
Composition of Model-based Test Coverage Criteria

Mario Friske, Bernd-Holger Schlingloff, Stephan Weißleder
Fraunhofer FIRST, Kekuléstraße 7, D-12489 Berlin

{mario.friske|holger.schlingloff|stephan.weissleder}@first.fraunhofer.de

Abstract: In this paper, we discuss adjustable coverage criteria and their combinations
in model-based testing. We formalize coverage criteria and specify test goals using
OCL. Then, we propose a set of functions which describe the test generation process
in a generic way. Each coverage criterion is mapped to a set of test goals. Based on
this set of functions, we propose a generic framework enabling flexible integration of
various test generators and unified treatment of test coverage criteria.

1 Motivation

In the field of software and system testing, the quality of test suites is one of the most im-
portant issues. Widely accepted means for assessing the quality of a test suite are coverage
criteria. Criteria can be defined on the coverage of certain characteristics of specification,
implementation, or even fault detection abilities of the test suite. The result is a large
variety of defined criteria for structural, functional, and fault coverage. In the course of
model-based engineering, structural coverage criteria have been adopted to models (e. g.,
UML state machines). Whereas existing norms and standards for safety-critical systems
focus mainly on code coverage, this paper deals with model coverage criteria.

An interesting aspect is the relationship between different coverage criteria. Similar cri-
teria are related by subsumption relations (e. g., All-States [Bin99] is subsumed by All-
Transitions [Bin99]). However, relationships between criteria from different groups (e. g.,
Multi-Dimensional [KLPU04] defined on data partitions and MCDC [Lig02] defined on
control-flow graphs) are not yet thoroughly investigated and need further analysis [WS08].
Nevertheless, testers desire a means for flexibly applying combinations of different cov-
erage criteria, because individual criteria are well investigated and allow dedicated state-
ments on covering certain risks and aspects.

In this paper, we present a generic framework that allows combining test suites at various
abstraction levels. We provide functional descriptions for various stages in a coverage-
oriented test generation process and discuss possibilities for the composition of coverage
criteria and the optimization of test suites at different levels. We formalize coverage cri-
teria and resulting test goals in OCL [Obj06] using an example from the domain of em-
bedded systems. The framework uses functional specifications with OCL as a means for
specifying test goals. It features flexible application and combination of coverage crite-
ria and enables to plug-in various test generators. Furthermore, the framework supports
precise statements on achieved coverage relying on OCL-based traceability information.

The remainder of this paper is organized as follows: In the next Section, we discuss cover-
age criteria and their relations and introduce our running example. In Section 3, we give a
functional description of a multi-stage test generation process, and formalize test coverage
criteria and test goals using OCL. In Section 4, we use functional signatures and specifica-
tions of test goals with OCL for sketching a framework to compose test coverage criteria.
Finally, we draw some conclusions and give an outlook to future work.

2 Relation between Coverage Criteria

The aim of model-based testing is to validate a system under test (SUT) against its spec-
ification, the model. For that, a test suite is generated from the model and executed to
examine the SUT. Coverage criteria qualify the relation between test cases and implemen-
tation or model. It is common sense to group coverage criteria into sets based on the
same foundation, like structural (e. g. [Lig02]), functional (e. g. [Lig02]), and fault cover-
age (e. g. [FW93, PvBY96]).

Members of one group are related by the subsume relation and visualized as subsumption
hierarchy [Nta88, Zhu96, Lig02]. In [Lig02, pages 135 and 145] two subsumption hier-
archies for control-flow-oriented and data-flow-oriented criteria are presented. Since both
hierarchies contain the criteria Path Coverage and Branch Coverage, they can be united
in a single hierarchy using these criteria as merge points. The resulting hierarchy contains
a variety of control-flow-oriented (including path-based and condition-based criteria) and
data-flow-based coverage criteria, as depicted in Figure 1.

Branch
Coverage

Condition-
based Criteria

Data-Flow-
based Criteria

Control-Flow-
based Criteria

Path
Coverage

Figure 1: Combination of Different Types of Coverage Criteria

2.1 Example: a Fail-safe Ventricular Assist Device

As an example, we consider a ventricular assist device (VAD) supporting the human heart.
It provides an external pulsatile drive for blood circulation, which can help patients with
heart diseases to recover. The VAD is designed for stationary use with paediatric and
stroke patients. Both pump and control unit are attached outside the body. There are sev-
eral parameters, which can be set by the doctor via a serial connection such as systolic
and diastolic pressure, desired blood flow, and pump frequency. The VAD has a redun-

dant architecture with three pneumatic motors, two of which must be frequently running.
The control unit is replicated twice, as depicted in the object model diagram in Figure 2,
one processor being operational and the other being in “hot” standby mode. In case of
malfunction of one motor, the active controller starts the redundant one (in the appropriate
mode). In case of failure of a controller, the redundant one takes over control.

