
CMMI Process Area Compliance with Formal Specification Based Software
Development

Satish Mishra
Institute f̈ur Informatik

Humboldt University, Berlin
mishra@first.fraunhofer.de

Bernd-Holger Schlingloff
Institute f̈ur Informatik

Humboldt University,Berlin
Fraunhofer FIRST, Berlin

holger.schlingloff@first.fraunhofer.de

Abstract

The development of reliable systems is still a major chal-
lenge for software industry. Construction of such a system
requires both process and product based quality assurance.
Many process improvement models have been suggested in
industry and found appropriate for achieving high quality
products. Examples of such process improvement models
are CMM/CMMI, Agile, SPICE, ISO 9000 family etc. How-
ever, implementation of these process improvement models
often adds significant extra efforts. To minimize process im-
plementation costs we propose a formal specification based
product development model which integrates product and
process quality.1

Formal specification methods have been in practice since
decades, and have been successful in the development of
safety-critical systems. Some formal methods are VDM, Z,
LOTOS, CSP and CASL. In particular, we investigate the
compliance of CMMI process area with the formal specifi-
cation language CSP-CASL. CMMI is based on the notion
of process area, which is a cluster of best practices with
particular goals in a certain area. For each of the relevant
process areas, we show how formal specifications can con-
tribute to achieve the specific goals of that process area.
This integration is a new result for achieving process com-
pliance parallel with product development. We demonstrate
our approach with an industrial case study.

1. Introduction

Currently, computational systems (hard- and software)
are incorporating more and more functionality, which leads

1A preliminary version of this approach has appeared in the workshop
CS&P 2007, with general concept of formal specification in the imple-
mentation of CMMI. Here in particular, CMMI process area compliance is
demonstrated with our own contribution on formal specification features.

to an ever increasing complexity. For the development
of such a complex computational system which never-
theless is reliable both product and process based qual-
ity assurance methods are necessary. CMMI (Capability
Maturity Model Integration) [11][2] is a well-established
process improvement model which has proved its bene-
fits in hundreds of companies and thousands of projects.
CMMI is a collection of best practices that cover all as-
pects of product development from inception of require-
ment through delivery until maintenance of the final product
in an organization[11][2][22].

Formal specifications have established significant bene-
fits in product based software quality improvement. Most
formal specification methods have been demonstrated for
the development of safety-critical systems, e.g. in aerospace
or in the medical industry. A formal specification lan-
guage consists of a well-defined syntax and a mathemati-
cal semantics. A formal method based on a specification
language includes some transformation algorithm, which
makes it appropriate for specifying, verifying and validat-
ing systems. Examples for formal specification languages
which are being used in industry include VDM, Z, Larch
[4][10][14] or, more recently, CASL [17]. These methods
focus on the specification of structural properties, whereas
CSP [9][21], CCS, LOTOS, StateCharts, or Temporal Logic
[10] focus on behavioral properties.

In this paper, we describe the application of formal spec-
ification methods for the compliance of CMMI process ar-
eas. In this approach, the benefits of a broadly accepted
standardized process improvement model can be combined
with the advantages of formal specifications for product as-
surance. Here, we use CSP-CASL, which is a rather new
algebraic / process algebraic specification language [20].
This choice is based on the fact that, it includes means for
both structural and behavioral properties. CASL (Common
Algebraic Specification Language) is appropriate for spec-
ification of structural properties of system and CSP (Com-

municating Sequential Process) has been in existence since
decades, particularly well suited for the specification of be-
havioral properties. For the compliance of CMMI process
area CSP-CASL is used as an example of specification lan-
guage. Our approach is rather open to any specification lan-
guage. We discuss the contribution of the formal specifica-
tion for the satisfaction of a process area and achievement of
its associated components. Figure 1 depicts features of the
specification language which are appropriate for the process
areas compliance and specification based product develop-
ment.

Formal Specification

CMMI Process Areas

Analysis

Refinement

Enhancement

Verification

Validation

Figure 1. CMMI Process Area and Formal
Specification.

