
Monitoring Systems with Extended Live
Sequence Charts

Ming Chai1 and Bernd-Holger Schlingloff2

1 2 Humboldt Universität zu Berlin
2 Fraunhofer FOKUS

{ming.chai, hs}@informatik.hu-berlin.de

Abstract. A problem with most runtime verification techniques is that
the monitoring specification formalisms are often complex. In this paper,
we propose an extension of live sequence charts (LSCs) which avoids this
problem. We extend the standard LSCs as proposed by Damm and Harel
by introducing the notion of “sufficient prechart”, and by adding con-
catenation and iteration of charts. With these extended LSCs, necessary
and sufficient conditions of certain statements can be intuitively speci-
fied. Moreover, similar as for message sequence charts, sequencing and
iteration allow to express multiple scenarios. We give a translation of
extended LSCs into linear temporal logic formulae, and develop online
monitoring algorithms for traces with respect to extended LSCs. We use
our algorithm to test a concrete example from the European Train Con-
trol System (ETCS) standard, and evaluate it on several benchmarks.
The results show the feasibility of our approach.

1 Introduction

Runtime verification [17,20] is a lightweight formal verification technique, where
a system’s behaviour is checked while the system is running. This technique
involves the use of a monitor, which is a device or a piece of software that observes
a behaviour of the system and checks the observations against a monitoring
specification. Such a monitoring specification consists of a set of correctness
properties formulated in some suitable formal language.

Although runtime verification techniques continue to grow more powerful,
their practical application in industry is hindered by the fact that most moni-
toring specification languages are quite complex. A runtime verification method
typically uses some form of temporal logic linear temporal logic (LTL) [22],
metric temporal logic [24], time propositional temporal logic (TPTL) [7] and
first-order temporal logic [2] to specify correctness properties. Although these
specification languages are expressive and technically sound for monitoring, most
software engineers are not familiar with them and need extensive training to use
them efficiently. Therefore, many runtime verification systems support also other
specification languages that are more understood by software engineers, such as
regular expressions [8] and context-free grammars [21]. Unfortunately, it is dif-
ficult to specify complex properties with multiple instances in these languages,
and they are not (yet) used in practice by system designers.

Graphical languages such as message sequence charts (MSCs) and UML se-
quence diagrams (UML-SDs) are widely used in industry for system specifica-
tions. However, as semi-formal languages, the semantics of MSCs and UML-SDs
is not defined formally. One of the central questions in this context is: “does
an MSC (or a UML-SD) describe all possible executions, or does it describe a
set of sample executions of the system?” [3]. Since there does not seem to be
an agreement on this question, these languages are not suitable for specifying
monitoring correctness properties.

In this paper, we investigate the use of live sequence charts (LSCs) as pro-
posed by Damm and Harel [12] for monitoring specifications. The LSC language
is an extension of MSC. Using the notions of universal and existential chart, it
can express that a behaviour of a system is necessary or possible. A universal
chart specifies a necessary (i.e., required) behaviour of the system, whereas an
existential chart specifies a possible (i.e., allowed) behaviour. The LSC language
also introduces the notion of “temperature” of an element (i.e., hot and cold
elements) for distinguishing between mandatory (hot) elements and provisional
(cold) elements.

For monitoring, we focus on universal LSCs. A universal chart typically con-
sists of two components: a prechart and a main chart. The intended meaning is
that if the prechart is executed (i.e., the underlying system exhibits an execu-
tion which is specified by the prechart), then the main chart must be executed
afterwards. The standard definition thus interprets the prechart as a necessary
condition for the main chart.

However, for monitoring it is also important to be able to express sufficient
conditions of statements. For example, consider the statement IF a THEN b in
some programming language. It indicates that b is executed if a is true; otherwise,
b is not executed. This is not the same as the universal chart (prechart(a),
mainchart(b)), because here the main chart b can still be executed if a is not
satisfied.

As a possible specification for this statement, it has been suggested in UML
2.0 to use the negation operator to denote the case of not-executing b. As we
show in this paper, sufficiency conditions of statements cannot be expressed by
a finite set of negation-free universal LSCs. Since the semantics of negative LSCs
is hard to define, we suggest an alternative way to specify this case. We extend
LSCs to eLSCs by introducing the notion of a “sufficient” prechart. In contrast,
we call the prechart of a standard universal chart a “necessary” prechart. With
this extension, one can easily and intuitively express situations as above.

Alur and Yannakakis have introduced MSC-graphs to express multiple sce-
narios [1]. For the same reason, we introduce concatenation and iteration into
the eLSC language. Since a universal chart consists of a prechart and a main
chart, we define four modes of concatenation. Consequently, iteration also has
four modes. In this paper, we study one mode: iteration defined on precharts.

We give a translation of eLSCs without iteration, that is, universal LSCs
with necessary and sufficient precharts and concatenations, into LTL formulae.

Checking whether a system run satisfies such an eLSC specification then becomes
the problem of checking an execution trace against some LTL formula.

The language of an eLSC with iteration is not necessarily regular. Therefore,
an eLSC with iteration cannot be translated into an equivalent LTL formula.
Thus, we develop an explicit algorithm for checking arbitrary eLSC properties.

