
On the Use of Test Cases in
Model-Based Software Product Line Development

Alexander Knapp
University of Augsburg, Germany

knapp@informatik.uni-augsburg.de

Markus Roggenbach
Swansea University, Wales, United Kingdom

M.Roggenbach@swan.ac.uk
Bernd-Holger Schlingloff

Humboldt University and Fraunhofer FOKUS,
Berlin, Germany

hs@informatik.hu-berlin.de

ABSTRACT
We address the question of how to select test cases in a controlled
model-based software product line development process. CVL, the
common variability language, provides a framework for materializa-
tion of product models from a given variability model and resolution
model. Reflecting common practice, we assume that test case devel-
opment for product line is independent from product development.
In such a setting, the question arises which test cases can be applied
to which products. To this end, we describe a procedure and tool set
for assigning the outcome of a test case on an arbitrary member of a
software product line using UML base and CVL variability models.
As a case study, we demonstrate our approach with the example of
a product line of automatic espresso machines.

Keywords
Software product lines, model-based testing, test colouring, UML.

Categories and Subject Descriptors
Software [Software Engineering]: Software/Program Verification—
Formal methods; Software [Software Engineering]: Testing and
Debugging

1. INTRODUCTION
Software Product Lines (SPLs) are abundant in today’s software-
intensive systems: most electronic control units, e.g., in cars or
trains, come in multiple variants, as well as consumer products like
coffee machines, dishwashers, mobile phones, etc. One challenge
in the development of these products is that the built-in software is
similar, but not identical in all products; there are slight differences
according to the features exhibited by a particular product. The main
goal of SPL engineering is the strategic re-use of software artefacts.
However, re-use increases the probability of errors. Therefore,
quality assurance for SPLs is of utmost importance.

In this paper we consider the problem of testing the members of a
SPL. A naive approach would be to design a specialized test suite

[Submitted as Research Paper to the 18th International Software Product
Line Conference Florence, Italy, September 15-19, 2014.]

for each member of the SPL. Such “separate test case development”,
c.f. [7], however, would be wasteful as it ignores that features are
shared. Similar as with source code, it is desirable to re-use test
cases. Therefore it is current practice to adapt the test suite from one
member of a SPL to another. This “opportunistic reuse of existing
test cases”, c.f. [7], utilizes the fact that there will be much overlap
between their test suites. Here, one manually re-works the test
suite for each individual product and defines the applicability and
expected outcome of each test case on an ad-hoc basis. Clearly, this
is a time-consuming and tedious exercise. Therefore, Reuys et al.
[7] suggest to “design test cases for reuse”. However, this leads to
complex test cases which include variability information.

In contrast, we suggest to design a single, “universal” test suite
for a SPL. For a given materialization, the universal test suite is
filtered by an automated colouring procedure. In a model-based SPL
development, the base model contains realizations for all features;
similarly, the suggested universal test suite shall contain tests for all
features. Given a universal test suite, one then determines for each
member of the SPL the subset of “applicable” test cases. Clearly
there are syntactic criteria influencing applicability: the system
under test must provide all interfaces (input/output signals) which
are used by the test case. However, applicability also depends
on dynamic product features: if the test case checks the correct
functionality of a feature which is not present in the product, it is not
clear what the expected outcome of this test case for the respective
product is.

We study this question in the context of a model-based development
process by step-wise refinement, from an abstract function model to
a concrete implementation model. Here, we assume that test cases
are developed independently in another department or business unit,
following the usual code of conduct to separate development and
testing. Given a product model and a test case, there are several
possibilities, which we capture by a test case colouring scheme: (1)
The test case describes a behaviour which is expected from this
particular product (or product model, respectively). In this case
we say that the colour of the test case with respect to the product
model is green. (2) The test case describes a behaviour which is
not to be expected from this product model (but maybe from some
other product of the product line). In this case, the colour of the
test case with respect to the model is red. (3) The product model is
at an abstract level such that it can not yet be decided whether the
implementation will exhibit the behaviour described by the test case
or not. In other words, there are open design decisions such that one
valid refinement shows the behaviour, whereas another one does not.



