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Abstract. We present an algorithm for finding uniform strategies in
multi-agent systems with incomplete information. The algorithm finds
all maximal uniform strategies for agents with incomplete information
for enforcing a property expressible in the language of Alternating-time
Temporal Logic ATL. The main application of the algorithm is auto-
mated program synthesis for systems that can be modeled as multi-agent
systems with incomplete information (e.g., decentralized distributed sys-
tems).

1 Introduction

Over the last few years, the multi-agent systems paradigm has been deployed in
safety-critical applications, such as sensor networks for detection of earthquakes
(i.e., SOSEWIN network developed in the scope of the SAFER project [1]). For
such applications, it is crucially important to verify or design software control-
ling the system using a formal procedure, which guarantees with certainty that
the desired goal has been achieved. In this paper, we present an algorithm for
designing software for such systems conforming to required properties.

As a formal model for multi-agent systems, we use Concurrent Epistemic
Game Structures (CEGS) introduced in [10]; as a modeling language, we use the
language of Alternating-time Temporal Logic ATL [2]. One of the most impor-
tant aspects of CEGS’s are strategies agents use to enforce properties expressible
in a given modeling language. CEGS’s allow us to model systems in which agents
have incomplete information. In such systems, not all strategies are of interest,
but only those in which every agent performs the same action in indistinguish-
able states; only such strategies can be viewed as formal models of algorithms.
Such strategies are usually referred to as uniform. Given the choice of CEGS’s as
models for multi-agent systems, the problem of designing software conforming to
a given property turns into the problem of finding uniform strategies enforcing
a property. This property has to be expressible in a chosen modeling language.
For the reasons that will become clearer later on, even though we use the syntax
of ATL, we give those formulas the meaning they have in Constructive Strategic



Logic CSL from [5]. The result is the logic which we call ATLu, which is thus
our formalism of choice for verification and program synthesis in the context of
multi-agent systems with incomplete information.

The main goal of the paper is to present an algorithm for finding uniform
strategies in CEGS’s with incomplete information. The paper is structured as
follows. In section 2, we define the logic ATLu as well as the concepts used in
the rest of the paper. In section 3, we present the algorithm for finding uniform
strategies and prove its correctness. In section 4, we present an example of run-
ning the algorithm on a simple multi-agent system. In section 5, we estimate the
complexity of the algorithm. Finally, in conclusion, we summarize our results
and point to directions for further research.

2 Preliminaries

We use concurrent epistemic game structures (CEGS), as defined in [5], as models
for reasoning about agents with incomplete information.4 A CEGS is a tuple

M = 〈Agt, St,Π, π,Act, d, o,∼1, ...,∼k〉,

where:

– Agt = {1, . . . , k} is a finite set of agents; a (possibly, empty) subset of Agt
is called a coalition;

– St is a nonempty, finite set of states;
– Π is a set of atomic propositions;
– π : Π → P(St) is a valuation function;
– Act is a nonempty, finite set of actions;
– d : Agt × St → P(Act) assigns to an agent and a state a nonempty subset

of Act, which we think of as actions available to the agent at that state.
For every q ∈ St, an action vector at q is a k-tuple 〈α1, . . . , αk〉 such that
αa ∈ d(a, q), for every 1 ≤ a ≤ k. The set of all action vectors at q is denoted
by D(q);

– o assigns to every q ∈ St and every v ∈ D(q) an outcome o(q, v) ∈ St;
– ∼1, . . . ,∼k⊆ St×St are indistinguishability relations for agents 1, . . . , k. We

assume that ∼a, for each a ∈ Agt, is an equivalence relation and, moreover,
that q ∼a q′ implies d(a, q) = d(a, q′) (i.e., an agent has the same choice of
actions at indistinguishable states).

One can use CEGS’s to synthesize software for distributed systems, or to
verify that such systems satisfy certain properties. To do this in a formal way,
we introduce logic ATLu, whose syntax is defined as follows5:

4 The notion of agent, as used in the literature, is quite an abstract one. For the
purposes of this paper, however, the reader can think of agents as components of a
distributed system.

5 Note that the syntax of ATLu is identical to Alternating-Time Temporal Logic (ATL)
[2].



ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉Xϕ | 〈〈A〉〉Gϕ | 〈〈A〉〉ϕUϕ,

where p ∈ Π and A ⊆ Agt. The operator 〈〈 〉〉 is called coalitional operator,
while the operators X,G and U are temporal operators next, always and until,
respectively. We now introduce some notions necessary to define the semantics
of ATLu.

In what follows, given a tuple t, we denote by t[i] the ith element of t. The
symbol % denotes an unspecified action of an agent.

Definition 1. Let q ∈ St and let A ⊆ {1, .., k} be a coalition of agents.

– An A-move mA is a k-tuple such that mA[a] ∈ d(a, q), for every a ∈ A, and
mA[a] = % otherwise. For the reasons that will become clear later on, we also
count as an A-move for an arbitrary coalition A the k-tuple %k. The set of
all A-moves at state q is denoted by DA(q).

– An assigned A-move is a pair 〈q,mA〉 where q ∈ St and mA ∈ DA(q).

Definition 2. Let q ∈ St and let mA ∈ DA(q) such that mA *= %k. The outcome
of mA at q, denoted by out(q,mA), is the set of all states q′ such that there is an
action vector v ∈ D(q) with v[a] = mA[a], for all a ∈ A, such that o(q, v) = q′.
The outcome of %k at q is the set of states q′ such that o(q, v) = q′ for some
v ∈ D(q).

Definition 3. A strategy S of a coalition A, denoted by SA, is a nonempty set
of assigned A-moves. A strategy SA is uniform iff q ∼a q′ implies mA[a] = m′

A[a]
for every pair of assigned A-moves 〈q,mA〉, 〈q′,m′

A〉 ∈ SA and every a ∈ A.

