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Abstract—Testing is one of the most important quality assur-
ance techniques for software. Automating the test design allows
for automatically creating test suites from high-level system
descriptions or test descriptions. Furthermore, it enables testers
to automatically adapt the test suites to potentially recently
changed descriptions. In model-based testing, models are used
to automatically create test cases. Case studies report of an
effort reduction in test design between 20 and 85 percent.

In this paper, we report on a pilot project for introducing
model-based testing in an industrial context. For such a pilot
project, it is necessary to adapt the existing workflows and
tool chains, to train the staff, and to adapt the assets of the
company. The goal is to show the full applicability of the
technique at the customer site. We present the evaluations,
the lessons learned, and compare the efforts of model-based
and manual test design. This paper is not a ’scientific’ paper
in the sense that the results are reproducible for other projects
and domains. Instead, our intention is to provide guidance for
setting up similar evaluations.
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pilot project, experience report, case study

I. INTRODUCTION

Quality is one of the most important aspects of today’s
systems. It is a marketing argument, it helps in establishing
long lasting relationships to customers, and it is important
for getting products certified. Quality assurance is a neces-
sary means to support and achieve these targets. Testing is
one of the most wide-spread forms of quality assurance [1],
[2]. In many companies, however, testing has been and still is
a tedious, manual, and error-prone process. Due to changes
in requirements, changes in staff, or found defects, and the
resulting additional work, this manual process causes high
costs. Automation is the key concept to reduce these costs.
It helps in automating boring and ever-repeating activities,
in increasing efficiency and effectivity, in bringing objective
results, and in motivating people. There are many concepts
of test automation. For instance, test execution should be
automatic. The corresponding advantages are obvious. If it
comes to test design, there are several concepts such as
data-driven testing or keyword-driven testing that allow for
the re-use of abstract test scripts for different concrete data
or instructions [3], [4]. Model-based testing (MBT) is the
state of the art in automating test design [5], [6]. In MBT,
models are used to (automatically) design test cases. There
are initial costs for setting up the MBT framework including
a modeling tool, a test design tool, and their integration in

the existing tool chain. Furthermore, the staff has to be
trained on the new technique, the workflows have to be
adapted, and the focus on the company’s assets has to be
changed, e.g., from test cases to models. There are, however,
several case studies that show that the application of MBT
pays off despite these initial costs [7], [8].

Such success reports are often not enough to convince
a test manager to apply MBT in an ongoing project. For
instance, the software testing survey of Haberl et al. in
Germany, Switzerland, and Austria [9] shows that only about
5% of the participants apply MBT. Potential reasons are
often that ongoing projects are already behind schedule and
that there is no time or budget to invest in new technologies.
Furthermore, positive results from other domains are no
guarantee for a positive result in the own company — even
reports from other companies in the same domain or other
departments in the same company are no exception. As a
result, the only way to convince the responsible managers
is to show that the methods will work in their own projects.
A possible process of doing this includes running a market
study about existing MBT tools, roughly evaluating all tools,
closer investigating the top three of them, and running a pilot
project on a small system of the company that is not on the
critical path [4].

This is the setting that our paper reports about. Due to
non-disclosure reasons, our industrial partner chose not to
reveal its identity. In this paper, we report on the initial
situation at the company, on the process of preparing and
running the pilot project, and on the results and the lessons
learned. We present both positive and negative results: things
that went well and also things that did not. Before presenting
everything in detail, we sketch the lessons learned: First,
we measured our efforts in order to be able to estimate
the costs of introduction and the productivity gain. We
collected these numbers and compared them to experience
data about manual test design effort from previous projects.
The result is that in the worst case (if there are extensive
migration activities) the introduction of MBT pays off after
five iterations of test generation only. In the best case (if
MBT is used right from the start) there is an immediate
benefit since the time for modelling is shorter than that
for hand-coding test cases. Second, automatically generated
tests are not necessarily executed automatically. Although
this option is known in theory [10], our experiences are that



Figure 1. Project plan for the model-based testing pilot project.

many people still assume that model-based test generation
always results in automatically executable test cases [11].
In our scenario, the generated test cases are meant to
be read and executed by human testers. This results in
new test management challenges; for example, if issues
in the model are identified after the test cases have been
manually executed. Third, we describe the process aspects
that were important for making this project a success. We
give information about the tool support and its limitations.
We also go into the technical solutions that we realized to
overcome these shortcomings. Semantic-preserving model
transformations as proposed in [12] to simulate coverage
criteria like proposed in [13] were successfully applicated
in this project.

