
Collaborative Embedded Systems – A Case Study
Bernd-Holger Schlingloff

Humboldt Universität zu Berlin, and
Fraunhofer FOKUS, Berlin

Henry Stubert
InSystems Automation GmbH, Berlin

Wojciech Jamroga
Institute of Computer Science,
Polish Academy of Sciences

Abstract—A collaborative embedded systems (CES) is an
intelligent agent in a cyber-physical system which cooperates with
others by negotiation to fulfill a common task. In this paper, we
consider autonomous transport robots as CES. These robots are
used in production environments like factories and storage halls
to realize the flow of materials within the production process.
We describe the software hierarchy of the agents with self-
localization, route planning and job scheduling. Then we discuss
implementation strategies and possible benefits of a collaborative
approach. Finally, we report on our modeling of the system for
simulation and verification.

I. INTRODUCTION

An embedded system is a computational system which is
a fixed component of a technical system. Embedded systems
have become ubiquitous in our technical world — for example,
consider an electronic control unit in an automobile, a medical
device implanted in the human body, or a CNC machine in an
automated factory. Presently, these systems are increasingly
being connected, to form complex cyber-physical systems
(CPS). In a cyber-physical system, several embedded systems
are cooperating to achieve a common goal. Examples are a
network of driver assistants in a car achieving road safety, a
body-area network monitoring vital functions of a patient, and
an assembly line supervision system managing the production
of some goods. However, for present-day CPS,

• the task which is to be performed,
• the actors which are to cooperate on the given task,
• the environment in which the task is set, and
• the way how to perform the task

are completely pre-determined. That is, at design time it is
fixed which components constitute the CPS and which role
each computational system has, in which way it shall con-
tribute to the overall function, and what the intended environ-
ment for the deployment is. For example, in a car the behaviour
and interaction of the anti-blocking system, electronic stability
control, and traction control are completely fixed when the car
leaves the factory. For this reason, current CPS are limited in
their flexibility and area of application. They can hardly adapt
to changing conditions, reconfigure themselves, and modify or
optimize their behaviour for changing tasks. Including, e.g., a
new electronic braking assistant in a given car design, or a new
machine in a given production chain currently is a challenging
task.

In order to achieve more flexibility and wider application
areas, future CPS must be designed in a way such that their
components collaborate with one another. A collaborative

embedded system (CES) is an embedded system which can
interact, negotiate and cooperate with others to fulfill various
tasks. That is, several CES can be grouped together dynam-
ically and for different tasks to form a collaborative CPS.
The physical environment in which the composed system shall
operate is only partially known at design time. Moreover, each
actor in the group is more or less independent in the way it
contributes to the common goal. Even the goal may vary to a
certain extent; a collaborative CPS can adapt to changing tasks
and side conditions. Examples of collaborative CPS would be

• a fleet of self-driving cars, where each car collaborates
with others to optimize road traffic and avoid collisions,

• a group of humanoid robots playing (and winning) against
a human soccer team, and

• a factory adapting its production capacities to customer
demand, up to and including “lot size 1”.

It is clear that truly collaborative CPS do not yet exist;
however, large efforts are being taken towards this end. In this
paper, we describe our enterprise to construct an industrial
collaborative CPS, its challenges and preliminary results.

Before doing so, we compare our notion of “collabora-
tion” with related concepts from the literature. Collabora-
tive embedded systems can be seen as a special case of a
broader metaphor, namely that of agents in a multi-agent
systems [Wei99], [Woo02], [SLB09]. A multi-agent system
(MAS) is a system that involves several autonomous entities
that act in the same environment. No precise definition of an
agent is commonly accepted, but most authors agree that an
agent can be:

• autonomous, i.e., operating without direct intervention of
others having some kind of control over its actions and
internal state,