As ∼a, for every a ∈ Agt, is an equivalence relation, we have, in particular,
q ∼a q, and therefore, every uniform strategy of a coalition A is a function
assigning A-moves to states. By contrast, a strategy that is not uniform can fail
be a function, because it can assign more then one A-move to a state.

Definition 4. Let M be a set of assigned A-moves. The domain of M , denoted
by dom(M), is the set {q ∈ St | 〈q,mA〉 ∈ M}.

Given a sequence of states Λ, we denote by |Λ| the number of states in Λ; if
Λ is infinite, |Λ| = ω. The ith state of Λ is denoted by Λ[i].

Definition 5. A path Λ is a (possibly, infinite) sequence of states q1, q2, q3 . . .
that can be effected by subsequent transitions; that is, for every 1 ≤ i < |Λ|, if
qi ∈ Λ, then there exists an action vector v ∈ D(qi) such that qi+1 = o(qi, v).

We now define outcomes of uniform strategies. We use the notation SA to
refer to a strategy of coalition A.

Definition 6. Let q ∈ St and let SA be a strategy such that 〈q,mA〉 ∈ SA. The
outcome of SA at q, denoted by out(q, SA), is a set of paths {Λ | Λ[1] = q and
for each 1 ≤ i < |Λ| there is an assigned A-move 〈Λ[i],mA〉 ∈ SA such that
Λ[i+ 1] ∈ out(Λ[i],mA)}. If Λ ∈ out(q, SA) is finite, then we require that either
〈q|Λ|, %

k〉 ∈ SA or q|Λ| /∈ dom(SA).



Intuitively, 〈q|Λ|, %
k〉 ∈ SA means that it does not matter what the agents in

A do at the last state of a path that is an outcome of SA. This possibility of
giving the agents in A a ”free rein” at the end of carrying out a strategy is what
motivated us to count %k as an A-move, for every A ⊆ Agt.

Outcome out(q, SA) contains every path starting at q that may result from
coalition A performing A-moves from SA assigned to the states on the path. We
use notation out(Q,SA) as a shorthand for

⋃
q∈Q out(q, SA).

Example 1. Consider the CEGS, depicted in Fig. 1, with Agt = {1, 2} and Act =
{α1, β1, α2, β2}. Coalition A consists of agent 1 (A = {1}) and thus every A-move
is a tuple with an action for agent 1 and the placeholder % for agent 2. Only
one A-move is possible at state q, namely 〈α1, %〉, so that DA(q) = {〈α1, %〉};
analogously, DA(q′) = {〈α1, %〉, 〈β1, %〉} and DA(q′′) = ∅. The outcome of 〈α1, %〉
at q is {q′, q′′}. SA = {〈q, 〈α1, %〉〉, 〈q′, 〈α1, %〉〉} is a uniform strategy of A. The
outcome of the SA at q is {qq′′, qq′q′′}.

q q′

q′′

〈α1,β2〉

〈α1,α2〉

〈α1,β2〉
〈β1,β2〉

∼1

Fig. 1: An example of a CEGS.

Now we define the meaning of ATLu-formulas over CEGS. The semantics
we present is closely related to the semantics of Constructive Strategic Logic
from [5], the only difference being that our language, unlike that of [5], does not
contain epistemic operators.

Intuitively, given a CEGS M and a set of states Q ⊆ St, we have M, Q |=
〈〈A〉〉ψ if there is a uniform strategy SA such that ψ is satisfied by all paths
in out(Q,SA). We evaluate ATLu-formulas at sets of states, since when finding
strategies, this will help us to find the maximal set at which the same strategy
can be applied to achieve a certain outcome6 (note that our motivation is quite
different from that in [5]). Formally,

M, Q |= p iff Q ⊆ π(p);
M, Q |= ¬ϕ iff M, Q *|= ϕ;
M, Q |= ϕ1 ∧ ϕ2 iff M, Q |= ϕ1 and M, Q |= ϕ2;
M, Q |= 〈〈A〉〉ψ iff there exists a uniform SA such that M, Λ ! ψ, for every

Λ ∈ out(Q,SA);

6 This does not increase the complexity of the strategy-finding algorithm.



M, Λ ! X ϕ iff M, {Λ[2]} |= ϕ;
M, Λ ! G ϕ iff Λ is infinite, and M, {Λ[i]} |= ϕ, for every i ≥ 1;
M, Λ ! ϕ1Uϕ2 iff M, {Λ[j]} |= ϕ2, for some j ≥ 1, and M, {Λ[i]} |= ϕ1,

for every 1 ≤ i < j.

Notice that the expressions Xϕ,Gϕ, and ϕ1 Uϕ2 referred to in the last three
clauses of the above definition are not ATLu-formulas; they hold at paths rather
that being satisfied by sets of states, as in the case of ATLu-formulas.

For technical reasons, which will become clear later on, we want every ATLu-
formula—rather than only formulas beginning with a coalitional operator, also
referred to as ”strategic formulas”—to be defined in terms of strategies. To that
end, we give an alternative semantics of ATLu-formulas satisfying this property.
We define the meaning of ”non-strategic” formulas using the empty coalition ∅.
As the only ∅-move is m∅ = %k, every strategy of the empty coalition is uniform.
Intuitively, a strategy S∅ can be thought of as the domain of S∅. We now redefine
the meaning of non-strategic ATLu-formulas in terms of strategies. Thus,

M, Q |= p iff there exists S∅ such that Q = dom(S∅) ⊆ π(p);
M, Q |= ¬ϕ iff there exists S∅ such that Q = dom(S∅) and M, dom(S∅) *|= ϕ;
M, Q |= ϕ ∧ ψ iff there exists S∅ such that Q = dom(S∅) and M, dom(S∅) |=

ϕ and M, dom(S∅) |= ψ;

In what follows, if CEGSM is clear from the context, we write Q |= ϕ instead
of M, Q |= ϕ.