VAD

C1:Controller1

runP():void
runS():void

checked:bool

A:Arbiter1

isOK():void
failure():void

itsC1

itsA

C2:Controller1

runP():void
runS():void

checked:bool

itsC2

itsA

itsC1

itsA

itsC2

itsA

VAD

Page 1 of 1

Figure 2: Object Model Diagram for VAD with two redundant controllers

In Figure 3 we give two UML2 state machines of (part of) the startup functionality of the
software. Initially, the primary controller performs startup tests, reads the preset configu-
ration, and starts the pumps. It then waits for some time to let the blood flow stabilize and
compares the actual and desired pressure and flow values. A discrepancy of these values
indicates a problem in one of the pumps, and the pumps are switched. Otherwise, the
controller blocks itself, causing a reset, such that the roles of primary and secondary con-
troller are switched, and self-testing is repeated. Subsequently, the VAD goes into main
operational mode, where a continuous monitoring of pumps and blood circulation takes
place.

init check

runP[!checked]

run_prim

runP[checked]
runS

run_second

runS

runP

[min<=p && p<=max]/
itsA->GEN(isOK());
checked=true;

[else]

StatechartOfController

Page 1 of 1

CheckC2

C2isP

isOK/itsC2->GEN(runP());
itsC1->GEN(runS());

checkC1

/itsC1->GEN(runP());
isOK/itsC2->GEN(runP());

C1isP

failure/itsC2->GEN(runS());
itsC1->GEN(runP());

StatechartOfArbiter

Page 1 of 1

Figure 3: UML State Machines of VAD Controller (left) and VAD Arbiter (right)

2.2 Application of Combined Test Coverage Criteria

Thorough testing of models such as shown above requires application of (a combination
of) several coverage criteria each focussing on a different aspect. E. g., for the state ma-
chines shown in Figure 3, a possible reasonable strategy comprises the following criteria:

1. (a) All-Transitions [Bin99] as lower viable criterion for testing state machine (this
subsumes the criteria All-States [Bin99] and All-Events [Bin99]), and

(b) All-n-transitions [Bin99] as extended state-based criterion targeting typical
failures of state machines,

2. MCDC [Lig02] covering complex decisions in action code, and

3. Boundary-Value Analysis [Mye79] focussing on correct implementation of compar-
isons.

These criteria relate to the combined subsumption hierarchy in Figure 1 as follows: (1) re-
sults from transferring path-based criteria to state machines and (2) is a condition-based
criterion. The criterion (3) is orthogonal to the depicted criteria. A data-flow-based criteria
is not contained in this list, but still can be used to measure coverage achieved by applying
criteria (1)–(3), see [Lig02].

Applying the above coverage criteria to the models of the VAD presented in Section 2.1 in
order to generate test cases results in a number of test goals. In the following, we give an
example of a test goal for each of the coverage criteria above:

All-2-Transitions: The sequence of the two transition characterized by the following trig-
ger[guards]: (1) runP[!checked], (2) [min≤p && p≤max].

MCDC: Evaluation of the guard [min≤p && p≤max] where both conditions become
true (i. e., min≤p=true and p≤max=true).

BVA: The upper bound of the equivalence partition “normal” (i. e., the highest value of p
allowed for normal operation).

Note that it is possible to fulfill all test goals described above with a single test case.

3 Specification of Coverage Criteria and Test Goals using OCL

It is common practice to generate test cases in a multi-step transformation process: First,
a generator applies coverage criteria to the specification (e. g., a state machine) and calcu-
lates all resulting test goals (e. g., paths through a state machine), see [IL04]. Then, the
generator creates a concrete test case for each test goal (e. g. a sequence of events trigger-
ing a certain path through a state machine). We describe the multi-stage test generation
process with a set of corresponding functional signatures:

gen : S × CC ⇒ TS ×MD
goalgen : S × CC ⇒ TG
testgen : TG⇒ TS ×MD

where S is a specification, CC a coverage criterion, TG a set of test goals, TS the test
suite, and MD meta data (e. g., describing achieved percentage of coverage). The overall

test generation function gen is the functional composition of the generation of test goals
goalgen and the generation of logical test cases from test goals testgen:

gen(S, CC) = testgen(goalgen(S, CC)).

In the following, we use OCL as a means to precisely define one exemplary coverage
criterion and a corresponding test goal.