In order to demonstrate the feasibility of these algorithms, we give a concrete
example from the railway domain: We formulate properties of the RBC-RBC-
handover process in the European Train Control System (ETCS) standard with
our eLSC language. Then, we evaluate them with several benchmark traces and
give some remarks on the complexity.

Related Work.

The MSC language and UML sequence diagrams are visual specification lan-
guages. They are widely used in industry. Alur et. al. study the model checking
problems of MSCs, MSC-graphs and Hierarchical MSC-graphs [1]. They show
that the complexity of model checking problems for MSCs and synchronous
MSC-graphs are coNP-complete, and for asynchronous MSC-graphs are unde-
cidable. Simmonds et. al. use UML-SD as the property specification language
to monitor Web Service Conversations [23]. Ciraci et. al. propose a technique to
check the correspondence between UML-SD models and implementations [9].

Damm et. al. defined the LSC language, which distinguishes between nec-
essary and possible behaviours of a system [12]. Harel et. al. propose a play-
in/play-out approach [14]. Behaviours of the system are captured by play-in;
and the system is tested by play-out through executing the LSC specification
directly. Bontemps et. al. prove that any LSC specification can be translated into
LTL formulae [6]. Kugler et. al. [18] develop a translation of LSCs into LTL for-
mulae, where the size of the resulting LTL formula is polynomial in the number
of events appearing in the LSCs. The expressive power and complexity of LSCs
are discussed in the survey [16]. Kumar et. al. extend the LSC language with
Kleene star, subcharts, and hierarchical charts [19]. They translate an extended
LSC based communication protocol specification into an automaton, and ver-
ify the specification with the resulting automaton. Since all existing works are
based on the standard LSC language, they suffer from the same expressiveness
problem as addressed in this paper.

LSCs have been used to model a variety of systems, such as railway systems
[4], telecommunication systems [11], biological systems [13], and so on. The exist-
ing papers essentially build models of systems with the LSC language, and focus
on model checking problems. To our knowledge, LSC based runtime verification
approaches have not been studied yet.

2 Extended Universal Live Sequence Charts

2.1 Universal Live Sequence Charts

A basic chart of an LSC is visually similar to an MSC. It specifies the exchange
of messages among a set of instances. Each instance is represented by a lifeline.

When an LSC is executed, for each message in the chart two events occur: the
event of sending the message and the event of receiving it. The partial order of
events induced by a basic chart is as follows.

– an event at a higher position in a lifeline precedes an event at a lower position
in the same lifeline; and

– for each message m, the send-event of m precedes the receive-event of m.

Formally, basic charts can be defined as follows.
Let Σ be a finite alphabet of messages m, i.e., m ∈ Σ. An event e is a pair

e , (m, β) with β ∈ {s, r}, where (m, s) denotes the event of sending m, and
(m, r) denotes the event of receiving m. We denote the set (Σ × {s, r}) with
BΣ. A trace τ over BΣ is an element of BΣ∗. The length of τ is |τ |.

A lifeline l is a sequence of events l , (e1, e2, ..., en). A basic chart c is a set of
lifelines c , {l1, l2, ..., ln}, where each event (m,β) occurs at most once. Lifelines
in a basic chart are usually drawn as vertical dashed lines, and messages as solid
arrows between lifelines.

Now we present the trace semantics for basic charts. For a basic chart c, let
E (c) be the set of events appearing in c. The chart c induces a partial order
relation ≺ on E (c) as follows:

1. for any l , (e1, e2, ..., em) ∈ c and 1 ≤ j < m, it holds that ej ≺ ej+1; and
2. for any m ∈ Σ, if (m, s) and (m, r) ∈ E (c), then (m, s) ≺ (m, r).
3. ≺ is the smallest relation satisfying 1. and 2.

Let P(c) , {(e, e′) | e ≺ e′ with e, e′ ∈ E (c)}. A set of traces is defined by
c as follows:

Traces(c) , {(ex1, ex2, ..., exn) | {ex1, ex2, ..., exn} = E (c); n = |E (c)|; and for
all exi, exj ∈ E (c), if exi ≺ exj , then xi < xj}.

We call each σc ∈ (BΣ\E (c)) a stutter event of c. For each basic chart c, the
language L(c) is defined by L(c) , {(σ∗c , e1, σ∗c , e2, ..., σ∗c , en, σ∗c)}, where (e1
e2, ..., en) ∈ Traces(c) and each σ∗c is a finite (or empty) sequence of stutter
events. A trace τ is admitted by a basic chart c (denoted by τ c) if τ ∈ L(c).

A universal chart consists of two basic charts: a prechart (drawn with a
surrounding hashed hexagon) and a main chart (drawn within a solid rectangle).
It is formalized as a pair u , (p, m), where p is the prechart and m is the
main chart. Intuitively, a universal chart specifies all traces τ such that, if τ
contains a segment which is admitted by the prechart, then it must also contain
a continuation segment (directly following the first segment) which is admitted
by the main chart.

