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Abstract. In this paper, we present a rewriting based monitoring algo-
rithm for time propositional temporal logic (TPTL), which is a classic
time extension of linear temporal logic (LTL). TPTL has been shown to
be more expressive than other real-time extensions of LTL, e.g., metric
temporal logic (MTL). We �rst describe the syntax and semantics of
TPTL on �nite time-traces. Using Maude, which is an executable envi-
ronment for various logics, we give rewriting clauses to check whether a
�nite time-trace satis�es a TPTL formula. We use our algorithm to test
a concrete example from the European Train Control System (ETCS),
and evaluate it on several benchmarks. The results show the feasibility
of our approach.

1 Introduction

Runtime veri�cation is proposed for checking whether a run of a system satis�es
or violates a given correctness property [1]. It is seen as a lightweight veri�cation
technique when compared to model checking and testing. Runtime veri�cation
is able to avoid the following problems of model checking: i) when checking a
high complexity system, model checking could su�er from the so-called state
explosion problem; ii) when checking a black-box system, a model of the system
may not be available for model checking; iii) the object of model checking is a
model of the system, not the system itself.

Runtime veri�cation is performed by using a monitor. This is a device or a
piece software that reads a behavior of the system under monitoring and gives
a certain verdict (true or false) as the result. A behavior of the system is pre-
sented by its trace, which is an observable execution sequence of the system.
Unlike model checking, runtime veri�cation does not check all executions of the
underlying system, but a �nite trace. Hence it does not su�er from the state
explosion problem when dealing with a large system. Furthermore, runtime ver-
i�cation does not need a model of the system. Therefore, it is well suited to
check black-box systems. Finally, the checking object of runtime veri�cation is
the system itself. Thus, the possibility of introducing additional errors in the
modeling is excluded.
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One of the most interesting problems in runtime veri�cation is how to build
a monitor from a high level speci�cation. Havelund et al. [2] propose a formula
rewriting based runtime veri�cation approach, constituting part of a project
named Java PathExplorer (JPAX). Their work aims at monitoring Java pro-
grams and has been used in Mars Exploration Rover missions. Feng et al. pro-
pose an MOP framework for software development and analysis, in which the
satisfaction/violation of properties can be detected by executing the code. Bar-
ringer et al. [3] propose a rule-based system for trace analysis RuleR. They also
propose the LOGSCOPE system, which is an extension of RuleR with a simple,
user-friendly temporal logic. Gastin et al. [4] propose an LTL to Büchi automata
translation, which is able to generate monitors [5].

For checking time-relevant properties, real-time logics have been introduced
into runtime veri�cation. Bauer et al. [6] work on TLTL based runtime veri�ca-
tion for monitoring real-time properties. They de�ne TLTL by introducing two
formulae (Ba ∈ I) and (Ca ∈ I) with a being an event, and I being a time
interval. They translate TLTL formulae to event-clock automata for detecting
whether a trace is accepted or rejected.

Metric temporal logic (MTL) [7] is a well studied real-time logic. It is obtained
by extending standard LTL with a time bounded temporal operator U[a, b], where
a, b are natural numbers. When dealing with dense time, two di�erent semantics
of MTL are considered, depending on whether the trace to be checked con-
sists of discrete events or continuous states. These two di�erent semantics are
called pointwise semantics and interval-based semantics, respectively. Several
MTL based monitoring approaches have been proposed. Thati et al. [8] propose
a formula rewriting based monitoring algorithm for MTL with pointwise seman-
tics. Nickovic et al. propose monitoring algorithms for a restricted version of
MTL, named MITL. The time interval of temporal operators in MITL cannot
be singular. Basin et al. [9] propose a monitoring algorithm for metric �rst-order
logic with pointwise semantics. Their approach can cope with variables ranging
over in�nite domains. They also develop algorithms for both pointwise MTL and
interval-based MTL [10].