• reactive, i.e., reacting to changes in the environment,
• pro-active, i.e., taking the initiative whenever appropriate,
• goal-directed, i.e., acting to achieve a goal,
• rational, i.e., selecting their action optimally given the

knowledge that it possesses,
• social, i.e., interacting with others (which can take

the form of cooperation, communication, coordination,
and/or competition),

• embodied, i.e., using sensors and effectors to read from
and make changes to the environment, and

• intelligent... whatever that means.
Agents in a MAS are often software entities, as opposed

to CPS where the actors are physical artifacts supervised



by an intelligent controller. Thus, CPS have to cope with
the imprecision and imperfection of physical sensors and
actuators, and the results from MAS literature should be taken
with a grain of salt when applied to the design of CES. On the
other hand, multi-agent systems have been studied in computer
science and AI for almost thirty years now, and the topic of
collaboration was featured very prominently in the research. In
particular, some cooperation and negotiation mechanisms have
been developed for collaborative MAS that can be used in CES
as well, cf. [Wei99] and especially [San99]. Such mechanisms
typically borrow from game theory, and use mechanisms based
on auctions and/or bargaining [OR94], [LBS08] to create a
“market” where agents split the workload and the profits in a
distributed autonomous way. A survey of market mechanisms
for multi-robot coordination has been presented in [DZKS06].

Autonomous systems are characterized by their ability to
accomplish complex tasks independent from human operators.
This is of particular interest in contexts where human interac-
tion is too expensive or too dangerous. Therefore, autonomous
systems are being developed for various tasks (autonomous
driving, autonomous flying, autonomous manipulator robots,
etc.). CES may or may not be autonomous; the focus in CES
is on interaction rather than autonomy.

Open systems are systems which are designed for an un-
known or only partially known application area and environ-
ment. This term has been coined as a counterpart to “closed
systems” which can be validated and tested in a “closed control
loop”. Various calculi have been proposed for the verification
of open systems. CES can be seen as a special type of open
systems, acting in a physical environment.

Self-adaptive systems can modify their behaviour au-
tonomously, to react to changing environments. According to
our above definition, a collaborative CPS is a self-adaptive sys-
tem. Other “self-*” properties used to describe introspection
of technical systems into themselves are: self-configuring, self-
aware, self-healing, self-learning, self-believing, and others.
Clearly, a CES can or must possess all of these properties to
a certain degree. However, since in technical contexts these
terms are used very inhomogeneously, no concrete design
principles for CES can be derived from them.

In this paper, we exhibit challenges and solution paths for
a concrete case study of industrial CES: a system of transport
robots to be deployed in storage facilities and production
plants. The system as a (non-collaborative) CPS has been in
use for several years and at several plants. We describe the
domain, localisation, path planning and job scheduling of the
system currently in use. Then, we discuss the challenges for
the current design and the benefits to be gained by a collabo-
rative control. We describe different modeling approaches and
implementation strategies. Then, we give some preliminary
simulation results on simulation and verification of the new
system. Finally, we summarize our discussion with an outlook
on future work.

Figure 1. The proANT line of autonomous transport robots.

II. A CASE STUDY: AUTONOMOUS TRANSPORT ROBOTS

Our case study is the proANT line of autonomous transport
robots (see [InS16]). Autonomous transport robots are vehicles
designed for carrying loads in factories and storage sites. A
typical fleet consists of 4-20 robots which can carry 50-200 kg
load each. Their main use is in production logistics to ensure a
timely delivery and disposal of material to different sites in a
production process. In contrast to stationary transport systems
such as conveyor belts or powered roller conveyors, driverless
vehicles offer some significant advantages:

• Scalability: Increased production demand can be met
simply by deploying more vehicles, instead of costly
upgrading and remounting the conveyors;

• Changeableness: Changing the layout of a production
process can be done easily, no stationary equipment has
to be rebuilt;

• Redundancy: If a single vehicle fails, it can be replaced
by others. With stationary equipment, even a small failure
of a hardware module (drive, sensor) often means that the
whole process is halted;

• Reduced space requirements: In general, vehicles use less
space than conveyors; moreover, they can be stowed away
if not in use.