3.1 Specification of Coverage Criteria in OCL

In this section, we present an OCL expression that determines model elements for the
coverage criterion All-2-Transitions. To satisfy this coverage criterion, a test suite has to
contain all possible pairs of subsequent transitions t1 and t2, where t1.target = t2.source.
All OCL expressions are based on the meta model of UML state machines [Obj07, page
525]. For sake of simplicity, the context of all OCL queries is a flat StateMachine.
The following expression searches for pairs of subsequent transitions.

context StateMachine
def: all2Transitions : Set(Sequence(Transition)) =

self.region.transition->iterate(
t1 : Transition;
resultSet : Set(Sequence(Transition)) =
Set{Sequence{}} | resultSet->union(

t1.target.outgoing->iterate(
t2 : Transition;
tmpSet : Set(Sequence(Transition)) =
Set{Sequence{}} | tmpSet->including(

Sequence{t}->including(t2)))))

3.2 Specification of Test Goals in OCL

In the previous section, we gave an OCL expression to define a coverage criterion on
a UML model. The application of such a criterion to a specific model instance results
in a set of test goals. In the following, we give two alternative OCL expressions for a
particular test goal, which results from applying the coverage criterion All-2-Transitions
on our example of a fail-safe Ventricular Assist Device presented in Section 2.1.

The first alternative depends on the availability of unique identifiers for the corresponding
model elements:

context StateMachine
def: goalForAll2Transitions : Sequence(Transition) =

Sequence{self.region.transition->select(name = ’t1’),
self.region.transition->select(name = ’t2’)}

It is also possible to calculate test goals using the OCL definition of the specified coverage
criterion. For instance, the following expression selects the first element of the set of
elements returned for the criterion All-2-Transitions:

context StateMachine
def: goalForAll2Transitions : Sequence(Transition) =

all2Transitions->asSequence()->first()

4 A Generic Framework for Composing Coverage Criteria

In this section, we sketch a possible design for a generic framework that allows flexible
integration of various test generators and unified treatment of test coverage criteria. The
formalization of coverage criteria and individual test goals relies on the previously defined
OCL expressions. In order to integrate various test generators, they have to fulfill the
following requirements:

Access to test goals: We assume that the generators implement a goal-oriented approach
and do not just provide a black-box functionality gen but two separated functions
goalgen and testgen with independently accessible outcomes (see Section 3).

Precise signatures: Each test case generator has to provide precise meta-information
about it’s functionality including it’s name, accepted types of specifications (model
elements), parameters, achievable coverage, and related coverage criteria.

The implementation of a framework for generator integration requires clarifying the stor-
age of test case and test goals. A unified format for test cases is not necessarily required as
long as formal meta-information on the achieved coverage is accessible. We recommend
specifying required and achieved test goals using OCL as presented in Section 3.2.

Furthermore, a precise specification of interfaces is required. A platform supporting plug-
in-based software development such as Eclipse [Ecl] can be used to integrate various gen-
erators as plug-ins. Commercial off-the-shelf generators can be integrated using wrappers.
Conversion functions for test goals from proprietary formats into OCL are required.

As we have discussed in [FS06], testers ideally want to select coverage using a graphical
interface. Various test generators can be integrated in a plug-in-based framework. Each of
these generators provides detailed information on achievable coverage, which can be pre-
sented to the tester in a structured or a graphical form (e. g., as a subsumption hierarchy).
The tester can select a set of coverage criteria (e. g., using sliders on a graphical visuali-
sation of a unified subsumption hierarchy as depicted in Figure 1). The selected coverage
information is passed to the generators and used to control the test generation process.

Specifying test goals using OCL allows to attach detailed traceability information [Som07,
Chapter 7] to each generated test case. This allows to return information to the tester about
unsatisfied test goals as OCL expressions and to realize enhanced dashboard functionalities
that overlap diverse generators. The tester can individually process unfulfilled test goals
by manually adding test cases or treating test goals shown as being unreachable.

By applying more than one coverage criterion to the multi-stage test generation process,
three integration options can be identified: (1) integration at coverage-criteria-layer (i. e.,
definition of newly combined coverage criteria), (2) integration at test-goal-layer (i. e.,
merging of test goals), and (3) integration at test-suite-layer (i. e., merging of test suites).
The corresponding functional descriptions are the following:

gen1 : S × CC1 → TS1 1. CCn = CC1 ⊕ CC2

gen2 : S × CC2 → TS2 2. TGn = TG1 ⊕ TG2

3. TSn = TS1 ⊕ TS2

where ⊕ is a suitably defined merging operator.

Option 1 can be reasonable if the coverage criteria are not connected by the subsump-
tion relation. Option 2 can be realized via function goalunion : TG1 × TG2 → TGn.
Option 3 can be realized via function testunion : TS1 × TS2 → TSn. Note that in
general, the test suite resulting from the union of two test goals is not the same as the
union of the test suites for the components. Usually, it is desired that the resulting test
suite is optimized with respect to implicit properties like the number or the average length
of test cases. One solution is a dedicated optimization operation opt : TSn → TSopt that
optimizes a test suite according to given properties while preserving coverage. The opti-
mization requires a weighting function. As an example, an implementation of opt could
remove duplicates and inclusions from a test suite.