In the next section, we give a brief overview of CMMI
and subsequently in section three we present the required
details of CSP-CASL. Section four describes a case study
which will be referred to throughout the paper. Section five
contains our main results about the contribution of formal
specifications in the compliance of CMMI process areas.
The last section contains some conclusions and suggestions
for future work.

2. CMMI, Capability Maturity Model Integra-
tion

CMMI is a framework for assisting organizations to im-
prove their development and maintenance processes for
product development and maintenance[23]. CMMI is based
on the notion of process area (PA). A process area is a clus-
ter of related practices in an area. A typical process area
is requirement management, which subsumes all practices
necessary for dealing with demands which the software has
to fulfill. When a process area is implemented, it satisfies
several goals which are considered important for making
improvements in that area. CMMI has 22 process areas
which are considered important for the process improve-
ment of an organization. CMMI offers two representations
for its implementation, a continuous representation and a
staged representation. The continuous representation offers

more flexibility for process improvement. An organization
can choose a focused process area, determine the dependent
process areas, improve these at priority, and then concen-
trate on other process areas. In the staged representation,
process areas are grouped together into capability maturity
levels.

Since the notion of process area is independent from the
representation, our results hold for any type of representa-
tion. In general, the domain of an organization can be di-
vided into four groups: process management, project man-
agement, engineering and support. Each of these groups
has a set of process areas for improving the capabilities of
its processes. Associated with each process area is a set of
goals which have to be satisfied as a measure for improve-
ment in that process area.

Support
(5 PA)

Typical work
products

Subpractices

Process
management

(5PA)

Project
management

(6 PA)

Engineering
(6 PA)

GP laborations

Process area (PA)

Generic goals Specific goals

Generic
practices

Specific
practices

Required Expected Informative Notations:

Subpractices

Figure 2. Details of Process Area and its com-
ponents.

A process area is described by so-called model compo-
nents. There are three types of model components; Re-
quired, Expected and Informative. Required model compo-
nents describe what an organization must achieve to satisfy
a process area. Expected model components describe what
it may implement to achieve the required components. In-
formative model components provide details which help to
initiate the approach followed by required and informative
model component. Figure 2 shows groups of process areas
and process area representation.

CMMI has a specific approach to describe the process
areas. The description of a process area starts with in-
troduction, purpose and relation with other process areas.

These are informative model components. Main character-
istics of a process area are described by using specific goals
(SG) and generic goals (GG). The specific goals are unique
characteristics that must be present to satisfy the associated
process area. A specific goal is a required model compo-
nent. A specific practice (SP) is the description of an activ-
ity that is considered important in achieving the associated
specific goal. A specific practice is an expected model com-
ponent.

A generic goal is the required characteristics component
to institutionalize the processes which implement a process
area. Generic goals are called ”generic” because the same
goal applies to multiple process areas. A generic practice is
the description of an activity that is considered important in
achieving the associated generic goal. Thus, a generic prac-
tice is an expected model component. For analyzing the
compliance of formal specification into process improve-
ment models we only have to consider specific goals and
its specific practices of the process areas. Generic goals
are mainly for institutionalization and considered to be very
subjective so compliance with formal specification does not
make much sense.

3. CSP-CASL, Formal Specification Language

CSP-CASL is a specification language which combines
two independent specification languages. The main advan-
tage of this combined language is to provide a facility for
describing data type development (CASL) in combination
with description of processes (CSP). For the description
of a system, processes are specified by CSP operators and
communications between these processes are the values of
CASL data types [20][9][21]. The basic syntax of CSP-
CASL is an integration of the CSP syntax and the CASL
syntax. Syntactically a CSP-CASL specification ccSp con-
sists of a data part Sp, which is a CASL specification, an
(optional) channel part Ch to declare channels, which are
typed according to the data specification, and a process part
P written in CSP, where CASL terms are used as communi-
cations. Thus, the generic format of a CSP-CASL specifi-
cation is

ccSpec ccSp = dataSpec Sp channel Ch process P

The semantics of CSP-CASL is defined in three steps.
In the first step each channel is encoded in CASL. In the
second step CASL data types are evaluated, where families
of processes are generated according to the data model. In
the last step the evaluations are carried according to CSP
operators. Detail of combined specification language and
its components can be found in [20][1]. Here, we define
features of a specification language required for the compli-
ance of CMMI process areas.