Given a universal chart u , (p,m), the stutter events of u are σu ∈ (BΣ\(E (p)∪
E (m)). The languages L(p) of the prechart and L(m) of the main chart are de-
fined with these stutter events as above.

For languages L and L′, let (L ◦ L′) be the concatenation of L and L′ (i.e.,
(L◦L′) , {(ττ ′) | τ ∈ L and τ ′ ∈ L′}); and L be the complement of L (i.e., for
any τ ∈ BΣ∗, it holds that τ ∈ L iff τ /∈ L). The semantics of universal charts
is defined as follows (see, e.g., [5]).

Definition 1. Given a finite alphabet Σ, the language of a universal chart u ,
(p,m) is

L(u) , BΣ∗ ◦ L(p) ◦ L(m) ◦ BΣ∗.

This formalizes the intuitive interpretation given above. An LSC specification
U is a finite set of universal charts. The language of U is L(U) ,

⋂
u∈U
L(u).

2.2 Expressiveness of LSC Specifications

The standard definition of a universal chart interprets the prechart as a necessary
condition of the main chart, i.e., a system is allowed to adhere to any execution,
as long as it does not execute the prechart. This is not sufficient for specifying
some correctness properties. For instance, for two basic charts c and c′ we can
define the statement

CS = ((c is executed) IF AND ONLY IF LATER (c′ is executed)),

to have the semantics

L(CS) ,
(
BΣ∗ ◦ L(c) ◦ L(c′) ◦ BΣ∗

)
∩
(
BΣ∗ ◦ L(c) ◦ L(c′) ◦ BΣ∗

)
.

However, this can not be expressed with LSC specifications:

Lemma 1. The language
(
BΣ∗ ◦ L(c) ◦ L(c′) ◦ BΣ∗

)
cannot be defined by an

LSC specification.

Proof. See appendix.

2.3 Extended LSCs

One way to overcome the above expressiveness limitation is to introduce a nega-
tion operator into the LSC language. Unfortunately, the semantics of such a
negation operator can be tricky, see [15]. As an alternative, we extend universal
charts by introducing the notion of a “sufficient prechart” (drawn with a sur-
rounding solid hexagon). This is a prechart which is interpreted as a sufficient
condition for a main chart. In contrast, we label the original prechart of a uni-
versal chart as a “necessary prechart”. Formally, the syntax of extended LSCs
is as follows.

Definition 2. An eLSC is a tuple u , (p,m,Cond), where p and m are a
prechart and a main chart, and Cond ∈ {Nec,Suff } denotes if p is a neces-
sary or sufficient prechart.

For a chart u , (p,m,Nec), the language is as defined in Definition 1. The
language defined by a chart u , (p,m,Suff) is

L(u) ,
(
BΣ∗ ◦ L(p) ◦ L(m) ◦ BΣ∗

)
.

The above condition statement CS can then be specified by an LSC specifica-
tion {(c, c′,Nec), (c, c′,Suff)}. As an abbreviation, we introduce an “iff” prechart
(notated with a double dashed lines). An eLSC with an “iff” prechart is defined
as uiff , {(p,m,Nec), (p,m,Suff)}.

2.4 Concatenations of universal LSCs

Concatenation of two eLSCs essentially introduces partial orders of executions
of the charts. This feature can be inherited by eLSC specifications.

First, we define the concatenation of basic charts c and c′, denoted with
(c → c′). Intuitively, a trace τ is in the language of (c → c′) iff it contains two
segments υ and υ′ such that υ precedes υ′ in τ , and υ (resp. υ′) is admitted by
c (resp. c′). Formally, the language of (c→ c′) is given by the following clause.

L(c→ c′) ,
(
L(c) ∩ L(c′) ∩ L(c) ◦ L(c′)

)
.

Since a universal chart u consists of two basic charts p and m, there are four
possibilities to define the concatenation of universal charts u and u′: p → p′,
p→ m′, m→ p′ and m→ m′.

For monitoring, we consider only two modes of concatenation in this paper:
prechart concatenation and main chart concatenation. The concatenation of two
universal charts u and u′ is defined to be a tuple δ , (u, u′,Mode), where Mode ∈
{preC ,mainC}. Formally, the semantics of the two concatenation modes is given
as follows.

Definition 3. Given two eLSCs u and u′, The language of the concatenation of
u and u′ is

L(δ) ,
(
L(u) ∩ L(u′) ∩ BΣ∗ ◦ L(c) ◦ L(c′) ◦ BΣ∗

)
,

where c = p and c′ = p′, if Mode = preC; and
c = m and c′ = m′, if Mode = mainC.

It can be shown that the language of a concatenation (u, u′, preC) (resp.
(u, u′,mainC)) is the same as the language of the eLSC specification {u, u′,
(p, p′,Suff)} (resp. {u, u′, (m,m′,Suff)}). Figure 1 illustrates the two concatena-
tion modes of eLSCs u1 and u2, where Fig. 1(a) presents a main chart concate-
nation and Fig. 1(b) presents a prechart concatenation. Fig. 1(c) and Fig. 1(d)
present the partial orders of events of these concatenations, respectively.