We now turn to the problem of finding uniform strategies enforcing a given
ATLu-formula in a given CEGS.

3 Finding Uniform Strategies in CEGSs

The main purpose of the present paper is to describe an algorithm for finding
uniform strategies in CEGSs. The problem of finding such strategies can be
viewed as a ”constructive” model-checking problem for ATLu; that is, given an
ATLu formula 〈〈A〉〉ψ and a CEGS M, we want to find all uniform strategies of
coalition A in M that enforce ψ. For each such strategy SA, we also get the set
of states from which SA can be effected and which, thus, satisfies the formula
〈〈A〉〉ψ. Therefore, the problem that is solved by our algorithm is an extension
of a model-checking problem for ATLu.

Since uniform strategies can be viewed as programs, the extended algorithm
presented in this section allows us to synthesize distributed programs achieving
the outcomes that can be expressed using ATLu formulas.

Since the formula ϕ given as an input to our algorithm may contain a num-
ber of strategic subformulas, each requiring for its satisfaction the existence of
(possibly, more than one) uniform strategy, we have to find all uniform strate-
gies associated with each such subformula of ϕ, including ϕ itself. As with each
strategic subformula of ϕ there might be associated several uniform strategies,



some of which may contain others, we are only interested in finding maximal uni-
form strategies for each such subformula, i.e., the ones that can not be extended
to a bigger set of states.

Definition 7. Let S be a (not necessarily uniform) strategy of some coalition
with the domain Q, and let ϕ be an ATLu-formula.

– If ϕ is in the form 〈〈A〉〉ψ (i.e., ϕ is a strategic formula) then S is a strategy
for ϕ if S is a strategy of coalition A, and Λ ! ψ for every Λ ∈ out(Q,S);

– otherwise, S is a strategy for ϕ if S is a strategy of the coalition ∅, and
Q |= ϕ.

Definition 8. Let SA be a strategy of coalition A for an ATLu-formula ϕ.

– SA is a maximal strategy for ϕ if there is no other strategy S′
A for ϕ such

that SA ⊂ S′
A;

– SA is a maximal uniform strategy for ϕ if SA is uniform and there is no
other uniform strategy S′

A for ϕ such that SA ⊂ S′
A.

We can now more precisely restate the problem our algorithm solves as fol-
lows: given a CEGS M and an ATLu-formula ϕ, find all maximal uniform strate-
gies SA for every subformula of ϕ, including ϕ itself.

The control structure of our algorithm (see appendix A) is based on the
control structure of the model-checking algorithm for ATL from [2]. The major
difference between the two algorithms is that our algorithm returns, for each
subformula ψ of the input formula ϕ, the set of all maximal uniform strategies
for ϕ, rather then just a set of states at which ϕ holds.

Note that, if ψ is a subformula of ϕ and there exist more than one uniform
strategy for ψ, then the union of the domains of all those strategies is used
to compute the maximal uniform strategies for ϕ. We denote by [ϕ] the set
of maximal uniform strategies for formula ϕ. We usually enumerate maximal
uniform strategies for a formula using upper indices, as in S1. The algorithm
uses the following functions:

– Subformulas(ϕ) returns the list of subformulas of ϕ in the following order:
if ψ is a subformula of τ then ψ precedes τ ; if τ is in the form ψ1 ∧ ψ2 or
〈〈A〉〉ψ1Uψ2 then ψ1 precedes ψ2.

– Dom(M) returns the domain of a given set M of assigned A-moves (recall
Definition 4).

– Pre(A,Q) returns, for a coalition A and a set of states Q, the pre-image
of Q with respect to A, defined as the set {〈p,mA〉 | mA ∈ DA(p) and
out(p,mA) ⊆ Q }.

– Uniform(A,M), where M is the maximal (not necessarily uniform) strategy
of coalition A for a given formula ϕ (recall Definition 8), returns all maximal
uniform strategies of A for ϕ.

Note that there is exactly one maximal strategy M for every ATLu-formula
ϕ. If there were a strategy N for ϕ such that N *⊆ M then N ∪ M would be



a strategy for ϕ as well and M ⊂ (N ∪ M) would not be maximal. We now
consider the issues involved in computing the set of maximal uniform strategies
from such a strategy, which happens when we call the Uniform function.

Consider the maximal strategy M for a formula ϕ = 〈〈A〉〉ψ that is given as
an input to Uniform. (An example for ϕ = 〈〈A〉〉F p is depicted in Fig. 2). Every
maximal uniform strategy for ϕ must be a subset M ′ of M . To find every such
subset, three issues must be resolved.

p

∼1

∼2

〈α1,α2, "〉
〈β1,α2, #〉 〈α1,β2, #〉

q r s

〈β1,α2, #〉
t

o p

!3 !3

Fig. 2: The maximal strategy of coalition A = {1, 2} for 〈〈A〉〉F p. Agent 3, ex-
cluded from A, has only one action available at each state in {q, r, s, t}; thus,
the arrows represent A-moves. The outcomes of %3 at o and p are omitted.

– First, two A-moves may assign different actions to an agent a ∈ A in two
states that are indistinguishable to a.

Definition 9. Let A ⊆ Agt, and let 〈q,mA〉 and 〈q′,m′
A〉 be assigned A-moves.

A-moves 〈q,mA〉 and 〈q′,m′
A〉 are blocking each other, symbolically 〈q,mA〉 "

〈q′,m′
A〉, if mA[a] *= m′

A[a] and q ∼a q′, for some a ∈ A.

