
Towards a Curriculum for Model-Based Engineering of
Embedded Systems

Bernd-Holger Schlingloff

Humboldt Universität zu Berlin, Institut für Informatik
Fraunhofer Institut für offene Kommunikationssysteme FOKUS, Berlin

hs@informatik.hu-berlin.de

Abstract: Even though the theory and industrial practice of model-based techniques
has reached a certain maturity, there seems to be no consensus of what should con-
stitute a curriculum in this field. This position paper reports on several classes we
gave on the bachelor and master level, as well as for industrial participants. We argue
that there is a strong need for lightweight tools and platforms which allow to teach all
relevant concepts, yet are easy to install and to use for beginners.

1 Introduction

An embedded system is a computational system which is a fixed part of a technical sys-
tem. Model-based engineering is the craft of constructing technical systems from abstract
models of the system’s structure and behaviour. Within the last ten years, model-based
engineering has become the preferred design methodology for embedded systems in au-
tomotive, aerospace, and other domains. There is a high industrial demand for skilled
experts in this field. However, although a substantial body of knowledge in the field is
available, there seems to be no consensus amongst academic teachers as to what consti-
tutes the common core which should be taught at universities.

This paper is a first attempt to remedy this situation; it should be seen as a basis for dis-
cussion rather than a final proposal. We review the current status of the subject at different
universities, and propose a curriculum which has been taught several times already. We
discuss our experiences and the student’s feedback, and give an outlook on further activi-
ties.

2 Model-Based Engineering of Embedded Systems

The subject arises from the intersection of two fields: Modelling in computer science, and
embedded systems design. Both of these fields have been investigated for some time, and
there is an extensive scientific literature on these subjects available [GHPS13, BJK+05,
ZSM11]. For embedded systems, several universities have begun to start bachelor and



masters programs [UFra, UFrb, TUE, UPe]. Most of these programs are composed from
classes taken from the computer science and electrical engineering curriculum. Model-
based engineering is taught differently in different engineering disciplines: Mechanical
engineers have, e.g., classes on simulation with Simulink, electrical engineers learn, e.g.,
control-theoretic modelling of dynamic systems, and computer science students attend
classes, e.g., on software modelling with UML.

Combining these threads poses the challenge of selecting a coherent and consistent subset
which nevertheless fits into the alloted time frame. Clearly, the union of all relevant topics
could easily fill a complete bachelor and masters degree program. However, it is not agreed
whether such a specialized program would be accepted by university administrations and
students. Therefore, we constrain ourselves to the discussion of one module of two or
four hours per week, with additional lab classes and maybe a specialized continuation in a
subsequent semester.

Such a module could be part of any appropriate bachelor or master program in the en-
gineering sciences. We do not want to restrain ourselves to a particular discipline such
as electrical, mechanical, or software engineering. That is, we assume that the module
shall be adapted to the specific prerequisite knowledge of the audience. For example,
most computer science students have heard about UML in their second year, but have only
vague knowledge of differential calculus. Mechanical engineers know about finite element
methods, but have not heard about code generation techniques. Electrical engineers have
learned about electronic circuit analysis, but may not be proficient in systematic test de-
sign. Therefore, the curriculum of the module needs to be adjusted to the department and
prior skills of the participants.

Via the current Bologna process for the comparability of higher education qualifications,
European degree programs are harmonized to uniform bachelor and master studies. Here,
the proposed module could be allocated, e.g., as an interdisciplinary course on the bachelor
level, which can be credited in several departments. Specialized extensions can be offered
for different areas on the masters level.

3 A Proposed Curriculum

A module covering the subject under discussion must convey the most important principles
of both embedded systems engineering and model-based design. Qualification goals are
that participants are able to design and implement a reasonably complex embedded sys-
tem. Thus, the module should have a strong emphasis on concrete examples. Furthermore,
since the subject is still evolving, students should get an impression on current and future
trends in the field. Therefore, they should not only acquire profound skills in a particu-
lar modelling language, but also learn different modelling paradigms, and meta-modelling
concepts with which to link these paradigms. Similarly, they should not only experiment
with the current computational and physical hardware on which present-day embedded
systems are based, but also learn about future developments, e.g., in the cyber-physical
domain. Students should be able to estimate economic and social impacts of the technol-



ogy. Therefore, productivity of the design method and quality of the resulting products are
to be considered frequently.

