
Test Case Generation from work�ow-based

Requirement Speci�cations

Hartmut Lackner1, Jaroslav Svacina2 and Holger Schlinglo�1

1 Humboldt Universität zu Berlin, Institut für Informatik,
Unter den Linden 6, D-10099 Berlin, Germany,

{lackner|hs}@informatik.hu-berlin.de
2 Fraunhofer FIRST, Kekuléstraÿe 7, D-12489 Berlin, Germany,

jaroslav.svacina@first.fraunhofer.de

Abstract. Model-based testing is a state of the art testing technique
for embedded systems engineering. Documenting requirements in a for-
mal way with test models, improves fault detection rate at the early
stages of the software life-cycle. Model-based testing automates test case
design and test documentation. But designing models for testing is a
time consuming and cost-intensive task. In this paper, we will show how
to automate testing, using model-based techniques and work�ow-based
requirement documentations. Therefore we introduce a domain speci�c
language for describing work�ow-based requirements. The language is ap-
plied onto a web application example, which represents the case study.
The introduced language �ts into a larger context of a framework for
model-based testing.

1 Motivation

Testing a software product is a cumbersome task, but a necessary burden to as-
sure customer satisfaction and product safety. In these days model-based testing
is becoming a common practice for automating test design and test documen-
tation. With model-based testing it is possible to generate large test suites,
which provide evidence for an accurate system implementation.In many cases,
model-based testing is more e�cient than any other known testing technique [8].
Though there are cases where model-based testing is more expensive by means
of costs, it adds further value through traceability matrices [7] and de�ned test
coverage.

In the �elds of safety critical applications, model-based testing supports cer-
ti�cation processes. Usually, saftey critical functions are ful�lled by embedded
devices/systems, which are special-purpose computer systems. In contrast to
general-purpose computer systems, which purpose is not �xed, embedded sys-
tems are designed for a special task. The computational power of embedded
systems �ts exactly the power needed for accomplishing the task. In general,
embedded systems are cheap, small and available in large amounts.

1.1 Case study partner

Since embedded systems are de�ned as special-purpose computer systems, also
servers, running web applications, may be considered as embedded systems.
Therefore we decided to cooperate with ImmobilienScout24 (IS24), the lead-
ing online estate agency in Germany. We examined their test process and then
identi�ed potential for improvement by applying model-based methods.

At the state we began our examination, IS24 was already using structured,
but still informal models to document the requirements of their web application.
The requirement documentation is structured in several tables. For each cus-
tomer kind a table is maintained. Each table contains the work�ow de�nitions,
which are associated with the particular customer kind. The work�ows are clearly
structured, but lacking formality. Also, designing the model follows no explicit
rules � the model is understood and extended intuitively by the designers.

Currently the model is manually mapped into a keyword-driven test frame-
work. Within the test framework test cases are crafted manually. Furthermore,
automated validation for proving the consistency of a test case in respect to
the control �ow and input data is not possible, even though the tools support
automatic validation. This is due to the fact that conditions are documented
informal.

Special about the requirements model is that it contains both, structure and
behavior de�nitions within the same model. One can argue about the sense of
this approach, especially since the common modeling paradigm is to seperate
structure from behaviour into di�erent models. As IS24 was successful with this
approach in the past and the designer are used to this paradigm, we chose to
adapt this paradigm in our language de�nition. Also, we are aiming for a high
user acceptance by evolution, not revolution.

1.2 Related Work

A comprehensive introduction to model-based testing is presented by Utting et
al. in [8]. A more general introduction to testing and common terms can be found
in [6] and [9].

Since UML is widely spread for modeling software structure and behaviour,
many approaches rely on Class-, Activity-, Statemachine-diagrams and/or Mes-
sage Sequence Charts [3,11,5,1,2]. Further modeling techniques used for model-
based testing are B- and Z-Notation [10]. Even Microsoft is o�ering recently tools
for model-based testing from state-based models (Spec Explorer) and providing
corresponding literature [4].

1.3 Structure

The purpose of this paper is to take maximum advantage from model-based test-
ing, by introducing a formal work�ow language for describing requirements and
automatically derive test cases from the created work�ow model. The work�ow
language de�nition is derived and de�ned in section 2. Based on the work�ow

models de�ned by the herein developed language, a test framework is created.
The test framework derives test cases from the work�ow model and an addi-
tionally given initial state in a fully automatic manner. In section 3 the test
framework is presented. The paper closes with a discussion of the limitations
and a general summary of the presented approach.