Alur et al. [11] propose a �more temporal� real-time logic, named time propo-
sitional temporal logic (TPTL). It is obtained from LTL by introducing a freeze
quanti�er �x.�. A TPTL formula can �reset� a formula clock at some point by as-
signing variables in the formula to the time value when the formula is evaluated.
The expressiveness of TPTL and MTL is studied in [12, 13]. It has been proven
that TPTL is strictly more expressive than MTL. Although the veri�cation and
model checking problem for TPTL has been studied intensely, the number of
TPTL based runtime veri�cation approaches is quite limited. One example is
Kristo�ersen et al. [14], who give a monitoring algorithm for LTLt, which also
extends LTL by a freeze quanti�er. The di�erence between TPTL and LTLt is
that the latter needs an extra clock variable r for expressing time.

In this paper, we propose a formula rewriting based runtime veri�cation
approach for TPTL. The monitor consists of a TPTL formula and a formula
rewriting algorithm, where the formula is generated from a high level speci�ca-



tion. The monitor receives a time-trace, which is generated from the underlying
system. It detects failures through checking whether this time-trace violates the
formula. The process is shown in Fig. 1. Our algorithm is developed directly
based on the syntax and semantics of TPTL.

Fig. 1. The runtime veri�cation process

Our algorithm is based on Maude [15], which is a high performance sys-
tem for model checking, theorem proving, and programming. It can be used for
runtime veri�cation implementation. We use the Maude rewriting logic, in the
style of the LTL rewriting program proposed by Havelund [16]. Additionally, we
present a case study of a concrete example in the railway domain. We translate
several properties contained in the speci�cations of a signaling system to TPTL
formulae, and abstract some executions of the system to time-traces. Then we
monitor these time-traces in Maude. The results show that our approach is an
ideal method for monitoring time-traces.

The rest part of the paper is organized as follows. Section 2 introduces the
de�nition of TPTL, including the syntax and semantics. Section 3 presents the
Maude-based algorithm for TPTL based monitor. Section 4 shows a case study
with a concrete example from the railway domain. Section 5 contains the con-
clusion and future work.

2 Preliminaries

2.1 Time-events and Time-traces

Given a (�nite) set of atomic propositions AP and a (�nite) alphabet Σ = 2AP ,
an event is de�ned as any single element of Σ, i.e. e = {p1, · · · , pm} with p1,
· · · , pm ∈ AP . If e is a singleton, we omit the curly brackets in the denotation.
If we denote the set of natural numbers by N≥0 and t ∈ N≥0, then a time-event
is de�ned as a pair te = (e, t) from the set Σ × N≥0. The natural number t
in a time-event te is a discrete time stamp, to identify the time of the event
emitted by a running real-time system. Given a time-event te = (e, t), we de�ne



Event(te) , e and Time(te) , t.Based on time-events, a time-trace is de�ned
as follows.

De�nition 1. (Time-trace) A time-trace tt is a (possibly in�nite) sequence of
time-events, i.e. tt = ((e0, t0), (e1, t1), · · ·), where for each i ∈ N≥0, it holds
that ti < ti+1 (strict monotonicity).

Given a �nite time-trace tt = (te0, te1, · · · , ten), we use the following denotations
in the rest part of the paper: the length of tt is denoted by |tt|; the ith time-event
in tt is denoted by tt[i], i.e. tt[i] , tei.

2.2 Syntax and Semantics of TPTL

LTL is a widely-accepted logic for specifying properties of in�nite traces. TPTL is
an extension of LTL to express real-time properties. It contains a freeze quanti�er
�x.�, which assigns the time value when the formula is evaluated to the variable
x. A TPTL formula x. ϕ(x) is satis�ed by a time-trace tt i� ϕ(time(tt[0])) is
satis�ed by tt. For instance, a TPTL formula (� x. (Request → ♦ y. (Ack ∧
y < 5 + x))) expresses the property �whenever an event Request occurs, then
the acknowledgment event Ack must occur within 5 time units�. This formula is
satis�ed, e.g., by the time-trace (· · ·, (Request, 7), · · ·, (Ack, 11), · · ·), since 11
< 5 + 7. More precisely, TPTL is de�ned as follows.