Subsequently, we sketch a curriculum which has been taught twice at the Humboldt Uni-
versität zu Berlin, in various Erasmus-lectures at the University of Swansea, and in part at
international summer schools in Hanoi and Thessaloniki.

1. Basic definitions
This part contains the necessary foundations; it answers questions like “what is an
embedded system”, “which software engineering processes exist”, “what are the
basic constituents of embedded hardware”, “what is the present and future mar-
ket importance of embedded systems”, “which main design challenges exist”, etc.
We also show some lab prototypes of embedded systems together with their design
models in order to give a glimpse ahead.

2. Requirements engineering
Here we discuss issues like the difference between user specification and techni-
cal specification, present some examples of industrial requirements documents, and
discuss methods for requirements elicitation and -management. Students are also
introduced to stakeholder analysis in order to understand how to capture the socio-
economic aspects of a system under design.

3. Systems modelling
A major instrument in dealing with the design complexity is systems engineering.
Students are being introduced to concepts of SysML in order to model items like
the system’s lifecycle, deployment, variability and product line design. Use case
diagrams are used to describe the human-machine interface and interactions with
other systems. A goal is to teach the students how to develop a holistic view of a
system in its intended environment.

4. Continuous modelling
This part is a crash course in control theory. It covers the basic mathematics to
describe the behavior of dynamical systems with inputs, including some linear dif-
ferential equations, as well as block diagrams and continuous modelling tools such
as Simulink or Scilab. Prototypical examples are an inverted pendulum as well as
a two-dimensional cat-mouse race. Students learn how to clearly describe the sys-
tem’s boundaries, in order to distinguish between environment model and system
model.

5. Discrete modelling
Here, we introduce the classical models of software engineering: structural and be-
havioral diagrams for the static and dynamic description of systems. We emphasize
that there is a large variety of well-established modelling languages, each in its own
right. For practical demonstration purposes, we focus on UML class and compo-
nent diagrams, communication and sequence diagrams, and state machine diagrams.
Students learn how to come up with a first conceptual model, and how to refine this
abstract model to a concrete one in various steps.



6. Code generation
This part describes techniques to generate Java or C code from various models. We
describe “human readable” and “machine optimized” code generation transforma-
tions for both block-diagram and state-transition models. Furthermore, we discuss
how to build an actual running prototype by linking abstract events to concrete IO
ports. An example is a blinking LED on an experimental board which can be inter-
rupted by a push button. The main message for students is that “the theory actually
works”, i.e., that model based design is not a theoretical possibility but a practical
engineering method.

7. Meta-modelling
We introduce meta-modelling concepts as a generalization of code generation tech-
niques. Whereas a code generator is just a model-to-text transformer, general model
transformations are able to link different types of models. We use the MOF and QVT
formalisms to demonstrate the concepts. We also include a discussion of domain-
specific modelling languages such as ladder logic or function block diagrams for
PLC programming. The idea is to enable students to extend their understanding also
to modelling paradigms which are not mentioned in the course.

8. Embedded platforms
This part gives a short survey of embedded hardware, as well as real-time operat-
ing systems. Topics include microprocessor architectures, FPGA and ASIC pro-
gramming, system-on-chip and embedded CPUs, communication methods, power
consumption, etc. On the software side, scheduling, resource allocation and pro-
cess communication are discussed with example operating systems like RTLinux,
FreeRTOS, or others. The choice of topics is mainly determined by the hardware
available for the module. Luckily, with platforms like Arduino, Raspberry Pi, or
Lego EV3, inexpensive working material for students can be procured. Depending
on the available hardware, also current trends like Bluetooth Low Energy or Zigbee
can be discussed here.

9. Functional safety
After the very practical implementation work in the previous part, the second part
of the module is concerned with quality assurance. First, we introduce the students
to the basic concepts of functional safety as defined in IEC 61508. We present
the techniques of hazard and risk analysis, as well as FMEA and FTA. Students
are challenged to determine the safety integrity level of a certain system, and to
conclude which measures are to be taken during the design. The goal is to raise
the awareness that functional safety considerations can influence all stages of the
system’s design.