2 Work�ow-centric documentation of requirements

In general, work�ows are characterised by tasks, which are assigned to resources.
Tasks are composed to (sub-) processes, which � again � may be composed to
(sub-) processes. Resources are necessary and/or responsible for the execution
of assigned tasks. The execution order of the tasks is directed by control �ow
elements: sequence, choice (loop resp.) and concurrency. Every Choice is con-
strained by a condition, which evaluates to a boolean value.

Except for concurrency, every work�ow concept is found in the informal web
application description of IS24. This is due to the fact, that a user is only able
to process one work�ow at a time, but implicitly all users are working in parallel
on the web application. Tabbed browsing or browsing on multiple instances is
not considered in this paper.

In the following sections the work�ow concepts of the case study's model are
identi�ed and a domain speci�c language (DSL) is derived. Therefore a �ctional
example is given in the next section.

2.1 Case study example

The original model is altered to obfuscate business secrets, but still the presented
model 2 relies on the same domain and business. The shown model depicts
work�ows associated to customers who are searching for an estate and those
customers who o�er an estate.

A B C D E

Menus
GE Menu Rent

T Renting S Renting

T O�er S O�er
T Rent

S Renting
3 L Search S Renting

1 case: User has searched L Last Search
L O�er S O�er

S O�er
2 L New O�er

Table 1. Real estate agency web application model � customer's table

The �rst column (A) is a number which is related to the item(s) in the
respective row. It denotes the item's importance within the web application,
resp. all work�ows. Each item may be a task or a (sub-) process. The �rst
character of a item denotes its type. The type of an item must be one of the
following:

� Link,
� Tab,
� Group of Elements,
� Icon
� Button
� Form
� Select Box
� Check Box
� Radio Box
� Site
� Pop up
� empty

Apparently there is no type denoting an edit �eld, which is a common element
on forms. Larger forms or forms with edit �elds are kept in additional tables.
For every larger form exists a separate table (no example will be given here).

The example depicts a web application with a tab-menu (GE Menu) and
a tab-panel (T Rent). The tab-menu is included in a container (Menus) and
consists of two tab-menu entries (T Renting and T O�er) which refer to the
respective site (S Renting or S O�er) via a hyperlink (underlined). The tab-
panel consists of two tabs (S Renting and S O�er), while the second one consists
of a single Link (S New O�er) which speci�es no target at all, the �rst site
(S Renting) is more complex. It features three links, but one of them (L Last
Search) is constrained by a choice, indicated by the keyword `case:'. Its purpose
is to obtain the last search results in the case a user has already searched, did
something else and then again wants to see the search results. For simpli�cation
the Link `L Search' points directly back to its host site (S Renting) and con�rms
that a search has been performed (e�ect). In reality there should be a site with
a form to specify search properties and �nally a site showing the results of the
search.

Hyperlinks are written in blue color and/or are underlined. If the target is
de�ned, a hyperlink within the cell may point to the target cell to identify the
target unambiguously. Hyperlinking is a feature of the spreadsheet application,
though links may be broken.

Hence hyperlinks are referring to some element within the model, hyperlink-
ing is not used for speci�ng a target for a link only. As well, hyperlinking is used
to import elements, which are de�ned within another or the same element and
making them accessible at runtime. This makes it di�cult to clearly distinguish,
if an element is only `de�ned' at one's place or additionaly `imported'.

The speci�cation of choices is rather simple. If an item's name starts with
`case:', it is a choice. Choices may be used at the right-hand side of a links,

buttons or other elements with a target to control the elements destination. The
constrained destination is written to the right-hand side of the choice. If there
are several choices for a target, they are written one below the other.

Constrained imports are handled the same way. While the choice is written
in the original place of the import, the import is written to its right-hand side
column.

There are more features in the original documents, which will not be discussed
in this paper, because they are used very seldom. Also, they complicate the design
of application models.

2.2 Deriving a work�ow language

On the design concepts described above a work�ow language may be applied. As
there is strong tool support, we chose to design a DSL in eMOF. In this case it
seems feasible to use a DSL, instead of using a standard language. Use Cases are
too high level for describing those kind of work�ows. Work�ow nets, which are
based on petri nets, are too low level for documenting this kind of requirements.

There are far more languages for describing work�ows, but a DSL gives us
the power to design it in the exact way, we want to use it. Therefore, designing
models with a DSL should be much simpler for the designers of IS24, than using
a standard language. Generalising the DSL for other domains should be possible,
but is not considered in this paper.