De�nition 2. (Syntax for TPTL) Given a �nite set AP of atomic proposi-
tions and a set V of free variables, the terms of π and formulae ϕ of TPTL are
inductively formed according to the following grammar, where x ∈ V , r ∈ N≥0,
p ∈ AP and ∼ ∈ {≤, <, =, >, ≥}:

π ::= x + r | r
ϕ ::= ⊥ | p | (ϕ1 → ϕ2 ) | (ϕ1 U ϕ2) | π1 ∼ π2 | x. ϕ.

The following shorthands are used in TPTL as in LTL: ♦ ϕ stands for > U ϕ,
� ϕ stands for ¬♦ ¬ϕ, and © ϕ stands for ⊥ U ϕ.

Assume that E is a function E : V → N≥0 for assigning free variables in N≥0
(time value) such that E(x + r) = E(x) + r and E(r) = r. Given a variable x and
a natural number r, we denote E [x := r] for the evaluation E ′ such that E ′(x) =
r, and E ′(y) = E(y) for all y ∈ V \{x}. In runtime veri�cation, the time-traces
to be checked are �nite. Hence, we give TPTL �nite semantics as follows.

De�nition 3. (Semantics for TPTL) Let tt be a �nite trace with i ∈ N≥0
being a position, p a proposition, and ϕ1 and ϕ2 any TPTL formulae. The sat-
isfaction relation (tt, i, E) |= ϕ is de�ned inductively as follows:

(tt, i, E) 2 ⊥;
(tt, i, E) |= p i� p ∈ Event(tt[i]);
(tt, i, E) |= (ϕ1 → ϕ2) i� (tt, i, E) |= ϕ1 implies (tt, i, E) |= ϕ2;
(tt, i, E) |= (ϕ1 U ϕ2) i� there exists i < j < |tt| with (tt, j, E) |= ϕ2 and

for all i < j′ < j it holds that (tt, j′, E) |= ϕ1;
(tt, i, E) |= π1 ∼ π2 i� E(π1) ∼ E(π2);
(tt, i, E) |= x. ϕ i� (tt, i, E [x := Time(tt[i])]) |= ϕ.



As is proven in [13], TPTL is strictly more expressive than MTL. The property
�whenever an a-event occurs, then a b-event will occur in the future and, later a
c-event will occur within 3 time units� can be expressed by a TPTL formula as:
� x. (a → ♦ (b ∧ ♦ y. (c ∧ y < x+ 3))). This property cannot be expressed in
MTL.

3 The Rewriting Algorithm for TPTL in Maude

Subsequently, we develop an algorithm for checking whether a �nite time-trace
satis�es a TPTL formula. More speci�cally, when checking the satisfaction re-
lation between a �nite time-trace and a TPTL formula, the formula is continu-
ously transformed to another formula by consuming the �rst time-event in the
time-trace. This procedure processes iteratively, until the last time-event is con-
sumed. It will output a boolean value in B ={true, false}. Our algorithm is
implemented in Maude, which provides an executable environment for various
logics. Here where we informally describe some of Maude's features which are
related to the algorithm, more details can be found in the manual [17].

3.1 The Algorithm for Basic Rewriting Operators and Logic

Connectives

In this algorithm, we use the functional modules following the pattern

fmod <name> is <body> emdfm.

The body of a functional module consists of a collection of declarations,
of which we will use sorts (sort and sorts), subsorts (subsort and subsorts),
operations (op and ops), variables (var and vars) and equations (eq).

We �rst need to de�ne all necessary data types involved in the algorithm,
including atomic proposition (Atom), event (Event), time-event (TimeEvent),
time-trace (TimeTrace) and free variable (FreeV). Atomic propositions have one
sort, with no operations or constrains. It is de�ned as follows.

fmod ATOM is sort Atom . endfm

As is shown in Fig. 2, the module DATA-TYPE de�nes all other data types.
The statements �protecting ATOM� and �protecting NAT� import the modules
ATOM and NAT without changing their initial semantics. NAT is a module of
natural numbers.