In Fig. 2, 〈q, 〈α1, α2, %〉〉 and 〈t, 〈β1, α2, %〉〉 are blocking each other; the same
holds true for 〈r, 〈β1, α2, %〉〉 and 〈s, 〈α1, β2, %〉〉.

Remark 1. Note that a strategy SA is uniform iff there is no pair of blocking
assigned A-moves in SA.

Remark 2. If there is a pair of blocking assigned A-moves in a strategy of A for
ϕ then there may exist more then one maximal uniform strategy of A for ϕ.

In general, if M ′ is a uniform strategy, only one assigned A-move from a set
of mutually blocking assigned A-moves may be included in M ′.

– Second, assume that M is the maximal uniform strategy of A for ϕ and
〈q,mA〉 ∈ M . Consider strategy M ′ = M \ {〈q∗,m∗

A〉 |〈 q,mA〉 " 〈q∗,m∗
A〉}.

Now, some 〈q′,m′
A〉 ∈ M ′ may have become ”disconnected” in M ′, i.e., for some

state q′′ ∈ out(q′,m′
A), all A-moves assigned to q′′ have been thrown out of M ′.

Then, there may be an outcome of M ′ that is effected by 〈q′,m′
A〉 but does not

satisfy ϕ. We now define the notion of disconnectedness.



Definition 10. Let M be a set of assigned A-moves and let 〈q,mA〉 ∈ M . We
say that 〈q,mA〉 is disconnected in M if there is q′ ∈ out(q,mA) such that there
is no A-move assigned to q′ in M .

As an example, in Fig. 2, assume that A-moves assigned to q and r are re-
moved fromM ′ because they block the A-moves assigned to t and s, respectively.
Thus, M ′ = {〈o, %3〉, 〈p, %3〉, 〈s, 〈α1, β2, %〉〉, 〈t, 〈β1, α2, %〉〉}. The outcome of the A-
move assigned to t is r, but the only A-move assigned to r is in M \ M ′. The
assigned A-move 〈t, 〈β1, α2, %〉〉 is then disconnected in M ′. Thus, there is a path
Λ = t, r in out(dom(M ′),M ′) that does not satisfy F p. Note that the A-moves
assigned to o and p may be disconnected in M ′ as well (their outcome is not
specified in the example). However, any path involving one of these assigned
A-moves satisfies F p, because p holds both in o and in p. A-moves 〈o, %3〉 and
〈p, %3〉 immediately enforce 〈〈A〉〉F p.

In any uniform strategyM ′ for ϕ = 〈〈A〉〉ψ returned by Uniform(A,M), every
assigned A-move that is disconnected in M ′ must immediately enforce ϕ (in such
a case the A-move is a singleton strategy for ϕ). Otherwise, there may be a path
in out(dom(M ′),M ′) that does not satisfy ϕ.

–Third, assume that all disconnected assigned A-moves that do not imme-
diately enforce ϕ are thrown out of M ′. In our example M ′ = {〈o, %3〉, 〈p, %3〉,
〈s, 〈α1, β2, %〉〉}. M ′ is now a uniform strategy for 〈〈A〉〉F p, but it is not necessar-
ily maximal. There may be another N ⊆ M that is also a uniform strategy for
〈〈A〉〉F p and that contains all assigned A-moves from M ′ as well; M ′ ⊂ N ⊆ M .
For example, in Fig. 2, N = M ′ ∪ 〈q, 〈α1, α2, %〉〉 is a superset of M ′ that is a
uniform strategy for 〈〈A〉〉F p (even a maximal one).

We now summarize the above discussion in the following proposition.

Proposition 1. Let ϕ = 〈〈A〉〉ψ be an ATLu-formula and let M be the maximal
strategy for ϕ. A set M ′ ⊆ M is a maxitmal uniform strategy for ϕ iff

1. there is no pair of blocking assigned A-moves in M ′;
2. every disconnected assigned A-move in M ′ is a singleton strategy for ϕ;
3. there is no uniform strategy N for ϕ such that M ′ ⊂ N ⊆ M .

The first condition is necessary and sufficient to ensure uniformity of a strat-
egy, as noted in Remark 1. It is clear that the third condition amounts to maxi-
mality of M ′. The second condition ensures that M ′ is a strategy for ϕ, as shown
in the following lemma.

Lemma 1. Let ϕ = 〈〈A〉〉χ be an ATLu-formula and let M be the maximal
strategy for ϕ. A set M ′ ⊆ M is a strategy for ϕ iff every assigned A-move
disconnected in M ′ is a singleton strategy for ϕ.

Proof. We have three cases to consider:

1. ϕ = 〈〈A〉〉Xψ:
A set S of assigned A-moves is a strategy for 〈〈A〉〉Xψ iff {Λ[2]} |= ψ for every
Λ ∈ out(dom(S), S) iff out(q,mA) |= ψ, for every 〈q,mA〉 ∈ S. Thus, every



{〈q,mA〉} ⊆ S, disconnected or not, is a strategy for 〈〈A〉〉Xψ. Now, since
the union of strategies for ϕ is a strategy for ϕ, it follows from the above
that S is a strategy for 〈〈A〉〉Xψ iff every nonempty S′ ⊆ S is a strategy for
〈〈A〉〉Xψ. Therefore, M ′ is a strategy for 〈〈A〉〉Xψ, and we are, thus, done.