Fig. 1. DSL for work�ow-based requirements

The work�ow language de�nition is given in �gure 1. The mapping is as
follows:

Tasks and (sub-)processes are distinguished by their type. The type is given
in the enumeration in section 2.1. The types are re�ected within the DSL with
the enumeration type `ElementType'. There are some special types de�ned like
`CONDITION' and `RCONDITION'. Those indicate the special handling of

Work�ow concept Case study DSL

Task normal cell items Element (typed)
(Sub-)process right-hand side to a cell item Element(typed)
Sequence hyperlink after Link Attribute refersTo
Choice case or simultanuous imports Condition or import association
Parallelism inherent inherent

Table 2. Mapping of work�ow concepts onto the example model and the DSL

Conditions resp. Tabs. While depciting conditions with an additional type is
quite redundant, the di�erentiation of tabs comes in quite handy, as we will see
later in this paper. Figure 2 shows the correlating model to the above example.

3 Applying model-based testing

State of the art testing is by now model-driven. Figure 3 shows a typical process
for model-based testing. From the informal requirements a formal test model is
derived. In theory, this should be the only manual task within a model-based test
process until test result's interpretion. Between the test model design and test
result interpretation are tasks, which in practice, need some manual input. Man-
ual steps within this automated process are concerned with process con�guration
and optimisation as well as test case deployment.

3.1 Developing a test process

Before the test generator may start, one or more initial states of the model have
to be provided. Therefore a XML Schema is de�ned in �gure 4. Every identi�er
in the model has to be initialised within this XML document. Additionally all
special variables for storing states of tabs are contained in this �le.

The resulting test case generation process is shown in �gure 5.

3.2 Simulating the test model and selecting test cases

From this point on, where a model and an initial assignment of the variable is
given, the automated test process needs no further input. The model is then
simulated under certain constraints (con�guration). The result of the simulation
is an exploration graph (�g. 6), which depicts all explored states.

For describing the exploration graph a DSL is developed which is shown in
�gure 7. States are composed of a runtime structure of the web application and
assigned variables. Transitions have a source state, a target state and labels.
The labels specify under which cirmcumstances (guard) a task (trigger) may be
executed and how the assignment of variables has changed.

For selecting test cases from the exploration graph exist several criteria. In
the prototype implementation of the created test framework, we chose transition
coverage. To achieve transition coverage we applied the chinese postman tour

searchResult?: Condition

L Last Search: Element

L New Offer: Element

constraint: user.hasSearched

Pkg Menu:

Element
Estate Portal:

Web Application

L Search: Element

effect: user.hasSearched = true

S Renting: Element

S Offer for Rent: Element

RCondition Rent:

Condition

T Renting: Element

T Offer: Element

GE Menu Rent: Element

L Offer: Element

Legend

defines imports refersTo

Fig. 2. Work�ow-model of the case study's model

Requirements
Test Plan

Model

Test Case
Generator

Test Script

Generator

Model

Coverage

Traceabiltiy

Matrix

Test Cases

 Test

Results
Adaptor

SUT

Testscripts

Fig. 3. Process of model-based testing

Fig. 4. XML schema de�nition for the initial variable assignment

 Model
Simulator

Exploration
 Graph

Initial StateModel

Configuration

Test Case
 Selection

Abstract
 Tests

Fig. 5. The test cases generation process in detail

Z1(M1I1)

Z2(M2I2)

T Offer,

L Offer

T Renting

Z3(M3I3)

L Search

Z4(M2I4)

T Offer,

L Offer

L Search

T Renting

Fig. 6. Exploration graph of the example (without constraints in the simulation's con-
�guration

Fig. 7. Exploration graph description language in eMOF

problem (CPP) on the exploration graph. CPP searches for the shortest route
covering all transitions on directed, weighted graphs. Furthermore a con�gura-
tion may �lter testcases by a score, which is determined by the length of the test
case and the score of all elements within every state of the test case.

The resulting test cases are described with a test case description language,
therefore another DSL is de�ned (�g. 8). The language de�nes concepts for test
suites, test cases, actions and assertions. Again, the DSL is de�ned in eMOF, to
provide maximum interoperability with the the simulation process and the test
script generator.

3.3 Generating test scripts

Test script generation is done by a simple code generator. The generated test
scripts are directly excutable by the Selenium test framework. Selenium is build
for designing test case design and test execution. Since our process has designed
the test cases autmatically from the test model, Selenium acts as an adapter to
the SUT.

4 Discussion

Since there has not been gathered enough practical experience with this ap-
proach and especially the de�ned language, it is di�cult to claim results. IS24 is
currently applying the language and encouraged us to carry on with our work.
Also the examples are now very limited, yet.