10. Fault tolerant design
In close connection to the previous part, methods for fault tolerance are discussed.
We pose the challenge to design a system of two communicating processors which
emit a common synchronized pulse signal, such that each processor can be shut
off and rebooted without interrupting the pulse. We discuss dual channeling and



identify possible single points of failure on several examples. Students learn how to
analyze system models with respect to safety requirements.

11. Software and tool qualification
This optional part discusses procedures for the assessment and qualification of soft-
ware and software tools. We discuss the relevant standards, e.g., EN 50128, ISO
26262 and DO-330. Additionally, we discuss some coding standards like MISRA-
C. Again, the goal is to raise awareness for safety-oriented design. To do so, we also
exhibit some infamous compiler bugs and their potential effects.

12. Model-based testing
In this part we present methods for test derivation from behavioural models. We
compare manually designed with automatically generated test suites and explain
different model-based coverage criteria. We also show how to re-use test cases
from model-in-the-loop via software-in-the-loop to hardware-in-the-loop tests. This
brings us to debugging and simulation methods, which are only briefly mentioned.

13. Static analysis and software verification
This part deals with abstract interpretation and model checking. We show how to
formulate and formally verify invariants for a behavioural model. We discuss the
state-space explosion problem and demonstrate the limitations of the available tech-
nologies. Students should get a feeling for the capabilities of modern automatic and
semi-automatic verification tools.

14. Domain-specific methods
The last part highlights some methods which are specific to certain application do-
mains. Foremost is the area of automotive software engineering, which has evolved
to a curriculum of its own [SZ13]. Current topics are Automotive SPICE, ISO 26262,
and the AUTOSAR standardized architecture. Other domains include embedded
railway techniques and medical systems, where we discuss implantable devices and
body-area networks. Another specialized domain is that of robotics and automation.
Here we discuss items like virtual factories, mobile robotics and autonomous sys-
tems. We conclude with a summary and discussion of ethical responsibilities for
certain industrial applications.

Lab classes

For the above lecture series it is essential that it is accompanied by suitable lab classes.
Whereas the lectures present small, “ad-hoc” examples for each topic, the purpose of the
lab classes is to deal with larger, coherent examples which cover several topics.

In our previous classes, we used several case studies as exercises.

• Pedelec
This example describes a modern bicycle with electric auxiliary motor. The task is



to come up with requirements for the system and the control unit, to elaborate non-
functional and safety requirements, to develop a specification for the pedal power
amplification and battery management, build a system model, and to derive code for
the display unit. We use IAR visual state and some SI-Labs evaluation boards for
the actual implementation.

• Pace maker
This example is a simplified version of a published industrial case study [Bos07].
Modelling of this case study is treated in an accompanying text book [KHCD13].
The students are to design the basic functionality of a fault-tolerant pacemaker in
certain operating modes. The example includes timing, fault tolerance and safety
considerations, and shows an actual industrial requirements document.

• Türsteuergerät
This example is an automotive door control unit described in the literature [HP02].
The specification describes the operation of power windows, seat adjustment, and
interior lighting. Students are to build structural and behavioural models for part of
the functionality. Unfortunately, the requirements document is available in German
only. Therefore, we plan to replace it by a more up-to-date case study which is
currently being developed in the German SPES XT project [SPE].

Potential continuation topics

The above curriculum is by no means a complete list of material which is relevant for the
subject area. There are several additional topics which could be handled in specialized
modules.

• Physical design
Currently, this area is not included in our curriculum. With the advent of 3D print-
ers, however, it is becoming more and more interesting to also include the physical
design into the model-based design cycle. For physical modelling, tools like Catia
and others are being used; a trend in the tools industry is to integrate these with
other model-based design tools. However, currently this is still an open issue; it
remains to be seen which tools will be available and usable for a university teaching
environment.

• Sensor technology
This is an advanced topic dealing with a large range of possible sensing techniques:
from specialized flow sensors in pipes via highly accurate laser-scanners to CCD
cameras and 3D image processing. In the above curriculum, we use only simple
switches and pushbuttons. In particular, we do not concentrate on the design of
“smart” sensors with nontrivial signal preprocessing. The area, however, is highly
relevant and of growing importance. An interesting future perspective is given by
energy harvesting techniques, which allow sensors to compute independently from
an external power supply or battery.



