Advances in Testing Software Product Lines

Hartmut Lackner Bernd-Holger Schlingloff
MES GmbH Humboldt-Universitat and
Berlin, Germany Fraunhofer FOKUS, Berlin
hartmut.lackner@model-engineers.com hs@informatik.hu-berlin.de
Abstract

In this article, we describe some recent techniques and results in model-
based testing of software product lines. Presently, more and more software-
based products and services are available in many different variants to
choose from. However, this brings about challenges for the software qual-
ity assurance processes. Since only few of all possible variants can be
tested at the developer’s site, several question arise. How shall the vari-
ability be described in order to make sure that all features are being
tested? Is it better to test selected variants on a concrete level, or shall
the whole software product line be tested abstractly? What is the quality
of a test suite for a product line, anyway? If it is impossible to test all
possible variants, which products should be selected for testing? Given a
certain product, which test cases are appropriate for it, and given a test
case, which products can be tested with it?

We address these questions from an empirical software engineering
point of view. We sketch modeling formalisms for software product lines.
Then, we compare domain-centered and application-centered approaches
to software product line testing. We define mutation operators for assess-
ing software product line test suites. Subsequently, we analyze methods
for selecting product variants on the basis of a given test suite. Finally,
we show how model-checking can be used to determine whether a certain
test case is applicable for a certain product variant.

For all our methods we describe supporting tools and algorithms. Cur-
rently, we are integrating these in an integrated tool suite supporting sev-
eral aspects of model-based testing for software product lines.

Keywords: Software Product Lines, Cyber Physical Systems, Model Based
Testing, Test Generation, Variant Management, Feature Modeling, Domain
Analysis, Fault Injection, Product Sampling, Test Case Assignment

1 Introduction

Due to increasing market diversification and customer demand, most industrial
products today are available in many different variants. For example, when
buying a new car, one can choose not only between different brands and makes.

Within a model, one has options on the type and power of the engine, on the
navigation and entertainment system, on various driver assistance functions,
etc. There is a common basis on which these different variants are built (chassis,
doors, power train and other elements).

A product line (or product family) is a set of products offered by a producer
to customers, which have the same base functionality and share a common set of
base elements. The members of a product line differ in the features which they
offer to the customer. Thus, the individual products in a product line have a
similar “look-and-feel”, however, they differ in that one product may offer more
or other functionality than another one.

In software-based systems, these features are realized via software. The
concept of a software product line originates in the work of D. Parnas [58].
It has gained much attention by the research and consultancy of the Carnegie
Mellon University Software Engineering Institute [49]. The CMU SEI defines
a software product line to be a “set of software-intensive systems that share a
common, managed set of features satisfying the specific needs of a particular
market segment or mission and that are developed from a common set of core
assets in a prescribed way” [16].

Software product lines are abundant in today’s cyber physical systems: most
electronic control units, e.g., in cars or trains, are configurable or come in mul-
tiple variants, as well as software in consumer products like coffee machines,
dishwashers, mobile phones, etc. Also software products itself like, e.g., the
ordering system of a web shop, are available in different variants to fit varying
customer needs.

A challenge common to the development of these systems is that the software
is similar, but not identical for all products; there are slight differences accord-
ing to the features exhibited by a particular product. Sources of variability
include planned diversity for different user groups, evolution and enhancement
of products, and re-use of modules from one product in another one. Software
product line engineering addresses this challenge. The main goal of software
product line development is the strategic re-use of software artifacts. There
have been various approaches to re-use: by copy and paste, macros, subrou-
tines, modules, objects, components and services. The common problem in all
of these approaches is that re-use increases the probability of errors. Therefore,
quality assurance for software product lines is of utmost importance.

In this paper, we summarize and extend some of our previous work on this
topic. We address several questions related to the model-based testing of soft-
ware product lines. First, we address the problem of how to specify a software
product line. We describe feature models and other artifacts that arise in a
model-based development of software product lines.

We then consider the question of how to generate test cases from models.
Basically, there are two competing approaches: One can derive individual test
suites for individual products from an appropriate instantiation of a domain
model. Or, one can try to generate a generic test suite from the domain model
and instantiate this generic suite for each individual product. We formalize and
compare these two approaches and derive guidelines on when to use which one.

Given a test suite, an important issue is to asses its error detection capability:
How likely will the test suite uncover an error, given a faulty system under test?
We investigate this question for the automatically generated test suites from
the previous section. We define mutation operators, an experiment setup, and
a tool suite to determine the mutation score for a test suite.

For a large product line, there may be zillions of different variants; it is
impossible to test all of them. The question is, which products should be se-
lected for testing the product line? We suggest that the products should be
sampled using the test suite generated from the domain model. Moreover, we
suggest that in this sampling, certain optimization criteria should be taken into
consideration, such as “the selected products should be as diverse as possible”.
We sketch an algorithm based on boolean optimization for this sampling, and
evaluate the effectiveness of the approach with fault injection techniques.

In many companies, especially when transitioning to a product line develop-
ment process, there exists a large body of test cases. In order to be able to reuse
these test cases for new products, we sketch a model-checking algorithm, which
determines whether a certain test case is applicable for a certain product. We
use a three-valued coloring scheme to distinguish between positive tests, nega-
tive tests, and tests which are insignificant for a certain product. We describe
a prototypical implementation of our coloring algorithm and its application.

Throughout the paper, we use the example of a web shop system to illustrate
our ideas.

This paper is structured as follows. After the introduction in section 1, we
define modeling formalisms for software product lines in section 2. Subsequently,
we show how to use domain models for test case generation in section 3. Then,
in section 4, we describe a mutation system for assessing the error detection
capability of a product line test suite. Section 5 deals with the problem of
how to sample products for testing, and section 6 with the problem of how to
reuse test cases for different products. Finally, in section 7 we discuss related
literature, and, in section 8, some outlook on future work.

2 Specification of Variability

Two main driving factors for software product line engineering are the growing
customer expectations for individualized products, and the potential to reuse
existing software assets in the design of a product. The objective is to increase
the number of product features while keeping the overall system engineering
costs at a reasonable level. Product line development usually involves two engi-
neering processes: domain engineering and application engineering. In domain
engineering, reusable components are developed by a domain analysis and a
domain reference architecture. In this process, commonalities and variabilities
are analyzed and generic artifacts are developed. In application engineering, ac-
tual products serving different customer and market needs are derived from the
domain artifacts. Products are built by instantiating and composing generic ar-
tifacts from the domain engineering process. Thus, domain artifacts are reused

Domain Engineering

Refer

Domain Archit:;ffe Variability

Analysis Modellin
Domain Y Modellin 9
Knowledge \ \{eedback

Feature Base ariability Domain

Model Model Model Model

Feedback
a Requirements Configu- T Product Application)

Analysis Materialization Development
Customer Products
Needs

—: Application Engineering

—
—

Figure 1: Various models in software product line engineering

to exploit the product line’s commonalities. The instantiation and composition
should be largely automatic. This way, many different products can be derived
in an efficient way. There should be also feedback loops from application en-
gineering to domain engineering, such that updates from different individual
products can be generalized and adapted to the product line.

Model-based design is a particular form of software development, where a
system model is continuously used as the central artifact throughout the whole
engineering process. Initially, requirements are captured in an abstract model,
e.g., in SysML, representing the system specification. This abstract model is
refined and transformed into a concrete implementation model, e.g., in UML
or Simulink®. From this implementation model, executable code is generated
automatically by a suitable model compiler.

For model-based software product line engineering, the artifacts produced
during domain engineering are mostly models. However, these models are
generic, allowing an instantiation into different product models. During applica-
tion engineering, the product models are refined and compiled as in “ordinary”
model-based design.

Figure 1 depicts the model-based domain and application engineering work
flows and their interrelations. The domain engineering process is generic, whereas
the application engineering process exists in several instances, namely one for
each product. Tasks are denoted by rectangles, and the models which are the
results of tasks are given in circles.

2.1 Feature modeling

There have been various attempts to specify the variability of products be-
longing to a product line. Most approaches are based on a so-called feature

model. Feature models facilitate the explicit design of global system variation
points [37].

A feature is the description of a designated functionality which is visible
to the customer and forms an added value to the product. Each feature has a
unique name and represents one characteristics of a product which is interesting
for the stakeholder, e.g., a special added value. A feature model is a structuring
concept for a set of features; it forms an explicit description of commonalities
and differences of various products. Feature models are usually organized as
and-or-trees, where each node is marked with the name of a feature. The root
of the feature tree is the name of the product family. A parent feature can have
the following relations to its sub-features:

e Mandatory: child feature is required,

e Optional: child feature is optional,

e Or: at least one of the children features must be selected, and

e Alternative: exactly one of the children features must be selected.

Additionally, it is allowed to attach boolean constraints on features to the feature
tree. For example, one may specify additional (cross-tree) constraints between
two features A and B: (i) A requires B: the selection of A implies the selection
of B, and (ii) A ezcludes B: both features A and B must not be selected for
the same product. Tools for maintaining feature trees include pure::variants®,
BigLever Gears®, FeatureIDE [68], and EASy-Producer [65].

Figure 2 shows the feature model of our web shop example which is used
throughout this article. The eShop is a fictional e-commerce web shop designed
for this article; it covers only a small part of the “real” web application. It
provides the following functionality: Each eShop contains a catalog in which the
available goods are listed. A customer can browse the catalog of items and put
orders in the cart. Once the customer is finished, he/she can checkout and may
choose from up to three different payment options, depending on the eShop’s
configuration. Payment can be via bank transfer, credit card, or eCoins. Some
variants may provide a search function within the catalog. The transactions are
secured by either a standard or high security server. Credit card payment is
only offered if the eShop also implements a high security server.

Feature models can also be represented in propositional logic: For each fea-
ture model, there is an equivalent boolean formula. The propositions in this
formula are the feature names, and the logical connectives are derived from
the tree structure (see, e.g., [4, 6]. For the eShop feature model in Figure 2, a
boolean formula representing the feature tree is

Catalog ‘ Payment ‘ ‘ Search ‘ Security
Bank Transfer ‘ Credit Card ‘ ‘ eCoins ‘ ‘ High ‘ ‘ Standard ‘
N - -
—® Mandatory ‘ Or ——%» Requires
—O Optional <> Alternative <« —> Excludes

Figure 2: A feature model for the eShop example.

FM = (eShop
A (eShop — Catalog) A (eShop — Payment) A (eShop — Security)
A (Payment — BankTransfer V CreditCard V eCoins)
A (Security — (High A —Standard) V (—High A Standard))
A (Catalog — eShop) A (Payment — eShop)
A (Search — eShop) A (Security — eShop)
A (BankTransfer — Payment) A (CreditCard — Payment)
A (eCoins — Payment) A (High — Security) A (Standard — Security)
A (CreditCard — High))

Since our feature model involves optional features, there are several potential
products. Only a few of these will be materialized as actual products in the
market. Given any feature model, a resolution model (or simply resolution) is
an assignment of truth values to feature names. The assignment of a value to a
proposition indicates whether the corresponding feature is selected (true) or des-
elected (false). A resolution is called valid, if the corresponding boolean formula
evaluates to true. A valid resolution is also called a product configuration.

For instance, the following two assignments P1 and P2 are product config-
urations for the eShop feature model presented in Figure 2.

P1 = eShop, Catalog, Payment, BankTransfer, —CreditCard, —eCoins,
=Search, Security, ~High, Standard

eShop, Catalog, Payment, BankTransfer, CreditCard, eCoins,
Search, Security, High, —~Standard

P2

It can be seen that both configurations satisfy the formula FM above. P2 is a
mazximal configuration with respect to the number of features. For any feature

- Feature A b)
+ Feature A
- Feature B
+ Feature B
- Feature C
+ Feature C
_ | -Feature D

< /\ + Feature A

Ijﬂ’> — + Feature B
:))
: } — -Feature C
‘influenced by — ! .

II I~ -FeawreD

Figure 3: Annotative (a), compositional (b) variability (based on [27]) and delta
modeling (c)

model with n features, there are between 0 and 2" product configurations. In
particular, the eShop feature model allows 20 different configurations.

2.2 Variability modeling

Although a feature model captures the system’s variation points in a concise
form, its elements are only propositional symbols [20]. Their semantics has to
be provided by mapping them to other development artifacts. Such a mapping
can be defined either explicitly, in a separate variability model, or implicitly,
within the referenced artifacts. In the following, we introduce the three major
paradigms for variability modeling:

Annotative Variability modeling A base model contains every element
that is used in at least one product configuration and, thus, subsumes every
possible product [28] (Fig. 3a). Subsequently, model elements are removed to
resolve a valid variant.

