Electronic Communications of the EASST

Volume X (2013)

Proceedings of the
Automated Verification of Critical Systems
(AVoCS 2013)

Simulating Timed UML?2 Sequence Diagrams with Timed CSP
Alexander Knapp, Liam O’Reilly, Markus Roggenbach, Bernd-Holger-Schlingloff

3 pages

Guest Editors: Steve Schneider, Helen Treharne

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122



http://www.easst.org/eceasst/

Eg ECEASST

Simulating Timed UML2 Sequence Diagrams with Timed CSP

Alexander Knapp', Liam O’Reilly’, Markus Roggenbach?,
Bernd-Holger-Schlingloff’

'Universitit Augsburg, >University of Swansea,
SFraunhofer FOKUS and Humbodt Universitit zu Berlin

Abstract: This paper deals with the formal validation of requirements in a model-
based design methodology. We consider timed UML2 sequence diagrams as formal-
ization of informal requirements and show how to simulate them by translation into
Timed CSP. Simulation results are displayed in a graphical representation. This way,
we can detect errors in the requirements at a very early stage in the development.
We illustrate our ideas with an example from a ventricular assist device, which is a
highly safety-critical application for supporting the human heart.

Keywords: Validation, Simulation, UML?2, Sequence Diagrams, Timed CSP

1 Introduction

Model-based engineering is a current paradigm for the development of complex software systems.
Starting from informal requirements, the structure and behaviour of the system under construction
is modelled with various formalisms. In this context, UML2 sequence diagrams are frequently
used for exhibiting sample runs during the requirements elicitation phase. Often, time is an
integral aspect of such requirements. In UML2, real-time constraints can be expressed by timers,
as well as minimal and maximal waiting times between certain event occurrences. In requirements
validation, catching timing errors plays an important role. The interplay of different timing
constraints in a sequence diagram can be confusing. Here, simulation of sequence diagrams
can be helpful: as an interactive validation method, where the user provides a timed run which
the simulator accepts or rejects; or as a means against “organizational blindness”, where the
simulator automatically generates random runs — which might be of a form beyond the modeller’s
imagination.

2 A Ventricular Assist Device

As an example, we consider a ventricular assist device for the support of the human heart. This
example is adapted from an industrial project, which is currently under development. A typical
use case is that the user (i.e., the doctor or nurse) wants to adjust some parameters from a panel
PC via a serial connection. Here, the user is restricted to a 30 second time window to input the
new configuration data. This timeout is in order to prevent the user from entering wrong data
due to a distraction, say, by a telephone call. This use case is captured by the UML?2 sequence
diagram shown below (in part).

1/3 Volume X (2013)



Simulating Timed UML2 Sequence Diagrams with Timed CSP

sd: Set pump parameters)
ctrl:COMController
setStartUp()
setStartUpAck()

{0..30000}

setPumpParameters(100, 100)

LA . '

3 Translating UML2 Interactions via Timed Automata into Timed CSP

We translate a (timed) UML?2 interaction into a timed automaton [AD94] which can be seen as
an observer of the message exchanges in a system reacting to these exchanges. The automaton
registers the sending of a message as an event, and receiving a message as a separate event. Thus,
the transmission time of a message can be considered. Asynchronous message passing is fully
supported.

Our translation extends our previous work [KW07] now involving time. Abstractly, a timed
UML2 basic interaction ((O, <),T") consists of two components: on the one hand it comprises a
partial order (O, =) where O is a finite set of events (observations) and < fixes which events have
to happen before other events; on the other hand, a basic interaction comprises time constraints I’
on O. The translation of a timed basic interaction ((0, =), I") into a timed automaton is performed
by unwinding the partial order of events (O, <) in phases similar to the technique presented for
live sequence charts [BDK™04], simultaneously taking into account the time constraints I".

It is an interesting, however, not too involved exercise to systematically encode the result-
ing timed automaton in the process algebra Timed CSP, see e.g. [Sch00]. Here, we apply a
construction which is far less involved than the one given by Ouaknine and Worrel [OWO03].

In general, our approach is prepared to handle all elements of Timed Sequence Diagrams with
some restrictions to loops, negation, and dynamic object creation; currently, however, we focus
on basic diagrams.

4 Simulation and Visualisation

The tool Timed CSP Simulator [FGM " 12] allows to simulate Timed CSP in both ways described
above: as an interactive exploration tool and via generation of randomized runs. However, as
informative as such a simulation might be, it is problematic as it changes representation. Therefore,
we translate the output of Timed CSP simulator back into a format close to UML2 sequence
diagrams:

User  Ctrl L.Drive User  Ctrl L.Drive

1 1

Proc. AVoCS 2013 2/3



Eg ECEASST

User  Crrl L Brfivz Usar  Ctrl L.Drive

o 0
V- R R LN TR R SENE
13| slsetStarlp LS L% ceisEnile _ |
ve | L 1 LT B R

1 1L agg __ _llesmmgiliprale|| __

Here, the numbers in the left column are user or randomly chosen time delays. Via control buttons,
the user can explore runs of a sequence diagram in a step-by-step fashion.

5 Conclusion

We have presented a prototypical, automated implementation of a tool chain from Timed UML2
Sequence Diagrams to an interactive visualisation tool simulating their different runs. The
interactive visualisation allows to check in an explorative way whether the use cases have been
modelled correctly. Our experiments concerned models of moderate size. A potential bottleneck
in the tool chain is the translation into timed automata, which has an exponential worst case
complexity in the number of observations [KW07]. However, “normal” diagrams do not pose a
problem.

We base our current work on Timed-CSP, as — in the long run — this allows us also to consider
time bounds in the Sequence Diagrams which are given as expressions, depending, e.g., on user
input or the system state. Overall, this work is a first step towards developing a simulation and
verification framework for timed UML?2 — open for external tools dealing with Timed CSP, timed
automata, and other formal methods.

Bibliography

[AD94] R. Alur, D. L. Dill. A Theory of Timed Automata. Theo. Comp. Sci. 126:183-235, 1994.

[BDK"04] M. Brill, W. Damm, J. Klose, B. Westphal, H. Wittke. Live Sequence Charts. In Ehrig et al.
(eds.), Integration of Software Specification Techniques for Applications in Engineering. Lect.
Notes Comp. Sci. 3147, pp. 374-399. Springer, 2004.

[FGM™12] M. Fontaine, A. Gimblett, F. Moller, H. N. Nguyen, M. Roggenbach. Timed CSP Simulator.
In Proc. Posters & Tool Demos Sess. iFM&ABZ’12. 2012.

[KWO07] A. Knapp, J. Wuttke. Model Checking of UML 2.0 Interactions. In Kiihne (ed.), Rev. Sel.
Papers Wsh.s MoDELS’06. Lect. Notes Comp. Sci. 4364, pp. 42-51. Springer, 2007.

[OWO03] J. Ouaknine, J. Worrell. Timed CSP = Closed Timed €-Automata. Nord. J. Comput. 10(2):99—
133, 2003.

[Sch00] S. Schneider. Concurrent and Real-time Systems. Wiley, 2000.

3/3 Volume X (2013)