In our algorithm, an event consists of a set of atomic propositions; a time-
event consists of an event and a natural number; a time-trace consists of a
sequence of time-events; and a free variable consists of a natural number (the
value of the variable) and an atomic proposition (the name of the variable). The
operators �__�, �_:-_ �, �_,_� and �_ of _� generate an event, a time-event, a
time-trace and a free variable, respectively. Every operator has a priority feature,
which is declared through �[prec n]� with n ∈ N≥0.



fmod DATA-TYPE is protecting ATOM . protecting NAT .

sorts Event TimeEvent TimeTrace .
subsorts Atom < Event .
subsorts Nat < Atom .
subsorts TimeEvent < TimeTrace .
sort FreeV .
subsort FreeV < Formula .
sort Formula .
subsort Atom < Formula .
op __ : Atom Event -> Event [prec 23] .
op _:-_ : Event Nat -> TimeEvent [prec 23] .
op nil : -> Event .
op _,_ : TimeEvent TimeTrace -> TimeTrace [prec 25] .
op _ of _ : Nat Atom -> FreeV [prec 23].

endfm

Fig. 2. De�nition of data types

The statements subsorts declare Atom to be a subsort of Event, TimeEvent
to be a subsort of TimeTrace, and FreeV to be a subsort of Atom. Furthermore,
we de�ne Nat to be a subsort of Atom.

Based on the syntax and semantics of TPTL described above, we de�ne
several operators, �_{_}�, �_{_}′� and �_|=_�, for checking whether a time-
trace satis�es a formula. The operator �_{_}� receives a formula and an event.
It yields the formula >/⊥ depending on whether the event satis�es the formula
or not. The operator �_{_}′� is de�ned on basis of �_{_}� for checking the
satisfaction relation between a time-event and a formula. A time-event te satis�es
a formula ϕ i� ϕ{Event(te)} returns >. By extending �_{_}′�, the operator
�_|=_� is de�ned for checking whether a time-trace satis�es a formula. This
operator receives a time-trace and a formula, and generates a boolean value in
B. Given a formula ϕ and a time-trace (te, tt) consisting of a time-event te and
its su�x tt, then (te, tt) |= ϕ returns true/false i� ϕ{te}′ returns >/⊥ as the
result.

The calculation rules of logic connectives ∧ (and), ∨ (or), ++ (exclusive or),
! (negation), → (implication) and ↔ (equivalence) are declared as usual [16].

In our algorithm, the comparison operators (≤, <, =, > and ≥) and the
primitive operator (+) are denoted by ≤′, <′, =′, >′, ≥′ and +′ respectively,
to distinguish the original de�nition of these operators in Maude. See < as an
example of comparison operators, the declaration for <′ is shown in Fig. 3.



vars R R' N N' : Nat .
vars A A' : Atom .
op _<'_ : Formula Formula -> Formula [prec 40] .
ceq R <' R' = true if R < R' .
ceq R <' R' = false if R > R' or R == R' .
ceq ( N of A ) <' R = true if N < R .
ceq ( N of A ) <' R = false if N > R or N == R .
ceq ( N of A ) <' ( N' of A' ) = true if N < N' .
ceq ( N of A ) <' ( N' of A' ) = false if N > N' or N == N' .