Compositional Variability modeling In contrast to annotative languages,
compositional languages start from a minimal core that contains features that
are common to all possible products. From this starting point additional features
will be added by a designer (Fig. 3b).

Transformational Variability modeling In transformational variability,
compositional and annotative methods are combined. Model elements can be
removed and added to resolve a variant. A well-known approach for this is so-
called delta modeling (also delta-oriented programming) [64]. Delta modeling
consists of two parts: The first one is the design of a core product comprised
of a set of feature selections that represent a valid product. The second part

H FeatureModel constraints H Constraint
T id: EString o4 T id:EString

=2

i

T name : EString relationship : ConstraintType

T version : EString

rightSideFeature | leftSideFeature

< <enumeration= > T T
€ ConstraintType root/ o U Feature
= : 1 T id : EString

requires T name : EString
= excludes

1r 0groups

< <enumeration> >
2 variabilityType features 0.x
= mandatory H Group
= optional T id: EString
= alternative T type: VariabilityType
= or

Figure 4: Meta-model for feature models.

is the specification of a set of so-called “delta modules” which describe changes
(““deltas”) to the core module. Each delta is either the construction (add)
or destruction (remove) of an element from the product model (Fig. 3c). A
delta module then is associated to one or more features. Whenever a feature is
selected or deselected the associated deltas are applied to the product model.

2.3 A Basic Variability Language

In this article, we describe a custom modeling language for annotative variabil-
ity. This language is inspired by the “Common Variability Language” (CVL)
standardization initiative [33].

As a concrete syntax for feature models, we provide a meta-model defined
in Ecore with the Eclipse modeling framework EMF as depicted in Figure 4.
This meta-model offers basic functionalities for designing mandatory, optional,
or, alternative, and binary cross-tree-constraints between features.

We use an explicit variability model for mapping features to elements of a
base model. That is, a base model is the artifact which implements the features
of the product line. (The base model model is sometimes called “the 150%
model”, a terminology which we refrain to adopt.) Each feature corresponds to
some parts of the base model.

Formally, a base model can be any model which is an instance of some MOF
meta-model. In our work, a base model is a UML model consisting of state ma-
chine diagrams, class diagrams and OCL formulae. The base model describes
realizations for all features; thus, if the feature model contains conflicting fea-
tures, then the base model may not represent a possible product.

Part of the base model of the eShop example, the UML state machine di-
agram, is given in Figure 5. This state machine is designed from a user’s per-
spective. Whenever a user starts the eShop, the system initializes and waits for

EShop

ProductSelection
returnToCatalog / preductDetails /
[) listProducts o; Out.send(o); showPreductDetails o; Out.send(c);
(Search)

searchFor/) returnToSearchResults /
listProducts o; Out.send(o]; returnToCatalog / listPreducts o; Out.send(o);

listProducts o; Out.send(c];
Catalog)} ProductDetails

productDetails /

listProducts o; Qut.send(ol;

showProductDetails o; Qut.send(o); addProductTaCart
goToCart/
cpenProductCataleg showCartContent o; Out.send(c);
CartContent
processOrderindConfirm o; Out.send(p); removeProduct /
showCartContent o; Outsend(o);
proceedToCheckout
cancelPayment
proceedToCheckout
Checkout
walid
[} Order Y imeali

showSummary o; Out.send(o); selectPaymentMethod

Payment

stiartP

selectBankAccount validatePayment o; Qut.send(o);

® proceedPayment / paymentComplete

Validation

yment ¢

ChooseMethod

valid

E-Coins
o7

selectECoins wvalidatePayment o; Out.send(o);

Credit Card

selectCreditCard /
secureConnection = true;

proceedPayment [secureConnectio
wvalidatePayment o; Qut.send(o);

Figure 5: Base model of the eShop example.

the user in state Start to open the product catalog. Upon receit of the signal
openProductCatalog, it invokes the sub-machine ProductSelection, which
initially outputs a list of product items and then waits for further user input in
state Catalog. The system sends outputs to the user or known banks by instan-
tiating the output message, e.g., listProducts o; and sending it via calling the
method send of its outport object. The eShop example has exactly one outport,
called Out, hence, a message object o is send by calling Out.send (o). The user
can display the product details by sending the message productDetails to the
system. Not shown is the necessary parameter id of the product for which the
details shall be displayed. When the system is in state ProductDetails, the
user may add the displayed product to his cart and/or return to the catalog.
If enabled, the user can search for a particular product in state Catalog by
sending signal searchFor, which will return a list of products that match the
search term entered by the user. Again, the user may view the product details,
and add the product. It is also possible to return to the search or the catalog.

Anytime state ProductSelection is active, the user may view the cart’s
contents (goToCart) or proceed to checkout (proceedToCheckout). While the
user displays the contents of the cart, items can be removed (removeProducts)
before proceeding to the checkout (proceedToCheckout). When the user pro-
ceeds to the checkout the eShop invokes the submachine Checkout. Here, the
user is presented with a final summary, before selecting a payment method. De-
pending on the configuration of the eShop, the user may select from up to three
payment methods. The internal workings of the individual payment methods
are not modeled. When a customer has entered his payment data, s/he may
proceed to the validation (proceedValidation). Credit card payments will not
be validated unless the secureConnection flag is set to true. This flag is raised
whenever a high security eShop product is built. The eShop will send the pay-
ment data to the corresponding bank for validation (validatePayment). The
bank acknowledges the receiving of the data by sending a paymentComplete
signal to the eShop. If the data provided by the customer is correct and the
transaction is carried out, the bank sends the message valid, and otherwise
invalid. If a valid signal is received by the eShop it will continue to process
the order and lead the user back to the state Start. Otherwise, if the signal
invalid is received, the user is prompted again to choose the payment method
and data. The user can abort the checkout process at any time by sending a
cancelPayment signal to the eShop.

The variability model maps features to elements of the base model. In Fig-
ure 6, we give a meta-model for the variability modeling language as imple-
mented with Ecore. The language refers to concepts of elements from the UML
and to features from our feature modeling language. Multiple features mapping
to the same base model element are interpreted as a conjunction of features. Ad-
ditionally, each mapping has a Boolean flag that indicates whether the mapped
model elements are part of the product when the feature is selected (true) or
unselected (false).

Figure 7 shows an excerpt of the eShop variability model, where parts of the
feature model are depicted in the upper half and parts of the state machine’s

10

E Featuremapping

'
mappings
1. feature H Feature [

H Mapping Z|from featuremodel)
T id : EString !
T name : EString elements
[)
i

featureValue : EBoolean

= H Element @
1.* (from um|

ownedElement
0.*

0.1
owner

Figure 6: Ecore meta-model of variability models

—_—— e N e

: Choose Payment Method]I Q‘/
| N) sSelectCreditCard[]/ \—_______J
|
|

Figure 7: Software product line design with annotative variability.

payment process are shown in the lower half. In between is the mapping, de-
noted by a dotted edge, from feature Credit Card to the transition labeled as
SelectCreditCardl[]/.

The complete mapping in the variability model is as follows:

Catalog, Payment and Security are mandatory and need no mapping.

Bank Transfer maps to all transitions connected to state Bank Transfer.

e cCoins maps to all transitions connected to state eCoins.

Credit Card maps to all transitions connected to state Credit Card.

High maps to attribute secureConnection with its default value set to true.

11

e Standard maps to attribute secureConnection with its default value set to
false.

e Search maps to all transitions connected to state Search.

We refer to the triple of feature model, base model and variability model as
the domain model. From such a domain model, product models can be resolved
for a given product configuration. In a model-based design process, implemen-
tation code or test cases can be derived automatically or semi-automatically
from these product models.

3 Model-based Testing for Product Lines

Systematic testing is the most common method for quality assurance of com-
plex software. A system under test (SUT) is executed with a systematically
constructed set of test cases, the test suite, and the observed system behavior
is compared with the expected one. The quality of a test suite is often mea-
sured in terms of requirements and/or code coverage. Constructing a test suite
which satisfies given coverage criteria by hand may be a tedious exercise. The
term model-based testing subsumes various techniques in which test suites are
constructed from a given model [50].

There are several such techniques: in some approaches test case models,
e.g., use case diagrams, are used for test case description and test implementa-
tion [32]. In other approaches, e.g., the classification tree method, test data is
generated from test data models [26]. In this article, we consider the automation
of test design, where a test suite is generated from a dedicated test model. The
test model contains test-relevant information about the intended behavior of
the system under test and/or the behavior of its environment. Each generated
test case is a sequence of test stimuli and expected system reactions. A test case
may also pose preconditions on the system’s state or configuration that must
be fulfilled before the test case can be executed. Additionally, it may specify
postconditions which must hold after the execution of the test case.

For software product lines, there are various possibilities to define model-
based testing processes. One approach is to resolve a representative set of prod-
ucts from a product line for the purpose of testing, and then to generate test
cases for these products. Another possibility is to generate tests from domain-
level artifacts, and to specialize this generic test suite to specific products. Sub-
sequently, we elaborate both approaches, and compare them. This material is
based on the forthcoming dissertation of the first author [43]. We have imple-
mented and evaluated both approaches in a prototypical tool “SPLTestbench”;
we report on the results using several examples.

12

|

| Domain-centered
: Domain test design N Domain
|

|

Model "] Test Cases
L S J
Resolution
5 I \
| \ 4 4 |
: Product N Product :
| Model Application-centered Test Cases |
| testdesign |
| |

Application Engineerin
LPP g g

Figure 8: Product line testing.

3.1 Application-centered and Product-centered Test Gen-
eration

A test generation method for software product lines faces two challenges: cov-
ering a significant subset of products, and covering a significant subset of the
test focus on the domain-level. As the products in a product line share com-
monalities, there may be significant overlap in test suites, and test cases may
be applicable to more than one product.

As described in the previous section, a domain model consists of a base model
(e.g., a UML state machine), a feature model explicitly expressing the product
line’s variation points (e.g., a feature tree), and a variability model connecting
these two. From domain artifacts, application artifacts (products and tests)
can be derived. Based on this, we define two approaches to automated test
design for software product lines. These are depicted in Figure 8: application-
centered(AC) and domain-centered(DC) testing.

In the AC approach, first a representative set of products for testing is
selected. Then, test cases are generated from each of these models. The focus
of the test generation process is on satisfying a defined coverage for each test
model. This may lead to an overlap in the resulting test suites.

In contrast to this, in the DC approach the domain model is directly used
for test design. In this approach, the focus is on the behavior defined at the
domain-level; coverage criteria of single products are not considered. There is
still variability in the choice of the concrete products for which the test cases will
be executed. Both approaches are investigated in more detail in the following
paragraphs.

3.1.1 Application-Centered Test Design

Any test design method that binds the variability by selecting products before
the test design phase can be called application-centric (see Figure 9). Usually, it
is not feasible to build and test all possible products of a product line. Therefore,
in application-centered test design, product models to be tested are selected

13

e
|Domain Model

Feature Model Mapping Model Base Model

Feature Coverage Select
Criterion Products
Product Models
A
Model Coverage Generate
Criterion Testcases Products

A

Y
Y
Product-Specific —»{ Execute Tests
Test Suites

Figure 9: Application-centered test design process.

from the domain model before the test design starts. The selection is done
according to a predefined feature coverage criterion. For example, pairwise
feature coverage (see [47, 61]) is achieved when for each tuple of features all
valid combinations of feature presence and absence are represented by at least
one product model. Tests are performed only on the products corresponding to
the selected product models.

Using conventional test generation methods, test suites can be automatically
obtained from the selected product models. The test generator can be configured
such that is satisfies a certain model coverage criterion. In our example, this
may be any coverage criterion applicable to UML state machines, e.g., state or
transition coverage.

Since each test case is generated for one configuration, the resulting test
suite is specific to its respective product. Therefore, the test generation yields
application specific test suites. Due to the commonalities of the products of
a product line, a test case that was generated for one configuration may be
applicable to other configurations as well. Consequently, test cases that aim
for the same goals are executed over and over again. Therefore, there may be
significant redundancies in application-centered test suites.

14

3.1.2 Domain-Centered Test Design

In order to avoid these potential drawbacks, in domain-centered test design
domain engineering level artifacts are used for test generation. This approach
preserves the variability until a product has been selected for test execution.

A major advantage of this approach is that one can focus on testing aspects
of the domain model, without having to derive products first. Thus, the overlap
of the results from independently generating tests for similar products can be
avoided. The coverage of test targets can be maximized, which leads to high-
quality test cases.