This paper is structured as follows. In Section II, we
describe the initial situation and the motivation to start
the pilot project. We list the most important evaluation
criteria for model-based test generation in this particular
environment in Section III. In Section IV, we present the tool
evaluation for preparing the pilot project. Afterwards, we
report in Section V on the pilot project including the created
MBT tool chain and our technical glue to make it work.
In Section VI, we show some numeric results about the
generated test suites and compare the costs of manual and
model-based test design. The lessons learned are presented
in Section VII. Section VIII contains the conclusion, a
discussion of our approach, and planned future work.

II. INITIAL SITUATION

In this section, we describe the initial situation of our
project. The intention was to investigate the applicability and
the advantages of automatic model-based test generation for
quality assurance of embedded applications. Model-based
testing has been claimed to be able to automate the whole
test generation process and to reduce the costs for test design
by up to 85 percent [7]. The motivation for this project was
to evaluate these promises and the power of model-based
testing in a particular industrial context, dealing with elec-
trical machines containing embedded control components.

Initially, we defined a project plan that describes the basic
steps of the project, see Figure 1. In the first work package
(WP1), the existing models were analyzed. For the sake of
heterogeneity, two different models (UML state machines)
were selected for the pilot project: a small one and a complex
one. In the second work package, we evaluated model-
based test generators and selected one of them for the pilot
project. For this, we created a decision matrix that contains
evaluation criteria for a tool and its surrounding tool chain.
Using this decision matrix, in WP2 we evaluated several
model-based testing tool chains, selected the top three of
them, and jointly selected one of them. WP3 contained the
main part of the project. As Figure 1 shows, we applied test
generation together with model transformations that were
necessary to compensate for missing features of the selected
test generator. The results of the test generation process
had to be delivered in a format defined by the established
testing processes in the company. In order to compare MBT
to manual test design, we measured all efforts during this
phase. To introduce MBT to a wider circle of people at the
company, we also conducted a hands-on-training in WP4
and presented the results of the whole project in WP5.

A. The Customer’s Expectations

From the beginning there were detailed expectations about
the interfaces of the test generator, i.e., the models and
coverage criteria to be used, and the expected format of the
generated test cases. The intended input of the MBT tool
chain consisted of drawings in Microsoft Visio that were
similar to UML state machines. The MBT tool chain should
be able to import such Visio diagrams. For test generation, it
was most important to be able to cover all transitions. Each
outgoing transition of a composite state, however, should
be fired from each substate of the composite state. Since
this variation of the All-Transitions coverage criterion [5]
is not supported by common test generators, we proposed
to apply model transformations to flatten the state machine:
Covering each transition of the flattened state machine has
the same effect as the required coverage criterion [13].



Figure 2. The intended MBT tool chain interfaces.

Finally, the generated test suites should be Microsoft Excel
documents that can be automatically imported into IBM’s
Rational DOORS for further processing by human testers.
Figure 2 shows interfaces for the input and the output of
the test generation. They are used to integrate the MBT
tool chain into the existing workflows. Additional model
transformations are possible, e.g., to transform the Visio
diagrams into the models required by the test generator.

Besides integrating the MBT tool chain into existing
workflows, measuring the effort for creating the tool chain,
for creating and adapting the models, and for running the
model-based test generation was important. To this end,
test generation for just one model does not give significant
results. For this reason, we ran the test generation in different
scenarios. Firstly, the impact of the model size onto the
efforts was to be measured. Thus, test generation was to be
performed for a comparatively small and a comparatively
complex model. Secondly, the efforts for the initial test gen-
eration and for maintenance was to be measured. For that, a
list of changes which are typical during a development was
made; it was to be used as a pattern to modify the models
in the project. Thirdly, the test generation was to be run on
the original models and on transformed models. As shown
in the subsequent sections, the transformation comprised the
flattening of models and the semantic-preserving resolution
of history states. Especially the first transformation was used
to satisfy the required coverage criterion. All in all, the
combination of these dimensions results in eight different
scenarios that were to be investigated.

B. Used Terms

In this section, we introduce three terms that are used in
this context. A test intent is an abstract test case description
at model level. Test intent steps denote single transitions
with preconditions and postconditions. Test intent sequences
describe a sequence of test intent steps starting at the
initial pseudostate of the state machine. The engineers were
particularly interested in the export of test intent steps and
test intent sequences based on automatically generated paths
in the state machine. Correspondingly, these terms are used
for the evaluation in Section VI.

III. TOOL EVALUATION CRITERIA

In this section, we present the tool evaluation criteria that
were used to select a test generator.