To specify a repeating execution (e.g., repeating responses to requests), an
iteration operator can be introduced. Such iteration operator can be directly
defined from the above concatenations; u+ , u ∪ (u → u) ∪ (u → u → u) ∪ ...
Since concatenations have different modes, iteration has different modes as well.

In this paper, we consider only iteration of necessary precharts. Intuitively,
an eLSC u+ specifies that if the prechart is executed n times, then the main

chart must be executed at least n times, where the executions of the main chart
can be interleaved. For instance, given the eLSC u1 in Fig. 1, a trace (... s1, r1,
s2, s1, r2, r1, s2, r2,...) is admitted by u+1 ; whereas traces (... s1, s1, r1, s2, r2,
r1, s2, r2,...) and (... s1, r1, s2, r2, s1, r1) are not admitted by u+1 .

L1 L2L1 L2

(a) Mainchart Concatenation (b) Prechart Concatenation

(c) Partial orders induced by
the mainchart concatenation.

(d) Partial orders induced by the prechart con-
catenaiton.

Fig. 1. Example: a prechart concatenation and a mainchart concatenation

3 A Translation of eLSCs into LTL Formulae

3.1 Preliminaries

We now show how to translate extended LSCs into linear temporal logic formulae
for online monitoring.

Definition 4. Given the finite alphabet Σ of messages, the formulae ϕ of LTL
are inductively formed according to the following grammar, where, m ∈ Σ and
β ∈ {s, r}:

ϕ ::= ⊥ | (m, β) | (ϕ1 ⇒ ϕ2) | (ϕ1 U ϕ2) | X ϕ.

In addition, we use the following shorthand: ¬ϕ stands for (ϕ⇒⊥), > stands
for ¬⊥, F ϕ stands for (> U ϕ), G ϕ stands for ¬F ¬ϕ and ϕ1 W ϕ2 stands
for ¬ (¬ϕ2 U ¬ (ϕ1 ∨ ϕ2)). Given an event e , (m,β), we define Mess(e) , m
and Beh(e) , β. We define LTL on finite traces as follows.

Definition 5. Let τ , (e1, e2, ..., en) ∈ BΣ∗ with 1 ≤ i ≤ n being a position of
τ . The semantics for LTL is defined inductively as follows:

(τ, i) 2 ⊥;
(τ, i) |= (m, β) iff m = Mess(ei) and β = Beh(ei);
(τ, i) |= (ϕ1 ⇒ ϕ2) iff (τ, i) |= ϕ1 implies (τ, i) |= ϕ2;
(τ, i) |= (ϕ1 U ϕ2) iff there exists i ≤ j ≤ |τ | with (τ, j) |= ϕ2,

and for all i ≤ j′ < j it holds that (τ, j′) |= ϕ1;
(τ, i) |= X ϕ iff i = |τ | or (τ , i+ 1) |= ϕ.

As usual, τ |= ϕ iff (τ, 1) |= ϕ. Note that the logic is defined on events, and
will be used for monitoring sequences of events.

3.2 Translation of Universal Charts

In this section, we show how to translate a universal chart into an LTL formula
to check whether a trace is admitted. We follow the approach of Kugler et al.
[18]. From a basic chart c, we define the LTL formula ξc , ψc ∧ γc ∧ yc, where

ψc ,
∧

(e, e′)∈P(c)

(¬e′ W e)

γc ,
∧

e∈E (c)

(¬e W (e ∧ X G ¬e))

yc ,
∧

e∈E (c)

F e

The formula ψc specifies that e′ cannot occur before e in a trace with e ≺
e′. It does not specify e must occur at some point. The formula γc specifies that
each e can only occur at most one time in a trace. The formula yc specifies that
every event appearing in the chart will eventually occur in a trace.

With these formulae, we can then obtain LTL formulae from eLSCs with
necessary and sufficient precharts. From an eLSC u , (p, m, Cond), we define
the following formulae.

ξp , ψp ∧ γp ∧ yp, and ξm , ψm ∧ γm ∧ ym,
χ ,

∧
e′∈E (p)

((
∧

e∈E (m)

(¬e)) W e′)

ϕ(u) , ((ξp ∧ χ)⇒ ξm) if Cond = Nec; and
ϕ(u) , (¬(ξp ∧ χ) ⇒ ¬ξm) if Cond = Suff.
The formula χ specifies that events appearing in the main chart cannot occur

until all events appearing in the prechart have occurred in a trace. In can be
shown that the formula ϕ(u) defines the language of u.

Lemma 2. A trace is admitted by a universal chart u if and only if it satisfies
ϕ(u): τ u iff τ |= ϕ(u).

Proof. Follows from the definitions. Omitted in this version of the paper.

With this translation of LSCs into LTL formulae, a system can be monitored
by standard methods, e.g., formula rewriting. The size of the formula ϕ(u) is
polynomial in the number of events appearing in u. Therefore, the resulting LTL
formula will not explode when dealing with large eLSC specifications.

As remarked above, a concatenation δ = (u, u′,Mode) of eLSCs can be ex-
pressed by a set of single eLSCs. This can be translated into an equivalent

conjunction of LTL formulae as above. Thus, concatenation does not pose any
additional difficulties for monitoring.