Fig. 3. The calculation rule for comparison operator

3.2 The Algorithm for Temporal Operators and Freeze Quanti�ers

In this part we describe the rewriting algorithm for temporal operators and freeze
quanti�ers in TPTL. The algorithm for temporal operators (�, ♦, U and ©) is
de�ned in a module LOGICS-LTL, shown in Fig. 4.

fmod LOGICS-LTL is extending PROP-CALC .

vars X Y : Formula . var TE : TimeEvent . var TT : TimeTrace .
op _U_ : Formula Formula -> Formula [prec 14] .
op _U'_ : Formula Formula -> Formula [prece 14] .
op []_ : Formula -> Formula [prec 11] .
op <>_ : Formula -> Formula [prec 11].
op o_ : Formula -> Formula [prec 11] .
eq TE |= X U Y = false .
eq TE, TT |= X U Y = TT |= X U' Y .
eq TE, TT |= X U' Y = TE, TT |= Y or TE, TT |= X and TT |= X U' Y .
eq TE |= X U' Y = TE |= Y .
eq <> X = (true U X) .
eq [] X = (! <> (! X)) .
eq o X = (false U X) .

endfm

Fig. 4. Algorithm for standard LTL operators

In Maude, we denote the formula x. ϕ by (R of x) @ ϕ with x ∈ AP being
the name of the quanti�er, R ∈ N≥0 being the value of the quanti�er, and ϕ
being a TPTL formula. In addition, we de�ne an operator �@@� for assigning
free variables in ϕ. The rewriting process of tt |= (R of x) @ ϕ is separated into
two steps as follows.

1. The variable x of x. ϕ is set to the time when the formula is evaluated. Hence,
the formula (R of x) @ ϕ is rewritten to another formula ((Time(tt[0]) of x)
@@ ϕ), where (Time(tt[0]) is the initial time value from the given time-trace;



2. The operator @@ assigns all occurrences of variable x in ϕ to the value
(Time(tt[0]), and proceeds with the tt |= ϕ checking process.

The algorithm for this process is de�ned in a module FREE-QUAN, shown in
Fig. 5.

fmod FREE-QUAN is extending LTL .
vars X Y Z Z' : Formula .
var E : Event . var TE : TimeEvent . var TT : TimeTrace .
op _@_ : FreeV Formula -> Formula [prec 7] .
op _@@_ : FreeV Formula -> Formula [prec 6] .
op _+'_ : FreeV Nat -> Nat [prec 39] .
/* the value of a freeze quanti�er (R of A) equals to T, which is the time of the

�rst time-event in the time-trace */
eq E :- T, TT |= (R of A) @ X = E :- T , TT |= (( T of A ) @@ X) .
eq E :- T |= (R of A) @ X = E :- T |= ( T of A ) @@ X .
ceq ( M of A) @@ ( M' of A') = ( M of A' ) if A == A' . // a FreeV (M' of A') is

assigned to the value of the freeze quanti�er ( M of A) if they have the same
name

ceq ( M of A) @@ ( M' of A') = ( M' of A' ) if A =/= A' . // a FreeV (M' of
A') is not assigned to the value of the freeze quanti�er ( M of A) if they have
di�erent names

/* the value assignment rule for an algebraic formula. */
ceq ( N of A) @@ (N' of A' +' R) = N + R if A == A' .
ceq ( N of A) @@ (N' of A' +' R) = (N' of A' +' R) if A =/= A' .

endfm

Fig. 5. The rewriting algorithm for freeze quanti�ers

In addition, we introduce the following equivalences into the algorithm for
the operator @@. These equivalences are declared in the module FREE-QUAN,
where N, N′, M and M′ are natural numbers; A, A′, B and B′ are atomic propo-
sitions; E is an event; and X, Y, true and false are formulae.

� (N of A) @@ ((N' of A') @@ (M of B)) = (N of A) @@ (N' of A') @@ (M of
B);

� (N of A) @@ (X ∧ Y) = ((N of A) @@ X) ∧ ((N of A) @@ Y);
� (N of A) @@ (X ++ Y) = ((N of A) @@ X) ++ ((N of A) @@ Y);
� (N of A) @@ E = E;
� (N of A) @@ true = true;
� (N of A) @@ false = false;
� (N of A) @@ (X <′ Y) = ((N of A) @@ X) <′ ((N of A) @@ Y);
� (N of A) @@ ((N' of A') @ X) = (N' of A') @ ((N of A) @@ X);
� (N of A) @@ (♦ X) = ♦ ((N of A) @@ X);
� (N of A) @@ (� X) = � ((N of A) @@ X);
� (N of A) @@ (X U Y) = ((N of A) @@ X) U ((N of A) @@ Y);



� ( N of A ) @@ (© X) = © ((N of A) @@ X).

