
Automation of Test Case Assessment in SPLs —
Experiences and Open Questions

Josh Taylor1, Alexander Knapp2,
Markus Roggenbach1, Bernd-Holger Schlingloff3

1 Swansea University, Wales, United Kingdom
joshdt001@gmail.com

2 Universität Augsburg, Germany
3 Humboldt Universität and Fraunhofer FOKUS, Germany

Abstract. This research idea turns a theory for test case assessment in the model-
based development of multi-variant systems, so called Software Products Lines
(SPL), into practice. To this end, we provide a tool chain for automated test case
assessment, validate it on the example of a coffee machine product line, and
finally, successfully apply it to “The Body Comfort System” product line from the
automotive domain.

1 Introduction

The concept of a software product line originates by the work of D. Parnas [9]. It has
gained much attention by the research and consultancy of the Carnegie Mellon University
Software Engineering Institute [1,7]. According to the CMU-SEI definition, “a software
product line (SPL) is a set of software-intensive systems that share a common, managed
set of features satisfying the specific needs of a particular market segment or mission
and that are developed from a common set of core assets in a prescribed way”4 . SPLs
are abundant in today’s software-intensive systems: most electronic control units, e.g., in
cars or trains, come in multiple variants, as well as consumer products such as coffee
machines, dishwashers, mobile phones, etc.

A challenge common to the development of these systems, say, an automotive body
comfort systems, is that their built-in software is similar, but not identical in all products;
there are slight differences according to the features exhibited by a particular product.
Sources of variability include planned diversity for different user groups, evolution and
enhancement of products, and re-use of modules from one product in another one. SPL
engineering addresses this challenge. The main goal of SPL development is the strategic
re-use of software artefacts. There have been various approaches to re-use: by copy and
paste, macros, subroutines, modules, objects, components and services. The common
problem in all of these approaches is that re-use increases the probability of errors.
Therefore, quality assurance for SPLs is of utmost importance.

Given an SPL and a software test suite, not all tests apply to all possible products.
Often, it is clear from the context whether a test can be executed with a product or

4 CMU Software Engineering Institute: Product Line Web Page. http://www.sei.cmu.
edu/productlines/(2015/01/11)



2 Taylor, Knapp, Roggenbach, Schlingloff

not. However, there are cases where this is not obvious: consider the case that a certain
additional feature blocks some behaviour present in the ‘standard’ product. In general,
for a sufficiently expressive specification language the problem of test case assessment
is undecidable.

In [4,5], some of the authors presented a theory for test case assessment in the
model-based development of multi-variant systems. This deals with both positive (green)
and negative (red) test cases, and introduce a third colour (yellow) for test cases whose
outcome is not determined with a given product model. This means that it is needless to
execute them with products based on this model. This approach thus allows to assess and
select those test cases from a universal test suite which are relevant for a given product.

2 Tool Chain

Our tool chain can be separated into two main parts: the modelling and the test colouring
part. It re-uses existing tools, where our contribution lays in the automation of their
co-operation.

For the modelling part, we completely rely on existing technology. We utilise the
UML model editor PAPYRUS5 to define a base model (consisting of class diagrams,
state machines, and a composite structure diagram) and PUREVARIANTS6 to deal with
variability, namely to create a feature model and a variability model (above shown as
one integrated variability model). In PUREVARIANTS, the user then realises a resolution
model by selecting which features to include. This results in a product model in UML.

The test colouring uses two tools, namely HUGO/RT7 and the SPIN model-checker8.
Here, we extended HUGO/RT to automatically take a list of test cases and a product
model in order to translate these into executable PROMELA code, which can be checked

5 www.eclipse.org/papyrus/(2016/08)

6 www.pure-systems.com/products/pure-variants-9.html(2015/06)

7 www.informatik.uni-augsburg.de/en/chairs/swt/sse/hugort/(2016/08)

8 spinroot.com/spin/whatispin.html(2016/08)



Automation of test case assessment in SPLs 3

by SPIN. Each applicable test case results in a separate Promela file. This file is then
processed with SPIN in up to three passes for different reachability properties of the
encoded automaton.

2.1 Validation: Coffee Machine

In [4,5], some of the authors presented a small Software Product Line of an automated
coffee machine. A number of test cases were presented, and manually coloured against
various products. Our tool chain was able to produce all test colourings as predicted –
except one, where it turned out after careful analysis that the manual process, due to
human error, had resulted in a wrong colouring. Overall, this result increases trust in our
tool chain. Furthermore, it demonstrates the need for tools: even for a relatively simple
test case human error occurred.

3 An Industrial Size Case Study: Body Comfort System

As a case study of industrial size, we have chosen the “Body Comfort System Case
Study” developed by Lity et al. [6] in order to demonstrate their delta orientated SPL
test method. The system is made up of a mandatory interface, a mandatory door system
and an optional security component.

Lity et al. give in total 64 test cases represented as Message Sequence Charts. We
have represented a significant subset of these test cases in our approach, i.e., we encoded
them as sequences of occurrences and dispatches of UML events and were running them
through our tool chain in order to assess their colour. This resulted in having multiple
test cases for each product model. Here, we studied all 18 product models considered in
[6].

Looking at each product model, the first question was if a test case was applicable,
i.e., we checked if the alphabet of events of the test cases was a subset of the alphabet
of the product model. Here it turned out that the notion of applicability in Lity et al.
is the same as ours. Furthermore, in the average, only about 1/3 of the test cases are
applicable to the product models. If a test was applicable, we were running our test
colouring procedure.

Concerning time, the colouring time depends on a number of different aspects. Time
is growing with the length of a test case: short test cases consisting of 3 or 4 events take
1–2 seconds, while longer ones of about 20 events can take 3–4 minutes. Also, time
grows with the number of different state machines involved within the test case. Finally,
time grows with the number of transitions in these state machines. Overall, colouring
time is below 10 minutes per test case. In this respect, we consider our approach to be
practically feasible, as most test cases can be coloured fast, and about two thirds of them
are excluded due to the basic applicability criterion.

Concerning colouring, it turns out that all test cases from [6] are actually green
ones, i.e., they express desired behaviour. It does not come as a surprise that there are
no yellow test cases: the UML models are close to implementation where all relevant
design decisions have been resolved. That there are no red test cases is a question of
methodology: apparently, Lity et al. were concentrating on demonstrating expected
behaviour rather trying to demonstrate that certain error situations have been avoided.



4 Taylor, Knapp, Roggenbach, Schlingloff

4 Conclusions and Open Questions

We have successfully implemented a tool chain for SPL test assessment according to the
theory presented in [4,5]. We validated the tool chain on a simple example, and showed
that the developed implementation scales up. However, there are a number of research
questions arising:

1. What are appropriate coverage metrics for SPL models and coloured test cases?
2. Currently we are focusing on individual products for colouring. However, in princi-

ple, it should be possible to colour classes of products. This would reduce colouring
time. How to refine the base model adequately?

3. As we obtain only green test cases in our case study, we presume that Lity et al. were
performing testing for functionality. How to extend this to testing for safety, i.e.,
“show whether or not each software module performs its intended function and does
not perform unintended functions” (IEC 61508)? A first step towards this would be
to formulate safety properties as test objectives, that one then would turn into red
test cases.

Overall, it is still an open question of how to relate our approach with incremental
development methods such as step-wise refinement and software evolution.

References
1. P. Clements and L. Northrop. Software Product Lines: Practices and Patterns. Addison-

Wesley, 2001.
2. CMU Software Engineering Institute: Product Line Web Page. http://www.sei.cmu.

edu/productlines/(2015/01/11).
3. Hugo/RT. http://www.pst.informatik.uni-muenchen.de/projekte/

hugo/(2015/June).
4. A. Knapp, M. Roggenbach, and B.-H. Schlingloff. On the use of test cases in model-

based software product line development. In S. Gnesi, A. Fantechi, P. Heymans, J. Rubin,
K. Czarnecki, and D. Dhungana, editors, 18th International Software Product Line Conference,
SPLC ’14, pages 247–251. ACM, 2014.

5. A. Knapp, M. Roggenbach, and B.-H. Schlingloff. Automating test case selection in model-
based software product line development. International Journal of Software and Informatics,
9:153–175, 2015.

6. S. Lity, R. Lachmann, M. Lochau, and I. Schaefer. Delta-oriented software product line test
models – The Body Comfort System Case Study, 2014. Informatik-Bericht Nr. 2012-07,
TECHNISCHE UNIVERSITAT CAROLO-WILHELMINA ZU BRAUNSCHWEIG.

7. J. D. McGregor, L. M. Northrop, S. Jarrad, and K. Pohl. Initiating Software Product Lines.
IEEE Softw., 19(4):24–27, 2002.

8. Papyrus, Eclipse Model Development Tools webpage. http://www.eclipse.org/
papyrus/(2016/08/9).

9. D. L. Parnas. On the Design and Development of Program Families. IEEE Trans. Softw. Eng.,
2(1):1–9, 1976.

10. Promela language reference. http://spinroot.com/spin/Man/promela.
html(2015/June).

11. Pure::Variants. https://www.pure-systems.com/products/
pure-variants-9.html(2015/June).

12. Spin reference page. http://spinroot.com/spin/whatispin.html(2015/June).