In contrast to traditional automated guided vehicles (AGV),
transport robots not only drive autonomously, but can navigate
freely in their environment, without being bound to a fixed
track. Given the description of a target point, the robot
autonomously determines its current position, the optimal
route to the destination and the maximal speed along this
route. Therefore, it multiplies the benefits of driverless vehicles
in production: A fleet of transport robots can be extended
even during operation of the factory; no intervention in the
running operation is necessary. Changing the location of a
machine requires simply to adapt the corresponding target
point in the internal map of the robots; it is not even necessary
to designate new routes. With AGVs, the flow of material
is distributed among several vehicles; however, due to the
fixed track guiding, a broken vehicle can cause road blocks.
Autonomous transport robots can try to circumvent or over-
take such obstacles. The dynamic path planning also allows
autonomous transport robots to share walkways and corridors
with human workers; temporary road blocks such as people
and deposited loads can be passed.

The cognitive abilities of (a system of) autonomous trans-
port robots can be structured into three layers: self-localization,
route planning, and job scheduling.



A. Self-localization

A basic prerequisite for autonomous mobile robots is self-
localization. The robot needs to know where it is in order
to behave intelligently. Indoor localization is usually done by
sensing different parameters of the environment. In proANT
robots, an integrated 2D laser scanner continually measures the
distance to neighboring objects (walls, machines, obstackles,
humans). This laser scanner is mounted in max. 200mm height
above ground, parallel to the floor. It can scan a 2D profile
of the environment of up to 270◦, with an angular resolution
of approx. 0.5◦. The detected distance ranges from few cm
up to 30m with a measurement fault (compared to the actual
distance) below 3%. The sampling takes around 80 ms.

Laser scanners were originally included and certified in
mobile robots for functional safety. The European Norm
EN1525 “Safety of industrial trucks – driverless trucks and
their systems” requires that standing objects of diameter above
70mm must be detected and the vehicle must stop before them.
If the laser scanner detects an object in the immediate vicinity
of the robot, it shuts down the power to the drive and thus
stops any movement. Besides this basic safety feature, the laser
scanner can be used for self-localization as follows.

For relative positioning, each robot has an odometric sys-
tem. It consists of an incremental encoder of the movement
of the drive wheels to measure the traveled distance, and a
gyroscopic sensor to measure the relative angle of the robot
in space. Since these measurements are not very precise, they
must be adjusted by the information from the laser scanner.
As a setting-op operation, one robot from the fleet is moved
around manually (e.g., by joystick) in the environment in
which it shall operate autonomously later on. During this initi-
ation, all distance profiles from the laser scanner are recorded
and combined with the data from odometry. From this, a map
is produced which reflects the contours of objects as sensed
by the scanner in 200 mm height. This map is downloaded
from the robot and manually edited. A graphical editor is
used to add one-way passages and no-go-areas to the map.
Moreover, also target positions (unique name, coordinates and
approaching angle) are added to the map. The edited map is
uploaded to every robot in the fleet.

Upon start-up, each robot starts an initial localization to

Figure 2. Map with outlines, no-go-areas and target locations

Figure 3. Robot with planned path

determine its current position. This is done by comparing the
currently received distance profile from the laser scanner with
a coherent fraction of the map. The matching yields a position
and the probability of correct positioning. Using thresholds,
this probability can be used to trigger various actions (e.g.,
switching on a green light for successful initial localisation,
or sounding an alarm if the position is not found).

During autonomous operation, the localization algorithm is
triggered at regular intervals, depending on the information
about the traveled distance from odometry. If the probability of
correct localization is above threshold, the calculated position
is assumed to be correct and the odometric position is updated
with this information. This way, the robot is constantly aware
of its own position within the mapped area. The above
algorithm turns out to be quite stable and so far never caused
any problems.