Obviously the introduced work�ow language lacks of semantic strength. The
ExcludesLink for example is also applicable when no import has made before,

Fig. 8. Test case description language

which makes no sense. Applying OCL-constraints may solve this kind of problems
in the easiest way. Also easy to handle with OCL-constraints is the fact that a
Condition must not have other types than CONDITTION or RCONDITION.
Assigning any other type like Link or Button to a Condition is currently of no
practical use. More di�cult to express in OCL is to forbid cyclic ImportsLinks.

Furthermore, the language allows the use of non-determinism as it is not
explicitly forbidden by means of the metamodel. For reproducibility reasons
only deterministic choices should be used.

Since a Webapplication is a De�nableElement it may de�ne and import fur-
ther Webapplication elements which is at the current state of this work incon-
clusive. Perhaps this feature will be useful in the distant future, when we are not
talking about web applications anymore, but about services.

5 Summary

In this work a work�ow description language for documenting requirements has
been developed and applied onto smaller examples. We automatically simulated
models based on the presented work�ow description language and selected ab-
stract test cases. From the abstract test cases, executable test scripts were gen-
erated and executed against the SUT.

Still, there is a lot of work to do in the �elds of

� enhancing the work�ow language, to avoid ambiguities,
� enhancing the simulator to consider all work�ow language concepts,
� ascertain test suite quality,
� apply stronger test selection criteria,

We hope to accomplish these targets in the near future and prove them with
real world examples.

References

[1] Briones, Laura B.: Theories for model-based testing: real-time and coverage. En-
schede, University of Twente, Diss., March 2007. � CTIT number: 07-97

[2] Friedman, G. ; Hartman, A. ; Nagin, K. ; Shiran, T.: Projected state machine
coverage for software testing. In: ISSTA '02: Proceedings of the 2002 ACM SIG-

SOFT international symposium on Software testing and analysis. New York, NY,
USA : ACM, 2002. � ISBN 1�58113�562�9, S. 134�143

[3] Friske, Mario ; Schlingloff, Holger: Generierung von UML-Modellen aus for-
malisierten Anwendungsfallbeschreibungen. In: Conrad, M. (Hrsg.) ; Giese, H.
(Hrsg.) ; Rumpe, B. (Hrsg.) ; Schätz, B. (Hrsg.) ; TU Braunschweig (Veranst.):
Tagungsband Dagstuhl-Workshop MBEES: Model Based Engineering of Embedded

Systems III TU Braunschweig, 2007 (Informatik-Bericht 2005-01)
[4] Jacky, Jonathan ; Veanes, Margus ; Campbell, Colin ; Schulte, Wolfram:

Model-Based Software Testing and Analysis with C#. Cambridge : Cambridge
University Press, 2008. � ISBN 0521687616

[5] Kösters, G. ; Six, Hans-Werner ; Winter, M.: Coupling Use Cases and Class
Models as a Means for Validation and Veri�cation of Requirements Speci�cations.
In: Requirements engineering 6 (2001), Nr. 1, S. 3�17

[6] Linz, Andreas: Basiswissen Softwaretest: Aus- und Weiterbildung zum Certi�ed

Tester - Foundation Level nach ISTQB-Standard. Dpunkt Verlag, 2005. � ISBN
3898643581

[7] Regan: A Practical Approach to Software Quality. Secaucus, NJ, USA : Springer-
Verlag New York, Inc., 2002. � ISBN 0387953213

[8] Utting, Mark ; Legeard, Bruno: Practical Model-Based Testing: A Tools Ap-

proach. 1. Morgan Kaufmann, 2006. � ISBN 0123725011
[9] Vigenschow, Uwe: Objektorientiertes Testen und Testautomatisierung in der

Praxis. Dpunkt.Verlag GmbH, 2004. � ISBN 3898643050
[10] Vilkomir, Sergiy A. ; Bowen, Jonathan P.: Formalization of Software Testing

Criteria using the Z Notation. In: COMPSAC '01: Proceedings of the 25th Interna-

tional Computer Software and Applications Conference on Invigorating Software

Development. Washington, DC, USA : IEEE Computer Society, 2001. � ISBN
0�7695�1372�7, S. 351�356

[11] Weiÿleder, Stephan ; Schlingloff, Holger: Deriving Input Partitions from
UML Models for Automatic Test Generation. In: Giese, Holger (Hrsg.): Tagungs-
band Dagstuhl-Workshop MBEES: Model Based Engineering of Embedded Systems

III, 2007 (Informatik-Bericht)