2. ϕ = 〈〈A〉〉Gψ:
(⇒) M ′ is a strategy for 〈〈A〉〉Gψ iff (a) every Λ ∈ out(dom(M ′),M ′) is infi-
nite and (b) {Λ[i]} |= ψ for every i ≥ 1. It follows from (a) that no assigned
A-move is disconnected in M ′, as the latter would imply the existence of a
finite path in M ′.
(⇐) We argue by contraposition. Since M ′ is a subset of a strategy for
〈〈A〉〉Gψ, for every Λ ∈ out(dom(M ′),M ′) and every 1 ≤ i ≤ |Λ|, we have
{Λ[i]} |= ψ. Thus, if M ′ ⊆ M is not a strategy for 〈〈A〉〉Gψ, this can only
happen if some Λ ∈ out(dom(M ′),M ′) is finite. The last state of every such
Λ must be in the outcome of some assigned A-move disconnected in M ′.
Since a single A-move can only be a (singleton) strategy for 〈〈A〉〉Gψ if it
”loops back”, which is incompatible with being disconnected, none of these
assigned A-moves can be a strategy for 〈〈A〉〉Gψ.

3. ϕ = 〈〈A〉〉ψ1Uψ2:
(⇒) M ′ is a strategy for 〈〈A〉〉ψ1Uψ2 iff, for every Λ ∈ out(dom(M ′),M ′),
there is i ≥ 1 such that {Λ[i]} |= ψ2 and {Λ[j]} |= ψ1, for every 1 ≤ j ≤ i. If
〈q,mA〉 ∈ M ′ is an assigned A-move disconnected inM ′, then {q} |= ψ2 must
hold (otherwise there would be a path Λ ∈ out(q,M ′) such that Λ[i] |= ψ2

does not hold for any i). Thus, every assigned A-move disconnected in M ′

is a singleton strategy for 〈〈A〉〉ψ1Uψ2.
(⇐) We argue by contraposition. Since M is a strategy for 〈〈A〉〉ψ1Uψ2, (a)
there is no infinite Λ ∈ out(dom(M),M) such that {Λ[i]} *|= ψ2 for all i ≥ 1
and (b) there is no q ∈ dom(M) such that {q} *|= ψ1 and {q} *|= ψ2. Since
(b), if M ′ ⊆ M is not a strategy for 〈〈A〉〉ψ1Uψ2, this can only happen if,
for some Λ ∈ out(dom(M ′),M ′), we have {Λ[i]} *|= ψ2, for every i ≥ 1. Since
(a), every such path must be finite. Thus, the last state q of every such path
must be in the outcome of some assigned A-move 〈q′,mA〉 disconnected in
M ′. For this q ∈ out(q′,mA), we have {q} *|= ψ2; thus, {〈q′,mA〉} cannot be
a singleton strategy for 〈〈A〉〉ψ1Uψ2.

12

The function Uniform(A,M), which ensures that the three conditions from
Proposition 1 hold, is described in Alg. Uniform. It returns all maximal uniform
strategies of A for ϕ, where ϕ is a formula enforced by M .

Uniform(A,M) works as follows. First, the problem of avoiding blocking pairs
of assigned A-moves in a resulting maximal uniform strategy for ϕ is solved via
reduction to the problem of listing all maximal cliques in the components of a
graph derived from the blocking relation between assigned A-moves. (The Bron-
Kerbosh algorithm [3], or its variant [7], can be used for listing of all maximal
cliques.) Afterwards, we remove from every maximal uniform strategy M ′ ⊆ M
all disconnected assigned A-moves that are not singleton strategies of A for ϕ.
Thus, only uniform strategies for ϕ remain. Finally, every strategy that is a



subset of another strategy is removed. The remaining strategies are maximal
uniform strategies for ϕ.

We now prove the correctness of the algorithm for finding uniform strategies:

Claim. Given an ATLu-formula ϕ, the algorithm returns all maximal uniform
strategies for every subformula of ϕ (including ϕ itself).

Proof. For the case that ϕ is a non-strategic formula (i.e., either ϕ is an atomic
proposition, or ϕ = ¬ψ, or ϕ = ψ1 ∧ ψ2 ), the strategy S∅ returned by the
algorithm assigns the ∅-move to every state that satisfies ϕ. Thus, the domain
of S∅ is the set of states where ϕ holds, and S∅ is the maximal strategy for ϕ.
As every strategy consisting of ∅-moves is uniform, S∅ is uniform, as desired.

For the case that ϕ = 〈〈A〉〉ψ, we first show that the set of assigned A-moves
passed to function Uniform is the maximal strategy for ϕ:

– ϕ = 〈〈A〉〉Xρ – The arguments for function Pre are coalition A and the set Q
of all states from which ρ can be enforced. Function Pre returns a strategy
P containing all assigned A-moves that immediately lead to Q. Thus, every
path from out(dom(P ), P ) satisfies Xρ, and P is a strategy for 〈〈A〉〉Xρ. No
strategy of A for 〈〈A〉〉Xρ may contain an A-move out of P and thus P is
maximal.

– ϕ = 〈〈A〉〉Gρ – The set T1 passed to Uniform is the greatest fixed point
of F (X) = {〈q,mA〉 ∈ Pre(A, dom(X)) | ρ can be enforced from q}. Every
path from out(dom(T1), T1) satisfies Gρ and thus T1 is a strategy for 〈〈A〉〉Gρ.
Since every strategy for 〈〈A〉〉Gρ must be a fixed point of F and T1 is the
greatest fixed point, T1 is the maximal strategy for 〈〈A〉〉Gρ.

– ϕ = 〈〈A〉〉ρ1 U ρ2 – The set T1 passed to Uniform is the least fixed point of
G(X) = {〈q, %k〉 | ρ2 can be enforced from q}∪{〈q,mA〉 ∈ Pre(A, dom(X)) |
ρ1 can be enforced from q}. Every path from out(dom(T1), T1) satisfies ρ1 U ρ2
and thus T1 is a strategy for 〈〈A〉〉ρ1 U ρ2. No strategy for 〈〈A〉〉ρ1 U ρ2 may
contain an assigned A-move that is not a member of the least fixed point of
G and thus T1 is the maximal strategy for 〈〈A〉〉ρ1 U ρ2.