B. Route planning

During autonomous operation, the robot has to travel to
specific target locations. It thus has to find the optimal route
from its current position to this target location, given the map
which determines the accessible floor space. An important
factor for route planning is the size of the robot, i.e., its width
in the direction of motion. The map is divided into squares
which are a fraction of the robot size. From the map it is
determined whether a square is drivable or in a no-go-area. All
no-go-squares and adjacent squares up to half of the robot size
are marked occupied and exempt from path planning. For all
remaining squares, a cost is calculated which decreases with
the distance to occupied squares. Then, a path is calculated
which constitutes a smooth spline function through the lowest
cost squares.



Since the robots are operating in a dynamic, real-life
environment, they have to be able to react to unexpected
obstacles and road blocks. In particular, this also includes other
robots from the fleet which travel in the opposite direction.
Here, currently the “dynamic window approach” is being
used [FBT97]. If the robot during its trip detects an obstacle
which is not in the map, the corresponding squares are marked
temporarily occupied, and costs are recalculated. Since the
robot keeps moving towards the obstacle, the cost function
is dynamic, respecting current speed and acceleration. This
dynamic guarantees a fast travel towards the destination, while
at the same time avoiding collisions. Since for the robot human
workers and other robots are moving obstacles, the dynamic
window calculation is triggered cyclically. Thus, the path is
frequently recalculated. To avoid that the new path deviates too
much from the previous, the cost of the currently planned path
is reduced and it thus is preferred. Since the path calculation
uses considerable computational efforts, the path is calculated
only within the range of the laser scanner.

C. Job Scheduling

Currently, job scheduling is done by a centralized server
which can communicate with all robots of the fleet via WLAN.
If a machine is in need of supply or disposal of material, it
sends a request to a master control station. This station inquires
the current availability with the storage management system. It
then generates a transport job description, including origin and
destination as well as the priority of the job. The transport job
is assigned to a particular robot from the fleet, according to a
given scheduling strategy. Moreover, corresponding messages
are sent to the storage and the production machine. Monitoring
handshake messages between robot and machine or storage,
the master control system supervises the correct execution of
transport jobs. The times of status changes of all transports
are logged in a data base.

The master control station also monitors the battery status
of all robots in the fleet. If the available energy drops below
a certain threshold, it generates a recharging job for the
corresponding robot. The robot then moves to the designated
charging station and waits until it gets the next job.

The scheduling strategy determines the assignment of tasks
to robots. A good strategy both guarantees a timely accom-
plishment of jobs and a high degree of capacity utilisation.
A high use of capacities allows to minimize the size of the
fleet, reducing investment and maintenance costs. Thus, the
scheduling should avoid empty trips as well as “lazy” robots.
Important factors to be considered during scheduling are

• the distances of unassigned robots to the origin of a job,
• the current battery status of unassigned robots,
• the current traffic situation, and
• the priority of a job.
Whenever a request for a transport job arrives, the job

scheduler checks which robot is available. If there is more
than one robot available, it is determined which of these has
the best conditions to fulfill the job, according to the above
criteria. This robot is then assigned the task. If there is no

robot available, the job is postponed until some robot finishes
its current job. If there are several waiting jobs, the one with
highest priority is scheduled first. Thus, jobs are basically
scheduled in a first-come-first-served way.

A potential improvement would be to consider also robots
which are currently executing a job for scheduling. The
distance of the target positions of a loaded robot to the
origin of a new task might be smaller than the distance of
all idling robots. However, due to dynamic changes in the
traffic situation, the time for traversing a given distance varies
almost unpredictably. Thus, this improvement is not (yet)
implemented in the actual proANT system.

Simulations done by Yan et al. ([ZYAC12]) indicate that
the average time for job completion could be reduced by up to
20% if jobs could be scheduled in advance. If the frequency of
requests by certain machines or for certain materials is known
in advance, idling robots could be sent on their way even
before a request is issued. However, in the applications we
are targeting this is not a realistic assumption.