Figure 1: A feature model for automatic espresso machines

In this case, we say that the test case is coloured yellow.

With a finished product, only green and red test cases are executed:
Green test cases confirm that some desired functionality is present,
whereas red test cases check that some undesired functionality is
absent in the product.

The goal of the paper is to describe an automated test selection
procedure based on a sound semantical theory. Subsequently, we
formalize the requisite notions, describe an algorithm for automated
test case colouring and its implementation, and illustrate the ideas
by the example of a product line of automatic espresso machines.

2. MODELLING IN SPL ENGINEERING
Product line development involves two engineering processes: do-
main engineering and application engineering. For model-based
SPL engineering, the artefacts produced during domain engineering
are mostly models. CVL, the common variability language, is an
attempt to define a syntactic framework for such model-based SPL
engineering [2]. A feature (in CVL called a VSpec) is the description
of a designated functionality. Each feature has a unique name and
represents one characteristic of a product which is interesting for
some stakeholder, e.g., a special added value for the customer. The
feature model is an explicit description of commonalities and differ-
ences of various products. Feature models are usually organized as
and-or trees, where each node is marked with the name of a feature.
An example of a feature model is given in Figure 1. It depicts part
of the features of a modern automatic espresso machine. There
are various manufacturers of these machines, virtually all of which
organize their portfolio as a product line. For more information
on features of automatic coffee machines, see [9]. In our model, it
is determined that each machine has a display, a grinder, a heater,
and a pump as mandatory features. The display can consist of a
number of LED lights, or an LCD text display (or both). The pump
can be adjusted to serve just the two cup sizes ‘small’ and ‘large’,
or the cup size can be programmable by the user (but not both).
An optional feature is the ability to adjust the grinder in order to
influence the taste. If the feature is selected, there must be a variable
grindinglevel which can be set; in this case an LCD is necessary to
display that variable’s value.

Given any feature model, a resolution model (or simply resolution)
is an assignment of truth values to feature names, such that all
constraints are satisfied. A base model for the CVL is any model
which is an instance of some MOF (meta-object facility) meta-
model. In our work, a base model is a UML model consisting
of (restricted) state machine diagrams and class diagrams. The
base model contains realizations for all features; thus, if the feature
model contains conflicting features, then the base model does not
represent a possible product. Consequently, the base model consists

not necessarily of well-formed UML diagrams. A variability model
is a feature tree with variation points linking into the base model. In
CVL, there are several kinds of variation points: existence, value
assignment, substitution, and others. Materialization is done by
applying the variation points according to a given resolution. This
means deleting model elements which are bound to an existence
variation point, assigning a value to a variable bound to a value
assignment variation point, etc. In a model-based development
process, the resulting product models are further refined to different
products by model transformation and code generation.

There are various papers dealing with the question of how to derive
test suites from a base model, a variability model, and a resolu-
tion (see, e.g., [8]). In contrast to these approaches, we do not
deal with the question of test generation, and assume that test case
development is independent from the product development. This
reflects common practice in large companies, where there are sep-
arate departments for software development and software testing,
and it also reflects situations where software development is done
at a supplier’s side, whereas testing is done by the vendor. That
is, we regard base model or product models exclusively for the
sake of product development. Test cases and test suites are crafted
and maintained in a different process. Under this assumption, the
problem arises which test cases can be applied to which products.

3. A TEST COLOURING PROCEDURE
Subsequently, we show how the base model, the variability model
and the resolution model can be used to determine the expected
outcome of a test case to a product. Our contribution is based on
our previous work [3], where we here use standard UML instead of
CSP-CASL. Furthermore, the developed technology is automatized
to a higher degree, as it is based upon model checking rather than
interactive theorem proving.