For domain-centered test design, all domain artifacts should be taken into
consideration. Using a base model as the only source of information is not ad-
equate. The base model lacks information about the features, and about the
associations of model elements to features. However, this information is impor-
tant for a test generator: Features impose additional constraints on the behavior
of the system. Since the base model contains implementation information for
all features, it may include contradictory requirements. It might not even be a
correct model according to the UML syntax. Thus, a challenge of this approach
is to merge a domain model, consisting of a feature model, variability model and
a base model, into a single model artifact that a standard test generator will
accept as valid input (Fig. 10). Subsequently, we describe two solutions to this
problem: 1) the step-by-step approach: sequentially excluding non-conforming
configurations during test design-time, and 2) the pre-configuration approach:
choosing a valid configuration before the design of individual test cases.

e The step-by-step approach: The key idea of the step-by-step approach
is to sustain the variability until it becomes necessary to bind it. Therefore,
at the beginning of each test case design the test case is applicable to any
valid product of the product line. Since not necessarily all valid paths in
the base model are applicable to all products, the test designer must take
account of test steps that bind variability. A test step must bind variability
if not all products do conform. Subsequently, the set of valid products for
this particular test case must be reduced by the set of non-conforming
products. Hence, each test case is valid for any of the remaining products
that do conform.

We implemented the step-by-step approach for state machines as follows.
The tracking of the excluded products can be achieved by introducing
a Boolean variable into the system class for each feature that is not a
core feature (feature variable). This variable is set whenever a transition
added to a test case forces the mapped feature to be present (true) or
prohibits its presence (false). For preventing repeated assigning to such
a feature variable, an additional control variable is necessary. Therefore,
another Boolean variable is added for each non-core feature to the system
class (control variable) and must be initialized with false. Each of these
variables tracks whether the corresponding feature has not yet been set
and is thus free (false) or was already set (true). In the latter case, no

15

{Domain Model

Feature Model

Mapping Model Base Model

Merge Models

Domain Model

Criterion

Testcases

Model Coverage Generate
g , <

)

Feature Coverage
Criterion

i

\ 4

Domain Test

Suite

Products

A 4

Execute Tests

Figure 10: Domain-centered test design process.

16

further assignments to the feature variable are allowed as the feature is
bound to the value of the corresponding feature variable.

The guards and effects on the transitions of the respective state machine
can then be instrumented with these variables to include variability in-
formation in the state machine. For each feature f; that is mapped by a
mapping my, + to a transition ¢, its partial feature formula pfy, ; is derived:
A partial feature formula for a particular feature f is constructed as a con-
junction of (i) the feature f itself, (i) f’s parents p, and (iii) every feature
r that is required by f. Depending on the structure of the feature model,
not all features related to f are captured by this approach. Any parent
or required feature may require additional features. Therefore, steps (ii)
and (iii) are repeated for every p and r until the formula is stable. So
far, the formula contains features that must be selected for f, but since
some of the selected features may require the absence of other features, we
combine the formula with another conjunction of (iv) features excluded by
already selected features and (v) alternative features. Finally, the formula
can be reduced by removing all core features, because they are a manda-
tory part of every product. For instance, the partial feature formula for
the CreditCard feature from our eShop example is:

F =CreditCard N High A —Standard

Since we have now derived all features that have to be accounted for before
taking transition ¢, we collect them in a single conjunction:

n

Gy = /\ Df gt

=1

We still have to incorporate the protection against repeated writings by
substituting each feature literal in G; with the following expression: (—f.V
(fo == my,y)), where f, is the control variable of feature f, f, is the fea-
ture variable of f, and my; is the value of the feature mapping’s flag
associated with transition ¢. The resulting expression can safely be con-
joined with t’s original guard.

Finally, t’s effect must bind the variability of all associated features. This
is possible by setting the control variable f. to true and the feature variable
fv to the value of its mapping’s flag for each feature that appeared in Gy.
Thus, for each feature f in G; we append the following code to the effect
of transition ¢:
if =f. then
fe=T
fv S Myt

Once the test generator executes this code, the feature is bound and it is
not possible to change the binding for this test case anymore. Figure 11

17

Choose Payment Method
SelectCreditCard

[(—CreditCard. V CreditCard,)

A (—Highe V High,)

A (—Standard. V —Standard,)] / if (—CreditCard){
CreditCard. = TRUE;
CreditCardy = TRUE;

if (—Higho){
Highc = TRUE;
Highy = TRUE;

if (—Standard¢){
Standard. = TRUE;
Standard, = FALSE;

Figure 11: Excerpt of the merged domain model with step-by-step approach
applied.

shows the result of merging the domain model into a single UML state
machine for the excerpt of the eShop introduced in Figure 7.

After test generation has finished, the valid configurations for a particular
test case can be read from the feature variables in each test case. Since
the test cases may contain variability we obtain an incomplete configu-
ration from each test case. An incomplete configuration is a configura-
tion that supports a three-valued semantics for features instead of two
values. The first two values are the same as in normal configurations (se-
lected /unselected), the third stands for undecided. An undecided feature
expresses variability by making no premise on the presence of the feature.
Hence, each of the resulting test cases is generic for any product of the
product line that conforms to the following: For each control variable
that is evaluated to true, the corresponding feature variable evaluation
indicates whether this feature must be selected or unselected in the prod-
uct. Features for which the respective control variable evaluates to false
are yet undecided and thus not evaluated.

e The Pre-Configuration Approach: In the pre-configuration approach,
test goals are selected from the domain model and also the test design is
performed on this model similar to the step-by-step approach. However,
during the design of an individual test case, the product configuration is
fixed from the beginning of each test case and must not change before a
new test case is created. Consequently, within a test case the test designer
is limited to test goals that are specific to the selected product configura-
tion. Thus, satisfying all domain model test goals is a matter of finding
the appropriate configurations.

We implemented the pre-configuration approach by adding a configuration

18

Choose Payment Method } = Credit Card]
SelectCreditCard [CreditCard A High A —Standard]/

Figure 12: Excerpt of the merged domain model in the pre-configuration ap-
proach.

signal to the very beginning of the base model. To this end, we introduce
a new state to the state machine, redirect all transitions leaving the initial
state to leaving this new state, and add a transition between the initial
state and the new state. Due to the UML specification the redirected
transitions must not have a trigger, which is why we can add a trigger
for configuration purposes to each of them. The trigger listens to a con-
figuration signal that carries a valuation for all non-core features. The
guard of these transitions must protect the state machine to be configured
with invalid configurations and thus contains the propositional formula
corresponding to the product line’s feature model. Since any configura-
tion that is provided by the signal must satisfy the guard’s condition, only
valid configurations are accepted.

After validating the configuration, the parameter values of the signal will
be assigned to system class variables by the transition’s effect. Hence, for
each non-core feature a boolean variable, indicating whether the feature
is selected or not, is added to the system class. Again, transitions specific
to a set of products are protected by these variables. This is similar to
the step-by-step approach, where the base model behavior is limited to a
potential behavior of an actual product. However, control variables need
not to be checked during test design, since the configuration is fixed and
valid from the beginning of each test case. Therefore, it is sufficient to
derive the partial feature formulas pf for all features f,, that are mapped
to a transition ¢ by a mapping my, ; and construct a conjunction from
these formulas:

n

Gy = /\ pffi,t'

i=1

For conjoining G; with ¢’s guard, the feature literals must be exchanged
by the corresponding feature variables from the class. Figure 12 depicts
the resulting merged domain model for this approach. As a result, no
product can conform to any test case’s first step, since it was used to set
the configuration and does not present the real system’s behavior. In a
simple post-processing action, this configuration step can be removed from
the test cases before testing is performed.

With these transformations to the base model, a test designer can create
test cases for the product line. However, each test case will be specific to

19

one configuration. In order to create generic test cases which are applicable
to more than one product, we can apply a model transformation.

The additional transformation steps consist of adding Boolean control
variables for each non-core feature to the system class. These control
variables are initialized with false. Effects on transitions are added which
change them to true when traversed by the test generator. More precisely,
for every transition ¢ that is mapped to a feature f by a mapping my ., the
following code needs to be appended to the effect of ¢ for every mapped
feature f:
if =f. then
feT

A test generator will set every control variable for all features associated
with that transition, when this transition is added as a step to a test case.
Hence, each control feature that is still false at the end of a test case
indicates a free variation point. This result can be captured in a reusable
test case for a subsequent selection of variants for testing.

3.2 An Evaluation of Product Line Test Generation

In this section, we present an implementation and evaluation of the two DC
test design approaches described above, and compare them to AC test design
methods.

3.2.1 A Prototypical Tool Chain

Our prototypical SPLTestbench is depicted in Figure...
It consists of five major components:

(i) a feature injector to merge domain models as introduced in section 3.1.2,

)
(ii) a model printer that exports the model to a test generator-specific format,
(iii) an adapter for third-party test generators,

)

(iv) a configuration extractor that collects incomplete configurations from the
generated test cases, and

(v) domain-specific languages [71] that facilitate design and data processing
of feature models, variability models, and configuration models.

An important component in this workbench is the model-based test gener-
ator (iii). This is a tool which takes a test model (e.g., a UML state machine),
and produces a set of test cases from it. Since this paper deals with test gen-
eration for product lines, we do not describe and compare different algorithms
for model-based test generation. The interested reader is referred to the litera-
ture [13]. There are several test generators available, both from industrial and

20

Feature Model

Feature Mapping

Base Model

[DSL] [DSL] [State Machine + Class]
(v).a (v).b
Propositional
v Formulas

(ii)

(iif)

(iv)

(v).c

Feature Injector

A 4

UML Model
Transformations

Domain Model*
[SM + Class]

A 4

Model Printer

A 4

Conformiq Export

Conformiq Model
[SM + Class]

Domain Test Suite
Model

A 4

Configuration
Extractor

A 4

Incomplete
Configurations [DSL]

Figure 13: Workflow of the SPLTestbench.

21

2 Java - Product Li Pl P - Eclipse

::IEIQ

File Edit Navigate Search Project Featuremapping Editor MBT Productlines Run Window Help

Amp AR g SRS SR A RA R ATEE RSt =l il SRR ST SR el b A
Quick Access =1 £0 Team Synchronizing % Debug <= Plug-in Development
= Mav. B5Pro. 52 JulUnit = B P EShopdi = 5) EShopfeature 3 =8
BEg|e ~ [[Resource Set
b &3 plugins [dissertation master] = 4 & platform:/resource/Product %20 Line%20Ex
4 &7 > Product Line Examples [dissertat 0 e (L —— 4 4 Model EShop
b G Alarm System 4 4 Feature EShop
b G Body Comfort System [] - (3 Regien 4 4 Groupl
4 (& E-Shop =(| @ state 4 Feature Catalogue
4 (5 100pcModels ® Initial 4 4 Feature Poyment
b G IncludeANDExclude R N © FinaSiete 4 4 Groupll
b Gy Pairwise 4 Feature Credit Card
© G Conformiq Models)] y 4 Feature Bank Transfer
4 (4 Feature Mapping = @ Deeptistory 4 Feature E-Coins
5] EShopfeaturemapping AR Fork 4 4 Feature Security
eshop_mapping.png 4 4 Groupl2
4 (5 Festure Model 3l Join 4 Feature High
L&) EShopifeature $.Choice < Feature Standard
Ay EShopfeaturediagram &, Junction 4 4 Group2
) EShopfeaturemodel Q Entry? 4 Feature Search
b G Injected UML Model ntngoint 4 Constraint[
4 Gy Mutants Cantem o Qutmaie: || e @
» G Product Line Mutants 3 Transition
> Qh},lpr(odu:h‘nutam; . ST e . -
> utationAnalysis
. ngﬂ s T eshop 5 Selection Parent List| Tree| Table]
b Pre-Selection Mode
b & Pre-Selection Mode +C¢ & Eshop.featuremapping = 0 D H. @T. @e. Br.x' = O
> @ Step-By-StepSelection R} || o 0 -
4 (G UML Model
» 7} - Eshop Property Value
4 (5 Variants 4 4 Feature Mapping EShop Elements @ <Transition> Transition22, <Transition> Transition25, <5
o (G Pre-Selection Mode |4 Mapping Bank Transfer| Feature 4 Feature Bank Transfer
b Step-By-Step Selection ! & Mapping Credit Crd FestureValue Egirue
» G Espresso Machines 4 Mapping E-Coins 1
b G Flight Management System & Mapping Search Name ank Transfer
© G Simple Body Comfort System
b (& Ticket Machine
© & TumIndicator il
T = 0 SE\Edlon‘Pavenl‘L\;t Tree Tab\e‘Tveew\(h Columns| % = v
%

Figure 14: Perspective

of the SPLTestbench.