Challenges: The proANT system has been in use at seven
customer sites for several years and has proved to be stable
and reliable. However, there is always room for improvement.

Firstly, the central master control station is a single point of
failure. If this software should break down, then production
would stop. Of course, there could be a redundant server;
however, the principal problem remains.

Secondly, wireless communication may not always be reli-
able. In harsh factory environments, the wireless connection
may be distorted, and certain areas may be shadowed by walls
and machines. Therefore, robots may not be able to contact
the server for an unpredictable amount of time.

Thirdly, a number of problems may disrupt the smooth
execution of the production chain: Robots or machines may
fail, roadways may be blocked, there can be delays and traffic
jams on passways, the battery capacity of a robot may be
exhausted due to long waiting times, etc. If such unforeseen
circumstances occur, usually the whole order status must be
re-initialized.

To cope with these issues, we are currently implementing
a collaborative approach to job scheduling which is described
in the next section.

III. COLLABORATIVE TRANSPORT ROBOTS

In order to improve the overall performance, we are in-
vestigating a collaborative approach for fleets of proANT
robots. That is, we are implementing a distributed decision
making algorithm, where each robot decides upon which jobs
to accept. The central server is just the interface to the process,
accepting requests for delivery and deposit of materials. The
requests are sent via broadcast to all receiving robots. The
robots then negotiate among themselves who takes the job.

Decentralized methods for robots to allocate and re-allocate
resources and tasks among themselves have been extensively
studied in multi-agent systems, cf. [San99] for a theoretical
introduction and [DZKS06] for an application-oriented sur-
vey. The challenge is to obtain effective coordination and



reasonably optimal decision making for a team acting in a
dynamic, partially known and time-constrained domain where
different tasks and resources can interfere, either positively or
negatively. Such mechanisms have been used in AI for at least
35 years [Smi80]. The typically used mechanism is that of an
auction, see [KKT10] for an excellent overview.

Auction-based coordination is easy to understand, simple to
implement, and broadly applicable. A natural idea would be
to endow each robot with “virtual money”. On one hand, the
robot would earn new money by completing transport jobs. On
the other hand, it would spend money to “buy” a job when
having successfully bidden in an auction. Appropriate money
would be also deduced from the robot’s account according
to the time and energy costs of completing the job. Each
robot would freely decide how much it is willing to bid for
which job, so that it maximizes its payoff. Hence, coordination
would emerge from local decision making of self-interested
rational parties. A similar approach can be applied to route
planning, and even to resolution of local conflicts and collision
avoidance through peer-to-peer bargaining.

To most ends and purposes, however, the above scheme
involves a level of sophistication that is not really needed for
coordination of simple robots. In most existing applications,
robots bid their costs, and the robot with the lowest bid gets the
job. Thus, for each offered job, every robot calculates the cost
of its execution, depending on the current position, load status,
and already accepted jobs. Then, it places a bid for the job
containing the calculated cost, in competition with the other
robots. The robot with the lowest overall cost wins the bid
and gets the job. It is also possible that, whenever a new job
has been generated, all the jobs that are not yet in execution
are offered up for sale again and being reallocated.

The envisaged advantages of the decentralized auction-
based approach are:

• More flexibility and robustness: Robots need no longer
be centrally registered and administered. There is no
single bottleneck in the system anymore (the central
server) whose failure would inevitably lead to a complete
breakdown. Moreover, robots which are – permanently
or temporarily – unavailable do not participate in the
negotiations and thus are not assigned jobs.

• Higher throughput: Since each robot is responsible for its
own tasks, it can try to optimize the jobs it accepts.

• Better scalability: If the transport capacity of a fleet
is to be increased, new robots can simply be added.
Even heterogeneous fleets, where each robot has different
capabilities, can be administered this way. Moreover, the
job issuing instances need not know which robots are
available.

• More security: Taking effective control of a decentralized
system by an intruder is much more difficult than for a
centralized one.