Test cases reflect intentions described in the specification. We use a
three-valued colouring scheme: A test case it coloured green if it
reflects a behaviour that is expected from this particular variant. It is
coloured red if the variant should not allow the described behaviour.
Finally, a test case is coloured yellow if the respective behaviour is
neither required nor disallowed by the specification of the variant.
This can happen, e.g., if the specification is non-deterministic or
incomplete. Intuitively, green test cases reflect required and red test
cases forbidden behavioural properties of the specification. Yellow
tests mirror open design decisions, i.e., properties which are not
(yet) decided in the specification. Since the colour of a test case
depends on the base model as well as the variability model and its
resolution for a particular variant, the same test case can be green
for one product, but red or yellow for another one.

To define the notion of a test case, we need to fix a test signature
Σ. In our approach, we assume that Σ is a subset of the events
which are contained in the base model. Intuitively, elements of the
signature are the only events which can be “noticed” by the test
case; events not in the signature are “invisible”. A test case is a
finite sequence of events from the test signature Σ. In order to fix
the semantics of a test case, we further assume that there exists a
function enabled assigning to each configuration state of a UML
model the set of output events from Σ which may occur next. That
is, an event e ∈ Σ is in enabled(c), if upon its occurrence there is a
sequence c0

e1−→ c1
e2−→ · · · en−−→ cn of transitions such that c0 = c

and en = e, and for all i < n it holds that ei is either an input or
ei /∈ Σ. In this case, we say that cn is reached from c by e . For an
event e ∈ enabled(c), we say that it is obliged at c, if it is not the



case that some e ′ ∈ Σ different from e is enabled in c. Intuitively,
if e is obliged at c, it is the event from Σ which must occur next, if
any.

The colour of a test case T = 〈e1, . . . , en〉with respect to a product
model is a value from {green, red , yellow}, such that

• colour(T ) = green iff for all k < n and every sequence
〈c0, c1, . . . , ck 〉 of configurations such that c0 is the initial con-
figuration, and ci is reached from ci−1 by ei for all 1 ≤ i ≤ k it
holds that ek+1 is obliged at ck ;

• colour(T ) = red if there is no sequence 〈c0, c1, . . . , cn〉 of
configurations such that c0 is the initial configuration, and ci is
reached from ci−1 by ti for all 1 ≤ i ≤ n; and

• colour(T ) = yellow , otherwise.

In other words, a test case is green if it can be observed in all possible
executions of the model triggered by this test case. It is red if there
is no possible execution where it can be observed. It is yellow if
some executions show the behaviour and others do not.

Here are some simple properties of our colouring.

• An empty test case (consisting of no events at all) is always green.

• A one-element test case is green if its event is enabled and obliged
in the initial configuration; it is red, if the event is initially not
enabled; and yellow, if it is enabled but not obliged.

• Any initial fragment of a green test case is green; any extension
of a red test case is red.

• If a state is non-deterministic, e.g., from state s there are transi-
tions /a and /b, then the test cases 〈a〉 and 〈b〉 are yellow, since
enabled(s) = {a, b}, but a is not obliged at s . Assuming that
the test signature is {a, b, c}, the test case 〈c〉 is red, since neither
/a nor /b produce c and thus c is not enabled in s .

• Consider a situation where the effect of a transition invokes a
behaviour expression including an operation for which only its
signature is known (e.g., a transition /object .op(arg), where the
operation op is declared in the class diagram, but the return value
of op for a given argument arg is not specified). Then test cases
using such a transition will be yellow, as all possible return values
are enabled in the state machine; however, the test case contains
only a specific one.

The test verdict (pass or fail) for a test is assigned by executing a
green or red test case with a concrete product. A product passes a
test suite, if it behaves as expected, i.e., if it exhibits the behaviour
described in all green test cases and deviates from the behaviour
described in all red test cases. Yellow test cases do not contribute to
the detection of faults, thus we do not execute them.