22

rch Project | MET Productlines | Run Window Help

F R N Feature Model Injection -= UML Model Ctrl+6
B UML Model Transformation -= QML Model Ctrl+7
% XML Test Suite -> Variant Model Extraction Ctrl+8

Figure 15: Menu options in the SPLTestbench.

academic sources [31]. In our implementation and experiments, we used Con-
formiq Designer [70] and Real-Time Tester [59] as external test case generators.

Figure 13 depicts the work flow a test engineer has to follow when using
our SPLTestbench. The SPLTestbench is implemented as Eclipse plug-ins. The
plug-ins are shown in the screenshot in Figure 14. On the left hand side the
project layout is shown. In the center view, a currently opened UML state
machine is depicted, which subsumes all possible behaviors of the SUT. On the
right hand side, we see the feature model in a tree view editor. Below, we find the
feature mapping editor with a property view on the currently selected feature
mapping. Figure 15 shows how the components (i), (ii), and (iv) integrate into
the Eclipse IDE. Each of the three menu items starts an individual wizard that
guides the user through the details of the respective process.

3.2.2 Experimental Results

Now, we describe the experiments we performed to evaluate our approaches. We
used several example product lines, including the eShop example from above.
For our experiments we generated tests according to both presented approaches,
AC and DC test design. For AC test design we sampled products according to
two different feature model coverage criteria: all-features-included-excluded and
all-feature-pairs [60]. As the name indicates, the criterion all-features-included-
excluded is satisfied if in the set of sampled products, for each feature there is
one product in which it is selected, and another one in which it is desected.
The criterion all-feature-pairs or pairwise holds of a sampling, if for every pair
of features (f1, f2) there are products where f; and fy are both selected, one
where neither f; nor f, is selected, one where f; is selected and fy deselected,
and one where f; is deselected and fs selected. Details of the model sampling
procedure will be described in section 5.

Conformiq designer supports control-flow, branching, requirements, and path
coverage criteria. For the individual state machine models as well as for the
merged state machine model we required all-transition coverage from the test
generator [73]. There would be other, more sophisticated metrics for state
machines to consider [24, 18, 30]. However, with this criterion we maintain
comparability to other studies, e.g., in [44].

We were able to generate test suites for both approaches with all the afore-
mentioned parameters for all examples. In order to compare the results, we
counted

e the number of test cases,

23

Table 1: Test cases, test steps, and configurations for each of the presented
approaches with the eShop example.

Approach
AC-IX AC-PW DC-Pre DC-Step
Tests 20 71 13 13
Test Steps 135 486 48 39
Configurations 2 7 4 2

e the test steps that were generated by the test generator, and
e the number of configurations that are necessary to execute the test cases.

These are important criteria when estimating test efforts: The number of con-
figurations is a major factor, since every configuration must be built, setup,
and maintained for testing. The number of test steps is an indicator for the
efforts for test design and maintenance. Finally, the number of tests of interest
when put in relation to the test steps. This gives the average test case length,
which affects the efforts for debugging. With increasing length of a test case it
becomes more difficult to isolate a fault within the SUT.

The results for these measures are shown in Table 1 for each individual
approach: AC with all-features-included-excluded (AC-IX) as well as with pair-
wise (AC-PW) coverage and DC with pre-configuration (DC-Pre) as well as
with step-by-step (DC-Step). The AC-PW approach scores the highest values
for all measures since it applies the strongest feature coverage criterion and
thus covers a maximum of configurations. Consequently, more test cases and
test steps are generated than for any other approach. In contrast, the DC-Step
yields the lowest scores for any measure, while at the same time — as stated
in section 3.1.2 — it is focused on covering every reachable transition. We take
this as an indicator for DC test design to scale better than AC approaches.
We performed similar experiments on several other examples, with comparable
results.

Concluding, DC test design produces test suites with a significantly lower
number of tests and test steps than AC test design. Thus, test execution efforts
are much lower for these test suites. As we will see in section 5, this does not
necessarily lead to a lower error detection capability.

4 Assessment of Product Line Test Suites

In the previous section, we evaluated test generation algorithms with respect to
the size and complexity of test suites. However, testing usually is performed to
detect errors in an implementation. Thus, the complexity may not be the only
quality criterion which is important for a test suite. The “effectiveness” of a test

24

suite is often called its error detection capability. Given a test suite and an SUT,
test execution will show up whether the implementation contains errors or not.
Thus, by repeatedly executing a test suite with a faulty SUT, the error detection
capability of the test suite can be measured. However, if the SUT doesn’t exist
yet, what is the error detection capability of the test suite? In a product line
development, often it is impossible to construct all possible products in advance.
As an example, the software for the embedded control units in a car is highly
dependent on which features are present in the car. It is constructed only when
the car is actually built, according to the orders of the customer. Given a test
generation algorithm, how can we decide whether the generated test suite is
adequate? Can we compare different product line test generation methods with
respect to the quality of their result? Test assessment is an integral part for
evaluation of the concepts presented in the previous section. This section builds
the foundations for assessing the quality of a product line test suite in terms
of its error detection capability. Though there are many methods proposed for
testing a product line, until now, quality assessment of test suites mostly is
limited to measuring code, model and/or requirements coverage [52, 17].

A generally acknowledged approach to measure the error detection capability
of a test suite is mutation analysis. Artificial faults are inserted into an SUT to
form a mutant. Then, the test suite is executed and it is observed how many
of the errors in the mutant are detected. In product line engineering, mutation
analysis so far has been applied to individual products of a product line only.
This “product-level approach” has two major drawbacks:

e Firstly, developers can make errors in all kinds of artifacts, not only on
product models. For example, there could be faults in the base model
or variability model as well. This can lead to new kinds of faults in the
products.

e Secondly, in the product-level approach the selection of products to mutate
is biased by the selection of products for testing. Therefore, the mutation
analysis assesses the quality of the tests for particular products. It is
unclear how to combine the results to get an assessment for the whole
product line.

To better understand which errors can occur in model-based product line
engineering, we consider the different design paradigms discussed in section 2
(annotative, compositional and transformational variability modeling, see Fig-
ure 3). We analyze potential errors in the respective design processes. From
this, we develop mutation operators for variability and base models to mimic
possible faults in these models.

To tackle the second problem, we define a mutation system and specific
mutation operators for domain-level artifacts. This enables us to assess the
test quality independently from the tested products. Subsequently, the error
detection capabilities of a test suite can be assessed for the complete product
line.

25

4.1 Potential Errors in Model-Based Product Line Engi-
neering

The feature mapping has a major impact on the resolved products in a product
line. However, designing a variability model is a complex and error-prone task,
which is hard to automate. We identify potential errors in this process in a
systematic way. We check each modeling paradigm for possibilities to

e omit necessary elements,
e add superfluous element, or
e change the value of an element’s attribute.

For each potential error we discuss its effects onto the resolved products.

Annotative Variability Modeling

In the annotative variability paradigm, the following model elements for poten-
tial errors in the variability model can be identified: mappings, their attribute
feature value, mapped feature, and the set of mapped elements. The errors
which can be made on these model elements and their effects are as follows:

1. Omitted mapping: a necessary mapping is left out by its entirety. Sub-
sequently, mapped elements will be part of every product unless they are
restricted by other features. As a result, some or all products unrelated to
the particular feature will include superfluous behavior. Products includ-
ing the mapped feature are not affected by this error, since the behavior
is now part of the common core and, thus, enabled by default.

2. Superfluous mapping: a superfluous mapping is added, such that a pre-
viously unmapped feature is now mapped to some base model elements.
This may also include adding a mapping for an already mapped feature,
but with inverted feature value. Adding a mapping with feature value
set to true results in the removal of elements from products unrelated to
the mapped feature. Contrary, adding a mapping with feature value set
to false removes elements from any product which the mapped feature is
part of. In any case the behavior of at least some products is reduced.

3. Omitting a mapped element: a mapped model element is missing from the
set of mapped elements in a mapping. Subsequently, a previously mapped
element will not only be available in products which the said feature is
part of, but also in products unrelated to this feature. As a result, some
products offer more behavior than they should or contain unreachable
model elements.

4. Superfluously mapped element: an element is mapped although it should
not be related to the feature it is currently mapped to. As a result the ele-
ment becomes unavailable in products which do not include the associated
feature. The product’s behavior is hence reduced.

26

5. Swapped feature: the associated features of two mappings are mutually ex-
changed. Subsequently, behavior is exchanged among the two features and
thus, affected products offer different behavior than expected. The result
is the same as exchanging all mapped elements among two mappings.

6. Inverted feature status: the binary value of the feature value attribute is
flipped. The mapped elements of the affected mapping become available
to products where they should not be available. At the same time, the
elements become unavailable in products where they should be. For ex-
ample, if the feature value is true and is switched to false, the elements
become unavailable in products with the associated feature and available
to any product not including the said feature.

This enumeration covers all basic errors which can be made in the variability
model. Other errors can be described by combinations of these basic errors. In
the next subsection, we will use them to define fault injection operators.

Compositional Variability modeling

In domain modeling with compositional variability, a mapping is a bijection
between features and modules composed from domain elements. Potential errors
in variability models can be made at mappings, mapped feature, and mapped
module. Similar to above, we identify the following potential errors:

1. Omitted mapping: a necessary mapping is missing in its entirety.
2. Superfluous mapping: a superfluous mapping is added.

3. Swapped modules: the associated modules of two mappings are mutually
exchanged.

4. Swapped features: the associated features of two mappings are mutually
exchanged.

Transformational Variability Modeling

For other paradigms, like delta modeling [64], we make similar observations. In
contrast to compositional variability models, transformational variability models
start from an actual core product, instead of a base model. From this, only the
differences from one product to another are defined by delta modules.

Similar to above, errors in delta modeling include omitted or superfluous
deltas, omitted or superfluous base elements, and omitted or superfluous delta
elements. Since there are no attributes in deltas other than add /remove, changes
in deltas can be neglected.

To sum up, a systematic analysis according to the three categories ‘add’,
‘remove’, and ‘change’ yields a list of all potential errors for each modeling
paradigm. Subsequently, we will use the identified error possibilities in a fault
injection framework to assess product line test suites.

27

Domain Model Test Suite

Apply Mutation Operators Extract Configurétions for Testing

v
Domain Model Mutants Configurations
(a) (b)

Apply configurations & resolve product models

Product Model Mutants

Generate products

Product Mutants
I
T

Execute Tests and C%Iculate Mutation Score

> SPL Mutation Score

Backtrace Product Mutants to
Product Lines Specification Mutants

Figure 16: Mutation process for product line systems

4.2 Mutating Domain Models

As discussed in the previous subsection, model-based product line engineering
bears the risk for new kinds of errors compared to single systems engineering.
Current test design methods and coverage criteria are not prepared to deal with
these errors and resulting faults. We propose a mutation system for assessing
the error detection capability of a product line test suite. Note that in contrast
to other authors, we assess the test quality for the whole product line rather
than for single products.

To define our mutation system we need novel mutation operators. Mutation
operators defined for non-variant systems cannot add or remove features. How-
ever, a high-quality test suite should also detect such faults. Hence, we propose
new mutation operators based on the potential errors identified in Section 4.1.

4.2.1 A Mutation System for Product Lines

Performing mutation analysis on product line tests is different from non-variant
system tests, since in contrast to conventional mutation systems, a mutated
domain model is not executable per se. Thus, testing cannot be performed until
a decision is made towards a set of products for testing. This decision depends
on the product line test suite itself, since each test is applicable to just a subset
of products.

In Figure 16, we depict a mutation process for assessing product line test

28

suites, which addresses this issue. Independently from each other, we gain (a)
a set of domain mutants by applying mutation operators to the domain model
and identify (b) a set of configurations describing the applicable products for
testing. We apply every configuration in (b) to every mutant in (a), which
returns a new set of product model mutants. Any mutant structurally equivalent
to the original product model is immediately removed and does not participate
in the scoring. The mutant product models are resolved to mutant products,
and, finally, tests are executed. Our mutation scores are based on the domain
model mutants, hence we establish bidirectional traceability from any mutant
domain model to all its associated product mutants. If a product mutant is
detected (“killed”) by a test, we backtrack its domain model mutant and flag
it accordingly. The mutation score is the quotient of the detected and overall
number of mutants.

In the mutation or resolution process, models may be generated which are
invalid (syntactically incorrect). Of course, such mutants must be discarded.
For all mutation operators, there is a risk that mutants are materialized which
behave equivalent to the original product (so-called “masked mutants”). For
example, a masked mutant is generated when the mutated element is part of
a disabled feature. Of course, masked mutants should be excluded from the
scoring. However, the question whether a mutant is masked is in general unde-
cidable. Our mutation systems filters mutants which are structurally equivalent
to the original product model.

4.2.2 Product Line Mutation Operators

Here, we present a list of mutation operators for variability models with anno-
tative variability. We start with standard state machine mutation operators,
applied to the domain-level.