Note that, in our case, jobs are possibly interrelated. For
example, it may be beneficial for a robot to combine delivery
of an item with picking up another item from a neighbouring
machine. There are several approaches to auctioning such jobs.

So called parallel auctions offer each item independently. This
approach is computation-efficient, but often results with non-
optimal allocation where positive synergies between jobs are
neglected. At the other end, we have combinatorial auctions
where agents bid for bundles of goods – in our case, subsets
of transport jobs. Those are efficient allocation-wise, but
require the robots to generate and exchange exponentially
many bids, which is seldom feasible in real-time applica-
tions. A reasonable compromise between the two extremes
is offered by sequential single-item (SSI) auctions, where the
“goods” are allocated in one multi-round auction. During each
round, every robot bids on each unallocated transport job.
The outcome of the round is to allocate one additional job to
one bidding robot. It has been proved that the output of SSI
auctions is guaranteed to be reasonably close to the optimal
allocation, and experimental results showed very promising
performance [LMK+05]. Our plan is to first use parallel
auctions, and refine it to SSI auctions in the second step.

The more sophisticated approach with “virtual money” has
some further advantages. First, it allows for more reliability,
as jobs with a higher priority can be given a higher reward,
and thus they will be treated earlier. Moreover, it can further
improve throughput: since “idling” costs money, each robot
has an incentive to accept as many jobs as it can handle. Last
but not least, it ensures fairness of auction outcomes in a long
run and supports fair resolution of conflicts, which leads to
a balanced use of robots in the team. However, the virtual
money approach will require much more fine-tuning than the
simple auctioning with costs, and therefore it is planned for
later future.

Figure 4. Simulation environment with robots, machines, storage, and power
outlets

IV. PRELIMINARY RESULTS

In order to identify the significant parameters for the actual
system, a simulation environment was set up in [Sit16]. A
screenshot of this simulation environment is shown in Figure 4.
In this simulation, it is possible to vary the number of robots,
stations, and jobs. The simulation allows to choose between
different job assignment strategies:

• First-come-first-served: The first free robots gets the next
job (as in the current proANT system).

• Best-fit: The robot with highest energy is scheduled.



Figure 5. Automata model for verification

• Collaborative: The jobs are assigned via bargaining.
• Random: A new job is assigned to an arbitrary robot (for

comparison only).
• Optimal: Jobs are scheduled in advance to the robot most

suited (for comparison only).

A preliminary observation is that the simulation results are
only “interesting” if the load is within a “balanced” range. If
there are many available robots and only few tasks, all tasks
are immediately scheduled, and the strategy is unimportant.
If there are only few robots and much more tasks than these
robots can handle, overall performance deteriorates with all
strategies.

In order to assure that the overall system satisfies required
properties, we are also verifying our approach via model
checking. We are building various models (timed and untimed)
for the UPPAAL model checker [UPP16], and are formu-
lating properties in temporal logic. Then, we are employing
UPPAAL to simulate and analyze our verification model.
Figure 5 shows a verification model with two robots and seven
stations [Wal16]. A list of properties is given in Table I.

Table I. Example properties for verification

Safety and Liveness The system never deadlocks.
Every job is eventually accomplished.
Every job is accomplished within its given time.
No robot ever runs out of energy.

Fault tolerance The system continues if roads are blocked.
The system continues if up to n robots fail.
If a station fails, other jobs are not affected.

Flexibility Additional robots do not affect the system.
Additional stations do not affect the system.
The system works for different floor layouts.

Security External intruder cannot bring down the system.
Traitor robots cannot bring down the system.
Traitor stations cannot bring down the system.

Whereas safety, liveness, and fault tolerance can be verified
by “classical” means, flexibility is verified by increasing and
decreasing the number of stations and robots and varying the
floor plan, respectively. A formal verification of flexibility
would require parametric model checking. Security currently is
neither implemented in the system nor in the model. To verify
security, we need authentication of agents and assumptions
about the encryption of messages.

