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Abstract: In this contribution, we compare and analyze different methodologies of
modeling for test generation. As an example, we use an industrial requirement specifi-
cation given in natural language, which describes a safety function in a hybrid car. We
model these requirements with three different paradigms and languages: as the specifi-
cation imposes several timing constraints, we choose Abstract State Machines, Timed
Automata and UML2 State Machines to formalize the given requirements. From these
models, we employ different tools for generating test cases, and compare the result-
ing test suites with respect to coverage and fault detection capabilities. We discuss
the process of designing the models and the implications for professional software
testing.1

1 Introduction

Model-based software engineering, and, in particular, model-based testing (MBT) has re-
ceived much attention as a state-of-the-art method for creating and testing embedded soft-
ware. However, MBT is not yet a widespread standard method in industry. There are
several reasons why model-based test generation is not as widely used as it could be. One
of them is that initially it may be difficult to choose an adequate modeling notation and
tool set. Even though UML2 claims to be the unified modeling language, it has several
profiles and extensions. Moreover, there are other notations which are not included in this
unification but still used for engineering embedded systems. A natural question is to in-
vestigate which methods are apt for various types of systems. However, to our knowledge
there is no published result where different MBT approaches are compared and evaluated
on a practical example.

In this contribution, we use three different modeling languages to formalize the same spec-
ification. This results in three different test models and, consequently, in different test
suites. We compare the effectiveness of the various approaches. Even though such a com-
parison can never be “complete”, it can provide assistance to choose an adequate method
for a particular project, depending on the characteristics of the system under test.

1This work was partially supported by the BMBF Project SPES2020 - Software Platform Embedded Systems,
FKZ 01|S08045J



2 Design of Test Models

Abstraction and automated generation of software artifacts are two key principles in soft-
ware engineering. Research has produced various notations for programming, starting
from assembler, high-level languages, to object-oriented and functional languages. Today,
code can even be generated from system models, which forms another level of abstrac-
tion. However, the design of models currently cannot be automated. It is performed by
specialists in modeling, which usually are proficient in a particular modeling paradigm.
Modeling for test generation, however, is not as well-understood.

A test generator converts models in executable test cases. That is, the focus of test models
is not the internal structure and workings, but the externally visible behavior of the SUT.
It is often difficult here to find the right level of abstraction: For example, if the natural
language specification states that “if the button is pushed, the light is switched on”, then an
implementation model will contain the inner workings. This may include writing internal
data, making calls to the operating system (OS) (e.g. preparing device drivers), and setting
up a listener for the button. Afterwards it may do some post processing (clean up) as well.

Depending on the test-target either all of the above mentioned activities shall be tested or
just a subset of them. A very abstract test only checks whether the system turns on the
light whenever the button is pressed, by e.g. observing the method call for turning on the
light. A more in-depth test checks in addition to this whether the correct device drivers are
requested from the OS, since the OS can be seen as one part of the system’s environment.
This example shows a general problem with abstract test models: it may not be possible
to deduce how to observe the SUT in order to cast a verdict for a test run. Since there is
only a limited amount of information about the system’s internals, it can be hard to decide
whether the observed behavior conforms to the intentions.

In this contribution, we focus on the design of test models. We design three models in
different languages for a given requirements specification, which is written in natural
language. The comparison of different modeling methods and languages is similar to a
comparison of different programming languages. It may be difficult to find fair balanced
criteria, since most metrics (execution time, memory footprint, lines of code, modularity,
cohesion, programming efficiency, etc.) can be twisted in favor of any given tool for a
particular language. Nevertheless a comparison makes sense as it can give a general flavor
of the particularities, strengths, and advantages of each method under consideration.

3 ECU Case Study

In this section, we present the case study. The system under test (SUT) is a electronic
control unit (ECU) implementing a safety function in a hybrid car. The ECU has one
input sensor and one output channel to the engine. The input sensor reads the pressure
of a pipeline connected to the engine. The ECU may read the following values from the
sensor: “invalid”, “low”, “high”, and “too high”. Via the output channel, the ECU can stop
the car’s engine. Initially, the pressure is “invalid” and the engine is on.



The behavior of the ECU is given by the following five rules defined by an industrial
partner:2

(R1) If the pressure sensor is more than 5s (short delay) “too high” a quick stop occurs
and the engine is shut off.