4 An Algorithm for Checking eLSCs with Iteration

The language defined by an eLSC with iteration is incomparable with LTL. Even
eLSCs cannot express the temporal “next” operator. Similar with asynchronous
concatenations of MSCs, the language of an eLSC with iterated precharts is not
necessary regular. Therefore, for an eLSC u+, in general there is no equivalent
LTL formula, and the above approach to monitoring cannot be applied. For
this reason, we develop an explicit algorithm for checking traces against eLSCs
with prechart iterations. In the algorithm, a trace is checked against an eLSC
specification u+ in two steps.

1. The trace is decomposed into a set of sub-traces and a remainder sequence
according to the events appearing in p and m. Every event is unique in each
sub-trace.

2. It is checked whether all sub-traces are admitted by the corresponding basic
charts p and m, and whether the begin point and the end point of each
sub-trace respect the partial order implied by u+.

4.1 Decomposing Traces

A trace is decomposed by two operations . and .. The operation . generates a
sub-trace τs from a trace τ according to a set of events E. In the resulting τs,
each event in E occurs at most once. The order of events in τs is the same as in
the original trace. The operation . generates the “complement” sub-trace of τs.
These operations are formally defined as follows.

Given a trace τ , (e1, ..., en) and a formula ϕ, we define κ(τ , ϕ) to be the
smallest i such that (e1, ...ei) |= ϕ (and κ(τ , ϕ) = 0 if there is no such i). For a
set of events E = {x1, ..., xm}, we define a sequence of points K(τ, E) , (k1, ...,
km) with 1 ≤ k1 ≤ ... ≤ km ≤ |τ | by {k1, ..., km} = {κ(τ, Fx1), ..., κ(τ, Fxm)}.
Let E (τ) be the set of events appearing in τ and let ε be the empty trace. The
operations . and . are defined as follows.

.: BΣ∗ × 2BΣ 7→ BΣ∗ such that
τ . E , (e[k1], ..., e[k|E|]) with (k1, ..., k|E|) = K(τ , E) if E ⊆ E (τ);

τ . E , ε if E * E (τ).
.: BΣ∗ × 2BΣ 7→ BΣ∗ such that
τ . E , (e[1], ..., e[k1 − 1], e[k1 + 1], ..., e[k|E| − 1], e[k|E| + 1], ..., e[n]) if
τ . E 6= ε;
τ . E , τ if τ . E = ε.

Given a trace τ and a basic chart c, we define a tuple Div(τ, c) , (τs,PosI ,
PosF), where PosI is the index of the initial point of τs, and PosF is the index
of the final point of τs. Formally, Div(τ, c) is defined as follows.

Algorithm 1 divide a trace according to a basic chart

procedure TraceDiv(trace τ , basic chart c) =
while (τ . E (c)) 6= τ do

τs ← (τ . E (c));
PosI ← κ(τ ,

∨
e∈E (c)

Fe);

PosF ← κ(τ ,
∧

e∈E (c)

Fe);

DivSet← DivSet.add (τs, PosI , PosF); //add the resulting tuple into the set DivSet
τ ← (τ . E (c));

end
return DivSet

– τs , (τ . E (c)), PosI ,
∨

e∈E (c)

Fe, PosF ,
∧

e∈E (c)

Fe, if E (c) ⊆ E (τ);

– τs , τ and PosI = PosF = 0, otherwise.

Next, we define a set DivSet(τ , c), {(τs1, PosI1, PosF1), ..., (τsn, PosIn, PosFn)},
where

(τs1,PosI1,PosF1) , Div(τ, c);
(τsi,PosIi ,PosFi) , Div((τi−1 . c), c) for 1 < i ≤ n; and
(τs(n+1) . E (c)) = ε.
For a universal chart, we define two such sets DivSet(τ, p) and DivSet(τ,m).

The calculation of these set can be done with Algorithm 1 above.

4.2 Checking Sub-traces

With the above decomposition, we can then check whether τ is admitted by
u+. An eLSC with iteration specifies repeated execution of a chart. A trace τ is
admitted by u+ if and only if

– τ is able to be decomposed into a number of sub-traces, each of which is
admitted by u; and

– the order of execution of the prechart is respected.

According to the above rules, we develop algorithms for checking whether
τ u+, where Alg. 2 (resp. Alg. 3) checks the prechart (resp. the main chart)
of u. The two sub-algorithms return PRes and MRes as the checking result. The
satisfaction of τ against u+ is (PRes ∧ MRes) Let F be a formula, we define
an interpretation operation [[F]] that maps F to a boolean value. For a trace
τ and an LTL formula ϕ, we say [[τ |= ϕ]] , true if τ is satisfied by ϕ; and
[[τ |= ϕ]] , false if τ is violated by ϕ. The algorithm for checking traces against
LTL formulae is developed according to an effective rewriting algorithm proposed
by Havelund [17].