V. CONCLUSION

We considered autonomous transport robots as collaborative
embedded systems. In contrast to the traditional, centralized
management structure we devised a system with distributed
decision making, where each robot is responsible for its own
actions. Each robot is autonomous for its localization and route
planning, whereas several robots collaborate on the schedul-
ing of jobs. Expected benefits are better scalability, easier
maintenance, more robustness and better use of resources. We
believe that the described architecture is typical for a number
of similar applications, e.g., in industry 4.0. Preliminary results
in simulation and verification are promising. However, for a
practical deployment in real production sites, much more work
needs to be done.

REFERENCES

[DZKS06] M.B. Dias, R. Zlot, N. Kalra, and A. Stentz. Market-based
multirobot coordination: A survey and analysis. Proceedings of
the IEEE, 94(7):1257–1270, 2006.

[FBT97] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. The dynamic
window approach to collision avoidance. IEEE Robotics &
Automation Magazine, 4(1):23–33, 1997.

[InS16] InSystems. Automation GmbH: proANT Automatic Navigating
Transport Vehicle, 2016. https://www.proant.de/, last
accessed Feb 2016.

[KKT10] Sven Koenig, Pinar Keskinocak, and Craig A. Tovey. Progress
on agent coordination with cooperative auctions. In Proceedings
of the Twenty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010, 2010.

[LBS08] K. Leyton-Brown and Y. Shoham. Essentials of Game Theory:
A Concise, Multidisciplinary Introduction. Morgan & Claypool,
2008.

[LMK+05] M. Lagoudakis, V. Markakis, D. Kempe, P. Keskinocak,
S. Koenig, A. Kleywegt, C. Tovey, A. Meyerson, and S. Jain.
Auction-based multi-robot routing. In Proceedings of the Inter-
national Conference on Robotics: Science and Systems, pages
343–350, 2005.

[OR94] M. Osborne and A. Rubinstein. A Course in Game Theory. MIT
Press, 1994.

[San99] Tuomas W. Sandholm. Distributed rational decision making. In
Gerhard Weiss, editor, Multiagent Systems: A Modern Approach
to Distributed AI, pages 201–258. The MIT Press, Cambridge,
MA, USA, 1999.

[Sit16] Franz Sitzmann. Simulation und Vergleich der Effektivität
verschiedener Job-Scheduling-Verfahren für autonome Trans-
portroboter. Bachelor’s Thesis, Humboldt Universität zu Berlin,
Institut für Informatik, 2016.

[SLB09] Y. Shoham and K. Leyton-Brown. Multiagent Systems - Algo-
rithmic, Game-Theoretic, and Logical Foundations. Cambridge
University Press, 2009.

[Smi80] R. Smith. The contract net protocol: high level communication
and control in a distributed problem solver. IEEE Transactions
on Computers, C-29:1104–1113, 1980.

[UPP16] Dep. of Inf. Technology at Uppsala University and Dep.
of Computer science at Aalborg University: UPPAAL Inte-
grated tool environment for modeling, simulation and ver-
ification of real-time systems. last accessed Feb. 2016.
http://www.uppaal.org/.

[Wal16] Florian Walter. Modellierung und Verifikation von Sicherheit
und Lebendigkeit eines Systems mobiler Transportroboter mit
Modellprüfung zeitbehafteter Automaten. Bachelor’s Thesis,
Humboldt Universität zu Berlin, Institut für Informatik, 2016.

[Wei99] G. Weiss, editor. Multiagent Systems. A Modern Approach to
Distributed AI. MIT Press: Cambridge, Mass, 1999.

[Woo02] M. Wooldridge. An Introduction to Multi Agent Systems. John
Wiley & Sons, 2002.

[ZYAC12] Nicolas Jouandeau Zhi Yan and Arab Ali-Ch´erif. Multi-robot
heuristic goods transportation. 6th International IEEE Confer-
ence ‘Intelligent Systems’, 2012.