• Communication
As embedded systems are advancing to connected, “cyber-physical” systems, also
the communication technology is becoming more and more important. Topics like
the adaptation of the traditional ISO/OSI protocol stack to the needs of embedded
systems could be discussed here, as well as high-speed optical links and wireless
sensor networks. Special topics include technologies particular to embedded sys-
tems such as NFC and RFID, as well as technologies particular to specific applica-
tion domain like car-to-car and car-to-roadside communication.

• Profiles and extensions
There are several specialized modelling languages for different purposes. Most
notably, UML offers a profiling mechanism for the definition on new languages.
SysML as a profile for systems modelling has been treated above. Further profiles
to be considered are MARTE for real-time modelling, and UTP, the UML testing
profile. In the modelling world outside of UML, other formalisms have been devel-
oped which are significant for the topic. In particular, EAST-ADL and AADL are
used for architectural modelling in the automotive and avionic domain, and should
be included in an advanced course.

• Multi-core processing and deployment
Even though present-day embedded systems are mostly built with traditional, 8-
bit CPUs, the trend clearly will be to use up-to-date processors also for embedded
tasks. Thus, a specialized topic is how to deal with multi-core (up to 16 CPUs)
and many-core (with hundreds of CPUs) processors. Items to be discussed are on-
chip synchronization and scheduling, memory access and package routing, and the
deployment of models and tasks onto computing units.

• Softwaretools for systems design
Any software development method should be accompanied with relevant tools. Es-
pecially in the area we are dealing with there is an abundance of tools, both com-
mercial and experimental. It is interesting to discuss these tools in a systematic way.
In particular, tools for hardware/software co-design and design automation were not
discussed in the above curriculum. Also, the large area of development management
tools has not been treated and could be an advanced topic.

• Security
Of growing importance is the field of systems security, e.g., protection against
malevolent attacks. The Stuxnet worm is a prominent example which raised public
awareness to this issue. An advanced course could cover technologies for authen-
tification, cryptography, firewalls, etc. In embedded systems, security also means
resistance against tampering and counterfeiting, as well as intellectual property pro-
tection. Specialized techniques such as design obfuscation have been developed
which can be discussed here.

• Commercial aspects
Embedded systems are one of the areas with a huge potential for young, innovative
start-up businesses. However, many of these new companies fail since the founders



have good technological, but little commercial knowledge. Here, the university
could help by offering classes on market analysis and cost estimation, in particu-
lar with respect to the production and marketing of embedded systems. Courses on
entrepreneurship and leadership could motivate students to found their own business
in this area.

• Cyber-physical systems
A “perspectives” course close to the area of science fiction could be dealing with the
elaboration of scenarios for future societies: How will the internet of things evolve?
Will there be ambient assisted living aids in every home? Are intelligent humanoid
robots an everyday perspective? What other smart environments could be imag-
ined? It would be important to treat these questions from a scientific perspective,
e.g., consider not only technological feasibility but also commercial viability of the
scenarios.

4 Experiences and conclusion

We have taught courses roughly following the above curriculum twice at the Humboldt
Universität zu Berlin, and are preparing a third round. We also gave tutorials for indus-
trial customers based on the material. Moreover, the curriculum has been tried in various
Erasmus-lectures held at the University of Swansea, where it supported the preparation
of a special embedded systems program. Additionally, we have been teaching at interna-
tional summer schools in Hanoi and Thessaloniki, where we gave classes covering part of
the above curriculum. Here, we report on the experiences with these lectures.

A major issue is the availability and usability of tools. As argued above, the course is
almost useless if not accompanied by appropriate exercises and lab classes. Therefore, the
selection of tools is a major concern in the preparation. Here, we are facing a dilemma:
Commercial tools usually have a complex licensing strategy; often, they are available for
students only for a short evaluation period, with limited functionality, or after a compli-
cated registration procedure. In contrast, public-domain tools are readily available; how-
ever, they often require nontrivial installation procedures, offer weak documentation and
online support, and sometimes even contain bugs. In our lab classes, students complained
that the process of “getting started” with a particular tool often was much more time-
consuming than the actual work with the tool itself. An ideal workaround for this problem
would be to prepare a “live CD”, where all necessary tools are pre-installed and there are
small hands-on demos with detailed instructions how to use the tool. However, such a
preparation is extremely time-consuming for the lecturer; it is not to be expected that this
can be done on a wide scale. Moreover, since the subject area is under rapid evolution,
such a live-CD would quickly become outdated; the immense effort would have to be
done over and over again. Thus, we see a strong need for “lightweight” tools and plat-
forms, which are easy to install and to get acquainted with. The Eclipse platform offers a
plugin mechanism which allows to integrate different tools in the same development envi-
ronment. This could be a perspective to mitigate the problems mentioned above. However,



since also Eclipse itself is evolving, there is the problem how to migrate tools from one
version to the next. Currently, we are investigating different strategies for this.