Second, Proposition 1 imposes three necessary and sufficient conditions on a
subset of the maximal strategy for a given ϕ = 〈〈A〉〉ψ to be a maximal uniform
strategy for ϕ. Since the arguments passed to function Uniform are coalition A
and the maximal strategy M for ϕ, we will show that Uniform(A,M) returns
all subsets M ′ of M that satisfy the conditions from Proposition 1:

1. The first condition prohibits the presence in M ′ of pairs of blocking assigned
A-moves. Consider a graph G = 〈M,B〉 where (〈q,mA〉, 〈q′,m′

A〉) ∈ B iff
〈q,mA〉 and 〈q′,m′

A〉 are blocking each other. A subset M ′ does not contain
any pair of assigned A-moves blocking each other iffM ′ is an independent set
in G, i.e., a clique (a complete subgraph) in the complement graph G. Since
we want only maximal uniform strategies, we select only maximal indepen-
dent sets in G. Since no pair of assigned A-moves from two different discon-
nected components in G is blocking each other, the set of all maximal in-
dependent sets in G is {

⋃
i=1,...,n Ii | Ii is a maximal independent set in Ci}



Function Uniform(A, M)

Input: a coalition A, the maximal strategy M of A for a formula ϕ
Output: all maximal uniform strategies of A for ϕ
begin

build a graph G = 〈M,B〉 where (〈q,mA〉, 〈q′,m′
A〉) ∈ B iff 〈q,mA〉 and

〈q′,m′
A〉 are blocking;

find all components C1, .., Cm of G;
foreach component Ci of G do

/* find all maximal independent sets I1i , .., I
n
i in Ci */

build the complement graph Ci of Ci;

Ii := {all maximal cliques I1i , .., I
l
i of Ci} ; // Bron-Kerbosh algorithm

// generate all combinations of cliques, one clique per component
S := {∅};
foreach component Ci of G do

S′ := {∅};
foreach Sj ∈ S do

foreach clique Iki ∈ Ii do
S′ := S′ ∪ {Iki ∪ Sj};

S := S′;

if ϕ is not in the form 〈〈A〉〉Xψ then
// remove all disconnected assigned A-moves
foreach Si ∈ S do

foreach 〈q,mA〉 ∈ Si do
foreach q′ ∈ out(q,mA) do

if there is no A-move assigned to q′ in Si then
/* remove recursively all assigned A-moves

potentially leading to q′ */
R := {〈q,mA〉};
while R &= ∅ do

Si := Si \R;
R′ := ∅;
foreach 〈q,mA〉 ∈ R do

foreach 〈q′,m′
A〉 ∈ Si do

if q ∈ out(q′,m′
A) then R′ := R′ ∪ 〈q′,m′

A〉 ;
R := R′;

// remove all non-maximal strategies
foreach Si ∈ S do

foreach Sj ∈ S do
if Si ⊆ Sj then S := S \ Si;

return S;



where C1, . . . , Cn are all disconnected components of G. Function Uniform
finds all combinations of maximal independent sets from every disconnected
component of G, one set per component, thus producing all uniform strate-
gies in M .

2. The second condition excludes from M ′ every assigned A-move that is dis-
connected in M ′ and also is not a singleton strategy for ϕ. If ϕ = 〈〈A〉〉Xρ, the
maximal strategy M consists only of the assigned A-moves disconnected in
M and each of them is a singleton strategy for ϕ. Thus, every uniform strat-
egy M ′ ⊆ M is a uniform strategy for ϕ. If ϕ = 〈〈A〉〉Gρ or ϕ = 〈〈A〉〉ρ1 U ρ2,
function Uniform finds in every uniform strategy M ′ ⊆ M all disconnected
assigned A-moves and removes them recursively. No assigned A-move M ′

that is a singleton strategy for ϕ is disconnected. Thus, every uniform strat-
egy M ′ in M after the removal of all disconnected assigned A-moves becomes
a uniform strategy for ϕ.

3. Function Uniform drops every uniform strategy for ϕ that is a subset of
another uniform strategy for ϕ. Thus, the results of function Uniform are
maximal.

Since our algorithm passes to function Uniform the maximal strategy M for
ϕ and function Uniform finds all subsets of M that satisfy the conditions from
Proposition 1, we have that the algorithm returns for every ATLu subformula ϕ
all maximal uniform strategies for ϕ. 12

4 Example

To demonstrate finding uniform strategies, we use the example of the SOSEWIN
sensor network for detection of earthquakes [4]. This network consists of a fixed
number of nodes. Every node is connected to two other nodes. A protocol for
election of a leader is necessary to fulfill the task of the network. The aim of
the protocol is to establish exactly one leader in the cluster. For the sake of
simplicity, we fix the size of the cluster to three nodes and further limit the
information available to each node by reducing the size of their neighborhood.

We represent the cluster of 3 nodes as a one-dimensional cellular automaton
– a finite row of cells. Each cell may have one of two colors—black when the cell
is designated as the leader and white otherwise—and is connected to the cell on
its left and right side. The neighborhood of each cell consists of the cell on its
left, that is, each cell knows its own color and the color of the cell on its left.
The neighbor of the leftmost cell is the rightmost cell. In each step of the system
each cell synchronously observes the colors in its neighborhood and decides to
either keep it current color or swap it, according to an applicable rule. Given
a cell and the colors of the cell’s neighborhood the rule defines the next cell’s
color. Thus, a set of rules for all cells can be seen as a uniform strategy of the
cellular automaton.