Algorithm 2 Checking the prechart of u+

input : A trace τ and an eLSC u , (m, p,Cond)
output: whether τ is admitted by u+

PRes ← true; // initialize the checking result
p ← |DivSet(τ, p)|; // the number of executions of the prechart
for i← 1 to p do

// check whether each execution of the prechart is correct
PRes ← (PRes ∧ [[τsi |= ψp]]);
// check the partial order of the prechart’s executions
PRes ← (PRes ∧ [[PosFi < PosIi+1]]);
/* if the prechart is a necessary prechart, then there is an execution of the main
chart after each execution of the prechart */
if Cond == Nec then

PRes ← (PRes ∧ [[m ≥ p]]);
if ∃(τs, PosI , PosF) ∈ DivSet(τ , m) s.t. PosI > PosFi then

PRes ← PRes ∧ true;
else

PRes ← false;
end

end

end
return PRes

5 Case Study: the RBC/RBC Handover Process

In this section, we present a concrete example from the European Train Control
System (ETCS). In the ETCS level 2, the radio block center (RBC) is responsible
for providing movement authorities to allow the safe movement of trains. A
route is divided into several RBC supervision areas. When a train approaches
the border of an RBC supervision area, an RBC/RBC handover process takes
place. The current RBC is called the handing over RBC (HOVRBC), whereas
the adjacent RBC is called the accepting RBC (ACCRBC) 3.

The RBC/RBC handover process is performed via exchanging a sequence of
messages between the two RBCs. These messages are called NRBC messages,
including “Pre-Announcement” (preAnn), “Route Related Information Request”
(RRIReq), “Route Related Information” (RRI) and “Acknowledgement” (Ackn).
The NRBC messages are exchanged via an open communication system GSM-R.

The safety standard EN50159 identifies the following threats to an open
transmission system: corruption, masquerading, repetition, deletion, insertion,

3 Further details of this case study are provided in
http://www2.informatik.hu-berlin.de/~hs/Publikationen/2014_RV_

Ming-Schlingloff_ETCS-Case-study(description-of-RBCRBC-handover).pdf

Algorithm 3 Checking the main chart of u+

input : A trace τ and an eLSC u , (m, p,Cond)
output: whether τ is admitted by u+

MRes ← true; // initialize the checking result
m ← |DivSet(τ,m)|; // the number of executions of the main chart
for j ← 1 to m do

MRes ← (MRes ∧ [[τsj |= ψm]]; // check each execution of the main chart
/* If u is with a sufficient prechart, then there is an execution of the prechart before
each execution of the main chart. */
if Cond == Suff then

MRes ← (MRes ∧ [[m ≤ p]]);
if ∃(τs, PosI , PosF) ∈ DivSet(τ , p) s.t. PosF < PosIi then

MRes ← MRes ∧ true;
else

MRes ← false;
end

end

end
return MRes

resequencing and delay. A safety protocol is added between the application layer
and the transport layer for providing safe communication between RBCs. The
safety protocol provides protection against threats related to corruption and
masquerading, other threats are covered elsewhere.

We use eLSC based monitors to protect against threats related to temporal
relations of messages, i.e., repetition, deletion, insertion and resequencing. In
this paper, we specify the following two properties with the eLSC language.

1. For a successful RBC/RBC handover process, if the train reaches the bor-
der of two RBC areas, the NRBC messages should be correctly exchanged
between the two RBCs (see Fig. 2(a)).

2. The NRBC messages can only be exchanged after the two RBCs establish a
safe connection (see Fig. 2(b)).

For property 1, the message preAnn is exchanged in sequence if and only
if after the HOVRBC detects the handover condition. We specify the handover
condition by an “HOV cond” message. Therefore, the eLSC preHOV is with an
“iff” prechart, which consists of the receiving event of the message HOV cond.
If HOVRBC sends an RRIReq message to ACCRBC, ACCRBC sends an RRI
message to HOVRBC. HOVRBC sends an Ackn message to ACCRBC after
receiving the RRI message. In fact, the accepting RBC is allowed to send an
RRI without an RRI request when there is new route information. Hence, the
second eLSC in Fig. 2(a) (eLSC ExdEoA) is with a necessary prechart. Since

LSC preHOV

preAnn

HOV cond

LSC ExdEoA

RRI

RRIReq

Ackn

+

HOVRBC ACCRBC HOVRBC ACCRBC

(a) The eLSC for Pro. 1 (b) The eLSC for Pro. 2

Fig. 2. Example: the RBC/RBC handover process

the HOVRBC can ask for new route information iteratively, the eLSC is with
an iteration.

According to the requirements of ETCS, the messages RRIReq and RRI are
allowed to be exchanged after HOVRBC receives the “preAnn” message. Thus,
the eLSC ExdEoA in Fig. 2(a) cannot be executed before preHOV. The double
arrow between eLSCs preHOV and ExdEoA in Fig. 2(a) denotes {(m,m′,Suff),
(m, p′,Suff)} for u = preHOV and u′ = ExdEoA.

For property 2, the safe connection is established after HOVRBC receives a
“safe connection confirm” (Sa-CONN.conf) message. As an example, we consider
the message preANN: it cannot be transmitted before HOVRBC receives Sa-
CONN.conf. This property is specified by an eLSC with a sufficient prechart,
which consists of a receiving event of SaCONN.conf (see Fig. 2(b)).