For automating the above defined test colouring procedure for a
given materialization of a SPL and a test case, we use the tool
HUGO/RT, which is a UML model translator for model checking [4].
HUGO/RT translates both the materialization and a test case into
Promela, which is the input language of the model checker SPIN.
The variability model and resolution are used in this translation
such that the Promela code reflects both the product model and the
test case. Using SPIN, we now check on the one hand whether the

observer automaton can proceed to its final state which is reached
when the last event of the test case has happened. If this final state
cannot be reached, the test case is coloured red. On the other hand,
if the final state is reachable, we additionally check whether the
failure state is reachable. If the failure state cannot be reached, the
test case is coloured green, otherwise yellow.

4. EXAMPLE
We demonstrate our ideas with an example product line of automatic
espresso machines using the features described in Fig. 1. Since the
feature model involves ten features and different parameters, there
is quite a large number of different product models. Only a few
of these will be materialized as actual products in the market. We
consider three elementary test cases to be evaluated on the selected
product models. Their colour varies, depending on the resolution
and level of abstraction of the respective product model.

4.1 Base Model
We first give a base model for the realisation of all features. It
contains a class model (due to space limitations not shown here1)
with variability in the setting of variables and associations. The
state machine diagram in Fig. 2 describes the user interface of the
espresso machines. With some machines, there is the possibility
to use the down and up buttons to access menus for adjusting the
amount of water for a cup and the grinding level. Note that there
are several possible transitions from Ready triggered by down; the
variability model resolves this apparent non-determinism by select-
ing the appropriate ones according to the features materialised in
the product model.

The diagram in Fig. 3 describes the internal control structure of
the espresso machines. Within the control state Brewing, there are
two parallel regions, for grinding and heating. UML does not put
any restrictions on the interleaving of transitions between these two
regions; this non-determinism is resolved by the programmer, code
generator, or run-time system.

4.2 Variability Model
The variability model for the product line is depicted in Fig. 4. It
states that the class LED from the base model is present in a prod-
uct model if and only if the feature led is true in the resolution of
the feature model. Likewise, if the feature lcd is true in a resolu-
tion, then the class LCD is present in the resolved product model,
otherwise it is absent. The feature adjustable grinder determines
that the variable gl (for the grinding level) in class Data and the
method setLevel in class Grinder are present, as well as the states
ChangeGrindingLevel in the Menu state of UserInterface and Set-
GrindingLevel in the Brewing state of Control. Features two cup sizes
and programmable cup sizes are mutually exclusive; resolving two
cup sizes to true gives the constants SMALL and LARGE as well as
the signals small and large which trigger transitions from Ready to
Working, whereas resolving programmable cup sizes to true gives
the variable wl and the transition via select. Additionally, if pro-
grammable cup sizes is set to true, then the transitions down and up
from Ready to ChangeGrindingLevel in the Menu state (shown in
bold) must be replaced by transitions leading in and out of the state
ChangeWaterAmount.

1The full case study with all diagrams can be found at http://
www.cs.swan.ac.uk/~csmarkus/caseStudy.pdf.



entry / control.brew

Working

AdjustingGrindingLevel

entry / lcd.display(lcd.GRINDINGLEVEL+data.gl)