Mutation operators for the base model: In general, for product line test
assessment it is not necessary to mutate classes in UML state machines [38].
The system’s logic is designed in the state machine diagrams, while the classes
are merely containers for variables and diagrams. Many mutation operators for
state/transition systems have been defined in the literature, see, e.g., [23, 55,
7, 8]. For product line tests, it is sufficient to consider only operators based on
transitions, as these have the strongest impact on the behavior of the SUT.

Our mutation system provides the following mutation operators for the base
model:

e Delete Transition (DTR)

e Change Transition Target (CTT)

Delete Effect (DEF)

Delete Trigger (DTI)

Insert Trigger (ITG)

29

e Delete Guard (DGD)
e Change Guard (CGD)

These operators are selected and implemented such that they cover most of
the state machine mutation operators which are found in the literature.

Mutation operators for the variability model: Now, we describe mutation
operators according to the potential errors in the feature mapping identified in
Section 4.1. We comment on hidden, invalid, and equivalent mutants where
appropriate.

Delete Mapping (DMP) The deletion of a mapping will permanently enable the
mapped elements, if they are not associated to other features that con-
strain their enabledness otherwise. In our examples, no invalid mutants
were created. However, for product lines that make heavy use of mutual
exclusion (Xor and excludes) this does not apply. The reason for this are
competing UML elements like transitions that would otherwise never be
part of the same product. Multiple enabled and otherwise excluding tran-
sitions are possibly introducing non-determinism or at least unexpected
behavior.

Some product mutants created with this operator might behave equivalent
to an original product. This is the case for all products that include
the feature for which the mapping was deleted. Since these mutants are
structurally equivalent to the original product model, they are easy to
detect.

Delete Mapped Element (DME) This operator deletes a UML element reference
from a mapping in the variability model. It resembles the case, where a
modeler forgot to map a UML element that should have been mapped.

Similar to the delete mapping operator, this operator may yield non-
deterministic models, where otherwise excluding transitions are concur-
rently enabled. Product mutants equivalent to the original product model
can be derived, if the feature associated to the deleted UML reference is
part of the product. Again, this is results in structural equivalence to the
original product.

Insert Mapped Element (IME) This operator inserts a new UML element ref-
erence to the mapping. This is the contrary case to the operators defined
before, where mappings and UML elements were removed. However, in-
serting additional elements is more difficult than deleting them, since a
heuristic must be provided for creating such an additional element. We
decided to copy the first UML element reference from the subsequent map-
ping. If there are no more mappings, we take the first mapping. This op-
erator is not applicable if there is just one mapping in the feature mapping
model.

30

Again, there is a chance of creating invalid mutants: If a UML element
reference is copied from a mutually excluded mapping, the resulting model
may be invalid due to non-determinism.

Also structurally equivalent mutants are created, when the features from
the subsequent mapping, which acts as source for the copied element, and
the target mapping are simultaneously activated in a product.

Swap Feature (SWP) Swapping features exchanges the mapped behavior among
each other. This operator substitutes a mapping’s feature by the following
mapping’s feature and vice versa. The last feature to swap is exchanged
with the very first of the model.

Non-deterministic behavior and thus invalid models may be designed by
this operator. This is due to the fact that the mutation operator may
exchange a feature from a group of mutually exclusive features by an
unrestricted feature. In consequence, the previously restricted feature is
now independent, while the unrestricted feature joins the mutual exclusive
group. This may concurrently enable transitions which results in non-
deterministic behavior.

We gain structurally equivalent mutants, if the two swapped features are
simultaneously activated.

Change Feature Value (CFV) This operator flips the feature value of a map-
ping. A modeler may have selected the wrong value for this boolean
property of each mapping.

The operator must not be applied to a mapping, if there is a second
mapping with the same feature, but different feature value. Otherwise,
there will be two mappings for the same feature with the same feature
value, which is not allowed for our feature mapping models.

This operator may yield invalid mutants, if it is applied to a mapping
that excludes another feature. In that case, two otherwise excluding UML
elements can be present at the same time, which may result in invalid
models, e.g. two default values assigned to a single variable or concurrently
enabled transitions.

There are other possible domain model mutation operators, which, however,
are of minor importance. For example, inserting superfluous mappings does not
seem to be necessary: it remains unclear which and how many UML elements
should be selected for the mapping. In most cases, such an operation will lead
to invalid mutants.

In a basic mutation experiment, each operator is used for each applicable
model element exactly once. To get an idea of the complexity, consider the
following numbers: For our eShop example, which has about 10 features and
44 state chart elements (states and transitions), after filtering this yields 152
product line mutants, which are resolved into 574 mutated products. Of course,
it is possible to generate an arbitrarily higher amount of mutants by repeated

31

application and combination of mutation operators. However, it is doubtful
whether this brings about new insights.

4.3 Evaluation

To evaluate the above ideas, we performed a mutation analysis on three example
product lines, including our eShop example. With our prototypical SPLTest-
bench, we developed and adapted the domain models for the examples. Then
we derived a test suite for each example by applying the techniques described
in section 3. The external test generator was set to transitions coverage. For
the eShop example, this generated 13 test cases with a total of 103 test steps.
From the generated test suite, the SPLTestbench selected 4 variants for testing
and resolved mutated product models from the mutated domain model.

Since there were no implementations available for our examples, we decided
to generate code from the mutated product models and run the tests against
them. (Note: Generating code and tests from the same basis for testing the
code is not advisable in productive environments, since errors propagate from
the basis to code and tests. However in our case, tests are executed against
code derived from mutated artifacts, while the test cases were generated from
the original model.) To derive our implementations, we implemented a small
code generator transforming product models into Java. Another transformator
generates executable JUnit code from the tests which we gained from the test
generator. The mutation system then collects all the code artifacts, executes
the tests against the product code, and finally reports the mutation scores for
all tests and for every operator individually.

For the eShop example, on the 574 mutated products there were in total
1855 tests executed. All of the transformations above and the mutation system
are integrated into the SPLTestbench. The test execution is fully automatic and
is done within a few minutes.

For each mutation operator we measured the mutation score as the quotient
of detected mutants by generated mutants. The results for all mutation op-
erators from the previous subsection is shown in Table 2. In the last column
of this table, we show the weighted average for each mutation operator. The
weighted average takes the number of product line mutants for each example
and operator into consideration.

The table shows some interesting effects. For most of the operators we gain
mutation scores between 60% and 100%. This is in the expected range for test
suites generated with the all-transitions coverage on random mutants [72, 44].
However, there are some notable exceptions: DMP (0%) and DME (0%) on fea-
ture mappings, ITG (21.67%) and DGD (41.18%) on base models. The reason is
that these operators add superfluous behavior to the product. Errors consisting
of additional (unspecified) behavior are notoriously hard to find by specification-
based testing methods. Specification-based testing checks whether the specified
behavior is implemented; it cannot find unspecified program behaviors (e.g.
viruses). Program-code-based testing checks whether the implemented behav-
ior is correct with respect to the specification; it cannot find unimplemented

32

Table 2: Mutation scores per operator (and number of products)

Op. eShop Example #2 Example #3 Average
DMP 0% (4) 0% (5) 0% (8) 0%
DME 0% (14) 0% (8) 0% (21) 0%
IME 5% (4) 40% (5) 50% (8) 53%
SWP 100% (4) 60% (5) 63% (8) 1%
CFV 100% (4) 100% (5) 87.50 (8) 94%
DTR 89% (28) 84% (19) 63% (19) 80%
CTT 64% (28) 63% (19) 37% (19) 56%
DEF 100% (16) 82% (17) 62% (13) 83%
DTI 83% (23) 100% (13) 94% (17) 91%
ITG 21% (24) 28% (18) 17% (18) 22%
DGD 0% (1) 43% (14) 50% (2) 41%
CGD 100% (2) 69% (48) 90% (10) 73%

requirements (e.g. missing features).

To solve this problem, we must not only check whether a required feature
is implemented, but also whether a deselected feature is really absent. One
possibility for this is to add product boundary tests, which are automatically
generated from the domain model. An detailed elaboration of this idea can be
found in [74]. Another possibility is to admit so-called “negative tests”, which
are constructed manually and test whether a certain behaviour is absent. This
idea will be followed in section 6.

5 Test-driven Product Sampling

In a large product line with one hundred or more features, there might be up
to 2100 ~ 103% possible products. Clearly, it is impossible to build and test all
of these products. In this section, we address the question which products of a
large product line should be selected for testing. In practical applications, the
choice is often done by some heuristics (e.g., “test one minimal and one maximal
product with respect to the number of features”, or “test those products which
the customers are most likely to order”).

However, it is not clear whether the error detection capabilities of these
heuristic choices are acceptable. From a systematic point of view, there are
different criteria on the selection. One possibility is to select a minimal number
of different configurations such that each test case is executable in at least one
product. This minimizes the amount of tested products, and thus reduces the
testing effort. Other possibilities are to minimize or maximize the size of product
configurations in terms of activated features, or the diversity of configurations.
The question is which method offers an acceptable error detection rate in relation
to the testing effort.

Subsequently, we address the question how the sampling of configurations

33

from test cases affects the effectivity of product line testing. Using our domain-
centered test design methods described in section 3.1, the domain test cases can
be used to sample product configurations for testing. We describe experiments
to measure the effect of different sampling criteria on the error detection rate.
We consider the following criteria:

e Sampling as many or as few configurations as possible,
e sampling large or small products in terms of activated features, and
e sampling diverse or random products.

Our expectation is that selecting many, large, and diverse products yields the
highest fault detection capability and test effort. Firstly, testing many products
should decrease the chance of missing faults which are specific to some particu-
lar combination of features. Secondly, selecting large products for testing should
expose faults arising from feature interactions. Thirdly, testing diverse prod-
ucts, rather than testing similar products, should increase the error detection
capability.

In order to confirm these expectations, we develop a method for product
selection from domain test cases. This method allows us to perform experiments
with different sampling criteria. The assessment of error detection capabilities
is done by the mutation system presented in the previous section. We analyze
the results for all three examples of the previous section, including the eShop,
and give recommendations for practical use.

From the resulting product configurations, products can be resolved and
finally the tests can be executed against their associated product. In the next
section, we present optimization criteria for sampling configurations from such
generic test cases.

5.1 Sampling Configurations from Generic Test Cases

In this subsection we address the question how to sample product configura-
tions from a test suite. In domain-centered test design, an incomplete product
configuration is created and stored with each test case during test generation.
Product configurations can be sampled from these incomplete configurations
by assigning a concrete value (true of false) to each undecided feature. Since
there is a choice to make, we can apply an optimization criterion. The sam-
pling should be such that the likelihood of detecting faults in the product line
should be maximal, while the test effort is kept reasonably low. Since test cases
were selected according to a model coverage criterion, every test case should be
executable at least once. Moreover, in order to keep test efforts low, test cases
should not be executed more than once.

Due to the fact that feature models are representable as propositional for-
mulas, the problem of sampling configurations can be viewed as a boolean satis-
fiability problem. In order to search for an solution to an optimization criterion,
we represent it as a constraint satisfaction problem. First, we describe the prob-
lem of sampling a product configuration from an incomplete configuration as a

34

propositional formula. On this basis, we then define minimization and maxi-
mization criteria to sample large, small, few, many, and diverse variants from a
set of incomplete configurations.

5.1.1 Random Sampling

The first challenge is to complete a given incomplete product configuration.
This problem can be solved straight-forward by a SAT solver. We use the Java
constraint programming solver JaCoP [42] which is based on the DPLL SAT
algorithm. We declare for each feature f in F' an new variable vy with an
appropriate domain. The domain varies depending on the feature’s assignment:

o f = true then the domain of vy is {1}
o f = undecided then the domain of vy is {0,1}
e [= false then the domain of vy is {0}

An additional constraint is the propositional formula representing the feature
model (see Figure 2). JaCoP is now able to make a random assignment to each
undecided feature and check the solution for consistency with the feature model.
This method can be repeated individually for every incomplete configuration in
the given test suite.

5.1.2 Targeted Sampling

The above procedure yields a set of product configurations which may not be
optimal. From each test case, a separate product is sampled. There is no
systematic check whether a product is appropriate for several test cases. In the
following, we define and use optimization criteria for this purpose. We consider
the following criteria:

e Few/many configurations,

e small/large configurations (in terms of selected features),
e diverse/random configurations, and

e combinations of these criteria.

The optimization should be such that for every test case there is a valid con-
figuration, and for every sampled configuration there is an associated test case.
Thus, for a test suite with m test cases, we will not sample more than m prod-
ucts. For an automated sampling of products, we now formulate these criteria
as boolean optimization problems, which can be solved automatically by a con-
straint solver.