As an example observation from the log file of RBCs (according to the spec-
ification SUBSET-039), we used the trace shown in Fig. 3(a).

(a) A trace example

0.00E+00

5.00E+05

1.00E+06

1.50E+06

2.00E+06

2.50E+06

3.00E+06

0 500 1000 1500 2000 2500

C
he

ck
in

g
Ef

fi
ci

en
cy

(r

ew
ri

te
s)

Length of the Trace (number of events)

φ1

φ2

(b) Monitoring efficiency

Fig. 3. Evaulation results in Maude

To prove that the concept of eLSC based monitoring is feasible, we built
a prototypical implementation of our algorithms. We translate eLSCs without
iteration into LTL formulae, and implement the LTL model checking algorithm
in Maude, see [17] and [7]. This is a high performance rewriting environment,
which is able to execute millions of rewrites per second [10].

We checked the example trace with our prototypical implementation. The
results show that it satisfies the two properties. In addition, we built some more
traces by injecting errors, such as adding/removing events, and exchanging the
occurrence order of events. The results show that the monitor can detect repe-
tition, deletion, insertion and resequencing errors.

For our LTL translation, since the size of the formula is polynomial in the size
of the eLSC, the monitoring complexity is the same as the complexity of LTL
model checking. Thus, given an eLSC specification and a trace, the complexity
of monitoring is linear in the length of the trace, and (worst-case) exponential in
the number of events appearing in the eLSC. We repeated similar experiments
several times with different traces. The checking efficiency is shown in Fig. 3(b).
In this diagram, ϕ1 and ϕ2 are the resulting LTL formulae of property 1 and
property 2, respectively. The difference in checking efficiency is caused by the
sizes of the two formulae: ϕ1 consists of approx. 630 sub-formulae, whereas ϕ2 has
only approx. 130 sub-formulae. The experimental results show that our approach
is capable to detect failures in the executions of a system.

6 Conclusion and Discussion

In this paper, we have proposed a monitoring approach on basis of eLSC spec-
ifications. We introduced the notion of a sufficient prechart for specifying suffi-
ciency conditions in correctness properties. Then we defined concatenation and
iteration of LSCs. We have shown how to translate eLSCs without iteration into
LTL formulae. A system can then be monitored by formula rewriting. For the full
language, we developed an explicit monitoring algorithm. Finally, we presented
a case study with a concrete example from the railway domain. The results show
the feasibility of our implementation.

There are several interesting topics for future work. Firstly, the implemen-
tation reported in this paper was done as a proof-of-concept, showing that the
approach of eLSC based monitoring is feasible. Since the sizes of resulting for-
mulae are often large, translating eLSC into LTL formulae is not an efficient
way for monitoring. In addition, to maintain monitors in deployed systems, one
would not want to employ full Maude. Therefore, we are currently developing a
more efficient implementation, which can check eLSC specifications directly.

Secondly, in this paper we only considered a subset of the original LSC lan-
guage, excluding conditions and “cold” elements, where additionally all messages
had to be unique. Even though we do not think that the full LSC language poses
additional fundamental problems, this needs to be worked out. Moreover, the
LSC language has been extended with timing constructs for specifying real-time

properties. We want to investigate the translation of eLSCs with such timing
constructs into TPTL formulae for monitoring purposes.

Last but not least, it remains open to define an automaton concept which
has exactly the same expressiveness as our eLSCs.

Reference

1. Rajeev Alur and Mihalis Yannakakis. Model Checking of Message Sequence Charts.
In CONCUR99 Concurrency Theory, pages 114–129. Springer, 1999.

2. Andreas Bauer, Jan-Christoph Küster, and Gil Vegliach. From Propositional to
First-order Monitoring. In Runtime Verification, pages 59–75. Springer, 2013.

3. Hanene Ben-abdallah and Stefan Leue. Timing Constraints in Message Sequence
Chart Specifications. In In IFIP. Chapman. Hall, 1997.

4. Jürgen Bohn, Werner Damm, Jochen Klose, Adam Moik, Hartmut Wittke,
H Ehrig, B Kramer, and A Ertas. Modeling and Validating Train System Ap-
plications Using Statemate and Live Sequence Charts. In Proc. IDPT. Citeseer,
2002.

5. Yves Bontemps. Relating Inter-Agent and Intra-Agent Specifications. PhD thesis,
PhD thesis, University of Namur (Belgium), 2005.

6. Yves Bontemps and Pierre-Yves Schobbens. The Computational Complexity of
Scenario-based Agent Verification and Design. Journal of Applied Logic, 5(2):252–
276, 2007.

7. Ming Chai and Holger Schlingloff. A Rewriting Based Monitoring Algorithm for
TPTL. In CS&P 2013, pages 61–72. Citeseer, 2013.

8. Feng Chen and Grigore Roşu. Java-MOP: A Monitoring Oriented Programming
Environment for Java. In Tools and Algorithms for the Construction and Analysis
of Systems, pages 546–550. Springer, 2005.