3.1. Definition: Software Specification

We consider a practical approach to describe a soft-
ware system with the help of the formal specification lan-
guage CSP-CASL. A software system can be completely
described by two types of behaviors; observational behav-
ior and internal behavior. A description of the observational
behavior is confined to a black box view of the system. De-
scribing the internal behavior requires knowledge of design
decisions inside the software. The desired properties are
formulated in terms of the observational behavior, which is
based on the internal behavior of the system. In this con-
text we rewrite the syntax of CSP-CASL specification as
follows

ccSpec ccSp = dataSpec SpObs And SpInt

channel Ch process P end

HereSpObs andSpInt represent a CASL specification of
the observational and internal behaviors of system, respec-
tively. And is a CASL syntax construct which integrates
observational and internal specification. Furthermore, the
semantics of this definition is the same as mentioned in the
preceding section. This representation allows us to deduce
the concept of software enhancement, software refinement,
verification and validation in a way which leads to CMMI
process compliance in systematic manner.

3.2. Definition: Software Refinement

Software refinement is the process of preserving the cor-
rectness of program from abstract specification to detailed
specification. Formally, based on CSP-CASL we define
software refinement in a two step approach; data refine-
ment and process refinement. A CSP-CASL specification
(Spr, Spri, P r) is the refinement of another specification
(Sp, Spi, P) iff it satisfies the data refinement and process
refinement conditions defined as follows.
Data Refinement

• Σ(Sp) = Σ(Spr) ∧Σ(Spi) ⊆ Σ(Spri)

• Mod(Spr) ⊆ Mod(Sp) ∧ Mod(Spri)|Σ(Spi) ⊆
Mod(Spi)

Here Mod(Spri)|Σ(Spi) represents theMod(Spri) re-
stricted to theSymbols(Spi); such that for all the sym-
bols of Symbols(Spi) there exist an injective mapping
to the Symbols(Spri) and forall e ∈ Axioms(Spi) •
Model(Spri) |= e.
Process enhancementFor allm ∈ Mod(Spr And Spri)

• Traces(Pr)m ⊆ Traces(P)m

(Traces(P)m is set of sequence of events of process
P in perticular model m)

• Forall tracest ∈ Traces(Pr) • Failures(Pr/t) ⊆
Failures(P/t)
((Failures(Pe/t) is set of events after performing a
tracet)

This definition of refinement is used to analyze stepwise de-
velopment of system from abstract specification to imple-
mentation. Refinement is well suited to establish a trace-
ability among development life cycle and verification of
system.

3.3. Definition: Software Enhancement

Software enhancement is process of adding new observ-
able features or functionalities to the existing product by
semantically preserving its existing features and function-
alities. A CSP-CASL specification(Spe, Spei, P e) is the
enhancement of another specification(Sp, Spi, P) iff it sat-
isfies the data enhancement and process enhancement con-
ditions defined below.
Data Enhancement

• Σ(Sp) ⊆ Σ(Spe) ∧Σ(Spi) ⊆ Σ(Spei)

• Mod(Sp) = Mod(Spe)|Σ(Sp) ∧Mod(Spi) =
Mod(Spei)|Σ(Spi)

Semantics ofMod(Spe)|Σ(Sp) and Mod(Spei)|Σ(Spi) is
similar as in above subsection.
Process enhancementFor allm ∈ Mod(Spr And Spri)

• Traces(P)m ⊂ Traces(Pe)m

• Forall traces t ∈ Traces(Pr)m •
Failures(Pe/t)m ⊆ Failures(P/t)m

This definition of enhancement is used to analyze the
change request or upgrade in software specification. This
definition helps to track the changes in the software system
components for CMMI process area compliance.