AdjustingWaterLevel

entry / lcd.display(lcd.WATERAMOUNT+data.wl)
ChangeGrindingLevel

ChangeWaterAmount

lcd.display(lcd.BREWING); leds[1].off; leds[2].off; leds[0].on

small /
leds[1].off; leds[2].off; leds[0].on; data.wl = data.SMALL

large /
leds[1].off; leds[2].off; leds[0].on; data.wl = data.LARGE

lcd.display(lcd.REFILLWATER); leds[0].off; leds[2].on
refillWater /

lcd.display(lcd.REFILLBEANS); leds[0].off; leds[1].on
refillBeans /

lcd.display(lcd.ENJOY); leds[0].off
enjoy /

up [data.wl <= 10] / data.wl++ down [data.wl >= 3] / data.wl−−

up [data.gl <= 5] / data.gl++ down [data.gl >= 1] / data.gl−−

select /

select /

select /

select /

Ready

down /

up /

up /

down /

select /

down /

Group1

up /

TRWB

TRWS

TRWL

Menu

Figure 2: Espresso machines product line: user interface

SetGrindingLevel

TurnOnGrinder

Grinding Heating

TurnOnHeater

CheckWater Checking Pouring

/ grinder.
setLevel(data.gl)

/ grinder.on

ground /

/ heater.on

heated /

Brewing

Dispensing

/ ui.enjoy

notEnoughWater /
ui.refillWater

/ waterTank.
check(data.wl)

enoughWater /
waterTank.open

after(data.wl) /
waterTank.close

Idle

ui.refillBeans
notEnoughBeans /

brew /

Figure 3: Espresso machines product line: control component

4.3 Some Sample Test Cases
In order to illustrate our colouring approach, we present some sam-
ple test cases, for the sake of readability depicted as UML sequence
diagrams.

The first test case, see Fig. 5, checks a functionality realised in all
materializations, namely that it is possible to brew coffee. Here
we use a user object for controlling the environment’s input to the
system and require that after a select from the user to the user
interface ui the system issues a message brew to ctrl representing the
machine’s controller. However, by using a consider-fragment we
disregard all other messages that could be produced and exchanged
in the espresso machine, i.e., the observables of this test case are
select and brew.

The second test case, see Fig. 6, checks if the features LCD and

Figure 4: The variability model for the product line

LED are correctly implemented. To this end, we study the internals
of the reaction of the user interface to select more closely and thus
take not only select and brew, but also display, off, and on to be
observable.

As the above examples indicate, it is possible and desirable to orga-
nize the suggested universal test suite of a SPL around its feature
model, i.e., its structure can be a consequence of the Domain Engi-
neering process. Naturally, a universal test suite for our SPL will
include far more test cases than the two presented examples.

4.4 Colouring Test Cases
Colouring “Brewing coffee” First, we consider a materialisation
containing both the features lcd and led. Inspecting the behaviour
of UserInterface in Fig. 2, we would deem this test case to be green
for this particular materialisation. In fact, HUGO/RT confirms that
on the one hand, brew is produced after select when ignoring the
display message to the LCD and the offs and on to the LEDs; on the
other hand, trivially, no other message than brew can be produced



Figure 5: Test case “Brewing coffee”

Figure 6: Test case “Brewing coffee in detail”

after select. When moving to further materialisations, where only
one of the features led or lcd is present, this test case keeps its
green colour. In both cases, the superfluous messages on the select-
transition from Ready to Working are discarded, which has the same
effect as ignoring them in the test case.

Colouring “Brewing coffee in detail” For the second test case, we
move back to the materialisation showing both features led and
lcd. Although the sequence of messages can be executed by the
materialised espresso machine, the test case has to be coloured
yellow: the sequence of consumption of the off and on messages to
the LEDs is not determined. Conversely, when leaving out some
off or on message from the test case in Fig. 6, the test case colour
changes to red for the materialisation with both led and lcd.
Interestingly, the situation changes when we transfer this test case
to the materialisation showing only the feature lcd; we discard the
off and on messages both from the UserInterface state machine in
Fig. 2 and from the sequence diagram in Fig. 6. It may seem that
again the test case colour is yellow, since the ordering of consuming
the display message by lcd and the sending of brew by ui is non-
deterministic. However, display is declared to be an operation of
LCD in the class diagram. Thus, after sending out the display call to
lcd, the user interface ui has to wait for a receipt acknowledgement
before being able to send out brew to ctrl, and HUGO/RT confirms
that the correct test case colour is green.