(R2) If the pressure sensor was invalid and switches to valid again and during the follow-
ing 5s the pressure is not low a long delay of 20s is activated. In this state a “too
high” triggers the quick-stop after 20s (long delay). (Long delay replaces the initial
short delay).

(R3) If the pressure is “low” then the 5s (short delay) is valid again.

(R4) If the valid pressure switches to invalid the 5s (short delay) is valid again.

(R5) If during the delay the valid pressure is not “too high” for more than 0.3s the delay
timer is reset to start a new delay period.

This specification uses a 5s “short delay” and 20s “long delay”. In the following, we refer
to these delays as short and long timing periods.

4 Modeling

In order to model the above requirements, we use three different but common modeling
languages. We chose one representative from each class: Abstract State Machines for
programming-near specification, Timed Automata for real-time specification, and UML2
State Machines as a industry standard. For each model we give a short introduction to the
modeling language and then highlight our design decisions.

4.1 Abstract State Machines

An abstract state machine (ASM) is a state machine operating on arbitrary data structures.
Each operation may, but does not need to, have a guard and an effect [GRS05]. A guard
limits the applicability of the operation to a subset of states. If no guard is specified, the
operation is always applicable. An effect specifies how the operation changes the values
in the data structure, when the operation is executed. As a change of the values denotes a
different state, eventually an operation leads to a new state.

We chose Microsoft Visual Studio with the Spec Explorer plug-in for designing the model
in C# [CGN+05]. Spec Explorer offers the ability to explore the ASM, visualize the
resulting state space as a finite “exploration graph”, and generate test cases.

2The rules have been very slightly modified for the purpose of this publication. However, we neither added
nor clarified any ambiguities in this specification.



Figure 1: The two operations for expiring the timer of rule (R1).

The state of the model is designed as follows: an enumeration holding the current pressure
value, a boolean denoting the engine’s status and a collection holding three timers. The
timers correspond to the temporal statements in the rules (R1), (R2) and (R5). Since ASMs
do not have built-in concepts for real time, we had to implement our own timer class.

Figure 2: The operation for rule (R5).

The timer of (R1) can be started with two different timing periods. Therefore, we de-
signed two operations for this timer, each handling the expiration of one timing period.
The first operation reflects the expiration with the short timing period and the second
the expiration with the long timing period (see Fig. 1). The statements beginning with
Contracts.Requires denote the preconditions of the operation. The preconditions
for operation ExpireShort DelayTimer demand that the timer for (R1) (timer[1])
is running, the timing period (getDelay()) of the timer is set short and the timer of



Figure 3: Finite graphical representation of the ASM’s state space.

(R2) is not running. If the timer of (R2) would be running, the two timers would expire in
the very same moment or the timer of (R1) would expire later than the timer of (R2). We
decided to prioritize the timer of (R2) if both timer expire at the same moment and hence,
block the timer of (R1) in this case.

The precondition for the operation ExpireLongDelayTimer is defined similar to that
of operation ExpireShortDelayTimer. The precondition for blocking the operation
when the timer of (R2) runs is obsolete here, since in this situation the two timers never run
in parallel. The effect of both operations is the same: when executed, the operation sets
the timers to expired and then stops the engine. The design of the operations for expiring
the other two timers in (R2) and (R5) is similar.

To complete the model, we then designed three operations for setting the pressure. The
first operation handles all pressure changes from any value but “invalid” to any other value
while no timer is running (rule (R1), (R3), and (R4)). The second operation handles the
case when the pressure is “invalid” or the timer for (R2) is running (rule (R2)).

The last operation (SetPressureFromRunningTimer1) is applicable when the pres-
sure changes while the timer of (R1) is running (rules (R1), (R3), (R4), and (R5)) (see
Fig. 2). This operation is only executable when the current pressure value is not “invalid”,



Figure 4: Top level of the UML2 State Machine.

the timer of (R1) as well as the engine are running, and the new pressure differs from the
current value. The operation has multiple effects, which occur under different conditions.
The operation changes the timing period of timer 1 to “short” according to (R3) and (R4),
if the new pressure value is “low” or “invalid”. Then the operations starts the timer of (R5),
just to stop it right after if the pressure is “too high”. If the new pressure value is “invalid”,
the timers for (R1) and (R5) are stopped. Finally, the new pressure value is stored.

The complete model has about 150 line of code. The result of the state space exploration
is given in figure 3.