3.4. Definition: Test Case and Test Verdict

Testing is practical approach to validate the correctness
of the system. This requires set of data as input to the
system and some way to interpret the resultant data from
the system. We define a CSP-CASL based testing frame-
work based on some established research [24][15][16]. For
CSP-CASL specifications a test caseTC is a trace of a
CSP-CASL process. The test verdict from the specification
(Sp, Spi, P) is based on the following definition
Pass: For all m ∈ Mod(Sp And Spi) •Traces(TC)m ⊆
Traces(P)m ∧∀tr : Traces(TC)m • tr =< t1, t2..tn >
tr /∈ Failures(P/ < t1, t2..tn− 1 >)m

Fail: For all m ∈ Mod(Sp And Spi) •Traces(TC)m ⊆
Traces(P)m and there existtr ∈ Traces(TC)m • tr =<

t1, t2..tn > tr ∈ Failures(P/ < t1, t2..tn− 1 >)m

Inconclusive: not in the above two conditions
Based on the given definition we consider each trace of the
system as a test case which leads us to setup validation en-
vironment for CMMI process area compliance.

4. Case study: Medical Embedded Device

We work with an industrial partner to apply this approach
on a Medical Embedded Device (MED). This MED is hu-
man heart supporting device for controlling and monitor-
ing the status of heart patient. This system is developed in
such a way that patients can be monitored and controlled
remotely. Since; patient’s data is extremely sensitive in-
formation it has to be properly encrypted before sending
and receiving through the system. This data communication
protocol is common to all type of medical devices produced
by this company. For handling the complexity and integrity
of data we proposed to apply formal methods and CMMI to
keep better control on the quality of the product.

4.1. Informal Description

The Communication Protocol is a small part of MED
which we use here to visualize the approach of product
based process quality. The Communication Protocol de-
scribes the protocol of data transmission between patient
and server. Each communication has to be encrypted in such
a way that it encapsulates identification number, acknowl-
edgement and actual data. After receiving and sending the
data protocol confirms the integrity by sending/receiving an
acknowledgement. Formally, this requirement is given in
further section.

4.2. Formal Requirement Specification of
Communication Protocol

Given below in Figure 3 is the formal requirement speci-
fication of the Communication Protocol. In the first part the
data part is described via the observational data structure
which is further used as a part of the processes described in
CSP.

Here the system is specified abstractly so it does not in-
clude any internal behavior. In the next section we give a
refined specification of this version obtained by a system-
atic refinement process.

4.3. Formal Design specification of Commu-
nication Protocol

Following in Figure 4 is the refined specification of pro-
posed case study. Here, some of the design decisions are
fixed according to required property.

 Spec CommunicationProtocol_AbstractSpec
Data
 Sort SendData, RecvData, RecdMsg
 Sort DevId, ComAck, RecdAck, EncData
 Ops EncryptMsg : SendData x DevId x ComAck
 EncrMsg
 DecryptMsg : EncrMsg RecdMsg
 ExtractAck : RecdMsg ComAck
 ExtractDevId : RecdMsg DevId
 ExtractData : RecdMsg RecvData
Channel
 ComCh : EncData; DataCh : Sort
Process
 SendControl(ComAck,DevId,SendData) = ComCh ?
 EncrMsg:{ EncryptMsg(ComAck,DevId,SendData)}
 ComCh ! EncrMsg : {SendMsg()}
 RecvControl() IF RecdAck=TRUE SKIP
 ELSE SendControl(ComAck,DevId,SendData)

 RecvControl() = ComCh? EncrData : {RecvData()}
 DataCh ! RecdMsg : {DecryptMsg(EncrData)
 ValidateRecdData(RecdData) DataCh !
 RecdAck :{ExtractAck(RecdMsg) DataCh !
 RecdDevId :{ExtractDevId(RecdMsg)} DataCh
 ! RecdData : {ExtractData(RecdMsg)}
 IF RecdAck= TRUE SKIP ELSE RecvControl()
End

Figure 3. CSP-CASL Specification of the
Case Study.