In order to estimate the efforts of integrating MBT into the
existing design processes, we evaluated complete tool chains
rather than single test generator tools. All in all, we identified
42 relevant tool selection criteria by interviewing the cus-
tomer. For that, we organized three half-day meetings. The
tool selection criteria were grouped according to common
topics like, e.g., supported features of a modeling language.
Each criterion was ranked with respect to its importance
on a scale from zero to ten, with an additional flag that
declares whether the current criterion is indispensible, i.e.,
whether a violation would be a show stopper (marked with
a (*) below). In the following, we present grouped lists of
all evaluation criteria.

A. Supported Features of the Modeling Language

The criteria that are aimed at the supported features of the
modeling language are focused on supported elements of the
Unified Modeling Language (UML 2.x) [14]. The following
evaluation criteria of this group were of utmost importance:

• Support of UML State Machines* is satisfied if the
investigated test tool supports test generation based on
UML state machines. Since state machines are widely
used within the company, this criterion is one of the
most fundamental ones.

• Support of State Hierarchy is fulfilled if UML state
machines with a hierarchy, e.g., expressed by composite
states, can be used for test generation. State hierarchy is
important for concisely describing complex content. If
the test generator does not support this criterion, model
transformations can be used as additional preprocessing
steps [12].

• Support of History States is satisfied if history states
in the model can be processed by the test generator.
History states are an important means, e.g., to change
between different modes. They can also be imple-
mented by applying model transformations.

• Support of Inter-Hierarchy Transitions is given if
a transition can start at one state hierarchy level and
end at a different one, e.g., when entering a composite
state. Such transitions can be implemented, e.g., using
entry and exit points at composite states. However, they
can also be supported by flattening the state machines,
i.e., reducing the whole state machine to one hierarchy
level.

Another evaluation criterion is the support of time (impor-
tance level 5), e.g., with the UML class TimeEvent. Rather
unimportant criteria (importance level 1-2) are in this context
the support of parallel systems and their synchronization, the
support of UML activity diagrams, the automatic flattening
of models, and the import of models from 3rd-party tools.



B. Supported Quality Criteria at the Model Level

Automatic test generation often faces the problem of a
possibly infinite test suite that could be generated. To limit
the size of the generated test suite and also to steer test
generation, test quality criteria, i.e., test generation stopping
criteria have to be supported by the used test generator.

• High-Level Transitions (transitions outgoing from
composite states) Have to be Used From Every Sub-
state of the Composite Source State.* This criterion
demands that every outgoing transition of a composite
state is fired from every substate of this composite
state. Since it can also be reached by flattening the
state machine and traversing all transitions, model
transformations can be applied where the test generator
fails.

• Wide Range of Supported Quality Criteria.* This
evaluation criterion simply demands that the chosen
test generator should support a maximum number of
quality criteria, i.e., coverage criteria. Obviously, this is
no absolute evaluation criterion and can only be used
to compare two test generators.

• Transition Coverage* should be the minimum cov-
erage criterion the test generator satisfies. This corre-
sponds to the popular belief that covering all transitions
is the minimal acceptable coverage criterion.

• Support of Manually Defined Sequences* is a valu-
able means to integrate already existing test cases into
automatic test generation. It can also be used to reduce
test effort because no new test cases are about to
be generated for parts of the model that are already
covered by the manually defined sequences.

• Multiple Condition Coverage is the strongest of the
condition-based coverage criteria. The support of this
criterion was considered to be desirable. Using model
transformations like presented in [13], this coverage
criterion can also be satisfied by covering all transitions
of the transformed model.

Furthermore, the following minor evaluation criteria were
listed: The support of decision coverage, path coverage [4],
modified condition / decision coverage [15]. All of these
criteria got an importance ranking of five. Sneak path
analysis [16], traceability of model elements to requirements,
and the integrated measurement of code coverage received
an even lower importance level. It may come as a surprise
at this level that requirements traceability was considered
to be of relatively low importance. This was caused by the
fact that the models used are considered to be requirements
by themselves. So, there are no fine-grained requirements
to which model elements can be traced, and requirements
traceability is not vital in this context.

C. Support of Extensions

In this part, we present the importance of tool extensions.

• Understandability of Test Cases at Model Level is
important to easily understand and recognize the test
cases at model level and the paths that are covered by
them. In its most mature form, this kind of traceability
should be supported for both directions: from test cases
to the covered transitions and from transitions to the
covering test cases.