Example 1. A time-trace ((a, 1), (b, 4)) and a TPTL formula (x. (a U y. (b ∧
y < x + 5))) are denoted by ( n of x) @ (b U ((n' of y) @ (a /\ (( n' of y) <'
((n of x) +' 5))))) in Maude, respectively. The rewriting process for checking the
satisfaction relation between them is as follows:

1. according to the rewriting rule for the operator @, the formula (a : − 1, b
: − 4 |= (n of x) @ (a U ((n′ of y) @ (b ∧ (( n′ of y) <′ ((n of x) +′ 5))))))
equals to ((a : − 1, b : − 4 |= (1 of x) @@ (b U ((n′ of y) @ (a ∧ ((n′ of y)
<′ ((n of x) +′ 5))))));

2. according to the equivalences de�ned above, the formula (1 of x) @@ (a U
((n′ of y) @ (b ∧ ((n′ of y) <′ ((n of x) +′ 5))))) equals to (((1 of x) @@
a) U ((1 of x) @@ ((n′ of y) @ (b ∧ ((n′ of y) <′ ((n of x) +′ 5)))))),
where

(a) ((1of x) @@ b) equals to b;
(b) ((1 of x) @@ ((n′ of y) @ (b ∧ ((n′ of y) <′ ((n of x) +′ 5))))) equals

to ((n′ of y) @ ((1 of x) @@ (b ∧ ((n′ of y) <′ ((n of x) +′ 5))))),
which equals to ((n′ of y) @ (((1 of x) @@ b) ∧ ((1 of x) @@ ((n′ of
y) <′ ((n of x) +′ 5)))));

(c) the formula ((n′ of y) @ (((1 of x) @@ b) ∧ ((1 of x) @@ ((n′ of y) <′

((n of x) +′ 5))))) equals to ((n′ of y) @ (b ∧ (((1 of x) @@ (n′ of y))
<′ ((1 of x) @@ ((n of x) +′ 5))))), which equals to ((n′ of y) @ (b ∧
((n′ of y) <′ 6))), hence

(d) the formula (((1 of x) @@ a) U ((1 of x) @@ ((n′ of y) @ (b ∧ ((n′ of
y) <′ ((n of x) +′ 5)))))) equals to (a U ((n′ of y) @ (b ∧ ((n′ of y) <′

6))));

3. according to the rewriting algorithm for the operator U , the formula (a : −
1, b : − 4 |= (a U ((n′ of y) @ (b ∧ ((n′ of y) <′ 6))))) equals to (b : − 4 |=
(a U ′ ((n′ of y) @ (b ∧ ((n′ of y) <′ 6))))), which equals to (b : − 4 |= ((n′

of y) @ (b ∧ ((n′ of y) <′ 6))));
4. the formula (b : − 4 |= ((n′ of y) @ (b ∧ ((n′ of y) <′ 6)))) equals to (b : −

4 |= ((4 of y) @@ (b ∧ ((n′ of y) <′ 6)))), which equals to (b : − 4 |= (((4
of y) @@ b) ∧ ((4 of y) @@ ((n′ of y) <′ 6))));

5. the formula (b : − 4 |= (((4 of y) @@ b) ∧ ((4 of y) @@ ((n′ of y) <′ 6))))
equals to (b : − 4 |= (b ∧ ((4 of y) @@ (n′ of y) <′ (4 of y) @@ 6))), which
equals to (b : − 4 |= (b ∧ true));

6. the formula (b : − 4 |= (b ∧ true)) equals to ((b : − 4 |= b) ∧ (b : − 4 |=
true)), which equals to true;

7. therefore, the time-trace ((a, 1), (b, 4)) satis�es the formula (x. (a U y. (b
∧ y < x + 5))).