Spec CommunicationProtocol_RefinedSpec
Data
 # Integrate data part from requirement #
 Then Axioms
 Length(DeviceId)=8; Length(ComAck)=2
 Then

Isorts GenAck, GenData
IOps

 FormatAck : ComAck x SendData GenAck
 FormatData : SendData GenData
 Length(GenAck)=8
Channel
 ComCh : EncData; DataCh : Sort
Process
 SendControl(ComAck,DevId,SendData) = DataCh !
 GenAck : {FormatAck (ComAck x SendData)}
 DataCh ! GenData : { FormatData(SendData)}
 ComCh ? EncrMsg : { EncryptMsg(GenAck,DevId,GenData)}
 ComCh ! EncrMsg : {SendMsg()} RecvControl()
 IF RecdAck=Ok SKIP ELSE
 SendControl(ComAck,DevId,SendData)

 RecvControl() = ComCh? EncrData : {RecvMsg()}
 DataCh ! RecdMsg : {DecryptMsg(EncrData)
 ValidateRecdData(RecdData) DataCh !
 RecdAck :{ExtractAck(RecdMsg)} DataCh !
 RecdDevId : {ExtractDevId(RecdMsg)}
 DataCh ! RecdData : {ExtractData(RecdMsg)}
 IF RecdAck=Ok SKIP ELSE RecvControl()
End

Figure 4. CSP-CASL Refined specification of
the Case Study.

At the initial steps, axioms are added to guarantee the
length of acknowledgement and device ID. Further internal
structures are added which guides the system to generate
proper acknowledgement and data for the encryption. The
external behavior is not changed with this new signature,
only it helps to make the system more concrete. This inter-
nal function is called in process before processing the data
into the encryption algorithm. Subsequently, we will refer
to the above two specifications in order to show the com-
pliance of specific goals and specific practices of CMMI
process area.

5. CMMI Process Areas Compliance Evalua-
tion with Formal Specification

To evaluate the Formal Specification based Contribution
(FSC) in the compliance of the CMMI process area we have
developed the following grading scheme.
Fully Contributed (FC) :A process area is satisfied as FC
if 90-100% of its specific goals are achieved using formal
specification. A specific goal is achieved as FC when 90-
100% of its specific practices can be performed by formal
specification.
Largely Contributed (LC) :A process area is satisfied as
LC if 60-89% of its specific goals are achieved using for-
mal specification. A specific goal is achieved as LC when
60-89% of its specific practices can be performed by formal
specification.
Partially Contributed (PC) :A process area is satisfied as
PC if 30-59% of its specific goals are achieved using for-
mal specification. A specific goal is achieved as PC when
30-59% of its specific practices can be performed by formal
specification.
Not Contributed (NC) :A process area is NC if less than
29% of its specific goals can be achieved using formal spec-
ification. A specific goal is NC when less than 29% of its
specific practices can be performed by formal specification.

The main advantage of the formal specification starts
with a precise and unambiguous description of the require-
ments. Formally specified requirements provide a basis for
the software development lifecycle. Preciseness of specifi-
cation can help to automate most of the software develop-
ment lifecycle elements. We experiment with these features
of formal specification in the development of case study and
then lead towards process mapping of CMMI. We found
that formal specification based development approach pro-
vide significant aspects in the satisfaction of CMMI process
areas. After the experiment with this case study we have
concluded that there are six process areas which can be sat-
isfied up to great extend with formal specification.

This is good advantage of formal specification based de-
velopment. If we consider compliance of CMMI process
area we find many tools which are required for process area

compliance, for example project management tools, qual-
ity assurance, testing, debugging, time management, con-
figuration management tools, etc. In most of these cases
separate tools are required for the each process area. The
formal specification based development approach is very
unique where process areas can be satisfied parallel to the
development of product. Following is a list of process ar-
eas which can be achieved with formal specification based
development.

5.1. Requirement Management(RM)

The process area Requirements Management provides
guidelines for addressing demands of product features and
product component features. In addition to this, it also pro-
vides guidelines for removing inconsistencies between re-
quirements and other work products. The contribution of
formal specification for this process area and its compo-
nents is shown in Table 1.