35

a) Optimizing the amount of distinct configurations. The aim is to
select either few or many products to execute every test case in the given test
suite exactly once. From a product configuration with features F,, : f1,..., fx,
in JaCoP we define the binary number

b, = (vflvf2 . 'Ufk—lvfk)z’

where vy, is the variable associated with feature f; (see above). For a test
suite with m test cases, we define the set Z as the collection of all b;, where
1<n<m:

Z ={b1,ba, ..., bm1,bm}

With such an encoding, we can ask the constraint solver to find a variable
assignment for the vy, respecting additional criteria. To optimize the amount
of distinct configurations, we define a cost function as the cardinality of Z:

cost, = |Z|

Now we can ask JaCoP to find a solution which minimizes or maximizes this
cost function. The resulting set of configurations has between 1 and m elements.

b) Optimizing the Size of all Configurations. For minimizing the size of
a set of configurations, we define its size as the sum of all selected features in
all configurations. For constraint solving, we interpret ‘selected’ as numerical
value ‘1’ and ‘deselected’ as ‘0’ respectively. In JaCoP, we define the size of a
single product configuration as follows:

k
Sn = Zi:l Uf;-

When we accumulate sizes of all product configurations, we can ask JaCoP
to optimize towards either a minimal or maximal overall size:

costy =Y | Sn.

Here, maximization achieves large product configurations and minimization
small product configurations. The cost of the smallest solution is 2 x m, hav-
ing the root feature and only one other feature enabled (2), multiplied by the
amount of test cases (m). The highest cost is k x m, where every feature k is
selected in every test case m This is the result of assigning a single product with
all features activated to all test cases.

c) Optimizing the Diversity of Configurations Similar to a) and b), we
define diversity over a set of m test cases and k features. First we establish
a relation between a single feature ¢ over all configurations. The goal is to
have each feature as often selected as deselected to obtain the most different
assignments.

We achieve this by calculating the diversity d; of each feature f,, ;, where
1<n<mand1l<i<k:

36

d; = Z:anl Vi

Next, we calculate the deviation from optimal diversity, which is m/2, be-
cause we want a feature to be equally often selected and deselected over all
n configurations. Subsequently, the deviation of a feature f; from its optimal
diversity is calculated by |d; — (m/2)|. Finally, we achieve maximal diversity by
minimizing the sum of all deviations:

coste = 35y |d; — (m/2)]

The minimal costs for a solution to this problem is 0 with product configurations
being maximally diversified. The highest cost are (m/2) x k, where the same
configuration is sampled for every test case.

It should be noted that this approach does not maximize the amount of
sampled product configurations, but their diversity. Inherently, this leads to
a solution with few unique product configurations, although there might be
solutions with more product configurations but less diversity. A possibility to
increase the amount of product configurations is to combine the two criteria
diversity and maximization.

d) Combinations Now we look at combinations of the previously defined
constraints, e.g., many with large and diverse configurations. All the above
criteria can be combined, with the exception of

e few with many product configurations, and
e small with large product configurations.

Of course, costs cannot be summed up directly if the optimization targets
are conflictive, e.g. if large and diverse should be combined, the targets are min-
imization and maximization. In this case, a decision for an overall optimization
target must be made (min or max) and the costs of the criterion not fitting that
target must be inverted. Costs are inverted by subtracting the solution’s costs
from the expected maximal costs.

5.2 Evaluation

For evaluation of the proposed methods, we extended our SPLTestbench to
support optimization-driven product sampling from incomplete product config-
urations. The sampling process is supported by Eclipse plug-ins to configure
the sampling and start the sampling process as depicted in Figure 17.

As an example to evaluate the optimization criteria, we use our eShop prod-
uct line. Test case generation from the variability model was discussed in sec-
tion 3.1. Here, we use the test cases generated with the step-by-step method
to measure the effects of sampling for different optimization criteria on the test
case’s error detection capability. We compare the results to include/exclude-
all-features and pair-wise combinatorial testing from application-centered test
design.

37

-
£ Properties for TestProducts | o

type filter text Product Sampler - v v
> OCL -
. Papyrus Product Sampling
Product Sampler [C1Min
Project References Max
Refactoring History [Smmall
RT-Tester [Large
Run/Debug Settings = :
: Task Repository
WikiText
|| o I — S IRestoreQefaults” Apply]
| -
| @ [oK || canca |

Figure 17: Project options in SPLTestbench for sampling products.

For assessing the error detection capability, we use the product line mutation
framework presented in section 4.2.1. For our experiment, we apply both of the
supported types of mutation operators: behavioral operators, which mutate the
state machine model, and variability operators, which mutate the variability
model. However, we did not apply the operators DMP, DME and ITG. As
discussed before, mostly these operators add superfluous behavior, which cannot
be detected by model-generated test suites.

We sampled configurations for all sampling criteria in isolation and for the
four combinations Few+Small+Div, Few+Large+Div, Many+Small+Div, and
Many+Large+Div. As a comparison value, we also consider the numbers for
AC test design. The results can be seen in Table 3. In this table, the number of
automatically sampled configurations is shown in the first column. This num-
ber is responsible for much of the testing effort. The second column shows the
number of test executions. For a given DC sampling, every test case is executed
exactly once. In contrast, for AC test design, test cases are generated individ-
ually for each variant. Hence, here we gain more test cases and subsequently
more test executions. The third and fourth column give the achieved mutation
score on the base model and on the variability model, respectively.

The test suite contains 13 test cases with 48 test steps. Since this test suites
is the same for all samplings, the procedure indeed assesses the impact of the
different sampling criteria on the test suite’s error detection capability. As can
be seen from the data, the error detection capability of the test suite varies with
the applied sampling criterion. The mutation scores for the base model exposes
only marginal variance (76.5%-77.6%). This is due to our test design approach
where all-transitions as test selection criterion is applied to base model and
product models.

More variance is found in the error detection capability for errors in the

38

Table 3: Results of product sampling

Isolated DC samplings configurations executed Mutation score =~ Mutation score

test steps base model variability model
Few 1 48 78% 33%
Many 13 48 7% 92%
Small 4 48 7% 92%
Large 1 48 78% 33%
Div 7 48 78% 67%
Combined DC samplings
Few+Small+Div 4 48 7% 92%
Few+Large+Div 4 48 78% 67%
Many+Small+Div 10 48 7% 92%
Many+Large+Div 10 48 78% 67%
AC samplings
Include/exclude-all 2 135 % 67%
Two-pair 7 436 78% 100%

variability model: the highest error detection capability of isolated criteria are
achieved by maximized amount of products (Many) and small products (Small).
In contradiction to our expectations, sampling large products reduces the error
detection capability. This may be due to the fact that only few products are
being sampled and tested. Though the criteria ‘Many’ and ‘Small’ have a com-
parable error detection capability (91.7%), ‘Small’ is more efficient in terms of
testing effort, since more products have to be provided.

For combined sampling criteria the variance of the mutation scores declines
(66.7%-91.7%). The highest scores in the group of combined criteria are achieved
by the following two combinations: maximized amount with small and diverse
products (Many+Small4+Div) and minimized amount with small and diverse
products (Few+Small+Div). For these, efficiency is higher for Few+Small+Div
than for Many+Small4+Div, since less products are sampled for testing. In
general, combined criteria scored equal or lower to the top scoring isolated
criteria, but never better.

The DC scores lie in between the two presented AC criteria. However, AC
testing needs much more resources: For a comparable score, two-pair testing
needs ten times more test steps than any DC test.

Summing up, application-centered and domain-centered testing differs only
if errors in the variability model are of concern. Within different DC meth-
ods, sampling few, small and diverse products seems to be most advantageous.
We performed a similar analysis for the two other examples mentioned in the
previous section, with comparable results.

39

6 Assignment of Product Line Test Cases

In section 3, we considered different ways of generating test suites from domain
models. Subsequently, we used these tests for product sampling and mutation
analysis. Thus, the domain model was primarily used for test generation. In
model-based engineering, either products or tests can be derived from a given
model. In this section, we consider the setting that domain models are used
for deriving implementations, whereas test cases are developed separately and
manually. This setting describes the actual situation in most medium and large
companies, where testing and implementation is done in different departments.
In fact, in this section we do not care about the test case development process;
we just assume that there is a significant body of test cases available, and that
these test cases were developed independently from the products. This situation
is found in all companies transitioning to a model-based software engineering
process, which already have a large number of legacy test cases.

For such a setting, the question is, which test cases should be executed with
which products? Certainly, there are syntactic criteria excluding a test case to
be applicable for a certain product. For example, a test case might address an
interface which is not present in the product. In such a case, the test cannot be
executed with this product.

However, even if all syntactic criteria are being met, a test case might not be
relevant for a certain product. For example, the specification may not determine
whether the behavior tested by t¢; is required or not for a product p. That is,
p may or may not show the behavior which is tested by ;. In such a case, no
new information about the conformance of the product would be obtained by
executing the test case. Thus, it does not make sense to execute t; with the
SUT p.

As another example, consider a test case ty for an advanced feature which is
not present in a basic product p,. Here, we would expect the test execution of
to with SUT p, to fail. It may also be advantageous to execute such a negative
test case in order to check that the basic product has no superfluous behavior.

Closely following ideas presented in [39], in this section we show how the
product model can be used to determine the expected outcome of a test case
to a product. The exposition is based on our previous work [40], where we
give formal definitions, an extended example, and a detailed description of the
algorithm.

6.1 Colored Test Cases

We use a three-valued coloring scheme to capture what design decisions have
been made in the domain model and configuration with regards to a specific
product: A test case is colored green if it reflects a behavior that is expected
from this particular variant of a software product line. It is colored red if
the variant should not allow the described behavior. Finally, a test case is
colored yellow if the respective behavior is neither required nor disallowed by
the specification of the variant. This can happen, e.g., if the specification is

40

non-deterministic or incomplete.

Intuitively, green test cases reflect required and red test cases forbidden be-
havioral properties of the specification. Yellow tests mirror open design deci-
sions, i.e., properties which are not (yet) decided in the specification. Since the
color of a test case depends on the base model as well as the variability model
and its resolution for a particular variant, the same test case can be green for
one product, but red or yellow for another one.

The three-valued scheme is similar to the definition of an incomplete config-
uration in domain-centered test design (subsection 3.1.2). The difference is that
an incomplete configuration determines for each test case the set of products for
which it is applicable, whereas the coloring determines for each test case and
product whether it is a required, allowed or forbidden behavior.

In order to make these notions more precise, we briefly recall the UML
stipulations on the execution of a model: In UML state machines, a transition
e[g]/a may have a trigger e, can be restricted by a constraint g, and can invoke
a behavior a. The UML superstructure explains: “A trigger specifies an event
that may cause the execution of an associated behavior. An event is often
ultimately caused by the execution of an action, but need not be. [...] Upon
their occurrence, events are placed into the input pool of the object where they
occurred [...]. An event is dispatched when it is taken from the input pool and
is processed by the classifier. At this point, the event is considered consumed
and referred to as the current event.” [54, p. 471sq.]. The constraint language
is not specified in UML; “a constraint is a condition or restriction expressed
in natural language text or in a machine readable language for the purpose of
declaring some of the semantics of an element” [54, p. 57]. A behavior is a
consequence of the execution of an action by some related object. The behavior
invoked as the effect of a transition may contain several actions, e.g., calling an
operation, changing variable values, or causing the occurrence of some event.

To define the notion of a test case, we fix a test signature . In our approach,
we assume that X is a subset of the occurrences and dispatches of events which
are contained in the product model. In this case, we say that the test case is
applicable to the product model.

Additionally, we require that stimuli can be sent to the SUT, for example
pressing a button, from the outside. We represent this as the artificial entity
tester. Events sent from the tester are called input events for the SUT, other
events are called output events for the SUT. Intuitively, elements of the signature
are the only events which can be “noticed” by the test case; events not in the
signature are “invisible”. A test case formally is a finite sequence of elements
from the test signature X.

In order to fix the color of a test case, we assume that there exists a function
enabled assigning to each configuration of a UML model the set of elements
from ¥ which may occur next. That is, an event e € ¥ is in enabled(c), if upon
its occurrence there is a sequence ¢y — ¢; —2 --- % ¢, of transitions such
that ¢ = ¢ and e, = e, and for all ¢ < n it holds that e¢; ¢ . In this case,
we say that ¢, is reached from c by e. A useful assumption, which is, however,

41

not required for our theory, is that input events from the tester are enabled at
any time. For an event e € enabled(c), we say that it is testable at c, if it is
either an input event, or it is an output event and it is not the case that some
output event e’ € ¥ different from e is enabled in c. Intuitively, if an output e
is testable at ¢, it is the output from ¥ which must occur next, if any.

Since UML contains semantic variation points, the function enabled is tool-
dependent. In particular, UML does not impose an ordering on events in the
event pool; furthermore, the mechanism for determining the behavior to be in-
voked as a result of a call operation is unspecified, and it is a semantic variation
point whether one or more behaviors are triggered when an event satisfies mul-
tiple triggers. The UML allows an event to be dispatched in a configuration
even if there is no transition taking this event as a trigger; in such a situation,
this event is discarded.

The color of a test case T = (eq, ..., e,) in the signature ¥ with respect to
a product model is a value from {green, red, yellow}, such that

e color(T) = green iff for all k < n and every sequence (cg,ci,...,cg) of
configurations such that ¢y is an initial configuration, and ¢; is reached
from ¢;_1 by e; for all 1 <14 < k it holds that ey, is testable at cy;

e color(T) = red if there is no sequence {cy,ci,...,c,) of configurations
such that ¢y is an initial configuration, and ¢; is reached from ¢;_1 by e;
for all 1 <1i¢ < n; and

e color(T) = yellow, otherwise.

In other words, a test case is green if it can be observed in all possible executions
of the model triggered by this test case. It is red if there is no possible execution
where it can be observed. It is yellow if some executions show the behavior and
others do not.

Note that our definition enforces that for each test case T = (eq,...,e,) for
which color(T) = green there is at least one sequence {(cg, c1,. .., c,) such that
co is an initial configuration, and for all 1 < 4 < n, configuration ¢; is reached
from ¢;—1 by e;. That is, green test cases must indeed be observable in the
system’s executions.

For example, consider a minimal eShop where no search function is available.
For such an eShop, the following test case would be green:

openProductCatalog — listProducts — productDetails — showPro-
ductDetails — addProductToCarts — proceedToCheckout — show-
Summary — selectPaymentMethod — startPayment — selectBankAc-
count — proceedPayment — validatePayment — paymentComplete
— wvalid — processOrderAndConfirm.

The following test case, which tests for the search feature to be absent, would
be red:

openProductCatalog — listProducts — searchFor — listProducts.

42

Here are some simple properties of our coloring.
e An empty test case (consisting of no events at all) is always green.

e A one-element test case is green if its event is enabled and testable in all
initial configurations; it is red, if the event is initially not enabled; and
yellow, if it is enabled in some initial configuration but not testable.

e Any initial fragment of a green test case is green; any extension of a red
test case is red.

e If a state is non-deterministic, e.g., from state s there are transitions /a
and /b, then the test cases (a) and (b) are yellow, since enabled(s) = {a, b},
but a is not testable at s. Assuming that the test signature is {a, b, c},
the test case (c) is red, since neither /a nor /b produce ¢ and thus ¢ is not
enabled in s.

e Consider a situation where the effect of a transition invokes a behavior
expression including an operation for which only its signature is known
(e.g., a transition /obj.op(arg), where the operation op is declared in the
class diagram, but the return value of op for a given argument arg is not
specified). Then test cases using such a transition will be yellow, as all
possible return values are enabled in the state machine; however, the test
case contains only a specific one.

The test verdict (pass or fail) for a test is assigned by executing a green
or red test case with a concrete product. A product passes a test suite, if it
behaves as expected, i.e., if it exhibits the behavior described in all green test
cases and deviates from the behavior described in all red test cases. Yellow test
cases do not contribute to the detection of faults, thus we do not execute them.

6.2 Automated Test Coloring via Model Checking

For automating the above defined test coloring procedure for a given materi-
alization of a product line and a test case, we use the tool HUGO, which is a
UML model translator for model checking [41]. In particular, HUGO resolves
the UML’s semantic variation points mentioned above in a particular way thus
also fixing the enabled function: The event pool is implemented as bounded
event queues; since inheritance is not supported, the dispatching algorithm be-
comes straightforward, as no overloading has to be considered; only a single,
non-deterministically chosen behavior can be triggered by a given event; and
events which trigger no outgoing transition in a state configuration are silently
consumed.

HUGO translates both the materialization and a test case over a test signa-
ture into Promela, which is the input language of the model checker SPIN [35];
syntactically, it is first ensured that the test signature indeed is a subset of the
possible event occurrences and dispatches of the materialization. The resulting

43

encoded product model shows instrumentation for observing all events: When-
ever an event occurs or is dispatched in the product model, a notification is sent
out which can be used by an observer. The test case results in an automaton
process sending those events to the system which occur at the tester and also
reacting to those produced by the system: If an event of the test case is ob-
served, the test case automaton proceeds; if any other event which is part of the
test signature happens, the automaton goes to a dedicated failure state; events
not present in the test signature are ignored. After successful observation of the
last entry of the test case sequence the automaton enters a dedicated final state.

We have implemented the above translations and colored a number of test
cases. The results often are surprising, the calculated color is different from
the intuition. Fortunately, due to the counterexample mechanism of the model
checker, we were able to analyze this discrepancy. It turned out that in all cases
the intuition was mistaken; test cases which we assumed to be green (required) or
red (forbidden) really were yellow (allowed but neither required nor disallowed).
This shows the viability of our approach.

In this section, we have presented a theory and prototypical implementation
for test case assessment in the model-based development of multi-variant sys-
tems. To our knowledge, this is the first treatment of the subject in the context
of UML-based software development.

We deal with both positive (green) and negative (red) test cases, and intro-
duce a third color (yellow) for test cases whose outcome is not determined with
a given product model. This means that it is needless to execute them with
products based on this model. Our approach thus allows to assess and select
those test cases from a universal test suite which are relevant for a given prod-
uct. It would be a straightforward extension to extend our coloring to sets of
products defined by incomplete configurations as defined above. Additionally,
lifting our approach to logical, abstract test specifications in the universal test
suite would be of interest. This would have to include different colorings for the
different concretizations. For conciseness, we do not pursue these extensions
further here.

Our test case coloring theory is well-suited for testing deterministic reactive
systems under test, where the response functionally depends on the provided
stimuli. In the UML specification, it can deal with indeterminacy caused by
semantic variation points and nondeterminism by under-specification and open
design decisions, by assigning the respective test cases the color yellow. The
theory excludes to formulate test cases for systems which are inherently non-
deterministic. This can be the case, e.g., for a network of cooperating devices
with unpredictable message delays. To deal with such a situation, we are inves-
tigating trees and UML interactions as test cases and the relation to the testing
theory of de Nicola and Hennessy [21].

44

7 Related Work

In this section, we give some references to related work. Due to the large volume
of available literature on model-based testing and software product lines, this is
necessarily only a small selection.

Specification of software product lines Software product families have
already been proposed by Parnas in 1976 [58]. There are annual conferences
dealing with product line engineering, e.g., the International Systems and Soft-
ware Product Line Conference SPLC. An introductory textbook on this topic
is by Pohl et al. [62].

A standardization attempt which incorporates many of the modeling con-
cepts presented in this article has been the OMG initiative for CVL, the common
variability language [19]. Unfortunately, due to patent disputes, this standard-
ization could not be completed. Nevertheless, most of the concepts are now
generally acknowledged and implemented by current product line engineering
tools.

Model-based test generation Testing is one of the most important quality
assurance techniques in industry. Since testing often consumes a high percent-
age of project budget, there are approaches to automate repeating activities
like, e.g., regression tests. Some of these approaches are data-driven testing,
keyword-driven testing, and model-based testing. There are many books that
provide surveys of conventional standard testing [3, 12, 53] and model-based
testing [13, 70, 75]. modeling languages like the UML have been often used
to create test models. For instance, Abdurazik and Offutt [55] automatically
generate test cases from state machines.

Testing is an important topic also in the software product line literature.
Systematic reviews can be found in [22], [51], and [45]. These surveys show that
much of the work on SPL testing is concerned with the question of selecting
products for testing (see below).

Feature modeling Feature models are commonly used to describe the vari-
ation points in product line systems. Our feature modeling language is similar
to other standard feature languages, e.g. [14]. There are several approaches
to apply feature models in quality assurance. For instance, Olimpiew and Go-
maa [56] deal with test generation from product line systems and sequence
diagrams. In contrast to sequence diagrams, state machines are commonly used
to describe a higher number of possible behaviors, which makes the combination
with feature models more complex than combining feature models and sequence
diagrams. As another example, McGregor [48] shows the importance of a well
defined software product line testing process. Pohl and Metzger [63] emphasize
the preservation of variability in test artifacts of software product line testing.
Lochau et al. [47] also focus on test design with feature models. In contrast to

45

our work, they focus on defining and evaluating coverage criteria that can be
applied to feature models.

Mutation analysis Mutation analysis for behavioral system models, e.g. fi-
nite state machines, is a well-established field. Fabbri et al. introduced mutation
operators for finite state machines in [23]. Belli and Hollmann provide mutation
operators for multiple formalisms: directed graphs, event sequence graphs [7],
finite state machines [55], and basic state charts [8]. They conclude, that there
are two basic operations from which most operations can be derived: omission
and insertion. Also for timed automata, mutation operators can be found in [1].

Mutation analysis for software product lines has not received as much at-
tention yet. In [67] Stephenson et al. propose the use of mutation testing for
prioritizing test cases from a test suite in a product line environment. Henard
et al. proposed two mutation operators for feature models based on proposi-
tional formulas in [34]. They employ their mutation system for showing the
effectiveness of dissimilar tests, in contrast to similar tests. For calculating
dissimilarity, the authors provide a distance metric to evaluate the degree of
similarity between two given products.

Sampling of products Sampling product configurations for testing is an
ongoing challenge. Most work is focused on structural coverage criteria for
feature models and hence is agnostic to the interactions in behavioral models [61,
57]. Still, the test effort is high, since feature interactions are selected for testing
where no behavioral interaction is present. Baller et al. focus on heuristics for
minimization of the test suite for the base model [5].

Similar to the notion of incremental test design, Beohar et al. propose spinal
test suites [9]. A spinal test suite allows one to test the common features of a
PL once and for all, and subsequently, only focus on the specific features when
moving from one product configuration to another.

Lochau et al. present incremental test design methods to subsequently test
every specified behavior [47]. Here, configurations are sampled as needed to
achieve the next test goal. The result is a set of test cases where each one is
limited to a single product configuration. Our optimization criteria for sampling
configurations allow for more flexibility since they use generic test cases.

Test case assignment Using three-valued logics for test assessment is an old
idea. In 1983, Butler [15] uses the third value to denote either a missing or
an incorrect test result. Zhao et al. [76] propose a symbolic three-valued logic
analysis to improve the precision of static defect detection. The standardized
testing language TTCN-3 [25] allows several verdicts for a test case such as pass,
fail, inconc, none, and error.

To our knowledge, we were the first to propose a theory for a three-valued
evaluation of test cases with respect to formal specifications [36]. In [39], we
extended this theory to software product lines based on UML models.

46

Bertillon et al. [10] use a notation based on natural language descriptions
of requirements to define test cases for product lines. The resulting test spec-
ification is generic in the product, and a set of relevant test scenarios for a
customer specific application can be derived from it. This work complements
our colouring method, since we assume that the test suite is designed separately.

8 Future Developments

Predicting the future of some field always is a risky enterprise, since trends in
computer science tend to be short-lived. There are, however, a few clear devel-
opment tendencies in industry and science which are sketched in this section.

Firstly, we expect product line development methods to become more “main
stream” in the engineering of industrial software. Indications of this are, e.g.,
the availability of tools like pure::variants [11], which interacts with popular
development environments such as Mathworks Simulink, IBM Rational DOORS
and Rhapsody, and Sparx Systems Enterprise Architect. As another example,
FeatureIDE [69] is an open-source tool which tries to “bring all phases of the
development process together, consistently and in a user-friendly manner”. It
supports multiple paradigms for modeling variability such as annotation-based,
delta-oriented, and aspect-oriented programming.

Secondly, there is a trend to standardization. A fist initiative was CVL,
the common variability language mentioned above [33]. Since this endeavor
has been discontinued, other ways of standardization are being explored. The
Variability Exchange Language [29] provides a generic data exchange format
for variant management. It is intended to be standardized within OASIS in
the near future. The Variability Exchange Language defines a generic API
(Variability API) that allows variant management tools to communicate with
artifacts such as model based specifications, program code, or requirements
documents. Since the communication is via a standardized interface, the number
of tool adapters is significantly reduced.