5. RELATED AND FUTURE WORK
We have presented a testing theory for model-based assessment
and execution of multi-variant systems. To our knowledge, this is
the first theoretical treatment of the subject in the context of UML
models. Our theory is well-suited for testing deterministic reactive
systems, where the response functionally depends on the provided
stimuli. In the UML specification, it can deal with non-determinism
caused by semantic variation points, under-specification and open
design decisions, by assigning the respective test cases the colour
yellow, which means that it is not necessary to execute them with
the product.

(Re-)using test cases in software product line testing is a long stand-
ing topic. We already discussed the relation to [7] in the introduction.
In [5], the authors propose to construct test artefacts incrementally

for every product variant by explicitly considering commonality and
variability between two consecutive products under test. This ap-
proach is closely related to our work; however, we use a three-valued
test evaluation scheme. Moreover, their paper uses a dedicated test
model, whereas in our work test cases are evaluated with the system
and variability models. Oster [6] uses a combinatorial strategy for
combining features to form a representative set of products. Test
cases are then generated automatically from a reusable test model.
The main focus of this thesis is on the selection of resolution models
such that the selected set of product models gives a feasible survey
of the product line. For our approach, we are not concerned with
modelling of features and resolutions. However, the representative
set of products could serve as a basis for an initial colouring of test
cases. Bertolino et al. [1] use a notation based on natural language
descriptions of requirements to define test cases for product lines.
The resulting test specification is generic in the product, and a set of
relevant test scenarios for a customer specific applications can be
derived from it. This work could be a nice addition to our method,
since we assume that the test suite is designed separately.

Our theory excludes to formulate test cases for systems which are
inherently non-deterministic. This can be the case, e.g., for a net-
work of cooperating devices with unpredictable message delays. To
deal with such a situation, we are investigating trees as test cases
and the relation to formal testing theories.

Our future plans include to apply the theory to actual industrial
problems in safety-critical systems. We are looking at case studies
of voltage stabilizers in wind energy plants and flexible automation
modules for engine test beds. To this end, we have to extend our
current prototypical implementation such that all steps are fully
automatic. Furthermore, all steps in the tool chain, including the
model transformation from UML into Promela, need to be certi-
fiable. Therefore, we are looking at verification techniques for
model transformation tools in order to allow the use of UML also in
safety-critical systems development.

6. REFERENCES
[1] A. Bertolino and S. Gnesi. Use Case-based Testing of Product

Lines. In Proc. ESEC/FSE’03, pages 355–358. ACM, 2003.
[2] CVL Revised Submission. http:

//www.omgwiki.org/variability/doku.php.
[3] T. Kahsai, M. Roggenbach, and B.-H. Schlingloff.

Specification-based Testing for Software Product Lines. In
Proc. SEFM’08, pages 149–159. IEEE, 2008.

[4] A. Knapp and J. Wuttke. Model Checking of UML 2.0
Interactions. In Proc. Models’06, LNCS 4364, pages 42–51.
Springer, 2007.

[5] M. Lochau, I. Schaefer, J. Kamischke, and S. Lity. Incremental
Model-based Testing of Delta-oriented Software Product Lines.
In Proc. TAP’12, LNCS 7305, pages 67–82. Springer, 2012.

[6] S. Oster. Feature Model-based Software Product Line Testing.
PhD thesis, Technische Universität Darmstadt, 2012.

[7] A. Reuys, S. Reis, E. Kamsties, and K. Pohl. The ScenTED
Method for Testing Software Product Lines. In Software
Product Lines, pages 479–520. Springer, 2006.

[8] S. Weißleder and H. Lackner. Top-Down and Bottom-Up
Approach for Model-Based Testing of Product Lines. In Proc.
MBT’13, EPTCS 111, pages 82–94, 2013.

[9] http://www.wholelattelove.com/articles/
automatic_espresso_machines.cfm.