We want to find all maximal uniform strategies of the cellular automaton
consisting of three cells for the following property: In one step a state of the



cellular automaton is reached, where exactly one cell is black and the other two
are white. Moreover, if the cellular automaton is at such state, the cells may not
change their colors.

First, we specify a CEGS representing our system:

– Each cell in the cellular automaton is one agent. We denote the leftmost cell
by c1, the middle cell by c2 and the rightmost cell by c3 . For the sake of
simplicity, we do not consider the environment to be an agent. Thus, the set
of agents is Agt = {c1, c2, c3}. Since all cells are involved in enforcing the
property, they are all included in the coalition A.

– A state of the system is given by colors of all three cells. We denote the state
where the cell c1 is black and the cell c2 and c3 is white by #$$. The set
of all states is St = {$$$,$$#,$#$,$##,#$$,#$#,##$,###}.

– There is a single atomic proposition p that holds in those states where exactly
one cell is black. That is, π(p) = {$$#,$#$,#$$}.

– Each cell can either keep its color (denoted by −) or swap it (denoted by s).
Thus, the set of actions is Act = {−, s}.

– Each cell has both actions available at all states except those where propo-
sition p holds. In states where p holds only action – is available to every cell
(this constraint is a part of the property that the system should enforce).
Thus, for every cell c ∈ Agt we have d(c, q) = {−} for every state q ∈ π(p)
and d(c, q′) = {−, s} for every state q′ *∈ π(p).

– The transition function o can be derived from the description of the action.
For example, o(#$#, 〈−,−, s〉) = #$$.

– Since each cell knows only its own color and the color of the cell on its left, the
two states that differ in the color of the cell on its right are indistinguishable
for the cell.

We can now express the desired property formally: ϕ = 〈〈A〉〉Xp. The algo-
rithm (see appendix A) calls function Pre(A, π(p)) to find the maximal strategy
M of A for ϕ. M consists of assigned A-moves represented by nodes in Fig. 3.
The domain of M consists of all system states.

Function Uniform(A,M) constructs the graph G for the blocking relation on
M (Fig. 3). There is only one component in G and one maximal independent
set in G is depicted in grey in the figure. In case of next operator every assigned
A-move in the maximal strategy for ϕ is a singleton strategy for ϕ. Thus, every
maximal independent set in G represents one maximal uniform strategy ϕ and
no check for disconnected assigned A-moves that are not singleton strategies is
necessary.

There is a number of maximal uniform strategies for ϕ, but none of them
consists of A-moves assigned to every state of the system. That is, there is no
uniform SA for ϕ such that dom(SA) = St. There are four uniform strategies
for ϕ that contain A-moves assigned to every state from π(p). From these four
strategies only the one depicted on the figure consists of such assigned A-moves
that to every cell the same action is prescribed for the same combination of its
color and the color of its left neighbor. From this strategy one set of rules can
be derived that can be performed by every cell, namely: swap the color if both
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Fig. 3: The maximal strategy M for ϕ = 〈〈A〉〉Xp: A node represents an assigned
A-move. An edge connects assigned A-moves that block each other and the label
of the edge denotes the agent to that the connected states are indistinguishable.
% denotes all agents. Proposition p is true at the states from the bold nodes.
One maximal uniform strategy for ϕ (a maximal independent set) consists of
the grey nodes.

colors are black, keep the color otherwise. If every cell follows this set of rules,
the system reaches a state from π(p) in one step from all states except ###
and $$$ (while respecting the constraint on the behavior at states from π(p)).

5 The Complexity of Finding Uniform Strategies

In the following, n = |St| denotes the number of states of a CEGS, k = |Agt|
denotes the number of all agents, a = |Act| denotes the number of all actions
and m ≤ n · ak denotes the number of transitions.

For each subformula ϕ of a given ATLu-formula, the algorithm (see ap-
pendix A) first finds the maximal strategy M for ϕ. In the worst case, this
involves computing the least or the greatest fixed point of Pre, which finds a
pre-image for a given set of states and a coalition. When doing this, the mem-
bership of each assigned A-move 〈p,mA〉 in M is considered at most once. The
number of assigned A-moves is at most m ≤ n · ak. To include 〈p,mA〉 in M ,
every outcome of mA at p must be checked, that is, at most ak checks must be
done. Thus, finding the maximal strategy M takes O(n · a2k) steps.

From the maximal strategy M for ϕ all maximal uniform strategies for ϕ
must be extracted by function Uniform.

The first step of Uniform(A, M) is the construction of the graph G = 〈M,B〉
representing the blocking relation on the assigned A-moves from M . The vertices
of G are the assigned A-moves from M and the edges of G are those pairs
from M that are blocking each other. The size of M is at most the number
of all transitions in the CEGS, i.e., |M | ≤ n · ak. To decide whether a pair of



vertices is connected by an edge, the actions from the assigned A-moves must be
compared for each agent from A that cannot distinguish between the states to
that the A-moves are assigned. This involves at most k comparisons for a pair of
vertices. Since the presence of edges must be decided for every pair of vertices,
the construction of G takes O(k · |M |2) ≤ O(k ·n2 · a2k) steps. The disconnected
components of G can be identified during the construction for no extra price.

Next, each disconnected component C of graph G must be turned into its
complement graph C. That is, every pair of vertices in C must be included or
excluded from the set of edges depending on their presence in the set of edges
in C. In the worst case, G consists of only one component and the construction
of G requires O(|M |2) ≤ O(n2 · a2k) steps.