5 Conclusions and Outlook

In this paper, we addressed specification and combination of coverage criteria. We sketched
the relations between coverage criteria and provided a consistent set of functional signa-
tures to define coverage criteria, test goals, test suites, and the corresponding generation
functions. This is complemented by a formalization of coverage criteria and test goals. We
substantiated our explanations by the example of a fail-safe ventricular assist device.

The following benefits result from our approach: Different test case generators can be
integrated and combined using test goals represented as OCL expressions. Due to the use
of OCL for formalization, coverage criteria, test goals, and test suites can be compared,
merged, and optimized. Integration is possible at coverage-criteria-layer, test-goal-layer,
and test-suite-layer. The use of OCL enables testers to define arbitrary coverage criteria.
Furthermore, using OCL allows to evaluate achieved coverage and supports analysis and
completion of missing test goals. The formalization of the test suite generation process
allows to trace test cases to test goals, coverage criteria, and specification elements.

In the future, we plan to extend the presented approach. This includes the definition of
coverage criteria on abstractions (including model-based tool support) and the prioritiza-
tion of test goals. This paper did not deal with the fault detection capabilities of various
(combined) coverage criteria; this topic needs to be investigated further. First steps to-
wards this question have been done (e. g., in [PPW+05, WS08]). Currently we have no
tool support for the presented method. We want to implement the sketched framework and
a corresponding OCL-based test generator.

References

[Bin99] R. V. Binder. Testing Object-Oriented Systems: Models, Patterns, and Tools. Object
Technology Series. Addison-Wesley, 1999.

[Ecl] Eclipse Foundation. Eclipse. http://www.eclipse.org/.

[FS06] M. Friske and B.-H. Schlingloff. Abdeckungskriterien in der modellbasierten Testfall-
generierung: Stand der Technik und Perspektiven. In Holger Giese, Bernhard Rumpe,
and Bernhard Schätz, editors, ”Modellbasierte Entwicklung eingebetteter Systeme II”
(MBEES), pages 27–33. Technische Universität Braunschweig, 2006.

[FW93] P. G. Frankl and E. J. Weyuker. A Formal Analysis of the Fault-Detecting Ability of
Testing Methods. IEEE Transactions on Software Engineering, 19(3):202–213, 1993.

[IL04] I-Logix. Rhapsody Automatic Test Generator, Release 2.3, User Guide, 2004.

[KLPU04] N. Kosmatov, B. Legeard, F. Peureux, and M. Utting. Boundary Coverage Criteria for
Test Generation from Formal Models. In ISSRE ’04: Proceedings of the 15th Inter-
national Symposium on Software Reliability Engineering (ISSRE’04), pages 139–150,
Washington, DC, USA, 2004. IEEE Computer Society.

[Lig02] P. Liggesmeyer. Software-Qualität: Testen, Analysieren und Verifizieren von Software.
Spektrum Akadamischer Verlag, 2002.

[Mye79] G. J. Myers. The Art of Software Testing. John Wiley & Sons, Inc., 1979.

[Nta88] S. C. Ntafos. A Comparison of Some Structural Testing Strategies. IEEE Transactions
on Software Engineering, 14(6):868–874, 1988.

[Obj06] Object Management Group. OCL 2.0 Specification, version 2.0 (formal/06-05-01),
2006.

[Obj07] Object Management Group. OMG Unified Modeling Language (OMG UML), Super-
structure, V2.1.2 (formal/07-11-02), 2007.

[PPW+05] A. Pretschner, W. Prenninger, S. Wagner, C. Kühnel, M. Baumgartner, B. Sostawa,
R. Zölch, and T. Stauner. One evaluation of model-based testing and its automation. In
ICSE ’05: Proceedings of the 27th international conference on Software engineering,
pages 392–401, New York, NY, USA, 2005. ACM.

[PvBY96] A. Petrenko, G. v. Bochmann, and M. Yao. On fault coverage of tests for finite state
specifications. Computer Networks and ISDN Systems, 29(1):81–106, 1996.

[Som07] I. Sommerville. Software Engineering. Addison-Wesley, 7th edition, 2007.

[WS08] S. Weißleder and B.-H. Schlingloff. Quality of Automatically Generated Test Cases
based on OCL Expressions. http://www.cs.colostate.edu/icst2008/, April 2008.

[Zhu96] H. Zhu. A Formal Analysis of the Subsume Relation Between Software Test Adequacy
Criteria. IEEE Transactions on Software Engineering, 22(4):248–255, 1996.