9. Selim Ciraci, Somayeh Malakuti, Shmuel Katz, and Mehmet Aksit. Checking the
Correspondence between UML Models and Implementation. In Runtime Verifica-
tion, pages 198–213. Springer, 2010.

10. Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martı-Oliet,
José Meseguer, and Carolyn Talcott. Maude Manual (version 2.6). University of
Illinois, Urbana-Champaign, 1(3):4–6, 2011.

11. Pierre Combes, David Harel, and Hillel Kugler. Modeling and Verification of a
Telecommunication Application Using Live Sequence Charts and the Play-engine
Tool. Software & Systems Modeling, 7(2):157–175, 2008.

12. Werner Damm and David Harel. LSCs: Breathing Life into Message Sequence
Charts. Formal Methods in System Design, 19(1):45–80, 2001.

13. Jasmin Fisher, David Harel, E Jane Albert Hubbard, Nir Piterman, Michael J
Stern, and Naamah Swerdlin. Combining State-based and Scenario-based Ap-
proaches in Modeling Biological Systems. In Computational Methods in Systems
Biology, pages 236–241. Springer, 2005.

14. David Harel, Hillel Kugler, Rami Marelly, and Amir Pnueli. Smart Play-out of
Behavioral Requirements. In Formal Methods in Computer-aided Design, pages
378–398. Springer, 2002.

15. David Harel and Shahar Maoz. Assert and Negate Revisited: Modal Semantics for
UML Sequence Diagrams. Software & Systems Modeling, 7(2):237–252, 2008.

16. David Harel, Shahar Maoz, and Itai Segall. Some Results on the Expressive Power
and Complexity of LSCs. In Pillars of computer science, pages 351–366. Springer,
2008.

17. Klaus Havelund and Grigore Roşu. Monitoring Java Programs with Java PathEx-
plorer. Electronic Notes in Theoretical Computer Science, 55(2):200–217, 2001.

18. Hillel Kugler, David Harel, Amir Pnueli, Yuan Lu, and Yves Bontemps. Temporal
Logic for Scenario-based Specifications. In Tools and Algorithms for the Construc-
tion and Analysis of Systems, pages 445–460. Springer, 2005.

19. Rahul Kumar and Eric G Mercer. Verifying Communication Protocols Using Live
Sequence Chart Specifications. Electronic Notes in Theoretical Computer Science,
250(2):33–48, 2009.

20. Martin Leucker and Christian Schallhart. A Brief Account of Runtime Verification.
The Journal of Logic and Algebraic Programming, 78(5):293–303, 2009.

21. Patrick ONeil Meredith, Dongyun Jin, Feng Chen, and Grigore Roşu. Efficient
Monitoring of Parametric Context-free Patterns. Automated Software Engineering,
17(2):149–180, 2010.

22. Grigore Roşu and Klaus Havelund. Rewriting-based Techniques for Runtime Ver-
ification. Automated Software Engineering, 12(2):151–197, 2005.

23. Jocelyn Simmonds, Marsha Chechik, Shiva Nejati, Elena Litani, and Bill OFar-
rell. Property Patterns for Runtime Monitoring of Web Service Conversations. In
Runtime Verification, pages 137–157. Springer, 2008.

24. Prasanna Thati and Grigore Roşu. Monitoring Algorithms for Metric Temporal
Logic Specifications. Electronic Notes in Theoretical Computer Science, 113:145–
162, 2005.

A Proof of lemma 1

Lemma 1. The language
(
BΣ∗ ◦ L(c) ◦ L(c′) ◦ BΣ∗

)
cannot be defined by an

LSC specification.

Proof. A universal chart u , (p, m) defines the language L(u) ,(
BΣ∗ ◦ L(p) ◦ L(m) ◦ BΣ∗

)
[5]. The language defined by an LSC specification

U , {u1, u2, ..., un} with ui , (pi, mi) isX ,
⋂

1≤i≤n

(
BΣ∗ ◦ L(pi) ◦ L(mi) ◦ BΣ∗

)
.

We only consider the segments S ,
⋂

1≤i≤n

(
L(pi) ◦ L(mi)

)
, where every word in

X contains a segment in S. The complement of S is S ,
⋃

1≤i≤n

(
L(pi) ◦ L(mi)

)
.

Every word in S contains a prefix υ ∈
⋃

1≤i≤n
L(pi). For the segment S′ ,(

L(c) ◦ L(c′)
)

of Y ,
(
BΣ∗ ◦ L(c) ◦ L(c′) ◦ BΣ∗

)
, a word in S′ contains a seg-

ment υ′ ∈ L(pi). The language of a basic chart c is defined by stutter events and
a finite set Traces(c). Therefore, the language of c is defined by stutter events
and a set (BΣ∗\Traces(c)), which is an infinite set. Whereas, the set

⋃
1≤i≤n

L(pi)

is finite with n <∞. Therefore, there exists some υ′ that is not expressed by S.
In other words, there are some segments of words in S′ that are not expressed
by S. Since i) X consists of S and BΣ∗; ii) Y consists of S′ and BΣ∗; and iii)
S′ cannote be expressed by S, the language Y cannot be epxressed by X. �

