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Abstract. Building complex embedded- and cyber-physical systems re-
quires a holistic view on both product and process. The constructed
system must interact with its physical environment and its human users
in a smooth way. The development processes must provide a seamless
transition between stages and views. Different modeling techniques and
methods have been proposed to achieve this goal. In this chapter we
present the fundamentals of cyber-physical systems engineering: identi-
fication and quantification of system goals; requirements elicitation and
management; modeling and simulation in different views; and validation
to ensure that the system meets its original design goals. A special focus
is on the model-based design process. All techniques are demonstrated
with appropriate examples and engineering tools.
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1 Introduction

The systematic, model-based design of cyber-physical systems is a fascinating
subject both for academic researchers and for practitioners from industry. Em-
bedded systems, which control, activate and supervise technical systems, have
become an integral part of our daily lives. Already at present (year 2015) there
are more embedded systems than people on earth. Moreover, in the last decade
the number of such systems has been exponentially increasing; it is estimated
that by 2020 on average each human will possess around one hundred different
embedded systems. Mostly we do not even notice that we are using such systems:
a modern car contains between 50 and 100 electronic control units, from driver
assistance systems to motor- and battery controllers. Also their functionality
and usability is steadily being increased. More and more functions are realized
by software, and the software running on each device becomes more and more
complex. In some cases even human life depends on the correct functioning of
the software. For example, think of an artificial pacemaker for the heart, or of a
signalling device for a high-speed train.

Another order of magnitude in complexity is added by the fact that more
and more embedded systems are being equipped with communication links, so
that they can collaborate to deliver some combined service. Such cyber-physical



systems will be the next big revolution in information technology. Current key-
words describing this fact are “the internet of things”, “ambient intelligence”,
“smart environment”, and others. However, this technological advance will only
be possible if engineers can manage to master the ever increasing design com-
plexity. The combined software in a “smart car” presently consists of more than
100,000,000 lines of code, written jointly by more than 1.000 software develop-
ers — imagine! For the development of these devices, conventional and ad-hoc
engineering techniques are approaching their limits.

Thus, advanced design methods for these systems are absolutely necessary. In
this chapter, we will describe the state of the art and some research directions for
systematic engineering of embedded and cyber-physical systems. The material
is based on a lecture series with the same title, where the overall curriculum
is described in [Sch14]. We start in Sect. 2 by defining cyber-physical system
and listing some of their characteristic attributes. In Sect. 3 we give a short
introduction into systems analysis, and show how to define requirements with
the example of a pacemaker. Section 4 comprises the main part of this chapter.
It deals with modeling in various views: systems modeling in SysML, continuous
modeling with block diagrams in Simulink/Scicos, and discrete-state modeling
with UML state machines. In Sect. 5 we show how to transform these models
into executable code. Finally, Sect. 6 concludes the chapter.

2 Embedded- and Cyber-Physical Systems

We begin with some definitions of relevant terms. The word system may be
the most over-used word in computer science. From its Greek origins (ovornuc)
we can infer that a system is “something which is composed”. Since probably
everything in this world is composed from something else, the term does not
define a class of objects; it does not separate those things which are systems from
those which are not. However, it serves to describe an aspect of objects, namely
being a combination of several other objects called components. Components
are things “to be put together” to constitute a system. They can be elementary,
meaning that we do not decompose them further, or subsystems, which are again
composed. In a system, the components interact in some way, or else we would
not consider them to be parts of the same system. The international standard
ISO/IEC 15288:2008 [ISO08] defines a system to be “a combination of interacting
elements organized to achieve one or more stated purposes”. A similar definition
is given in the “Systems Engineering Handbook” of the INCOSE (International
Council of Systems Engineering) [INCO00]:

[A system is] an integrated set of elements, subsystems, or assemblies
that accomplish a defined objective. These elements include products
(hardware, software, firmware), processes, people, information, techni-
ques, facilities, services, and other support elements.

Both of these definitions refer to an objective or purpose of the composition.
That is, only those systems are included which are composed by humans. Natural



systems such as ecosystems, biological systems, or social systems are not included
in the considerations.

Human-made systems serve some purpose, the provide a function. In a tech-
nical system this function is to process matter or energy. By processing we refer
to the transformation or transport, that is, the change of form or location of
something.

Typical examples of technical systems are

— a thermal power plant (transforming one form of energy to another),
— an injection-moulding machine (transforming the shape of matter), and
— a forklift truck (transporting matter).

The function of a computational system, in contrast to the function of a tech-
nical system, is to process information. Similar to the notions of “matter” and
“energy”, the term “information” describes a basic concept which we will not
try to define here. Typical computational systems are

— a pocket calculator,
— a word processor (transformation of information), and
— a mobile phone (transport of information).

The last of these examples exhibits a general problem of delimitation when
dealing with information processing: Since the representation of information in
a material world is always bound to physical objects, all information processing
contains the processing of these physical objects. In order to decide whether a
system is a technical or computational system, it is important which processing
aspect is predominant. In case of a pocket calculator, the category is pretty clear:
The function is best described as “a device performing arithmetic operations on
the input and displaying the result”. It would be strange to describe it as “a
device transforming battery power into light signals and excess heat”. In case of
a phone the situation is not so clear: With the first “tele-phones” in the 1870’s
the (technical) aspect of transforming sound waves into electrical signals and
back predominated. No information processing took place: the voltage level on
the microphone or speaker directly reflected the amplitude of the corresponding
sound waves. With modern smartphones, however, the information processing
clearly is predominant: the wave forms are digitally recorded, split into packets,
wrapped, encoded and decoded according to the chosen transmission protocol,
etc.

With the above definitions of technical and computational system we can
define a central term of this chapter.

Definition 1. An embedded system is a computational system, which is a fived
component of a technical system.

In other words, an embedded system is a computer which is an integral part
of some machine. Without the embedded system, the machine would not work
properly. In an embedded system, the information processing is designed, built



and operated with a particular purpose in a technical process. A schematic di-
agram of this definition is given in Fig. 1: The embedded system is the com-
putational system inside the technical system, which again is part of a physical
environment. The embedded system communicates with the technical systems
via sensors and actuators, whereas the technical system processes material and
energy in the “real world”.
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Fig. 1. Schematics of an embedded system

Typical examples of embedded systems are

the attitude control of an Ariane space rocket,

the TCAS (traffic collision avoidance system) of a commercial airplane,
the ETCS OBU (on-board unit) of a high speed train,

automotive electronic control units: ABS, ESC, cruise control, etc.,

the temperature control of a nuclear power plant,

the controler of an industrial punching machine,

a bicycle computer, and

an artificial pacemaker for the human heart.

The definition implies some characteristic properties of embedded systems.

The following properties are fundamental:

Fixed part of a technical system: An embedded system is usually phys-
ically attached to the technical system it belongs to. Its dimensions and
capacities are fitted for the particular system, and it cannot be easily ex-
changed or replaced.

Dedication to a particular purpose: Within the technical system, the
embedded systems fulfills a predetermined function. In contrast to a uni-
versal Turing machine (or any general-purpose computer) often it can do
certain special computations only, and cannot be arbitrarily programmed.
Interaction with a physical environment: The technical system contain-
ing the embedded system performs a physical process, transforming matter
or energy in the real world. To interact with this physical environment, the
embedded system uses sensors and actuators.

Reactivity to external stimuli: Pure computational systems usually ter-
minate after finishing the calculation of their result. Since the function of an



embedded system is determined by a physical process, it must be constantly
able to react to inputs from this process and cannot terminate. Often there
are certain time limits for the computation of the output, thus the system
must react in real time.

Besides these fundamental properties, there are some secondary attributes which
embedded systems often, but not always, possess:

— Supervising and controlling: In most embedded systems, the function
of the computational part is to supervise and control the technical system
in which it resides. As an example, consider the controller of a washing
machine which regulates motor, water valves and detergent flow, heating, etc.
However, there are also embedded systems which are not control systems,
e.g., devices for data acquisition.

— Mass-produced: Many embedded systems are integrated in end-consumer
goods and thus have to be manufactured at extremely low cost. For example,
for an automotive device which is to be incorporated in a million cars, saving
lct in production saves 10,000 dollars in total. Nevertheless, there are also
embedded devices which are unique, for example, a spacecraft on-board unit.

— Difficult to maintain and extend: Since the embedded system is dis-
tributed together with the technical system, software updates are often hard
to realize or commercially unattractive. Sinve embedded systems are made
for a particular purpose, it is mostly not possible to extend the functional-
ity to a “version 2.0”. For example, updating the software of an automotive
device costs up to 100 dollars per car which can be very expensive if a large
number of cars is concerned. However, a trend is to connect embedded de-
vices to the internet in order to make upgrades possible.

— Highly available, trustworthy and safety-critical: Since embedded sys-
tems are becoming ubiquitous, we rely more and more on their availability
and correct behaviour. For example, without electronic engine control it
would be impossible to build a car or plane satisfying modern environmental
standards. Embedded systems are increasingly also realizing safety-critical
tasks, e.g., in an antilock braking system, where a failure might have fatal
consequences.

An important trend in embedded systems is that they are being equipped with
communication facilities (WLAN, Bluetooth, GSM/UMTS/LTE, Zigbee, etc.) so
that they can exchange information with other computational systems. By the
interconnection of a significant amount of embedded systems, new functionalities
can be realized. This leads to the notion of cyber-physical systems.

Definition 2. A cyber-physical system is a system of embedded systems which
are interconnected and/or connected with other computational systems via com-
munication networks.

Of course, there is no strict separation between the notions of “embedded sys-
tem” and “cyber-physical system”: On the one hand, each embedded system is



a cyper-physical system with just one component; on the other hand some em-
bedded control devices consist of several interacting processors and thus can be
viewed as a cyber-physical system. Thus, in this article, there will be no strict
differentiation between these two notions.

By definition, the composition of embedded systems in a cyber-physical sys-
tem is such that it accomplishes a defined objective. The objective is such that
it cannot be achieved by any single one of the constituent technical systems.
Typical examples of cyber-physical systems are

— the set of electronic control units in a car: In present-day cars there are
typically between 50 and 80 electronic control units (ECUs) which are in-
terconnected via different on-board networks (CAN, LIN, MOST, FlexRay,
etc.). The interconnection serves to exploit or avoid certain interferences;
e.g., if the electric tailgate is closed, ventilation is decreased to avoid a pres-
sure increase in the car.

— the device controllers of an assembly line: In automated factories the different
production machines are interconnected in order to enable a “just-in-time”
production of indivualized products.

— a sensor network for earthquake early warning: Whereas a single sensor node
cannot make a solid statement about the epicenter and strength of an earth-
quake, a network of such nodes can predict the arrival of destructive waves
in advance.

— a team of autonomous soccer robots: It is the declared target of the inter-
national RoboCup federation to have by 2050 a team of humanoid robots
winning against a human team according to the usual FIFA rules. Already
now there are annual competitions in this direction, with simplified rules.

3 Systems and Requirements Analysis

When constructing an embedded or cyber-physical system, the most important
early phases are systems analysis and requirements analysis. Errors or omissions
during these phases critically affect the complete project. Systems analysis is
concerned with the design and construction processes of complex systems, and
in requirements analysis processes are defined for the elicitation, management
and linking of desired system properties.

Systems Analysis

The main problem in the development of “large” technical systems is the increas-
ing complexity. Systems engineering tries to master this complexity by defining
design and construction processes which take the whole development cycle into
respect. All aspects of the system under construction are considered, both tech-
nical as well as non-technical ones such as user behaviour, commercial factors,
operations, maintenance, and disposal. The subject of systems engineering is
not limited to embedded or computational systems; e.g., also in building a new
airport, systems engineering should be applied.



Systems analysis is the process of understanding, designing and developing a
system as a whole (in contrast to the view of a system as a set of components).
Esssential to this is the holistic view of the system requirements, in particular
with respect to the integration and operation of the system in its socio-technical
context. The main methods of systems analysis are to focus on system goals, to
continuously explore several design variants, and to maintain a holistic view on
processes and activities during the design and implementation.

Systems engineering is an interdisciplinary approach and means to en-
able the realization of successful systems. It focuses on defining customer
needs and required functionality early in the development cycle, docu-
menting requirements, and then proceeding with design synthesis and
system validation while considering the complete problem: operations,
cost and schedule, performance, training and support, test, manufactur-
ing, and disposal. Systems engineering considers both the business and
the technical needs of all customers with the goal of providing a quality
product that meets the user needs. [INCO00]

A cyber-physical system admits several levels of abstraction or considera-
tion. Sommerville [Som10] identifies five different levels (see Fig. 2): Hardware-,
platform-, application-, process-, and organizational level. Each computational
system is based on some hardware on which is running. This basic layer includes
PCs, microcontrollers, processor boards, printed circuits, FPGAs, sensors, actu-
ators etc. The next abstraction levels considers the platform(s) for the system,
i.e., the basic software such as firmware, operating system, software libraries,
middleware, protocol stacks, etc. Building on the platform level is the layer of
applications or the application software, which realizes the user functionality
and user interfaces. Above that, the process level is concerned with the technical
and organizational conditions in which the system is operated. On top of that,
all processes are performed by organizations, e.g., companies or public authori-
ties; the organizational level considers activities within and interactions between
organizations.

Computer engineering integrates several fields of electrical engineering and
computer science to develop artefacts on the hardware and platform levels. Soft-
ware engineering is about developing artefacts on the platform and application
level. Systems engineering is concerned with the process and organizational level;
the artefacts usually are not directly executable, but consist of models and for-
malizations of goals and circumstances. An engineer working on a particular
level must have knowledge of the adjacent levels, in order to know what to rely
on from the level below, and what to guarantee to the level above. A holistic
view, as it is advocated in systems engineering, must consider relevant aspects
from all levels.

As an example for this layering, consider the development of an artificial car-
diac pacemaker for the human heart [Bos07]. The hardware mainly consists of a
pulse generator with electrodes. Here, aspects like casing materials, form factor,
battery life time, mechanical faults etc. have to be considered. When designing
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Fig. 2. Engineering levels for cyber-physical systems

the platform, operating system and software architecture must be decided. On
the application layer the software for driving the pulse generation and communi-
cating with the attending physician must be implemented. To this end, processes
like implantation into the body, follow-up care, and long-term diagnosis are to
be considered. These processes are executed in organisations like hospitals or
doctors’ offices. Without a certain understanding of the complete hierarchy, a
project to develop a new pacemaker can not be successfully accomplished. As an
example, it is necessary to understand the hospital’s patient registration system
in order to design a decent export function of the data-logging component in the
pacemaker.

Requirements Analysis

Typical processes to be performed in systems engineering are the stakeholder re-
quirements definition and the requirements analysis process: see [INCO00]. In the
stakeholder requirements definition, the needs and wishes of all people involved
in the operation of the system under development are gathered. A stakeholder
is “any entity (individual or organization) with a legitimate interest in the sys-
tem” ([INCO0O]). This is a more general term than the common term “user”. In
our pacemaker example, stakeholders are the patient, doctor, surgeon, nurse,
hospital, developing and producing company, supplier, maintenance technician,
ambulance, administrative authorities, and others.

The stakeholder requirements document, also called user requirements speci-
fication or similar, describes the services to be provided to the stakeholders, and
the operational conditions necessary for delivering these services. This document
is the main reference for all subsequent developments. It should be written in a
language which is easily understandable by all stakeholders, and describes the
desired functionality from the viewpoint of the user / stakeholder. That is, imple-
mentation aspects are unimportant for the specification. However, for embedded
systems, also the physical operational environment must be specified. On the



one hand, this means that environmental parameters like maximal admissible
temperature or acceleration, sensor ranges etc. must be precisely described. On
the other hand, the physical properties of the system under development must
be part of the specification: maximal dimensions, plugs and connectors, etc. are
also part of this document. In contrast to a software specification, the specifi-
cation of an embedded system has to consider all aspects, including software,
hardware, potential sensors, admissible tolerances and deviations, cost or power
limitations, etc. However, no commitment to specific technical solutions is to be
made; this is to be delayed to later development stages.

An example of an industrial stakeholder requirements document is the PACE-
MAKER System Specification [Bos07]. This document has been made public to
serve as a practical case study for scientific investigations. An in-depth modeling
of certain aspects has been made in [KHCD13]. The excerpt in Fig. 3 describes
part of the pulse generation functionality for rate-adaptive pacing. Subsequently,
we will show how these requirements are reflected in the system’s software design.

5.7 Rate-Adaptive Pacing: The device shall have the ability to adjust the car-
diac cycle in response to metabolic need as measured from body motion using an
accelerometer.

5.7.1 Maximum Sensor Rate: The Maximum Sensor Rate (MSR) is the maxi-
mum pacing rate allowed as a result of sensor control. The Maximum Sensor Rate
shall be (1) required for rate adaptive modes, and (2) independently programmable
from the URL (Upper Rate Limit)

5.7.2 Activity Threshold: The activity threshold is the value the accelerometer
sensor output shall exceed before the pacemakers rate is affected by activity data.
5.7.3 Response Factor: The accelerometer shall determine the pacing rate that
occurs at various levels of steady state patient activity. Based on equivalent patient
activity: (1) The highest response factor setting (=16) shall allow the greatest in-
cremental change in rate. (2) The lowest response factor setting (=1) shall allow a
smaller change in rate.

5.7.4 Reaction Time: The accelerometer shall determine the rate of increase of
the pacing rate. The reaction time is the time required for an activity to drive the
rate from LRL (Lower Rate Limit) to MSR.

5.7.5 Recovery Time: The accelerometer shall determine the rate of decrease of
the pacing rate. The recovery time shall be the time required for the rate to fall from
MSR to LRL when activity falls below the activity threshold.

Fig. 3. Part of a pacemaker system specification

Many software projects fail due to an inadequate requirements analysis.
There are some important properties a requirements specification must have.
Such a document should be



— understandable: All stakeholders (not only the engineers involved) must
be able to read and understand the document. Thus, e.g., it should contain
a list of used terms and definitions, relevant standards, etc.

— unambiguous: When read by different stakeholders, the requirements must
not leave any freedom of interpretation. With respect to the functionality,
they must be precise, i.e., describing uniquely what the system shall or shall
not do.

— verifiable: For each requirement, there must be a clear criterion whether it is
correctly implemented in the final system or not. That is, it must be possible
to design test cases which pass if and only if the requirement is satisfied. The
test must be realistic, and the test result must be clearly defined.

— complete: The intended behaviour of the system under development must
be fully determined by the specification. This includes the possibility of
“leaving parts unspecified”, if they are not necessary for the goals of the
system.

— consistent: All requirements must be realizable, that is, must not be self-
contradictory or impose insurmountable obstacles to an implementation.
There must not be requirements which are in direct- or indirect conflict.

— traceable: For each requirement, it should be stated why it exists, who is
the source of this requirement, where it is relevant, and how it contributes
to the system’s goals.

Furthermore, it should be made clear what the significance of the require-
ment in the specification is, and which other requirements are connected to
it.

— abstract: The requirements should focus on the stakeholder’s perspective,
not, the developer’s perspective onto the system. They should not unneces-
sarily constrain the implementation: If the same functionality can be realized
in more than one way, this can be fixed at a later stage only.

— adaptable: The requirements document should be written in a way so that
it can be modified and extended later on. All requirements should be largely
independent, such that they can be deleted or replaced by alternatives, if
this should turn out to be necessary.

There have been various methods proposed to achive a stakeholder require-
ments document which has the above properties. The first tasks during require-
ments engineering is the requirements elicitation, where the engineers communi-
cate with all stakeholders to determine what their needs are. This can be sup-
ported by techniques such as guided interviews, brain-storming sessions, check
lists, competitor analysis, etc.

The next step is the requirements recording, where the elicitation results are
grouped and documented in a designated form, such as natural-language sen-
tences, use cases, user stories, diagrams, or process specifications. Here, require-
ments management tools can be used which organize the items in a database of
assets. Requirements are recorded as entries which can be searched for, selected,
versioned, and linked to other entries. Many requirements management tools of-
fer additional possibilities such as interaction to word processing and document
generation software.



After the recording, the actual requirements analysis takes place. Here, the
requirements are validated with respect to the above properties. Requirements
which are unclear, ambiguous, not verifiable, incomplete or inconsistent must be
re-written. Requirements where the origin or significance is unclear, which are
written from a developer’s perspective, or overlapping with other requirements
should be modified. It is helpful to design some abstract models during this
process, in order to apply academic tools such as model checkers, consistency
checks, refinement and transformation.

The last part of the requirements engineering phase is the requirements trac-
ing. This is an ongoing activity which spreads over the whole development cycle.
Here requirements are classified, prioritized, and linked with other artefacts. It
is important to use software tools for tracing the requirements in order to keep
track of their evolution. In particular, since most embedded systems are pro-
duced in several variants, the possibility of reusing certain requirements must be
investigated. Variant management in software product lines is an active ongoing
research field [PBvdLO05].

Requirements can be classified into three groups: system goals, scenarios and
strategies [Poh10]. A system goal is the intentional description of a characteristic
feature of the system under development. For example, one goal of the pacemaker
system is the following.

PSG 2.1.1 The pacemaker system supports the needs of patients that
require bradycardia pacing support. ... It supports the recovery process
of a bradicardiac heart (i.e., a heart beating too slow) by providing dual
chamber, rate adaptive pacing support.

System goals are a refinement and elaboration of the overall conception of
the system, and act as a guiding star to other artefacts. Each development step
and each developed artefact should be justifiable by a system goal. In this way,
system goals can be used to identify irrelevant activities and to evaluate and
choose different design alternatives. Usually, system goals are organized as AND-
OR-trees, where topmost goals have as children the direct subgoals (AND-node),
and each goal may have different alternative realizations (OR-node).

A scenario is an operational description of the way that the system achieves
its goals, by means of a concrete example run. It consists of a sequence of steps
both of the system and its environment or user. This way, a scenario is a con-
cretization of (some of) the system goals, giving a step-by-step description of
the actions and reactions which ends in the satisfaction or dissatisfaction of the
goal. A common way to write down a scenarios is in a so-called user story or
use case description [Coc01]. Fig. 4 gives as an example a use case description
which isoperationalizing the requirements from 3.

A strategy is a high level plan to achieve some goals. In the context of cyber-
physical systems engineering, a system strategy is the description of a plan to
achieve a goal or to realize a scenario. Whereas a system goal determines why
something should happen, and a scenario describes what should happen, a strat-
egy answers the question how it should happen.



1. The pacemaker is in operating mode “permanent” with an operational pacing rate
of f, where LRL < f < URL.

2. The patient moves with an activity rate below the threshold.

3. The patient increases the activity above threshold.

4. The pacemaker increases the pacing rate by the appropriate reaction factor.

5. The patient further increases the activity.

6. The pacemaker increases the pacing rate only up to the maximum sensor rate
MSR.

7. The patient stops the activity.

8. Within the set recovery time the pacemaker reduces the pacing rate from MSR
to LRL.

Fig. 4. Pacemaker scenario: use case “rate-adaptive pacing”

While formulating system strategies, it makes sense to distinguish between
static (spatial) and dynamic (temporal) properties. Strategies can be seen under
three different perspectives: the structural, functional, and behavioural perspec-
tive. The structural perspective forms a static viewpoint, whereas the functional
and behavioural perspective focus on dynamic aspects of the system under de-
velopment.

In the structural perspective, the composition of the system from parts, the
relation between the individual parts, the data to be transmitted and processed,
and the data attributes are described; as a catch-phrase: “this part sends data
in such a format to that part”. The functional perspective focusses on the trans-
formation of data and information by the system; “this input signal is combined
with that internal signal to yield those output signals”. In the behavioural per-
spective, the reaction of the system to stimuli from the environment is described;
“if the user does this, then the system does that”.

For the formulation of strategies, various kinds of diagrams can be used. Typ-
ical diagrams for the structural perspective are block diagrams, as well as object
and class diagrams. For the functional perspective, data and object flow diagrams
are used. The behavioural perspective can be denoted with state-transition dia-
grams and activity diagrams. We will see examples for all three perspectives in
the next section.

4 Modeling

Before actually building a technical system, it is good engineering practice to
first construct a model. A model is a formal or semiformal representation of the
system under development. It allows certain experiments to be performed even
before the system is realized, thus providing early feedback and error-correction
possibilities.

For the modeling of software, many different formalisms have been devel-
oped and are being used both in academia and industry. The software for cyber-
physical systems differs from other software systems in that it has to interact



with a physical environment. Whereas for a computational system it is usu-
ally adequate to model it with discrete states, modeling formalisms for physical
objects often include continuous dimensions. For a technical system containing
both computational and mechanical components, models thus include discrete
and continuous parts.

Subsequently, we will describe how to transform requirements for cyber-
physical systems into system models using SysML, the systems modeling lan-
guage. Then, we will show how to refine system models into continuous and
discrete models, representing, respectively, physical and computational aspects
of the cyber-physical system under development.

4.1 Systems Modeling

Modeling has been performed ever since people began constructing complex
systems. The word stems from the latin “modulus”, which is the unit or gauge
according to which scale the pillars of a temple are made. That is, the model of
a temple describes the relative dimensions of the different parts it is made of,
in small size. This is an essential feature of a model: it shows only some aspect
of an object under consideration, reducing its size or complexity. In general, a
model is a reduced representation of some object.

This object either already exists (e.g., a children’s toy model of a race car).
In this case, the model is an image of the original. Or, it can be an prototype of
something which is to be built (e.g., a small-size design model of a new car). Here,
the model is a pre-image of the real thing. In general, there exists a reduction
mapping between an object and its model, which preserves only some aspects.

The reduction in size is made since it is much easier to produce a model
car than an actual car. The main functionality of a car (to transport people) is
obviously lost in the mapping. However, other important properties like aerody-
namic efficiency can be demonstrated on a model as well as on an actual car. In
general, each model is a purposeful reduction: it is made for specific reasons and
serves some defined purposes. For example, the purpose of aecrodynamic model is
to optimise air resistance in a wind channel, whereas the purpose of a toy model
might be to win an RC car race. Thus, an aerodynamic model of a car will be
very different from a model used in RC races.

When designing a model, great care has to be taken that the aspects which are
important for the intended purpose are preserved under the reduction mapping,
i.e., that the model faithfully represents the actual system. “Modeling errors”,
i.e., deviations between the modeled and actual behaviour within the represented
aspect, usually make the whole model useless.

In models of complex technical systems, often the reduction in comparison to
the actual system is not with respect to the physical size, but with respect to the
logical complexity. An abstraction is a special reduction mapping which reduces
the information content of a concept or an observable phenomenon, selecting only
those aspects which are relevant for a particular purpose. A technical model is an
abstraction of a system, which is used to demonstrate some function or behaviour
of the system, to help in the construction of the system, or to enable or simplify



an analysis or investigation. Modeling a technical system is done by “leaving out
unnecessary details”, i.e., omitting structural or behavioural aspects which are
not relevant.

Depending on the purpose, there might be several technical models of a sys-
tem. E.g., for a building there might be statical models helping to calculate the
stability, graphical 3D-models showing the architecture and facade, and floor
plans giving detailed instructions where to build the walls. Consider, for ex-
ample, an architectural floor plan. The abstraction function is then a simple
mathematical scaling; and the property preserved under this scaling is whether
objects overlap or not. Thats why the floor plan can be used for figuring out
where your furniture can go in your new home, before you build it. Using com-
puter models for the statics and appropriate architecture software, it is even
possible to compare and modify different “virtual” buildings before actual con-
struction work begins. Such analyses would be very hard or even impossible to
do without models.

Subsequently, we use the following definitions:

Definition 3. A model is a purposeful reduction of some existing or planned
system. A technical model is an abstraction of a technical system, made for
the purpose of demonstrating, constructing or analysing certain aspects of the
system.

Other definitions, which can be found in the literature, focus on special kinds
or usages of models. For example, the aerospace standard DO-331 concentrates
on the use of models in software construction and analysis: “A model is an
abstract representation of a set of software aspects of a system that is used to
support the software development process or the software verification process”.
The automotive standard ISO 26262 emphasizes the importance of models for
requirements analysis and demonstration. It defines the process of building a
model: “modeling is used for the conceptual capture of the functionality to be
realised (open/closed loop control, monitoring) as well as for the simulation of
real physical system behaviours (vehicle environment)”.

For cyber-physical systems, which combine both physical and computational
components, models fall into two classes:

— Physical models represent the operational environment and physical be-
haviour of the system under development. This includes models of mass
and energy flow, the reaction of sensors to changes in pressure, heat, hu-
midity, etc., the behaviour of actuators with respect to the supplied voltage,
and so on. A model concentrates only on certain of these parameters (e.g.,
pressure and temperature), abstracting from all others physical actualities.
Since “reality” is often considered to be continuous, physical models mostly
use continuous elements and variables. An examples for a physical model is a
system of differential equations over real numbers describing the temperature
of a gas in a combustion chamber in relation to the applied pressure.

— Logical models are computer diagrams representing the computational parts
of the system. They are used to model the structure, the function and the



behaviour of the system under development. This includes the decomposition
into modules, the data structures used, the message exchange protocols, etc.
Logical models abstract from implementation details of the software, such as
the used programming language, the internals of certain library functions, or
the contents of certain variables. Since computation is mostly considered to
take place in discrete steps, logical models normally use states variables over
countable domains. An example for a logical model is a finite automaton
translating input sequences of a’s and b’s into sequences of 0’s and 1’s.

Modeling of physical systems by differential equations has been practised by
engineers for hundreds of years. Compared to that, software modeling is a rela-
tively new discipline. Since the beginning of software engineering, the need has
been recognized to deal with the ever increasing complexity of computer soft-
ware. Thus, many different formalisms have been proposed to model software
artefacts. Amongst these are classical formalisms for modeling the behaviour,
such as flowchart diagrams and Nassi-Shneiderman diagrams; finite automata,
labelled transition systems and state machines; Petri nets and activity diagrams;
StateCharts, message sequence charts, etc. For modeling the structure of soft-
ware, different sorts of architecture and component diagrams have been sug-
gested.

Models denoted in one or several of such formalism have traditionally been
used to document and visualize large software systems. A relatively new idea,
however, is to use models also as “first-class citizens” in an embedded systems
design process. For software systems, model-based development and analysis is a
means to reduce the design complexity by using a model of the system. Tradi-
tional software design methods are usually ordered in stages such as stakeholder
requirements definition and analysis, architectural design, module design, imple-
mentation, debugging and testing, system integration, installation and operation.
Fig. 5 gives a graphical representation of such a classical V-shaped cyber-physical
engineering process. The horizontal arrows indicate that the artefacts on the left
(constructive) half of the “V” correspond to those on the right (analytic) half.

Installation and operation

ystem integration

|Requirements analysis

|System architecture |

Module design

Implementation

Fig. 5. A classical V-shaped engineering process



If different types of artefacts are being used as workflow results between the
different design and analysis stages, gaps in the overall process appear. Stake-
holder analysis produces a requirements document, which is used as the input
for function and control system design. The resulting system specification doc-
ument is used by programmers to implement software modules, which in turn
are integrated into software systems. These systems are tested in various test
environments and deployed onto the target hardware.

In a traditional development process, all these stages use different notations
and formalisms for their work results. For example, a control system may be
described via circuit diagrams, whereas its software may be implemented in the
C programming language. These different notations lead to misunderstandings
and to the introduction of errors between the phases. Moreover, different tools
have to be used for each stage; thus, there are frequent incompatibilities between
the artefacts, and no continuous work flow in the development is possible. Since
the software system is available at a late development stage only, also testing
can start only late, which leads to high costs for error correction.

Model-based development (also called model-based design or model-based en-
gineering) is a paradigm which mitigates these deficits. In model-based develop-
ment, there is one system model which is the central artefact of the whole design
process. The development steps consist in transformation and enrichment of
this system model. ISO 26262 defines model evolution to be the “evolution of
the functional model from an early specification model via a design model to an
implementation model and finally its automatic transformation into code”.

Model-based development can be described by the following process steps.
The system model is built at the earliest possible time, from the stakeholder re-
quirements specification. Then, it is transformed and augmented with additional
information, such that parts of the model can be executed. A wvirtual prototype
can be derived from this initial system model, which is used to simulate and
validate the behaviour of the target system, even before it physically exists. The
main development process consists of a stepwise refinement of the system model
to an implementation model. From the implementation model, executable code
is generated automatically. If necessary, the target code is augmented with ad-
ditional code (e.g., special library routines), and deployed onto host- and target
platform.

Between the refinement steps, tests and simulations are applied frequently, to
assure that each step preserves the desired behaviour. To this end, a test model
can be developed from the requirements which is independent from the system
model, and from which test suites are obtained by model-based test generation.
The test cases are executed with respect to the system model (model-in-the-loop
testing, MiLL), with respect to the generated code (software-in-the-loop, SiLi), and
with respect to the target hardware (hardware-in-the-loop, HiL). Additionally,
in highly safety-critical systems, the requirements can be formalized to a logical
specification and the system model can be verified with respect to these formu-
las. (This process has been called model checking). Fig. 6 displays the various
artefacts and activities which can occur in model-based design.
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Fig. 6. Artefacts and activities in model-based development

Model-based development has shown to yield a significant increase in produc-
tivity and quality, reducing both the development time and the number of errors
in the design [PHAB12]. The possibility for early demonstration and simulation
of the systems’ functions helps to detect specification errors. Virtual prototyping
yields a better understanding of the functionality to be developed. Automatic
code generation speeds up the time-consuming coding process, and continuous
testing on all development stages avoids design errors. The system model serves
as a basis for the technical documentation which is required for homologation of
safety-critical systems. Therefore, it is expected that in the future this technique
will be the major paradigm for cyber-physical systems engineering.

In order to effectively apply the model-based design technique, a modeling
language is needed which supports as many phases of the process as possible.
UML, the unified modeling language ([OMG15b]), has been standardized by the
Object Management Group (OMG) in order to harmonize and combine different
modeling notations. For systems engineering, it has been augmented by SysML,
the systems modelling language ([OMG15a]). Furthermore, several variants and
extensions of UML called profiles have been defined such as MARTE for the
Modeling and Analysis of Real-Time and Embedded systems.

The goal of these standards is to provide a uniform, unique description lan-
guage for (almost) all artefacts in the model-based design process. UML and
SysML are targeting a common language basis for all stakeholders in cyber-
physical systems engineering, in order to make continuous tool chains possible.
Such an integrated tool chain would support all of the above mentioned model-



based development activities, providing a seamless integration of artefacts and
work result.

In particular, this involves engineers from mechanical and electrical design
as well as software engineers. That is, an integrated development environment
(IDE) for cyber-physical systems engineering would have to support concepts
such as differential equations, flow diagrams, and state-transition systems. Fur-
thermore, it would have to help maintaining the consistency of all artefacts
throughout the whole process, as well as facilities to migrate and evolve models.
Finally, it would enable quality assurance of both the model and the automati-
cally generated code. Unfortunately, up to now this goal has only been reached
partly. Although tool providers and researchers are working towards this ulti-
mate goal, today there are still different languages and tools for different phases
of the process.

SysML strives to integrate requirements engineering into the modeling ac-
tivities. In principle, stakeholder and system requirements can be given in a
variety of formats: as textual contract specification, as use-case descriptions, as
algebraic or logical formulas, as component descriptions with pre- and postcon-
ditions, as state diagrams or automata, or even code and pseudo-code. This is
a spectrum of possibilities, where in practice even combinations and profiles of
the above mentioned formats are being used today. In order to deal with this
situation, SysML provides the concept of a requirement diagram. These are par-
ticular model elements which provide a connection between informal and formal
notation. Requirement diagrams allow to integrate textual requirements into a
formal model. They are used to model the content and structure of a stakeholder
or system requirements document.

Each UML/SysML model consists of elements, which are connected by rela-
tions, where relations themselves are model elements. Relations may be directed
and contain multiplicities; typical directed relations are

— generalisation, characterizing the relation between a specialized element
and its general classifier, and
— composition, characterizing the relation between a whole and its parts.

UML contains several other relations between elements such as associations,
dependencies, inclusions, realizations, etc. In SysML, a requirements diagram
contains one or more requirement elements. The <<requirement>> stereotype
characterizes a named textbox which may include an identifier, the text of the
requirement, and additional properties (such as the requirement category or its
verification method). For requirements, the following relations can be used in
addition to the ones above:

— include: This relation is drawn between requirements R, and Ry to indicate
that Ry is a sub-requirement of R;. For example, the requirement 5.7 on
rate-adaptive pacing in Fig. 3 above includes requirement 5.7.1 about the
maximum sensor rate.

— derive: This relation indicates that R is a logical or physical consequence
of Ry . For example, the requirement that the pacemaker device includes



an acceleration sensor is derived from the requirement that it shall provide
rate-adaptive pacing.

— refine: R, is a refinement of Ry, if it describes the same content, but with
more detail than R;, possibly eliminating some choices in the design space.
For example, the requirement 5.7.1.2 that the MSR shall be independently
programmable from the URL might be refined by a requirement R saying
that there must be a variable msr in the non-volatile memory which can be
set by the physician via the device-controller monitor.

— verify: A requirement may be verified by a test case. For example, the
refined requirement R from before could be verified by a test case in which
the variable msr is set to a certain value.

— satisfy: A requirement may be satisfied by a particular model element de-
scribing its implementation. For example, the requirement R could be satis-
fied by an object diagram describing the non-volatile variables of the pace-
maker.

In Fig. 7, a breakdown of the requirements from Fig. 3 in the open-source
tool Papyrus ([Ecl15]) is presented. Papyrus builds on the Eclipse IDE, and is
freely available.
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Fig. 7. Requirements diagram for the pacemaker in the Papyrus tool



4.2 Modeling of Continuous Components

Cyber-physical systems differ from pure computational systems in that they
interact with a physical environment. For model-based development of the (soft-
ware for the) embedded systems which constitute a cyber-physical system, we
need a model of the physical environment and/or the technical system in which
it is working. In some cases, this model can be rather trivial. For example, as-
sume that the system has sensors to observe its environment. Then the simplest
environment model is one where all sensors may give arbitrary values (within
their respective ranges) at all times. As another example, assume we want to
model a user operating the system with knobs and buttons. Then a very simple
model is the one which expresses that the user may press any button or choose
any knob setting at any time.

However, such a model might not be very useful. It ignores physical and
logical dependencies within the environment. Firstly, the value of a physical ob-
servable in the environment usually can not change arbitrarily — often it is a
continuous quantity. For example, the outside temperature just doesn’t change
instantaneously from minus 20° to plus 40° Celsius. Even with discrete param-
eters, physical side conditions may impose restrictions on the user behaviour. It
is simply not possible to turn a knob from setting 1 to setting 5 without going
through the intermediate settings 2, 3, and 4. Secondly, one physical parameter
may rely on another one. For example, in a closed container, the temperature of
a gas is proportional to the pressure applied to it. Or, a touch sensor may give a
signal only if a certain height has been reached. Thirdly, and most importantly,
the outputs of the embedded system affect the behaviour of the technical sys-
tem in the environment, and thus also the inputs which the system gets from
its environment. For example, turning on a motor might increase the pressure
onto a gas and thus its temperature which is read by a thermo sensor. This type
of feedback is called a control loop — the embedded system is controlling the
technical environment, which in turn influences the behaviour of the embedded
system.

Controller Plant

Sensors I Actuators

Fig. 8. Feedback loop between controller and plant

Control theory is a discipline traditionally concerned with such control loops
between continuous input and output magnitudes. In control theory, the embed-



ded system is called a controller, and the enclosing technical system is called the
plant. The plant is a dynamical system which is described by some continuous
parameters. These parameters are influenced by the outside world. Mathemati-
cally, a parameter in a dynamical system is just a continuous function from time
points (real numbers) into values (real numbers). Some of the parameters can be
observed by the controller via sensors, and some can be controlled via actuators.
The environment imposes a disturbance on the controlled parameters, and the
goal of the controller is to bring them back to some admissible values. Fig. 8
above displays this basic control theory paradigm; note that it is just another
visualization of the same actual situation as presented by Fig. 1.

The above discussion hopefully made clear that in order to design cyber-
physical systems, there is a need for modeling formalisms with which the envi-
ronment of an embedded system can be described. This “material world” to a
large extent can be seen as a dynamical system, where measurable quantities such
as lenght, volume, temperature, etc., evolve over time. To model such dynamical
systems, concepts are needed such as the continuous change of some variable,
the continuous sum of one or more flows, and the continuous dependency of one
value upon others. In mathematics, real-valued functions, integrals, and differen-
tial equations provide such concepts. That is, mathematically the physical world
can be described by a set of real-valued functions over time. In engineering,
several other formalisms have been invented which build on mathematical mod-
eling via differential equations, and which are generally accepted. Amongst these
are several forms of diagrams such as electrical-circuit diagrams, fluid-mechanics
diagrams, process-flow diagrams, and functional-block diagrams.

For computer science, no similar formalism is generally accepted. The main
questions are how to come up with a convenient modeling notation for the rel-
evant physical aspects of a cyber-physical system, and how to integrate it with
computational modeling notations. Although SysML contains various mecha-
nisms for dealing with continuous flows, there is not yet an adequate tool sup-
port to use them in an academic environment. In the industrial context, tools
like Simulink (from MathWorks), Simplorer (from Ansys), LabVIEW from (Na-
tional Instruments), Ascet (from ETAS), and Dymola (from Dassault) are being
used for modeling dynamical systems. In these notes, we use Scicos, which is
a free graphical modeling and simulation tool. Scicos allows block diagrams to
be drawn which describe continuous flows. It can evaluate the diagrams with
a numerical solver, and plot the resulting functions. Furthermore, it contains a
code generator to compile these models into executable code.

As an example, in this section we will use a simple water tank with gain and
drain valves, as depicted in Fig. 9. This example is representative for a large class
of controlled systems such as heaters with thermostats, batteries with chargers,
lights with dimmers, etc. It is also more intuitive than the pacemaker example
since it requires only general knowledge of physical contexts and differential
calculus. Subsequently we will model several variants of this system using block
diagrams.
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Fig. 9. Schematics of a water tank

A block diagram consists of a set of blocks, where each block has a dedicated
number of input and output ports. Blocks without input are called sources, blocks
without output are called sinks. In the diagram, each output of a block must
be connected to at least one input of another port, and each input must be
connected to some output. These connections are the signals or data values that
flow between the blocks. Sources are, amongst others, a constant generator (a
block with one output generating a constant value on this output), a ramp (gen-
erating a linear function), or a sinusoid generator (generating an output in the
form of a sinus wave). Typical sinks are the various “Scope” blocks for displaying
the input signal(s) on screen. Blocks which have both input and output ports
are, for example, adder, multiplier, integrator and differentiator. In commercial
tools, there is usually a huge library of blocks. Often, these are specialized for a
particular domain, e.g., the modeling of temperature distibution in combustion
engines, or the simulation of water flow in hydraulic machines.

As an example, consider the block diagram in Fig. 10. This diagram contains
two sources (gain and drain) and one sink (the scope). The sources are arbitrary
piecewise linear functions, which are multiplied by constant factors. The lower
signal is subtracted from the upper, and the difference is integrated over time.
The result f(t), as displayed by the scope, is shown below the diagram. The
diagram can be seen as a rough model of the water tank, with input pipe and
output pipe. The different diameters of the pipes are modeled by the constant
multiplication factors ¢; = 3 and ¢2 = 2; opening and closing of the valves is
modeled by the randomly chosen functions gain and drain. Function f(t) then
represents the resulting filling level of the tank; for the moment we abstract from
the fact that each real tank has a limited capacity and can not contain a negative
amount of water.

If we evaluate (“simulate”) the diagram, the scope shows the function de-
picted in the lower part of Fig. 10. This evaluation is equivalent to the numerical
solving of a system of ordinary differential equations (ODEs) Each block dia-
gram using only standard mathematical blocks can be transformed into an ODE
as follows. We give each signal/connection a unique name. Then we equate the
output of a block to the function it represents, applied to the inputs of the block.
In the example of Fig. 10, this yields vg = gain, v1 = ¢1 * vy, vo = drain, vy =
Co % Vg, Vg = V1 — V3, U5 = [ vy Letting vs = f(¢) and elimination all variables
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Fig. 10. A simple block diagram and its evaluation result

but vy, we get
(x)  f(t) = (c1 x gain(t) — cz * drain(c)).

The translation works also in the other direction: each ODE can be repre-
sented by a block diagram. Instead of defining the general procedure, we just
give an example. In our water tank, let g(¢t) = (¢ * gain(t) — co * drain(t)) denote
the net flow in or out of the tank, and let h be the height of the tank. We refine
equation (x) as follows.

max (0, g(t)), if f(t) <0,
(xx)  f'(t) = < min(0, g(t), if f(t) > h, and
g(t), else, i.e., if 0 < f(t) < h

The first case defines what happens if the water tank is empty (f(¢) < 0): In this
case, water can only flow in; that is, if g(¢) > 0 then f'(¢) = g(t), else f'(t) = 0.
Similarly, the second case defines the filling of a full tank: In this case, water
can only flow out; that is, f/(t) = g(¢) if g(t) is negative, else f'(¢) = 0. (You
could imagine that opening the drain on an empty tank has no effect, whereas
opening the gain on a full tank makes the water spill over.) Finally, the third
case defines the behaviour of the tank if it is neither empty nor full; in this case
the filling level changes as indicated by ().

Fig. 11 gives a block diagram for (**). In this diagram, the case distinction is
done by two switches. A switch is a block where the output is either the first or
third input, depending on whether the second input is larger than a threshold.
The MIN and MAX blocks work as expected. The height h is set in the right



switch-block to h = 8; note that in the evaluation (with the same gain and drain
as before) the filling level f(t) stays between 0 and 8.
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Fig. 11. Block diagram modeling a water tank

Equation (xx) is a “recursive definition” of the function f: the value of f(t)
is used in the definition of f’(¢). Such a recursive definition leads to a loop in the
corresponding block diagram, as in Fig. 11. In order to avoid an “unguarded re-
cursion”, we have to put a delay block between definition and use of the signal f.
This is necessary for the numerical evaluation of the diagram. In the evaluation,
the solver tries to determine a numerical value (a real number) for each signal
at each time point. If there is an “unguarded” loop, it means that the value of
a signal f at a given time point depends on itself and cannot be determined.
Putting a delay in the loop means that the value of f depends on an earlier
value of f; thus it can be determined by calculating the values of all signals from
the beginning in fixed steps. Of course, one should be aware that this calculates
only an approximation to the solution of the corresponding differential equation.
In general, differential equations need not have solutions; for example, consider
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There is no function f defined on any subset of real numbers which is a solution
to this equation. The numerical solution will oscillate depending on the chosen
step size for the delay.

Block diagrams can also be used to model the behaviour of a controller. As
shown in Fig. 8, a controller is a computational system influenced by and deter-
mining the behaviour of its technical environment, the plant. As an example, we
consider our water tank as the plant which is regulated by a controller. That is,
we extend our model of the water tank by a controller model. Since the drain
valve is operated by the controller, it is no longer modeled by an arbitrary func-
tion; the drain signal is output from the controller to the plant. The gain-valve,
which still is under control of some external user, and the rest of the tank model
are left unchanged.

We assume that the controller can observe the actual water level by a sensor;
thus, the signal f(t) is fed from the tank model to the controller model. Consider
the two marks upper and lower, mounted at the desired upper and lower filling
level. The task of the controller is to keep the water level between the lower and
upper mark, no matter how the gain-valve is opened or closed by the user. A
simple strategy the controller could follow is

— if the water level exceeds the upper marking, open the drain, and
— if the water level falls below the lower marking, close the drain.
As mathematical formulas, this strategy could be written as

— if f(t) > upper, then drain(t) =1
— if f(t) < lower, then drain(t) =0
— if lower < f(t) < upper, then drain’(t) =0

A block diagram for this solution (with lower = 3 and upper = 5 is shown in
Fig. 12. In this diagram, we have collapsed the model of the water tank from
Fig. 11 into a superblock. The possibility to abstract several blocks into one is
a very important structuring mechanism which can help to make large block
diagrams more understandable.

Note that this simple controller keeps the water level only “approximately”
between the desired limits; depending on the reaction time of the drain valve
there may be over- or undershootings of the limit. More complex type of con-
trollers can be modeled in this way, including so-called PID controllers, which
can maintain the desired target value very accurately.

4.3 Discrete-state Modeling

Cyber-physical systems are networks of computational systems operating in a
technical environment. Physical objects in this environment are mostly charac-
terized by continuous parameters such as shape, size, position, movement, tem-
perature, pressure, voltage, etc. Notable exceptions to this rule are switching
elements such as mechanical switches, bistables, relays, and transistors. These
can be seen as taking, at any given time, one of two or a finite set of possible
values. In contrast, computations are usually discrete processes. The reason is
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Fig. 12. Water tank with a simple controller

that present computers are largely built from switching elements. Thus, they
can only execute programs in discrete steps, and they can represent data only in
a discrete, finite way. (There was a time when people experimented with contin-
uous or hybrid computers, but those days are long gone...) Thus, each computer
can assume only a finite (although very large) number of states, and each pro-
cess executed by a computer can go only through a finite or countably infinite
number of states.

Many different formalisms have been proposed for the description of discrete
processes and machines. Most of them are based on the notions of state and
event. A state of a system is a mapping of its parameters to values. An event
is an instantaneous change in some state component(s), causing a transition
between states. Mathematically, an event is a discontinuity in the trajectory of
some variable(s).



Formally, a state-transition system (or simply transition system) consists of
an alphabet A, a set S of states, a set T of transitions, and an initial state sg.
Each transition between two states is labelled by a symbol from A. A run or
execution of a state-transition system is a finite or infinite sequence of states
from S starting from the initial state sg, where each pair of adjacent states is
related by a transition from T'.

For example, reconsider the pacemaker specification from Fig. 3. From Re-
quirement 5.7.2, we learn that there exists an activity threshold which determines
whether the pacing rate is affected by activity data or not. This can be modeled
by a state-transition system as shown in Fig. 13.

ACC-Switch

ACC_off

sd_gt atg =d_le_at

Fig. 13. A simple switch

In this transition system, there are two states, ACC_off and ACC_on, deter-
minining whether the accelerometer sensor data shall be taken into account or
not. The alphabet A consists of only two symbols: A = {sd_gt_at,sd le_at}.
The transition from ACC_off to ACC_on occurs when sd_gt_at happens, that
is, when the sensor data becomes greater than the activity threshold. Likewise,
when the sensor data becomes less or equal to the activity threshold, sd_le_at
happens and a transition from ACC_on to ACC_off is performed. Initially, the
transition system is in state ACC_off. Therefore, there is only one possible run
of the system:

ACC_off Sd%ﬁ) ACC_on M) ACC_off sd_gt-at ACC_on sd_le_at

Historically, state-transition systems have been investigated as Moore- and
Mealy-machines, finite automata, Petri nets, neural networks, StateCharts, and
others. Traditional research questions have been the relation of these formalisms
to formal language theory, logic, and term rewriting. Mainly, the expressive-
ness and complexity was in the focus of research. Their potential as a modeling
language in a model-based development process has been emphasized with the
advent of UML [OMG15b]. The “Unified Modeling Language” has been defined
in order to combine and unify several of the above formalisms. In its current



version 2.5 (Mar. 2015), it contains 14 types of diagrams, for modeling both the
structure and behaviour of computational systems.

State Machines are the UML diagram type which is closest to state-transition
systems. In fact, our above Fig. 13 depicts a valid UML state machine, drawn
with the Eclipse Papyrus Tool. However, in UML, the alphabet of state machines
can be structured: each transition can have a number of triggers, a guard, and an
effect. A trigger of a transition can be any event, e.g., the receipt of a message,
or the execution of a message. The guard can be any boolean expression, formu-
lated, e.g., in the Object Constraint Language OCL. The effect of a transition
can be any behaviour, e.g. an assignment, an event, or even a state machine
behaviour. A transition from s to s’ which has event e as trigger, condition c as
guard, and action a as effect is depicted as

elc]/a .

Empty triggers, guards, and effects can be omitted. Thus, in Fig. 13, sd_gt_at
and sd_le_at are events which occur due to an action of some outside component,
and there are no transition guards and effects.

Besides the concept of “state” and “transition” UML state machines include
concepts to include data and to structure states via hierarchies and parallelism.
Let us explain these concepts via an example. Requirement 5.7.3 in Fig. 3 de-
clares that there is a response factor for the accelerometer-induced increase of
pacing rate. This factor has settings between 1 and 16. Assume that the setting
can be increased by the event inc and decreased by dec. Then we can model
this with 16 states, as shown in the upper half of Fig. 14 (drawn with the Eclipse
Yakindu Statechart Tools).
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Fig. 14. Two different models of a counter

However, a more concise model can be obtained as shown in the lower half
of this figure. Here, rf is an object of type int, which is set to 1 by entering
the initial state, incremented upon event inc by the action rf += 1 if its value



is less than 16, and decremented upon dec by rf -= 1 if its value is greater
than 1.

For parallelism and hierarchies, we note that a UML a state machine consists
of a set of regions, where each region contains states and transitions. All regions
in a state machine are executed in parallel. A state itself can be simple or com-
posite, where a composite state is one which again contains a number of regions.
This way, a state can contain states, which contain states, etc.; this arbitrary
nesting is similar to the nesting of blocks and superblocks which we have seen
in Fig. 12.

As an example, consider the model in Fig. 13. Assume that there is a process
sdac (sensor data acquisition) which is triggered in fixed intervals and reads the
current activity level from the sensor into variable sd. Assume further that in
order to smoothen this sensor reading, we are to switch into state ACC_on only
if two consecutive sensor readings have been above the threshold, and likewise
for state ACC_off. Then we can extend the model as shown in Fig. 15. Here, the
events ACC_off and ACC_on are generated by the parallel region at the right if
two successive readings are above or below threshold, respectively.

ACC-Switch

ACC_off
sdac [sd »=at] sdac [sd»=at] / sd_gt_at

sd_gt ata sd_le_at
sdac [sd<at] / sd_le_at sdac [sd=at]

sdac [=d « at] sdac [sd>=at]

Fig. 15. Two parallel regions

5 Model Transformation and Code Generation

A major advantage of a formal model, in cyber-physical systems engineering, is
that it enables the engineer to automatically generate code from it. A prerequisite
for this is, of course, that the model is treated as a “first-class citizen” in the
development process. That is, the model is not just a means of documentation
and illustration, but is on the same level of importance as, e.g., requirements,
code segments, and test cases. Syntactic and semantic correctness of the model
must be ensured similarly to the development of code. Furthermore, the model



must be integrated, maintained, put under version control, and evolved, as the
system is being further developed.

Code generation from a model is a special type of model transformation.
Here, executable code according to some programming language syntax is gen-
erated from a syntactically correct model. The transformation is described via
the modeling concepts. The situation is similar to that of a classical compiler,
which translates programs from a high-level programming language into machine
code. The actions of the compiler are described via the syntax of the source lan-
guage. Similarly, a code generator can be considered as a “model compiler”.

5.1 Code Generation from Block Diagrams

According to the two kinds of models which we have met, block diagrams with
continuous flows and state-machine diagrams with discrete transitions, there are
two major ways to generate code. For continuous models, numerical solvers are
employed which construct an approximation to the trajectories of all signals in
the model.
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Fig. 16. Controller model for the water tank

Consider a block-diagram model of a controller, e.g., for our water-tank sim-
ulation. Fig. 16 is the boxed (control) part of Fig. 12, where we replaced the
feedback loop from and to the model of the water tank by a sensor and an ac-
tuator. The sensor represents an input function f(¢) to the controller, viz. the
observed water level of the tank at a given moment. The actuator is an output
function drain(t) of the controller, viz. the controlled setting of the drainage
valve at time ¢. Both of these models are time-triggered, i.e., they are read and
written at designated times only (indicated by the clock input). This controller
model has internal signals (s1, s2, s3, drain and drain_d) connecting the blocks,
plus certain constant parameters. The code generator will generate code from
this model which calculates, for a given time interval [0, tmax) the values of the



output function from the values of the input function. It does so by starting with
the initial values at time ¢ = 0, and incrementing the time ¢ in discrete steps.
The values in between these steps are numerically approximated. In general, the
translation follows the scheme

initialize all signals (default value is 0);
for (t:=0; t< tmax; t+=tstep)
for all blocks
out-signal := block-function(in-signals)
end for all blocks
end for

For the evaluation of the for all-statement, the code generator has to con-
struct an order of the blocks such that all in-signals are computed before the
block-function itself is called. For a source block (e.g., a sensor), the block func-
tion has no input arguments. For a sink block (e.g., an actuator), the block
function returns wvoid. The calculation of the block function may involve previ-
ous values of this function, which must be stored in a buffer. As an example, the
output of an integrator block can be approximated by

out-signal (t+tsiep) 1= out-signal(t)+tseep *in-signal(t)

This method was first described by L. Euler in 1768; meanwhile, more exact
mathematical methods have been developed. As another example, consider the
continuous fix delay block which realizes a time shift of the input signal. It
can be approximated by storing “sufficiently many” values of the input signal
in a queue and outputting the earliest one. The following pseudo-code roughly
describes the code generated from the controller model in Fig. 16; the actual
code contains several optimizations.

sl := 0; s2 := 0; s3 := 0; drain := 0; drain_d := 0;
for (t:=0; t< tmax; t+=tstep)
if (triggerl) then f := sensor_read,;

sl:=3 —f;
s2:=1f — b;
$3 := if (s2 > 0) then 1 else drain_d;

drain := if (s1 > 0) then 0 else s3;
drain_d := bufferl . dequeue (); bufferl . enqueue (drain);
if (trigger2) then actuator_write(drain);

end for

The maximal simulation time ¢y, and step size tgcp are parameters of the
simulator. On a host computer, the maximal simulation time usually is finite,
whereas for execution on an embedded target system, the upper limit usually
is infinite. During a simulation, the step size may be adjusted in the main loop
according to the dynamics of the system. For code which is to run on an embed-
ded system, the step size should be chosen according to the speed of the target
processor.



5.2 Code Generation from Transition Systems and State Machines

When programming an embedded system, an often used scheme is the so-called
simple control loop:

while (true){
sense: (read sensor values);
think: (calculate action);
act: (write actuator values);

}

Most code generators are constructed such that the code generated from a state
machine follows this scheme. For example, for a transition system with alphabet
A, states S, transitions 7" and initial state sg, the generated code could be as
follows.

state s = sq;

while (true){
(get trigger a € A);
if 3s'((s,a,s’) € T) then s = ¢/;
(display state s € S);

Here, we assume that the transition system is deterministic, i.e., for any s € S
and a € A there is at most one s’ such that (s,a,s’) € T. For nondeterministic
transition systems, the if-statement must be replaced by a nondeterministic
choose-statement. For execution on a (deterministic) machine, of course, the
nondeterminism must be resolved according to some strategy.

For UML state machines, the trigger of a transition could be either an ex-
ternal event or a signal generated as the result of an action. Hence, at any given
instant, there may be several events which can be processed by the state machine
The semantics of UML determines that the processing of all internal events must
be completed before the next external event is considered. Thus, occurrence and
processing of an event are treated separately: If an event occurs either from an
external source or as the consequence of an internal action, it is put into an
event pool. From this pool, events which are the result of an internal action are
prioritized whenever a new trigger is dispatched. This feature is called “’run-
to-completion” semantics: once an action is started, it will run until it is done,
before any external signals are processed.

Furthermore, UML state machines may contain parallel and nested regions.
Thus, there are some further extensions to the above scheme. For state machines
containing parallel regions, there is not one overall “current state” s. Each region
has its own “current state”. A configuration is a tuple which lists for each region
the current state of this region. Furthermore, if states and regions are nested,
then each transition leaving a superstate exits all regions within that state. Thus,
the current state of all sub-regions is affected by a transition from the enclosing
state.
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Fig. 17. Code generated from the model in Fig. 15

As an example for code generation from UML state machines, we use the
industrial tool IAR visualSTATE. This tool is a “front end” for the IAR em-
bedded workbench tool suite, which offers debugging and profiling support for
embedded software. However, visualSTATE is able to generate C code for other
tools as well. Fig. 17 depicts part of the “readable” code generated from the
model in Fig. 15 with this tool. This code can be compiled with standard C
compilers, and executed on an embedded target.

6 Conclusion

In these notes, we have discussed the principles of model-based engineering
of cyber-physical systems. We have seen the particular challenges which these
systems pose to the software development. Then, we considered systems- and
requirements-analysis techniques which are the basis of a successful design pro-
cess. We studied different modeling concepts: systems modeling with SysML,
continuous modeling with Scicos, and state transition modeling with UML. Fi-



nally, we have seen how these models can be used for the generation of executable
code for embedded controllers.

Of course, these notes cover just a first encounter with this subject. For
each of the topics addressed, there is extensive further literature which helps
to get a more profound knowledge. Many pointers on textbooks have been
given within the various chapters. For current research, the reader is referred
to the proceedings of the MBEES (Model-Based Engineering of Embedded Sys-
tems, [GHPS14,GHPS15]) and MODELS (Model-Driven Engineering Languages
and Systems, [Let15]) conference series.

There are several areas in the development of cyber-physical systems which
we have not considered. For example, we did not discuss the wide field of quality
assurance, i.e., verification and testing of embedded systems. Also here, exten-
sive literature exists (see [ZSM11] for some pointers). Other important aspects
include safety and security, fault tolerance, domain- and platform-specific meth-
ods, communication and autonomy of systems, and many more. Each of these
aspects is continually evolving, and new theories and research directions appear
frequently.

However, no theory is of any use without practice: To thoroughly understand
and learn the subject, the reader is strongly advised to experiment with tools
and platforms which are readily available. Most producers of embedded hardware
will give away evaluation boards for free or at low cost. It is a very worthwile
exercise to conduct a medium-sized example from the requirements elicitation
through the modeling process up to the code generation and the deployment onto
the embedded target(s). Doing this will give you a hands-on experience of the
problems, but also of the fun which the development of a modern cyber-physical
system can bring.
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