Table 1. RM process area and FSC
Specific goals and specific practices FSC
SG 1 Manage Requirements LC

SP 1.1 Obtain an Understanding of Requirements FC
SP 1.2 Obtain Commitment to Requirements LC
SP 1.3 Manage Requirements Changes LC
SP 1.4 Maintain Bidirectional Traceability of LC
SP 1.5 Identify Inconsistencies LC

A precise and unambiguous semantics of formal specifi-
cation based development is basis for the compliance of this
process area. Once a requirement is formally specified and
we follow the formal specification based development ap-
proach then all the model components of this process area
can be easily achieved by specification and refinement fea-
tures of formal specification. Table 2 shows selected part
of the process from the case study. This formal specifica-
tion demonstrates the refinement relation among require-
ment, design document and considered test case. This is
simple example from specified formal specification of the
case study. In the same manner our experiment has lead us
to present the results in Table 1.

Table 2. Refinement relation
In requirement EncrMsg → SendMsg→ RecvMsg→

CheckAck→ TRUE
In design FormatAck→ GenData →EncrMsg

→SendMsg →RecvMsg→ CheckAck
→TRUE \ { FormatAck , GenData} (Hid-
ing internal functions makes equivalent to
requirement)

In test case EncrMsg→ SendMsg→ RecvMsg→ Check-
Ack →TRUE

5.2. Product Integration(PI)

The process area Product Integration guides the inte-
gration of component’s functions according to the require-
ments and the integration of components into a complete
product. Contribution of formal specification into this
process area, specific goals and the specific practices is
shown in the Table 3.

Table 3. PI process area and FSC
Specific goals and specific practices FSC
SG 1 Prepare for Product Integration LC

SP 1.1 Determine Integration Sequence LC
SP 1.2 Establish the Product Integration Environment LC
SP 1.3 Establish Product Integration Procedures and Crite-

ria
LC

SG 2 Ensure Interface Compatibility PC
SP 2.1 Review Interface Completeness Descriptions LC
SP 2.2 Manage Interfaces LC

SG 3 Assemble Product Components and Deliver the ProductPC
SP 3.1 Confirm Readiness of Product Components for In-

tegration
PC

SP 3.2 Assemble Product Components PC
SP 3.3 Evaluate Assembled Product Components PC
SP 3.4 Package and Deliver the Product and ComponentPC

Formal specification has been proposed for component
based development, e.g., in [6]. In particular, CSP-CASL
provides significant features for component based develop-
ment, such as giving a structural and architectural approach
to requirements engineering [17]. In addition to this, the
advantage of CSP-CASL for product line based develop-
ment has been studied in [18]. Process algebra [12] has very
powerful features for mastering the complexity of processes
via parallel and sequential composition. An unambiguous
definition of interfaces and its behaviors reduces the com-
plexity of implementing in the system. Formal specifica-
tion based development guarantees various quality aspects
for the products which are composed of from many compo-
nents.

5.3. Requirement Development(RD)

This process area describes customer requirements,
product requirements and product component requirements.
The process area compliance is presented in Table 4.

A formal specification based unambiguous and precise
description of the system is appropriate for the compliance
of SG 1 and SG 2. Compliance of SG 3 requires other
features of formal specification like refinement, verifica-
tion and validation. In Section 4 we present part of case
study as requirement specification and design specification
as refinement of requirement specification. The relation be-
tween these two specifications can be proved by our refine-
ment approach. This type of property is only possible if the

Table 4. RD process area and FSC
Specific goals and specific practices FSC
SG 1 Develop Customer Requirements FC

SP 1.1 Elicit Needs LC
SP 1.2 Develop the Customer Requirements FC
SG 2 Develop Product Requirements FC

SP 2.1 Establish Product and Product Component Require-
ments

FC

SP 2.2 Allocate Product Component Requirements FC
SP 2.3 Identify Interface Requirements LC

SG 3 Analyze and Validate Requirements LC
SP 3.1 Establish Operational Concepts and Scenarios LC
SP 3.2 Establish a Definition of Functionality LC
SP 3.3 Analyze Requirements LC
SP 3.4 Analyze Requirements to Achieve Balance PC
SP 3.5 Validate Requirements FC

initial requirement is stated in some formal language. We
apply the same approach for the development of our case
study. The process of stepwise refinement is continued un-
til all design decisions are fixed. The refinement also es-
tablishes consistency between requirement, design and test
cases. Formal specification has also shown significant bene-
fits when generating frameworks for the validation and ver-
ification of products and product components.