4 Case Study: the RBC/RBC Handover Process

In this section, we apply our TPTL runtime veri�cation implementation to a
concrete example from the European Train Control System (ETCS). ETCS is



a signaling, control and train protection system that is replacing the national,
incompatible safety systems within Europe. ETCS consists of the on-board sub-
system (composed of ERTMS/ETCS on-board equipment, the on-board part of
the GSM-R radio system and speci�c transmission modules for existing national
train control systems), and the track-side sub-system (composed of balise, line-
side electronic unit, GSM-R, radio block center (RBC), euroloop and radio in�ll
unit) [18]. In ETCS, the RBC is responsible for providing movement authori-
ties to allow the safe movement of trains. A movement authority is generated
by computing messages to be sent to the trains, where the messages are on the
basis of information received from external track-side systems and information
exchanged with the on-board sub-system. A route is divided into several RBC
supervision areas. Here we consider the RBC/RBC handover speci�cation. When
a train approaches the border of an RBC supervision area, an RBC/RBC han-
dover process takes place (see Fig. 6). The RBC/RBC handover speci�cation
speci�es how a train moves from one RBC supervision area to an adjacent one.

Fig. 6. The RBC/RBC handover process

We consider properties on basis of the two di�erent speci�cations: FIS for
the RBC/RBC Handover [19] and RBC-RBC Safe Communication Interface [20].
An execution of the system refers to the following properties in the FIS for the
RBC/RBC Handover.

� Property 1: �the handing over RBC is responsible to send information about
an approaching train to the accepting RBC area (i.e. pre-announcement)�
(4.2.2.1);

� Property 2: �the handing over RBC must send Acknowledgment after receiv-
ing route related information� (5.2.2.5);

� Property 3: �if the Acknowledgment for route related information is missing,
the accepting RBC must send route related information again� (5.2.3.5).



Based on the speci�cation of the Safe Communication Interface, we assume that
the time to take into account an incoming message and produce an answer is
between 30 and 60 time units. We also assume that the tolerance window for
the messages transition time is between 0 and 50 time units. Table 1 shows the
abbreviations used in our case.

Table 1. Abbreviations in case study

Abbreviation De�nition

HOVcond Handover condition detected
PreANN Pre-announcement
RRI Route related information
Ackn Acknowledgment
AcknMissing The Acknowledgement is missed
RRIReq Route related information request
MAReq Movement authority request
PosRep Position report
Ann Announcement
TOR Taking Over Responsibility
BPSRE Position report: �Border passed by safe rear end�
BPFE Position report: �Border passed by max safe front end�

Let Mess be any message. We write �sendMess� for the Mess which is sent
by a component, and �recvMess� for the Mess which is received by a component.
The above properties can be expressed by the following TPTL formulae.

� Property 1: ϕ1 = � x.(sendPreANN→ ♦ y. (recvPreANN ∧ (y ≤ x+50))).
� Property 2: ϕ2 = � x.(recvRRI → ♦ y.(sendAckn ∧ (y ≥ x + 30) ∧ (y ≤
x+ 60))).

� Property 3: After an RRI message is sent by the accepting RBC, three time
intervals must be considered: the transition time of RRI (0 < r1 ≤ 50), the
time for producing acknowledgment (30 ≤ r2 ≤ 60) and the transition time
of the message acknowledgment (0 < r3 ≤ 50). Hence, if the accepting RBC
does not receive the acknowledgment between 30 and 160 (= 50 + 60 +
50) time units after sending an RRI, an AcknMissing message should occur.
The accepting RBC should resend an RRI after the AcknMissing message
occurs, within 50 time units. Now property 3 can be expressed by the TPTL
formula ϕ3, :

• ϕ31 = � (x.(sendRRI → ♦ y.(recvAckn ∧ (y ≤ x+160) ∧ (y ≥x+30)))
++ x.(sendRRI → ♦ y.(AcknMissing ∧ (y > x+ 160))));

• ϕ32 = � x.(AcknMissing → ♦ y.(sendRRI ∧ (y < x+ 50)));
• ϕ3 =ϕ31 ∧ ϕ32.