Furthermore, we identified two additional criteria: support
of debugging at model level and support of explicit variant
management [17], e.g., by connecting the used models to
feature models. Both of them, however, got a minimal
importance mark.

D. Support of Exchange Formats / Tool Interaction

Test generators have to be integrated into existing tool
chains. The minimal requirements for this are to support the
import of the used models and the export of the generated
test cases to the given format. Here, we present the identified
evaluation criteria for tool interaction with the test generator
via supported exchange formats.

• Importing Models From Microsoft Visio* is an
important feature for the intended tool chain. Since the
current models are all created in Visio, it is of major
importance to support the model import from this tool.

• The Output Format of the Generated Test Cases* is
a format for Excel sheets defined by the people at the
company. As a consequence, adaptability of the output
format must be supported by the test generation tool.

• The Import of Test Cases Into DOORS* is important
because the generated test cases should be used as
requirements for manual test execution. Since DOORS
supports the import of Excel sheets, satisfying the
previous criterion implies satisfying this one.

Additionally, we identified the need for a more abstract
test modeling language, i.e., the wish for more than one sup-
ported modeling language. This is motivated by the fact that
the modeling languages supported by existing test generators
are often close to programming languages, but some of the
intended users are not very familiar with programming. This
evaluation criterion is given an importance grade of eight.

Furthermore, we identified several tools for which tool
integration is important. As stated above, the tool interac-
tions with DOORS for requirements management and Visio
for modeling are considered most important (show stopper).
The interactions with other tools for test management, test
execution, debugging, and bug tracking are also mentioned,
but considered unimportant in this project.

E. Tool Provider

In the previous parts, we described desirable features of
test generation tools. The characteristics of the tool provider,
however, are also of interest. Readers are probably familiar
with the fate of ATG [18], which was bought by IBM
without any recognizable development activity since 2009.



Customers of such tools invested a lot of money into the tool
integration and now face the problem of comparatively low
support and no development. Typical issues of tool integra-
tion are also described in [4]. Here, we present the evaluation
criteria of the tool providers. There was only one show
stopper criterion: the applicability of the tool for commercial
products. Since we also evaluated open source tools, one
has to be aware of open source licenses that prohibit the
commercial use of the software. Other evaluation criteria
are the support in form of coaching and trainings, available
hotline support, implementation of customer-specific needs,
the maturity/stability of the company, the license and main-
tenance fees, and the installability and maintainability, which
is again especially important for open source tools.

IV. TOOL EVALUATION

After identifying the evaluation criteria for model-based
testing tools, we selected several tools and categorized
them. In [19], a comparative study of nine MBT tools
has been performed. However, since the tools themselves
have changed in the meantime and the evaluation criteria
in our project were quite different, these results could not
directly be transferred. In this section, we present the groups
of evaluated tools. Then, we name the commercial and
academic test tools which were most interesting in this
context. Finally, we show the results of our tool evaluation.

A. Model-Based Test Data Generators

Model-based test data generators are focused on generat-
ing test data from models. They use an abstract descriptions
of the interfaces of the system under test to generate input
data for tests. As a result, the focus is not on behavioral
descriptions, but on input and output data. One tool of this
category is the Classification Tree Editor (CTE) [20]. It is
based on identifying classifications and classes of a system
and helps in selecting test cases that cover many different
classes. The CTE is also able to generate such test cases
automatically. Since behavioral test generation is not in the
focus of model-based test data generators, and, in particular,
state machines are not supported, such approaches are not
considered any further here.

B. Model-Based Test Case Editors

Model-based test case editors allow for editing test cases
on a model level. One example tool of this category is Time
Partition Testing (TPT) from PikeTec [21]. TPT supports
the modeling of test cases that are supposed to be executed
on embedded systems. Furthermore, test execution and test
evaluation are supported. Since these tools focus on the
editing of single (abstract) test sequences rather than the
generation of test suites, they are also not considered here.

C. Model-Based Test Generators

Model-based test generators generate complete and exe-
cutable test suites from behavioral models. We considered
several commercial and academic model-based test genera-
tors. We did not aim at a comprehensive survey (as opposed
to [19]), but wanted to find the “optimal” tool for the
intended purpose. Thus, our choice was guided by avail-
able documentation and personal knowledge. For instance,
we had a closer look at the following commercial tools:
Microsoft SpecExplorer [22], the TestBench of imbus [23],
MaTeLo of All4Tec [24], the Conformiq Designer [25], the
ATG of IBM [18], the Smartesting CertifyIt [26], and the
MBTSuite [27] of sepp.med and AFRA. We installed and
ran as many of these tools as possible. For the Smartesting
tool, it was not possible to get an evaluation license so that
we had to stick to the existing product descriptions. We also
investigated the following academic test generation tools:
the Partition Test Generator (ParTeG) [28], Azmun [29],
MISTA [30], and modelJUnit [31].