Another issue in our classes was the problem of sticking to the predetermined time sched-
ule. In fact, in none of the mentioned courses we could “cover” the whole plan, since
we had to “uncover” items which we thought that they should have been known in ad-
vance. A potential reason for this could be that the curriculum attracts students from very
different backgrounds. Therefore, things which may be obvious for some of the students
may be completely new to others. A way to deal with this situation is to supply appro-
priate reading material for self-studies. Presently, we are referring the students mostly to
original articles. Reading first-hand scientific literature is beyond the effort which average
bachelor students are willing to invest for a module. Here, a textbook could be helpful,
which describes the base technologies for each of the parts in more detail. Currently, we
are discussing the possibility of an appropriate volume with a publisher.

The third issue which needs to be discussed is the rapid evolution of the field. The last
decade has shown enormous achievements, and many of the topics of the curriculum are
still “under construction”. Here, our approach is to split the curriculum into those parts
which are more or less settled, and those which are hot and evolving. The above suggestion
is a step in this direction: by separating basic and avanced topics, we are able to smoothly
incorporate new trends into our curriculum. We hope that this is helpful to others as well.

References

[BJK+05] Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker, and Alexander
Pretschner. Model-Based Testing of Reactive Systems: Advanced Lectures (Lecture
Notes in Computer Science). Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2005.

[Bos07] Boston Medical: PACEMAKER System Specification, 2007.
http://sqrl.mcmaster.ca/ SQRLDocuments/PACEMAKER.pdf, ac-
cessed 2014-01-19.

[GHPS13] Holger Giese, Michaela Huhn, Jan Phillips, and Bernhard Schätz, editors. Dagstuhl-
Workshop MBEES: Modellbasierte Entwicklung eingebetteter Systeme IX, Schloss
Dagstuhl, Germany, April 24-26, 2013, Tagungsband Modellbasierte Entwicklung
eingebetteter Systeme. fortiss GmbH, München, 2013.

[HP02] Frank Houdek and Barbara Paech. Das Türsteuergerät – eine Beispielspezifikation.
IESE-Report 002.02/D, Fraunhofer IESE, 2002.

[KHCD13] F. Kordon, J. Hugues, A. Canals, and A. Dohet. Embedded Systems: Analysis and
Modeling with SysML, UML and AADL. ISTE. Wiley, 2013.

[SPE] BMBF: SPES XT Software Plattform Embedded Systems “XT”.
http://spes2020.informatik.tu-muenchen.de/spes xt-home.html,
accessed 2014-01-19.

[SZ13] J. Schäuffele and T. Zurawka. Automotive Software Engineering: Grundla-
gen, Prozesse, Methoden und Werkzeuge effizient einsetzen. ATZ-MTZ Fachbuch.
Vieweg+Teubner Verlag, 2013.



[TUE] University of Eindhoven: Master’s program Embedded Systems.
http://www.tue.nl/en/education/tue-graduate-school/masters-
programs/embedded-systems/, accessed 2014-01-19.

[UFra] Universität Freiburg: Bachelorstudiengang Embedded Systems Engineering.
http://www.ese.uni-freiburg.de/startseite.html, accessed
2014-01-19.

[UFrb] Universität Freiburg: Master of Science Embedded Systems Engineering.
https://www.tf.uni-freiburg.de/studies/degree programmes/
master/mscese en, accessed 2014-01-19.

[UPe] University of Pennsylvania: Master of Science in Engineering in EMBED-
DED SYSTEMS Curriculum. http://www.cis.upenn.edu/grad/
embedded-curriculum.shtml, accessed 2014-01-19.

[ZSM11] Justyna Zander, Ina Schieferdecker, and Pieter J. Mosterman, editors. Model-based test-
ing for embedded systems. Computational analysis, synthesis, and design of dynamic
systems. CRC Press, Boca Raton, 2011.


