Efficient Local and Global Model Checking

B.—H. Schlingloff, Technische Universitat Miinchen

schlingl@informatik.tu-muenchen.de

In order to apply formal verification methods to industrial-size product developments
there are two prerequisites: First, one needs convenient, intuitive description and specifica-
tion languages for the system and properties to be verified. Second, there should be efficient
algorithms with reasonable average-case complexity for the analysis of the formal languages
under consideration.

FElementary Petri nets provide a natural way to model the control structure of concur-
rent and distributed systems. Since the state spaces of elementary nets are finite, most
properties of these state spaces are decidable. In contrast to other finite-state represen-
tations of relational structures, Petri nets distinguish between nondeterminism caused by
the abstraction from data, and nondeterminism caused by different scheduling strategies of
the parallel processes. As we show, this fact can be exploited to improve the evaluation of
certain properties.

Formally, an EPN is a tuple N = (P, T, o, pre, post), where P and T are nonempty
finite sets of places and transitions, respectively, o € 2% is the initial marking of the net,
and pre,post : T — 2P are functions determinining the pre- and postset of a transition,
respectively. A marking p € 2F is any subset of P, and for any ¢t € T we define the
firing relation L: 2F — 2P as follows: p1 5 po if pre(t) C py, post(t) N py = B, and
to = (p1 \ pre(t)) U post(t). The reachable state space of an EPN is the smallest set of
markings containing pg which is closed under all firing relations. An ezecution is a maximal
path through the reachable state space. The EPN is deadlock-free if every execution is
infinite.

Temporal Logic was invented by philosophers to formally duplicate natural language
sentences about events in time. Several variants and extensions for the specification of
reactive systems have been developed, most notably being the distinction between branching
time logics (interpreted on reachable state spaces) and linear time logics (interpreted on
executions). In this note, we use dynamic Peirce algebras to represent certain properties of
elementary nets, since they can be interpreted both on branching and linear structures.

A DPA is a tuple K = (A, B,:,7), where A = (T,u, , L, « 7,0, *) is a relation
algebra with constant elements; join, complement, zero, composition, converse, identity
and Kleene star; B = (P,V,=, 1) is a boolean algebra; “:” is a Peirce product (modal
diamond) A x B — B, and “?” is a cylindrification mapping (test) B — A. The concrete
interpretation I () of a DPA term ¢ in an EPN N assigns the relation L, to every relation
constant ¢ € T, and the set {u | p € pu} of markings to every boolean constant p € P.
All other operators are assigned their usual relation algebraic or set theoretic meanings,
e.g., 7° becomes the reflexive transitive closure of the relation 7. For ¢ € B, we have
In(e?) = {(u, 1) | 4 € In(p)}. Finally, for ¢ € B and 7 € A, we have Iy (7 : ¢) = {u |
v € In(p), (1, v) € In(T).

Model checking 1s the process of determining whether the execution of the system mod-
elled by an EPN satisfies the properties descriped by a DPA term. For example, deadlock
freedom can be described by the term —(7* : =(T : =L1)). There are two basic approaches
to the model checking problem: In global model checking we try to build the set of markings
satisfying a given term by recursion on the structure of the term. Since the number of
reachable markings can be exponential in the number of places, often it is not possible to

use an explicit enumeration. We use a symbolic representation as binary decision diagrams
(BDDs, [Bry92]) to maintain large sets and relations.

The function eval assign the BDD of a relation to all elements of A, and the BDD of
a set of markings to all elements of B which occur in the given term. The base cases are
eval(t) = BDD(L) and eval(p) = BDD({yt | p € pt}); the size of these BDDs is linear in the
number of places and constant, respectively. All boolean and relation algebraic operations
can be performed directly using BDDs; complement is particularly easy since it is done in
constant time. Building the join of two BDDs is a potentially exponential step. Relation
composition is an existential quantification on an intermediate marking, and the Kleene star
is calculated as the least fixpoint of a relation composition. The BDD for p? is twice as big
as the BDD for p, and the BDD for eval(t : p) is the preset of BDD(p) under BDD(t),
which can be calculated efficiently using special techniques ([CGL93]).

Local model checking corresponds to the linear-time approach: we try to systematically
construct an execution (dis)satisfying a given formula. To do so, we build the product of
the tableau of a formula with the unfolding of the net. For example, with marking p, the
term (7 :) is satisfiable iff there exists a marking v such that 1 = v and ¢ is satisfiable
with marking v. Systematic depth-first-search will either fall into a loop or produce a
counterexample. A loop is satisfiable if it does not contain unsatisfied eventualities, 1.e.,
formulas (7 : ¢) for which no formula ¢ occurs in the loop.

Local model checking can be improved for certain classes of formulas by building only
part of the reachable state space ([Val91]). Two executions are stuttering equivalent w.r.t. a
subset of all places and transitions, if any formula built solely from this subset has the same
truth value on both executions. Transition ¢y is independent from 5 w.r.t. marking p and
formula ¢, if for any execution starting with ¢, there exists a stuttering equivalent execution
starting with ¢;. In this case we do not need to consider the firing of ¢ from marking u
for evaluating the given formula. Depending on the type of formula, there are syntactical
criteria to determine whether a transition could be independent from another. A detailed
treatment for real-time temporal logic can be found in [YS95]

We have combined the partial order technique and the symbolic method for the analysis
of deadlock-freedom. For the symbolic search this means we augmented the algorithm by
a component reducing the number of markings which have to be considered in a single
iteration step. For the partial order search this means a generalization of the algorithm
such that in every step a set of markings is considered and the iteration step is performed
breadth-first instead of depth-first.

First experiments show that the combination of partial and symbolic method is especially
useful for massively parallel systems, in which several small components work more or
less independently. This suggests that the combined method can be applied successfully
to object-oriented designs. Currently we are extending our algorithm to handle the full
expressiveness of stuttering invariant temporal logics.

References

[Bry92] R. Bryant: Symbolic Boolean Manipulation with Ordered Binary Decision Diagrams;
Rep. CMU-CS-92-160;
ftp://reports.adn.cs.cmu. edu/usr/anon/1992/CMU-CS-92-160.ps

[CGLI93] E. Clarke, O. Grumberg, D. Long: Verification Tools for Finite-State Concurrent Systems;
LNCS 803 (1993)

[YS95] T. Yoneda, B.-H. Schlingloff: Efficient Verification of Parallel Real-Time Systems; LNCS
697 (1993); revised:
http://wuwl.informatik.tu-muenchen.de/publikationen/tempspez

[Val91] A. Valmari: A stubborn attack on state explosion; Proc CAV 90.