4.2 UML2 State Machines

A UML2 State Machine Diagram is the graphical representation of a State Machine. It
essentially consists of a finite number of states and transitions [UML05]. In contrast to
ASMs, UML2 State Machines have a more complex notion of a state. A state may contain
several submachines, which again may contain states. A transition may contain a trigger,
a guard and an effect. In particular, a transition can be triggered after a certain time.

UML2 State Machines describe the behavior of a class of objects, usually modeled as a
class diagram. The class diagram declares attributes and operations, which are referenced
by the State Machine. It is difficult to identify the right balance between variables and
states, because states can be implemented as variable valuations and vice versa.

The states of our model reflect the values of the pressure sensor. We model the specifi-
cation by distinguishing two states: one for the “invalid” pressure value and the other for
all valid pressure values (“low”, “high”, “too high”). This step facilitates the modeling
of (R2), (R3), and (R4), because in this case a single transition is sufficient to model the
change from a valid pressure value to “invalid” (see Fig. 4).

The state Valid is refined to a submachine containing one state for each pressure value
plus an intermediate state (see Fig. 5). In the intermediate state, the long timing period



Figure 5: Refined “Valid”-State: States for pressure values and an intermediate state.

is activated, if the pressure does not switch to “low”, according to (R2). The timer for
(R1) is modeled by adding a final node to the submachine and connect it via a transition
with a parameterizable timer-trigger to the state “too high”. When the timer expires, the
submachine terminates, and the upper level State Machine will stop the engine before it
also terminates.

For modeling (R5), the state “too high” is refined into the submachine shown in Fig. 6.
The submachine allows the pressure to alternate between all the valid pressure values,
as long as the value is not “low” or “high” for more than 0.3 seconds. Therefore, the
submachine consists of the states “too high” and “not too high” as these two situations can
be distinguished in (R5). If the pressure is “low” or “high” for more than 0.3 seconds, the
submachine terminates and returns the control to the enclosing state Valid.

Figure 6: Refined “Too High”-State.



Figure 7: The sensor TA. Figure 8: The engine TA.

Figure 9: Rule (R1) for stopping the engine.

4.3 Timed Automata

Timed Automata (TA) are a concept from theoretical computer science where classical fi-
nite automata are extended by clocks [AD94]. In existing tools, one can also declare vari-
ables over certain data structures (bounded integers, bounded arrays and boolean types).
A state in a timed automaton is defined by the currently active location(s), the valua-
tion of clocks, and the variable valuation. TA running in parallel may communicate with
each other via channels, which either provide synchronized peer-to-peer communication
or asynchronous broadcasts to multiple peers.

In the modeling, we tried to stick as close to the specification as possible. Therefore, we
decided to model each of the rules (R1) – (R5) as a separate automaton. The environment is
modeled by two additional automata: one for the pressure sensor and one for the engine’s
status (see Fig. 7 and 8). Since the range of the pressure sensor comprises only four values,
it can be modeled by one broadcast channel for each value. Additionally, we use a peer-
to-peer channel for sending the quickstop command to the engine.

The variable declarations on the top level are as follows: The only variable the TA have
to share is the timing period for the timer in (R1). The behavior of the system is modeled
as follows: (R1) is formalized by three locations, denoting an idle timer, a running timer
and an expired timer (Fig. 9). The system reacts on changing pressure values by switching
between the idle and the running timer. If the timer expires the stop message is send.

(R2) is formalized by three locations, which denote again an idle condition, a condition
where the pressure value is “invalid” and a condition for the pressure being not “low” when
the pressure was invalid beforehand (Fig. 10). In the location not low pressure the
decision is made whether the timer of (R1) is untouched or set to a long timing period.

The TA for (R3) (in Fig. 11) and (R4) (in Fig. 12) consist of one location and one self-loop
only. They set the timer from (R1) to its short timing period.



Figure 10: Rule 2 for waiting for warm. Figure 11: (R3) Figure 12: (R4)

Figure 13: Rule (R1): Updated timed automaton.

Modeling (R5) is more intricate, since it non-trivially interferes with (R1): the timer of
(R1) must not be reset, though the pressure is not “too high” anymore. Rule (R5) allows
the pressure to change from “too high” to any other value but “invalid”, if it changes back
to “too high” within 0.3 seconds. Thus, we have to find a way to inhibit the TA for (R1)
interrupting this timer if the change occurs. The solution is to synchronize both by a newly
introduced transition, which actively stops the timer of (R1) (see Fig. 13). The existing
transitions for “low” and “high” have to be removed. Now the TA for (R1) switches to the
idle location only if the pressure is “invalid” or it receives a “reset” message.