5.4. Technical Solutions(TS)

This process area provides guidance for design, develop-
ment and implementation of the given requirements. The
main focus of this process area is to evaluate and select a
solution, to develop a detailed design of the selected solu-
tion and to implement the design as a product or product
component. Table 5 shows formal specification based scale
of compliance for this process area.

Table 5. TS process area and FSC
Specific goals and specific practices FSC
SG 1 Select Product Component Solutions LC

SP 1.1 Develop Alternative Solutions and Selection Crite-
ria

LC

SP 1.2 Select Product Component Solutions LC
SG 2 Develop the Design PC

SP 2.1 Design the Product or Product Component LC
SP 2.2 Establish a Technical Data Package PC
SP 2.3 Design Interfaces Using Criteria PC
SP 2.4 Perform Make, Buy, or Reuse Analyses PC

SG 3 Implement the Product Design PC
SP 3.1 Implement the Design PC
SP 3.2 Develop Product Support Documentation PC

The specification language CSP-CASL is well suited for
specifying industrial applications [1]. Stepwise refinement
allows leading the requirement at a level where all the de-
sign decisions are fixed. This refined specification reaches
very near to implementation and gives possibility to gener-

ate the implementation code. The whole approach shows
that formal specification based development is well suited
for the compliance of SG 1, SG 2, SG 3 and most of its spe-
cific practices. Below in Table 6, we show the aspect of
refinement which is provable with our definitions given in
Section 4.

Table 6. Refinement in SDLC
Requirement Design Implementation
Sort ComAck ComAck = Format-

Ack(ComAck x Send-
Data)

language based code

5.5. Validation

The purpose of the activities in this process area is to
demonstrate that a product or product component fulfills its
intended use when placed in its intended environment. The
contribution of formal specification into this process is as
follows in Table 7.

Table 7. Validation process area and FSC
Specific goals and specific practices FSC
SG 1 Prepare for Validation FC

SP 1.1 Select Products for Validation LC
SP 1.2 Establish the Validation Environment FC
SP 1.3 Establish Validation Procedures FC

SG 2 Validate Product or Product Components FC
SP 2.1 Perform Validation FC
SP 2.2 Analyze Validation Results LC

The formal specification based system development ap-
proach makes major contributions to this process area; since
test case generation, evaluation and execution has been ex-
tensively experimented with formal specification. We have
developed our own testing framework for CSP-CASL based
test generation and execution [24][7][13]. Test case selec-
tion is based on the definitions given in the Subsection 3.4.
In our consideration each trace acts like a test case which
has to refine to be executable on the implementation. Steps
of refinement should be similar refinement steps applied on
specification. These are the basic consideration for our val-
idation framework, this makes formal specification very ap-
propriate for the compliance of SG 1 and SG 2.

5.6. Verification

The Verification process area ensures that the products
which are the result of the processes under improvement
meet their specified requirements. Formal specification
based process compliance is shown in Table 8.

Formal specification methods have mainly two ways to
contribute to this process area, model checking and theorem

Table 8. Verification process area and FSC
Specific goals and specific practices FSC
SG 1 Prepare for Verification LC

SP 1.1 Select Work Products for Verification LC
SP 1.2 Establish the Verification Environment LC
SP 1.3 Establish Verification Procedures LC

SG 2 Perform Peer Reviews NC
SP 2.1 Prepare for Peer Reviews NC
SP 2.2 Conduct Peer Reviews NC
SP 2.3 Analyze Peer Review Data NC

SG 3 Verify Selected Work Products PC
SP 3.1 Perform Verification LC
SP 3.2 Analyze Verification Results PC

proving. Model checking is the process of building a model
of a system and checking whether desired properties hold
in this model [5][25]. Theorem proving is the process of
finding a proof of a property from the axioms of a system,
where the property and the system are expressed in the for-
mal specification language [15][8]. An enormous amount
of work has been done in the case of verification and estab-
lished significant presence in industry[19]. We claim formal
specification is well suited for this process area.

