verlag, 2003.

[18] Telelogic. Rhapsody Automated Test Generation.
http://www.telelogic.com.

[19] M. Utting and B. Legeard. Practical Model-Based Testing:
A Tools Approach. Morgan Kaufmann Publishers Inc., 2006.

[20] VerifySoft Technology. Conformiq Test Generator.
http://www.verifysoft.com/.

[21] S. Weißleder and B.-H. Schlingloff. Automatic Test Gener-
ation from Coupled UML Models using Input Partitions. In
MoDeVVa, 2007.

[22] E. J. Weyuker and B. Jeng. Analyzing partition testing
strategies. IEEE Trans. Softw. Eng., 17(7):703–711, 1991.

[23] P. Ziemann and M. Gogolla. Validating OCL specifications
with the USE tool — an example based on the BART case
study. In FMICS’2003, 2003.