D. Results of the Tool Evaluation

After a first rough evaluation of the tools, some of
them were excluded because certain evaluation criteria were
not met. As the result of this first evaluation, Conformiq
Designer, sepp.med/AFRA MBTSuite, and Smartesting Cer-
tifyIt were considered to be the currently most interesting
commercial test generation tools. To us, the top three aca-
demic test generation tools currently are ParTeG, Azmun,
and modelJUnit. Please note that this is by no means a
general comparison or absolute rank list of model-based
testing tools. Instead, we identified these tools to the best of
our knowledge as the most fitting tools for the setting defined
in this special project. The limitations of the tools that are
not listed here were often caused by their focus on a different
test generation approach. Mainly, this concerned the use of
other modeling languages than UML state machines. The
six tools mentioned above were investigated quite closely
— all evaluation criteria were assessed for each tool and
corresponding tool chain.

One first result was that the import of Visio diagrams was
not supported by any of these tools (state: March 2012).
Reasons for that are, e.g., violations of data flow informa-
tion, violation of UML syntax, or the use of model elements
to represent a legend in the Visio drawings. Consequently,
the automatic import of Visio diagrams could not be used
as a distinguishing criterion for our evaluation. Therefore,
we decided to create the models manually from Visio drafts
using Enterprise Architect 8.0 from Sparx Systems.

We evaluated all tools in two different settings: In the first
setting, the capabilities of the test generators were evaluated
in isolation. In the second setting, a model transformator was
added as a pre- and post-processor to the evaluated tools.
Thus, it could be evaluated how this tool chain integrated
into the available tool environment.



The degree of compliance to an evaluation criterion (from
0=noncompliant to 10=fully compliant) was multiplied with
the importance level of the criterion to give a ranking for
this criterion; the final score for each tool was obtained by
adding up all criteria.

When comparing the scores for commercial and academic
tools, commercial tools were almost always better than
academic tools. This was not necessarily caused by better
or more mature test generation approaches. Instead, the
commercial tools scored in criteria like integration with other
tools, tool support, and exchange formats. In theoretical
aspects like, e.g., supported coverage criteria, academic tools
often received better scores. The advantages of the commer-
cial tools are, however, decisive for practical application.

After considering the resulting scores, it was decided to
use Conformiq Designer for the pilot project. Again, we
emphasize that this is not a universally valid ranking of MBT
tools: Compared to the other top three tools, the selection
of this tool was mainly caused by its support of state
hierarchies, time, and a variety of coverage criteria - even if
not all elements of UML state machines are supported.

V. PILOT PROJECT

Based on the tool selection in the previous section, we
started the pilot project. In order to compare the efforts
for “small” and “big” tasks, we used two different state
machines for test generation, a small and a complex one.
Furthermore, in order to deal with model transformation pre-
processing, we additionally considered “flattened” versions
of these machines, which contain no hierarchical or parallel
submachines. Finally, we ran the test generation also for a
“version in maintenance” of these machines, i.e., where we
made some changes which are typical for those occurring
frequently in the design process. In this section, we describe
the course of actions during the pilot project.

1) Adapting the Models: As described above, the Visio
diagrams given as examples for the study could not be used
directly as input for the test generator. Thus, we first had to
translate them manually into UML state machines. Besides
translating the given sample diagrams into UML, for our
analysis we also had to add a few Conformiq-specifics.
For the interested reader, we give a short overview of the
necessary steps: a) Classes of stereotype record have to be
created for all sent or received messages. b) There has to
be one class that contains a state machine representing the
behavior of the system under test. One composite structure
diagram has to be created in which all ports to this class
must be defined. c) To connect a received message with a
trigger of a transition, the trigger has to have the following
format: <port>:<class>. For instance, if a message of type
M1 is received via port in, then the corresponding trigger has
the name in:M1; Attributes like, e.g. x, of the message class
are referenced via msg. in the guard like, e.g., msg.x = 0. d)
To send messages, an object of the message class has to be

created. This class is then sent via the corresponding port
with the following construct: <port>.send(<msg-object>);.
For instance, to send a message of type M2 via the port out,
the effect of the transition has to have the following content:
M2 o; out.send(o);. e) For the developed scripting backend,
states have to be explicitly marked that are important for the
export. This can be done by using scenario informations. If,
for instance, a visited state has an entry action with the text
scenario ”door closed”;, then the output of the scripting
backend is going to write door closed when this state is
part of a test sequence generated by the test generator. f) The
model has to contain a class System that contains one main
function that calls the class that contains the state machine.