6. Conclusions

In this paper, we have examined the compliance of
CMMI process area with formal specification based devel-
opment. A case study is presented to illustrate the applica-
bility of a specification language for achieving goals of the
process areas. Out of 22 process areas from CMMI, six
process areas can be satisfied with a formal specification
based development approach. We have also shown the pos-
sibility of automation in process compliance which sub-
sequently reduces the effort for the implementation of a
process model. In this research, we concentrated on CSP-
CASL as a formal specification language. Although we be-
lieve this language to be particularly well-suited, most of
our results hold for other specification formalisms as well.
This approach is based on very generic features of specifica-
tion languages, which gives flexibility for the specification
language selection.

What is left open in this paper is the quantitative analy-
sis of cost and benefits in practical examples and compari-
son with other formal specification language features for the
process compliance. This will give us confidence to com-
pare with UML (Unified Modeling Language) which has
already been experimented for the process compliance and
product development together.

References

[1] M. R. A. Gimblett and H. Schlingloff. Towards a for-
mal specification of electronic payment systems in csp-casl.

WADT, 2004.
[2] D. M. Ahern. Cmmi distilled a practical introduction to in-

tegrated process improvemen. Addison-Wesley.
[3] D. J. Anderson. Stretching agile to fit cmmi level 3 the story

of creating msf for cmmi process improvement. Microsoft
Corporation ADC05, 2005.

[4] Y. Cheon and G. T. Leavens. The larch/smalltalk interface
specification language. ACM Transactions on Software En-
gineering, 1994.

[5] G. Craigen D. Formal methods in critical systems. IEEE
Transactions on Software Engineering 11.

[6] P. F. Elsa Estevez. Algebraic specifications and refinement
for component-based development using raise. JCTS, 2000.

[7] M.-C. Gaudel. Testing can be formal, too. LNCS 915, 1995.
[8] A. R. Henzinger. Automatic symbolic verification of embed-

ded systems. IEEE Transactions on Software Engineering
22.

[9] C. A. R. Hoare. Communicating sequential processes. com-
mun. ACM 21(8):666–677, 1978.

[10] http://www.rbjones.com/rbjpub/cs/csfm02.htm. Formal
specification languages.

[11] http://www.sei.cmu.edu/CMMI/. Software engineering in-
stitute, cmmi department. Carnegie Mellon, Pittusburgh, PA.

[12] A. P. ”J. A. Bergstra and S. Smolka”. Handbook of process
algebra. Elsevier, 2001.

[13] A. B. Jan Tretmans. Automatic testing with formal methods.
In Proceedings of the 7th European International Conference
on Software Testing.

[14] D. Kreuz. Formal specification of corba services using
object-z formal engineering methods. Proceedings of the
Second IEEE International Conference on Formal Engineer-
ing Methods, 1998.

[15] P. R. J. M. C. Gaudel. Testing algebraic data types and
processes: A unifying theory. Formal Aspect of Comput-
ing 10(5-6), 1998.

[16] P. D. L. Machado. Testing from structured algebraic specifi-
cations. LNCS 1816, 2000.

[17] P. D. M. Michel Bidoit. The common algebraic specification
language users/reference manual. LNCS 2960, 2004.

[18] S. Mishra. Specification based software product line test-
ing:a case study. Concurrency, Specification and Program-
ming, 2006.

[19] Y. C. Nagoya F, Shaoying Liu. A tool and case study for
specification-based program review. COMPSAC 2005,29th
Annual International, Volume 1.

[20] M. Roggenbach. Csp-casl a new integration of process alge-
bra and algebraic specification. Theoretical Computer Sci-
ence, 2006.

[21] A. W. Roscoe. The theory and practices of concurrency.
Prentice Hall, 1998.

[22] W. Royce. Software project management a unified frame-
work. Addison Wesley.

[23] H. S. S. Mishra. Using formal specifications in the imple-
mentation of cmmi. 16th Int. Conf on Concurrency, Specifi-
cation and Programming, Lagow, Poland, 2007.

[24] M. R. Temesghen Kahsai and B.-H. Schlingloff.
Specification-based testing for refinement. SEFM,
2007.

[25] Y.Isobe and M.Roggenbach. A generic theorem prover of
csprefinement. Proceedings of TACAS, 2005.