With this modification of the automaton for (R1), rule (R5) can be modeled with three
locations, one of them being an idle location (see Fig. 14). The others denote that the
pressure is “too high” and that the pressure has switched from “too high” to “high” or
“low”. The decision whether the timer of (R1) is stopped and reset is made in the latter
location and depends on the expiration of the local timer. If the local timer expires, the
timer of (R1) is stopped and reset. Otherwise, if the pressure changes back to “too high”
prior to the local timer’s expiration, the timer of (R1) is not interrupted.

Figure 14: Rule (R5) for enabling flicker without interrupting the timer of (R1).



5 Evaluation

To compare and evaluate the models, we used three different tools to generated test cases:

• For the ASM models we used Spec Explorer, which is a Visual Studio Power Tool
and has been extensively used in internal applications at Microsoft [CGN+05].

• For UML2 State Machines, there are a number test generators, see [GNRS09]. We
used Conformiq Designer, which is widely used in the telecommunications domain.

• For timed automata, UPPAAL [BLL+96] is a well-known simulation and verifica-
tion environment; we used CoVer as an offline test generator for UPPAAL [HP07].

Test suites can be compared statically and dynamically. As a static comparison, we looked
at statistical information on the number of test cases and test steps for each test suite.
However, these figures are per se not very meaningful, since the size of a test suite is not
necessarily related to its fault detection capabilities. Therefore, we built an implementation
to be able to execute and compare the dynamic effectiveness of the test suites.

We mutated the SUT with the tool JUMBLE [IPT+07]. With all its mutation capabilities
turned on, JUMBLE generates 68 mutants for our SUT. These mutants include so-called
“masked mutants”, which show no observable difference in behavior from the original
SUT and therefore can never be detected by any test suite. Each test suite was executed
with the original implementation and with all of its mutants. From the test results, JUM-
BLE calculated the mutation score, which is the percentage of detected mutants.

As a further evaluation criterion, we used the tool CodeCover to measure the code cover-
age of the test suites in the SUT [Cod12]. In particular, we measured the Ludewig term
coverage, which is similar to MC/DC, but has some advantages: the Ludewig term cover-
age is defined for partly coverage, and for each individual term value set the term coverage
can be determined - both is not possible for MC/DC.

Spec Explorer was configured to generate “long” test cases and to accept any state as an
end state. We used the standard built-in traversal algorithm for test generation, which
covers all transitions on the exploration graph. With this configuration, Spec Explorer
generated 101 test steps in seven test cases, which achieved a mutation score of 50 % and
100 % term coverage.

For Conformiq Designer we applied two configurations. For the first test suite we used
the standard configuration which covers all transitions on the UML2 State Machine level.
Only test cases ending in the final state are accepted. With theses settings Conformiq
Designer generated a test suite with nine test case and a total of 30 test steps. This test
suite is the shortest by means of test steps and yields a mutations score of 35 % and 78.1 %
term coverage in this setting.

For the second configuration of Conformiq Designer, we choose the advanced coverage
criteria “2-Transition Coverage” and “Implicit Consumption”. 2-Transition Coverage cov-
ers every pair of two subsequent transitions at least once. Implicit Consumption tests if the
system correctly ignores messages that are not handled on any transitions going out from



a state. Given this configuration, Conformiq Designer generated a test suite consisting of
34 test cases with 141 test steps, that achieved 58 % on the mutation score and 100 % term
coverage.

Finally, we used the tool CoVer to generate a test suite from the UPPAAL timed automata.
For CoVer one has to design one’s own coverage criterion by defining a so-called “cov-
erage automaton”. We constructed such a coverage automaton that equals to transition
coverage on the TA and accepts any state as an end state. With these parameters, CoVer
generated 25 test cases with 70 test steps altogether, which achieve a mutation score of
36 % and covered 100 % of the terms.

6 Results and Lessons Learned

In this section, we present the results and lessons learned during the study. First, we discuss
similarities in the approach of designing the models. Then we compare the test generation
capabilities of the tools and their impact on a professional software engineering process.

6.1 Design

An obvious difference in the three modeling approaches is that Spec Explorer uses a tex-
tual language (C#), whereas Conformiq Designer and UPPAAL work with (the XML rep-
resentation of) graphical objects. Thus, Spec Explorer may be more comfortable for ex-
perienced programmers, and the other two may be more suited for application engineers.
However, with the coming of age of model transformation technologies, these differences
might become less and less important.