2) Importing the Models and Test Generation: These
models we designed in Enterprise Architect could be im-
ported in Conformiq Designer using the Enterprise Architect
dialect of XMI 2.1 as an interchange format. Afterwards, we
could generate test sequences with the Conformiq Designer.
For this, we selected the coverage criteria All-States, All-
Transitions, and Conditional Branches [25].

3) Exporting Test Cases: We created a scripting backend
that translates the generated test sequences directly into
Microsoft Excel files that contain the test intents in the for-
mat required for further processing. This scripting backend
was developed in Java and used an interface predefined by
Conformiq.

4) Creating Model Transformations: We implemented a
model transformator that flattens state machines (reduction
of hierarchical state machines to one level) and resolves
the history states while preserving the behavior of the state
machine. We used a conversion script of openArchitec-
tureWare to transform the Enterprise Architect file into an
ECore-UML-2.1 file. This file was read using the Java-
based ECore implementation. We implemented the model
transformation in Java using the ECore: The flattening of the
models is implemented by copying each outgoing transition
of a complex state and pasting it to each contained state.
To resolve a history state, a new variable has been defined
that “remembers” the formerly visited substate and controls
the selection of the substate when the complex state is re-
entered. Finally, the ECore models were transformed into
the four typical files used and read by Conformiq Designer.

5) Measuring the Effort: We measured the effort for
all of the described activities. Numbers are rounded to full
hours, except for model maintenance, where the efforts
consisted only of few minutes. The figures are valid for an
experienced engineer and do not include a “learning curve”.

VI. COST COMPARISON OF MANUAL AND
MODEL-BASED TEST DESIGN

In this section, we present and analyze numerical data on
the generated test suites, our efforts, and a comparison to
the effort of manual test creation.



Model Transformed? Changes Tests in Test steps in Test Intents Test Intent Test Intent
applied? Conformiq Conformiq Sequences Steps

Small 4 16 12 4 8
Small X 8 32 20 8 12
Small X 6 27 18 6 12
Small X X 8 35 22 8 14
Complex 36 275 87 36 51
Complex X 101 815 212 101 111
Complex X 36 281 87 36 51
Complex X X 101 834 213 101 112

Table I
THE SIZES OF THE GENERATED TEST SUITES.

Action Id Task Effort (hh:mm)
1 Model creation small in Enterprise Architect 01:00
2 Model creation complex in Enterprise Architect 08:00
3 Model maintenance small in Enterprise Architect 00:05∗

4 Model maintenance complex in Enterprise Architect 00:05∗

5 General introduction to tool interactions 08:00
6 Implementation of the scripting backend for the Excel output 12:00
7 Implementation of the model transformator 45:00

Manual design of a test suite small 01:00∗

Manual design of a test suite complex 16:00∗

Manual maintenance of a test suite small 01:00∗

Manual maintenance of a test suite complex 04:00∗

∗: approx.

Table II
EFFORT FOR THE SEPARATE TASKS (APPROX.)

As described in Section II-A, we generated test suites for
two models, a small one and a complex one in eight different
settings. The scenarios and the number of generated test
artifacts are presented in Table I. This table shows for each
scenario the number of test cases and test steps (interactions
with the environment) as automatically generated by Con-
formiq and the number of test intents, test intent sequences,
and test intent steps as created by the backend script that
was integrated into Conformiq for the specific output (see
terms in Section II-B). It also shows that the test suites are
bigger for transformed (flattened) models.

A goal of this study was to measure the effort for all tasks
during implementing and running MBT. In this section, we
present the measured numbers and compare them to numbers
for manual test creation. For this, we refer to the Test Intent
Sequences of the transformed models in Table I. In the
first step, we measured the effort of creating the models,
changing the models, and implementing the MBT tool chain.
Table II depicts the efforts for the executed steps in hours
and minutes.

These numbers show that creating a model can take
several hours. However, for an experienced engineer this is
still faster than the manual design of an equivalent test suite.
For the complex model, manual creation of the test suite took
two days.

The maintenance, e.g., by making small changes to the

model, results in an effort of only a few minutes. (One has
to mention that the maintenance effort comprises here only
the actual work of changing the model; thinking about which
parts of the model have to be changed probably takes longer.)
In contrast, updating a manually created test suite is a non-
negligible task; the estimation is given below.