We assume that the handing over RBC and the accepting RBC have a syn-
chronized clock, beginning at time 0. An example of their executions is given in
Fig. 7. A corresponding time-trace is as follows.



Fig. 7. An example of message sequence

tt1 = (sendPreANN, 0), (sendRRIReq, 20), (recvPreANN, 35), ({sendR-
RIReq, recvRRIReq}, 50), (sendRRI, 90), (recvRRIReq, 97), (recvRRI, 115),
(sendAckn, 157), (sendRRI, 180), (recvAckn, 191), (AcknMissing, 350), (sendRRI,
360), (recvRRI, 373), (sendAckn, 403), (recvAckn, 437), (recvMAReq, 492),
(sendRRIReq, 536), (recvRRIReq, 542), (sendRRI, 583), (recvRRI, 592), (send
Ackn, 639), (recvAckn, 652), (recvBPFE, 700), (sendTOR, 738), (sendAnn, 741),
(recvAnn, 752), (recvTOR, 759), (recvCBPRE, 800).

The calculation results of tt1 |= ϕ1, tt1 |= ϕ2 and tt1 |= ϕ3 in Maude are all
true. It means that this execution satis�es all the three properties.

Time-trace tt2 represents an execution in which some errors occur: i) the
accepting RBC receives the pre-announcement 60 time units after it is sent; ii)
the handing over RBC does not send the acknowledgment after reception of an
RRI; iii) when missing the acknowledgment of an RRI, the accepting RBC does
not resend it.

tt2 = (sendPreANN, 0), (sendRRIReq, 20), (recvPreANN, 60), ({sendR-
RIReq, recvRRIReq}, 65), (sendRRI, 90), (recvRRIReq, 97), (recvRRI, 115),
(sendRRI, 180), (recvMAReq, 492), (sendRRIReq, 536), (recvRRIReq, 542),
(sendRRI, 583), (recvRRI, 592), (sendAckn, 639), (recvAckn, 652), (recvBPFE,
700), (sendTOR, 738), (sendAnn, 741), (recvAnn, 752), (recvTOR, 759), (recv
CBPRE, 800).

The calculation results of tt2 |= ϕ1, tt2 |= ϕ2 and tt2 |= ϕ3 are all false, which
means that this execution of the system violates the properties.



We repeated similar experiments several times with di�erence traces. The
checking e�ciency is shown in Fig. 8. The case study shows that our TPTL based
runtime veri�cation implementation is able to detect failures in the executions
of a system with an acceptable complexity.

Fig. 8. The monitoring e�ciency in Maude

5 Conclusion

In this paper, we have proposed a runtime veri�cation method for TPTL. We
developed a formula rewriting based algorithm, and implemented the algorithm
in Maude. This makes it possible to check the satisfaction relation between a
long time-trace and a complex TPTL formula automatically. Furthermore, we
have presented a case study with a concrete example from the railway domain.
The results show the feasibility of our implementation.

There are several interesting topics for future work. Firstly, as is well known,
LTL with two truth values gives misleading results when checking �nite traces.
For this reason, we want to develop a three-valued TPTL, introducing a third
truth value �inconclusive�. This truth value means the satisfaction relation be-
tween a time-trace and a TPTL formula is decided by the potential su�x of
the given initial fragment of the time-trace. Secondly, the clock reset principle
in a TPTL formula x.ϕ is to freeze the variable x in ϕ when the formula is
evaluated. This makes TPTL unintuitive in the cases when a property contain a
�clock-reset� condition. Hence an extension of TPTL with modifying the freeze
quanti�er �x.� to �ψ.� is worth to be studied, where ψ is any formula. Last but
not least, to solve the di�culty of writing formal speci�cations in runtime ver-
i�cation, we are going to study speci�cation techniques. The long-term goal is
to develop a methodology to semi-automatically translate system speci�cations
from the railway domain into temporal formulae.
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