A more profound difference is in the structuring concepts which are provided by the lan-
guage. In UPPAAL, currently only a parallel composition of automata is possible, whereas
UML2 State Machines can also be structured in a hierarchical way. Spec Explorer offers
the full modularity features of the C# language. However, these structuring mechanisms
easily lead to complex models, where the test generation may suffer from the state explo-
sion problem. Thus, it is important to be aware of the complexities during the modeling.

The modeling languages differ also in their capabilities for modeling real-time aspects.
Timed automata were conceived as a means for specifying real-time systems, they offer
an intuitive concept of clocks. However, the complexity of analyzing a timed automaton
increases exponentially with the number of clocks it contains. Basic UML2 defines the
class TimeEvent of delays, which can be used as a trigger in a transition. There are
several extensions (e.g., MARTE [Gro08]) offering more elaborate modeling elements for
real-time. In Spec Explorer, there are no predefined constructs for timing. As we have
shown above, timers can be easily defined in C# with an appropriate library module.

We tried to develop the different models as independently from one another as possible.
However, there are remarkable similarities in the three models: In the UML2 approach



we designed three State Machines, which map directly to the three operations for altering
the pressure value in the ASM. Furthermore, the UML2 submachine for R5 directly cor-
responds to the timed automaton for R5, as the states can be mapped to the locations. Of
course, we cannot guarantee that design decisions for one model did not have an impact
on models which were conceived later on. However, we presume that the similarities point
at an underlying “common core” of the models. Similar as algorithms can be explained in
a “pseudo programming language” and implemented in various programming languages,
there might be an upcoming “pseudo modelling language” to describe the common core
of a model.

The timed automata modeling follows the structure of the requirements more explicitly
than the other two models: for each rule, we designed an automaton realizing this rule.
This procedure could have been mimicked with the other modeling formalisms as well. It
supports an incremental development process of models. However, as we have seen with
(R5), it is not always possible to follow such an incremental paradigm. In order to build
an automaton for (R5) we were forced to modify the previously defined automaton for
(R1). A reason for this is that the natural language requirement (R5) nontrivially interferes
with (R1). Thus, it is advisable to study and explicate the cross-references within the
requirements before starting to model a system.

6.2 Test Generation

The results of executing the test suites show no significant correlation between the size
of the generated test suites and their fault-detection capabilities. Even with a low number
of steps one test suite achieved a decent mutation score, whereas another one which was
more than twice as large had almost the same score. Though this was to be expected, it
shows that the size of a test suite is no indicator of its quality, and that it is important to
manage the test generation process.

With appropriate tuning all three employed tools were able to produce good results. Con-
figuration facilities, however, greatly differ between the various tools. The options range
from predefined coverage criteria, model annotations, to the definition of custom gener-
ation algorithms. The most convenient solution to configure a test generation algorithm
is to choose from a list of predefined coverage criteria. Conformiq Designer offers var-
ious criteria to choose from, including transition coverage, boundary value analysis, and
all-paths. Spec Explorer offers only one built-in coverage criterion, namely transition
coverage on the exploration graph. For advanced users, Spec Explorer provides the in-
terface IDynamicTraversal, which can be implemented by the user to influence the
test generation process. CoVer allows to use the “Hessel Observer Framework” for defin-
ing observer automata to configure the coverage. Usually, it is necessary to define such
automata for each project. The initial coverage results (without configuration) differ sig-
nificantly. However, in any professional software testing process, the goals are given by
company or even regulatory standards. Therefore, all employed tools must be optimized
for their intended purpose, e.g., to reach a certain predefined coverage or mutation score.
Currently, this process requires some experience and proficiency with the given tool.



Test coverage can also be measured on the requirements level. Most modeling tools al-
low to annotate the models with requirements to enable traceability. Conformiq Designer
offers the option to use these annotations in the test generation process. Spec Explorer
copies the annotations into the generated test script; thus it is possible to observe whether
a requirement has been covered. Currently, CoVer does not offer processing of annotations
for traceability. In any serious testing process, traceability of requirements to test cases is
essential. Integrated test environments provide traceability of artifacts by additional test
management tools. However, currently the integration is mostly done by hyperlinks, i.e.,
on a syntactic level only. It would be desirable to have a semantical integration where the
semantics of the requirements is used to generate models and control the generation of test
cases. Thus our future work includes semantical analysis of informal requirements with
the prospect of test generation.
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