We assume that changing one model on average takes
about 5 minutes. As we will see, the concrete number (1
to 10 minutes) is unimportant for the final result - the
dimension matters. The initial effort for creating and setting
up the tool chain takes about 65 man hours (sum of actions
5, 6, and 7). Due to the reusability of the tool chain, it may
be a bit “unfair” in a comparison to assign all MBT tool
chain costs to one project only: For single applications of
MBT, users would use the given front-end and only have
to implement the scripting backend (action 6). For more
frequent applications of MBT, it is necessary to integrate
the MBT tool in the existing tool chain. This step required
once a significant effort (actions 5 and 7) for the sum of
all projects. Since this effort is only necessary, however, if
MBT is to be applied to a larger set of projects, the average
effort for a single project is significantly reduced. In our
case, we estimated one hour for the tool chain effort, which
lead us to an estimated effort of 13 hours for this project.

In order to compare manual and automated test design
efforts in maintenance, we have to estimate the average effort



Figure 3. The single effort for one iteration.

1400

1600

800

1000

1200

m
in
ut
es
)

Manual (without initial

400

600

800

Ef
fo
rt
 (i
n 
m Manual (without initial 

costs)

MBT (with toolchain 
costs)

0

200

400 costs)

0
0 1 2 3 4 5

Iteration

Figure 4. MBT is introduced in a running project with tool chain costs.

of manually changing test suites. The generated test suite
for the complex flattened model consists of 101 test cases.
It took two days for manually creating the test suite for
the complex model. This results in a manual test design
effort of approximately nine minutes per test case. Thus,
if the test case needs to be adapted, we calculate an effort
of nine minutes. We estimated one minute per test case for
checking whether this test case needs to be changed or not.
Furthermore, there are documents that showed the average
changes during one iteration. In most iterations, there were
only around four small changes that consist of, e.g., adding
a transition or changing a guard. We ran a few of such
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Figure 5. MBT with tool chain costs and manual tests with initial costs.

2000

2500

1500

2000

m
in
ut
es
)

Manual (with initial costs)

1000

Ef
fo
rt
 (i
n 
m Manual (with initial costs)

MBT (without toolchain 
costs)

0

500 costs)

0 1 2 3 4 5
Iteration

Figure 6. A new project without a test suite and with no tool chain costs.

alternations on the model and regenerated the test suite.
Afterwards, we identified the test cases that were changed.
For the complex model, 11 out of 101 test cases had to be
replaced. For the small model, five out of eight test cases had
to be replaced. All in all, this results in 16 test cases that had
to be replaced and 93 test cases that could be left unchanged.
Assuming the effort of nine minutes per changed test case
and one minute per unchanged test case, this results in a
manual effort of 237 minutes per iteration or changes in the
complex model, respectively. In contrast to these estimated
manual efforts, we measured a total of less than ten minutes
for changing the models and automatically generating new
test cases.

Based on these data, we are able to compare the effort
for applying MBT and the effort for manually deriving test
suites. Leaving aside the fact that manual test creation is
an error-prone activity, this comparison does not take any
quality criteria into respect (except the proviso that both the
automatic and the manually created test suite had to satisfy
the required model-based coverage criteria). We assume,
however, that the application of stronger coverage criteria
than All-Transitions results in bigger test suites and, thus,
in an increased test effort with an increased savings potential
by applying MBT.

In the following, we present figures that depict the differ-
ent efforts for manual and automatic test creation. Figure 3
shows a comparison of the efforts for the initial model
creation and the initial test suite creation, and a comparison
of the efforts for changing the model and for changing the
manually created tests for one iteration. We considered three
scenarios:

1) A manually created test suite does already exist and
MBT is newly introduced in an ongoing project. This means
that there are no initial costs for manual test creation but
costs for MBT tool chain creation. Figure 4 shows the
comparison for Scenario 1. It shows that MBT pays off after
the fifth iteration.

2) There is no test suite for the considered project,
yet, which also results in initial effort for manual test
creation (here: two days). Figure 5 shows the comparison
for Scenario 2. It shows that due to the manual test creation



effort, the application of MBT already pays off in the second
iteration.

3) There is no test suite for the considered project, yet.
The tool chain, however, was invented during a previous
project and can be reused for the current one. Figure 6 shows
the effort comparison for a new project for which we assume
that the tool chain already exists and there is no test suite,
yet. It shows that MBT pays off right from the start.