Next, all maximal cliques are found in every complement graph C. The Bron-
Kerbosh algorithm solving this task has the worst-time complexity O(3v/3) for
a graph with v vertices [9] and is optimal since there are at most 3v/3 maximal
cliques in such graph [8]. If G consists of j disconnected components C1, . . . , Cj

with c1, . . . , cj vertices, respectively, then the task requires O(
∑j

i=1 3
ci/3) ≤

O(3n·a
k/3) steps.

Next, all combinations of maximal cliques – one for each disconnected com-
plement component – are generated to provide all maximal uniform strategies
within M . Since there is at most 3ci/3 maximal cliques in a complement com-

ponent Ci, we need up to O(
∏j

i=1 3
ci/3) = O(3

∑j
i=1 ci/3) ≤ O(3n·a

k/3) steps to
produce all maximal uniform strategies within M .

Next, in some cases all disconnected assigned A-moves must be removed
from the strategies. To find out whether an assigned A-move is disconnected in
a strategy, each its outcome must be checked. Each assigned A-move has at most
ak−|A| states in the outcome and each uniform strategy has at most n assigned
A-moves. Since there is up to O(3n·a

k/3) maximal uniform strategies, it takes up

to O(n · ak−1 · 3n·ak/3) steps to remove all disconnected assigned A-moves.

Lastly, every strategy that is a subset of another strategy must be removed
so that only maximal uniform strategies for ϕ remain. At worst case, every
pair of strategies must be compared (at most 32·n·a

k/3 comparisons) and each
comparison may involve checks for each pair of assigned A-moves (n2 checks).

Thus, removing the non-maximal strategies may take at most O(n2 · 32·n·ak/3)
steps.

For each subformula ϕ of a given ATLu formula that contains a coalitional
operator the maximal strategy M must be found (at most O(n · a2k) steps) and
all maximal uniform strategies of the given coalition for ϕ must be extracted
(at most O(n2 · 32·n·ak/3) steps). If we denote by l the number of the strategic
subformulas in a given ATLu formula then the worst-case complexity of finding
uniform strategies is O(l · n2 · 32·n·ak/3).



6 Conclusion

We presented an algorithm for finding uniform strategies for multi-agent systems
with agents with incomplete information. Given a strategic formula ϕ = 〈〈A〉〉ψ,
we find all maximal uniform strategies that agents in A can use to enforce ψ,
rather then simply the set of states satisfying ϕ. The formulas we consider have
the syntax of ATL, but their semantics is taken from CSL ([5]). The algorithm
has double-exponential worst-case complexity, since it uses. as a subroutine, a
procedure for finding all cliques in a graph—problem that is known to be NP-
complete—and the structures we are dealing with are exponential in the size
of the input. Further research will be focused on reducing the complexity of
the problem by using a model with an implicit representation of the incomplete
information, e.g., modular interpreted systems [6].

Acknowledgements. This work is supported by the grant SUA 08/034 from
the National Research Foundation of South Africa and the Deutsches Zentrum
für Luft- und Raumfahrt, as well as by the grant from the Deutsche Forschungs-
gemeinschaft, Graduiertenkolleg METRIK (GRK 1324/1).

References

1. SAFER - Seismic eArly warning For EuRope. http://www.saferproject.net/,
2010.

2. Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time tem-
poral logic. J. ACM, 49(5):672–713, 2002.

3. Coen Bron and Joep Kerbosch. Algorithm 457: finding all cliques of an undirected
graph. Commun. ACM, 16(9):575–577, 1973.
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A Algorithm for finding uniform strategies

foreach ϕ′ in Subformulas(ϕ) do
[ϕ′] := ∅;
case ϕ′ = p :

S1 := { 〈q, %k〉 | q ∈ π(p)};
[ϕ′] := {S1};

case ϕ′ = ¬ψ :
S1 := { 〈q, %k〉 | !S ∈ [ψ] : q ∈ Dom(S)};
[ϕ′] := {S1};

case ϕ′ = ψ1 ∧ ψ2 :
S1 := ∅;
foreach Si ∈ [ψ1] do

foreach Sj ∈ [ψ2] do
S1 := S1 ∪ {〈q, %k〉 | q ∈ Dom(Si) ∩Dom(Sj)};
[ϕ′] := {S1};

case ϕ′ = 〈〈A〉〉Xψ :
S :=

⋃
Si∈[ψ] S

i;

P := Pre(A,Dom(S));
i := 1;
foreach S ∈ Uniform(A,P ) do

Si := S;
[ϕ′] := [ϕ′] ∪ {Si};
i := i+ 1;

case ϕ′ = 〈〈A〉〉Gψ :
S :=

⋃
Si∈[ψ] S

i;

T1 := {〈q, %k〉 | q ∈ Dom(S)}; T2 := {〈q, %k〉 | q ∈ St};
while Dom(T2) *⊆ Dom(T1) do

T2 := T1; T1 := Pre(A,Dom(T1));
T1 := T1 \ {〈q,m〉 ∈ T1 | q *∈ Dom(S)};

i := 1;
foreach S ∈ Uniform(A, T1) do

Si := S;
[ϕ′] := [ϕ′] ∪ {Si};
i := i+ 1;

case ϕ′ = 〈〈A〉〉ψ1Uψ2 :
S1 :=

⋃
Si∈[ψ1]

Si;

S2 :=
⋃

Si∈[ψ2]
Si;

T1 := ∅; T2 := {〈q, %k〉 | q ∈ Dom(S2)};
while Dom(T2) *⊆ Dom(T1) do

T1 := T1 ∪ T2; T2 := Pre(A,Dom(T1));
T2 := T2 \ {〈q,m〉 ∈ T2 | q *∈ Dom(S1)};

i := 1;
foreach S ∈ Uniform(A, T1) do

Si := S;
[ϕ′] := [ϕ′] ∪ {Si};
i := i+ 1;

return [ϕ′] ;
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