VII. LESSONS LEARNED

After finishing the pilot project, we presented the results
to the management. We also held an MBT workshop for
requirements experts and software engineers within this
context. In both the presentation and the workshop, we got
additional feed-back. Here, we present the lessons learned.

Firstly, we measured the efforts of the model-based test
creation and compared it to the efforts of manual test
generation. Generally, the big benefit of MBT is the low cost
for regenerating a test suite after changes have been made
to the requirements. If the requirements would never change
during the course of a project, then manual and automated
test design are of comparable complexity. However, this
assumption is unrealistic: in all projects we have been
involved so far, there were frequent changes and additions
to the requirements, so test suites had to be revised over and
over again. In this case, MBT will always be more efficient
than manual test design. If MBT is newly introduced in a
company, and there are only a few projects which will use
it (so that setting up the tool chain is an important cost
factor), or there already is a significant amount of manually
designed test cases, then MBT will pay off only after a few
such iterations. Otherwise, if MBT is introduced in a new
project or on a broad scale, then it pays off right from the
beginning.

Secondly, the application focus has a strong influence on
the evaluation criteria and results. There is no such thing as
“the” best MBT tool for all purposes and application areas.
In our scenario, the results of the automatic test generation
were not intended to be used for automatic test execution.
This was mainly caused by the physical system interface.
Often, test design is one of the most time-consuming ac-
tivities during testing. In the present setting, however, the
manual execution of the test cases caused the main testing
effort. In MBT, issues arising during test execution can
lead to changes in the model; as a consequence, test cases
have to be regenerated. It is important that test cases which
were already executed should be be left unchanged by this
regeneration as far as possible. Otherwise, the repeated
execution of similar tests could cause unnecessary costs.
Therefore, existing tests have to be taken into account
during test generation. There are approaches to include
manually generated test sequences into model-based test
generation [32]. However, since this was not the focus of
our study, we did not take these approaches into respect.

Thirdly, we observed that introducing a new technology
that spans the working areas of several departments can
lead to a better communication of the engineers within
these departments. We organized regular meetings and in the
final presentation, we got the feed-back that all departments
considered MBT to be a powerful tool. The most important
advantage as considered by the participants of our meetings
was the early review and validation of requirements. As a
necessary premise, however, all participants have to be able
to understand the models and if necessary have to be trained.

However, we also identified several issues for the appli-
cation of MBT. For instance, for people outside of computer
science, the current tools often are too much programming-
like, although applied at the model level. As already men-
tioned, the engineers have to be trained on the modeling
language and the supporting tools. Tool integration still is
an issue. Several items had to be defined multiple times in
different places in the presented tool chain (for example, the
names of events at transitions and the corresponding mes-
sage classes with the same name [25]). Here, the definition
of a more abstract domain-specific language can help to hide
such test tool-specific definitions.

Finally, this project showed that the simulated satisfaction
concept defined in earlier work [13] is a powerful tool
in real projects. In academic tools, such concepts can be
incorporated easily, whereas for commercial tools, some
“workaround” has to be found. In general, academic methods
and tools often provide more functionality like, e.g., the set
of supported coverage criteria. Commercial tools, however,
offer more support for industrial application like, e.g., the
integration into existing tool environments.

VIII. CONCLUSION, DISCUSSION AND FUTURE WORK

In this paper, we presented our experiences of introducing
model-based testing in an industrial context. We described
the setting, the expectations of our customers, and the
introduction of MBT. For this we concentrated on describing
the tool evaluation, the pilot project, and the lessons learned.
Furthermore, we showed our experiences on the efficiency
of MBT: We measured the efforts for automatic and manual
test creation and concluded that even taken initial costs into
respect, MBT pays off after a few iterations.

Although the results of the present report are promising,
they should always be seen within their context. Firstly, this
paper describes one small case study only and is probably
not representative for other domains or companies. However,
it can be useful for setting up similar evaluations. As related
case studies show, the impact of applying MBT is varying
from domain to domain [8]. We think that this study is
another helpful piece to substantiate the advantages of MBT.
Secondly, the consideration of tools was not exhaustive
and may have been biased, in particular, since the first
author of this paper is also the author of a model-based
test generation tool. However, in MBT the tool landscape is



quickly changing, and there are no “objective” criteria for the
assessment of MBT tools. Peleska [33] created an embedded
systems testing benchmarks site where different tools can
be compared on the same model; this might improve the
situation.

Future work includes the investigation of MBT integration
in different design processes. In particular, we showed that
new test management issues may result if automatically
generated test cases are manually executed. More generally,
dealing with changing and extending requirements is a
promising research area for MBT.
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