Thirdly, the availability of concepts, standards, and unified APIs enables
tool providers to focus on the development of features to facilitate the use of
their tools. To minimize switching times between different tools and acceler-
ate the overall workflow, a general trend is to integrate tools and support a
growing number of other development environments. In particular, for product
line development the link to software testing is being strengthened. In this pa-
per, we discussed the selection of products for testing, and the selection of test
cases for products. Integrated tool suites would support finding relevant arti-
facts for re-use and identifying linked artifacts from other projects. A related
research question is how to automatically extract re-usable information from
development artifacts.

Continuing on the scientific side, of current scientific interest is the refactor-
ing and evolution of software product lines. A question here is how changes in a
product line affect subsequent artifacts like implementation models, test cases,
and validation and verification documents [2].

47

Another trend in the research community is to consider models at runtime.
With variability models, this would allow for runtime variants and dynamic re-
configuration of systems [46]. For example, one could imagine that additional
features, e.g. advanced driver assistants in a car, are loaded according to cur-
rent demands. Even though these techniques have a high potential, there are
numerous safety and security problems to be solved.

Finally, a frequent reconfiguration leads to adaptive and self-learning sys-
tems. In fact, dynamic software product lines can be seen as a way to realize
adaptive behavior in open contexts. Scientific challenges include the modeling
and handling of uncertainties, the integration of feedback in the evolution, and
the learning of adaptation rules [66].

9 Summary and Conclusion

In this article, we have collected and summarized our recent research on model-
based testing for software product lines. With the example application of an
eShop product line, we have described how to model a software product line:
The feature model describing variation points, the base model describing the
functionality, and the variability model which determines which features are
realized by which base model elements.

Then, we showed how to automatically derive test suites for product lines
from variability models. We distinguished between application-centered and
product-centered test generation, and analyzed in detail two approaches of con-
structing a standard UML model from variability information. A comparison
of these approaches showed that both approaches lead to very different test
suites. Although they also cover all transitions of the model, domain-centered
approaches lead to test suites with significantly fewer test steps. Thus, in terms
of test steps and the amount of products to test, domain-centered test design
scales better with respect to the size of the system.

We then analyzed the error detection capabilities of generated test suites.
For software product lines, there are more sources where errors can occur than
in ordinary software models. We defined mutation operators for domain models,
and measured the detection rate on several examples. The results confirm that
operators which add superfluous behavior to a model are hard to detect by
model-based testing techniques.

Whereas usually in software engineering test suites are built for existing or
envisioned software artifacts, in product lines it may be more adequate to build
a software artifact for a given test suite. We considered the problem which
products should be selected as representatives for a product line, to maximize
the benefits from testing within given resource bounds. We found that domain-
centered test generation can be very efficient for detecting errors in variability
model, and that sampling small and divergent products is better than sampling
large ones.

Finally, we looked at a setting where a test suite is developed independently
from the product development in a model-based process. This is especially

48

relevant for legacy systems, where a huge set of test cases is already existing,
whereas products are restructured along the line. Here, the question is which
test cases are applicable for which products. We reduced this problem to a
classical model-checking problem and showed how to solve it with existing tools.

While all these contributions can be considered as significant steps, the over-
all goal of a unified theory for quality assurance of software product lines remains
unreached. The main challenge of software product line validation, as compared
to “normal” software validation, is the significantly higher complexity. Due to
the fact that a product line incorporates a large number of potential products,
quality assurance methods must strive to handle many or all of them at once.
With our prototypical SPLTestbench, we provide an integrated, open tool envi-
ronment for this task. In the future, we plan to extend it with capabilities for
formal verification and transformational development of software product lines.

References

[1] Bernhard K. Aichernig, Florian Lorber, and Dejan Nickovié. Time for Mu-
tants — Model-Based Mutation Testing with Timed Automata. In David
Hutchison, Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann
Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Ran-
gan, Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos, Doug Tygar,
Moshe Y. Vardi, Gerhard Weikum, Margus Veanes, and Luca Vigano, edi-
tors, Tests and Proofs, volume 7942 of Lecture Notes in Computer Science,
pages 20-38. Springer Berlin Heidelberg, Berlin and Heidelberg, 2013.

[2] Vander Alves, Rohit Gheyi, Tiago Massoni, Uird Kulesza, Paulo Borba,
and Carlos Lucena. Refactoring product lines. In Proceedings of the 5th
International Conference on Generative Programming and Component En-
gineering, GPCE ’06, pages 201-210, New York, NY, USA, 2006. ACM.

[3] Paul E. Ammann and Jeff Offutt. Introduction to Software Testing. Cam-
bridge University Press, New York and NY and USA, 2008.

[4] Sven Apel, Don Batory, Christian Késtner, and Gunter Saake. Feature-
Oriented Software Product Lines: Concepts and Implementation. Springer,
2013.

[6] Hauke Baller, Sascha Lity, Malte Lochau, and Ina Schaefer. Multi-objective
Test Suite Optimization for Incremental Product Family Testing. In Proc.
ICST 2014, pages 303-312, 2014.

[6] Don Batory. Feature models, grammars, and propositional formulas. In
Proceedings of the 9th international conference on Software Product Lines,
SPLC’05, pages 7-20, Berlin and Heidelberg, 2005. Springer-Verlag.

[7] Fevzi Belli, Christof J. Budnik, and Lee White. Event-based modelling,
analysis and testing of user interactions: approach and case study. Software
Testing, Verification and Reliability, 16(1):3-32, 2006.

49

8]

[10]

[11]

[18]

[19]

Fevzi Belli and Axel Hollmann. Test generation and minimization with
basic statecharts. In Edward J. Delp and Ping Wah Wong, editors, the
2008 ACM symposium, volume vol. 5681, page 718, Bellingham and Wash
and Springfield and Va, 2008. SPIE and IS&T.

Harsh Beohar and Mohammad Reza Mousavi. Spinal Test Suites for Soft-
ware Product Lines France, 6 April 2014. In Bernd-Holger Schlingloff and
Alexander K. Petrenko, editors, Proceedings Ninth Workshop on Model-
Based Testing, MBT 2014, Grenoble, France, 6 April 2014, volume 141 of
EPTCS, pages 44-55, 2014.

Antonia Bertolino and Stefania Gnesi. Use Case-based Testing of Product
Lines. In Proc. ESEC/FSE 2003, pages 355-358. ACM, 2003.

Danilo Beuche. pure::variants. In Rafael Capilla, Jan Bosch, and Kyo-
Chul Kang, editors, Systems and Software Variability Management, pages
173-182. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

Robert V. Binder. Testing Object-Oriented Systems: Models, Patterns, and
Tools. Addison-Wesley Longman Publishing Co., Inc, Boston and MA and
USA, 1999.

Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker, and
Alexander Pretschner, editors. Model-based testing of reactive systems:
Advanced lectures, volume 3472 of Lecture Notes in Computer Science.
Springer, Berlin, 2005.

Michael G. Burke, Michal Antkiewicz, and Krzysztof Czarnecki. Feature-
Plugin. In John M. Vlissides and Douglas C. Schmidt, editors, OOPSLA
2004, volume v. 39, no. 10 (Oct. 2004) of ACM SIGPLAN notices, pages
67-72, New York and NY, 2004. Association for Computing Machinery.

J.T. Butler. Relations among system diagnosis models with three-valued
test outcomes. IEEE New York, NY, Jan 1983.

Paul Clements and Linda Northrop. Software Product Lines: Practices and
Patterns. Addison-Wesley, 2001.

Myra B. Cohen, Matthew B. Dwyer, and Jiangfan Shi. Coverage and
adequacy in software product line testing. In ROSATEA 2006, pages 53—
63. Association for Computing Machinery, Inc., New York and NY, 2006.

José A. Cruz-Lemus, Ann Maes, Marcela Genero, Geert Poels, and Mario
Piattini. The impact of structural complexity on the understandability of
UML statechart diagrams. Information Sciences, 180(11):2209-2220, 2010.

CVL Revised Submission.

20

[20]

[29]

Krzysztof Czarnecki and Michal Antkiewicz. Mapping Features to Models:
A Template Approach Based on Superimposed Variants. In Robert Gliick,
editor, Generative programming and component engineering, volume 3676
of Lecture Notes in Computer Science, pages 422-437. Springer, Berlin
[u.a.], 2005.

Rocco de Nicola and Matthew Hennessy. Testing Equivalences for Pro-
cesses. Theo. Comp. Sci., 34:83-133, 1984.

Emelie Engstrm and Per Runeson. Software Product Line Testing — A
Systematic Mapping Study. Inf. Softw. Techn., 53(1):2-13, 2011.

Sandra C. P. F. Fabbri, M. E. Delamaro, J. C. Maldonado, and P. C.
Masiero. Mutation analysis testing for finite state machines. In 1994 IFEFE
International Symposium on Software Reliability Engineering, pages 220—
229, 1994.

Marcela Genero, David Miranda, and Mario Piattini. Defining Metrics for
UML Statechart Diagrams in a Methodological Way. In Gerhard Goos,
Juris Hartmanis, Jan Leeuwen, Manfred A. Jeusfeld, and Oscar Pastor,
editors, Conceptual Modeling for Novel Application Domains, volume 2814
of Lecture Notes in Computer Science, pages 118-128. Springer Berlin Hei-
delberg, Berlin and Heidelberg, 2003.

Jens Grabowski, Dieter Hogrefe, Gyorgy Rethy, Ina Schieferdecker, An-
thony Wiles, and Colin Willcock. An introduction to the testing and test
control notation (TTCN-3). Computer Networks, 42:375403, 2003.

Matthias Grochtmann and Klaus Grimm. Classification trees for partition
testing. Software Testing, Verification and Reliability, 3(2):63-82, 1993.

Iris Groher and Markus Voelter. Expressing Feature-Based Variability in
Structural Models. In Workshop on Managing Variability for Software
Product Lines, 2007.

Hans Gronniger, Holger Krahn, Claas Pinkernell, and Bernhard Rumpe.
Modeling Variants of Automotive Systems using Views. In Thomas Kiihne,
Wolfgang Reisig, and Friedrich Steimann, editors, Tagungsband zur Mod-
ellierung 2008 (Berlin-Adlershof, Deutschland, 12-14. Marz 2008), LNI,
Bonn, 2008. Gesellschaft fiir Informatik.

Martin Groe-Rhode, Michael Himsolt, and Michael Schulze. The Variabil-
ity Exchange Language, version 1.0. Fnfter Workshop zur Zukunft der En-
twicklung softwareintensiver, eingebetteter Systeme (ENVISION2020) im
Rahmen der SE2015, Dresden, 2015.

Liangpeng Guo, Alberto Sangiovanni Vincentelli, and Alessandro Pinto. A
complexity metric for concurrent finite state machine based embedded soft-
ware. In 2013 8th IEEE International Symposium on Industrial Embedded
Systems (SIES), pages 189-195, 2013.

o1

[31]

[32]

[33]

[34]

[40]

[41]

[42]

Helmut Gtz, Markus Nickolaus, Thomas Roner, and Knut Salomon. Mod-
ellbasiertes Testen: Modellierung und Generierung von Tests - Grundla-

gen, Kriterien fir Werkzeugeinsatz, Werkzeuge in der Ubersicht, volume
01/2009 of iX Studie. Heise Verlag, 2009.

Bill Hasling, Helmut Goetz, and Klaus Beetz. Model Based Testing of
System Requirements using UML Use Case Models. In Ist International
Conference on Software Testing, Verification and Validation, 2008, pages
367-376, Piscataway and NJ, 2008. IEEE.

Dystein Haugen, Birger Mgller-Pedersen, Jon Oldevik, Ggran K. Olsen, and
Andreas Svendsen. Adding Standardized Variability to Domain Specific
Languages. In SPLC 2008, pages 139-148, Los Alamitos and Calif, 2008.
IEEE Computer Society.

Christopher Henard, Mike Papadakis, Gilles Perrouin, Jacques Klein, and
Yves Le Traon. Assessing Software Product Line Testing Via Model-Based
Mutation: An Application to Similarity Testing. In ICSTW ’13: IEEFE 6th
International Conference On Software Testing, Verification and Validation
Workshops 2013, pages 188-197, 2013.

Gerard J. Holzmann. The SPIN Model Checker. Addison-Wesley, 2003.

Temeshgen Kahsai, Markus Roggenbach, and Bernd-Holger Schlingloff.
Specification-based testing for refinement. In SEFM 2007 - Proc. 5th IEEE
International Conference on. Software Engineering and Formal Methods ,
London, 2007.

K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson.
Feature-Oriented Domain Analysis (FODA) Feasibility Study, 1990.

S. Kim, John A. Clark, and J. A. Mcdermid. Class Mutation: Mutation
Testing for Object-Oriented Programs. In FMES, pages 9-12, 2000.

Alexander Knapp, Markus Roggenbach, and Bernd-Holger Schlingloff. On
the use of test cases in model-based software product line development. In
Proc. SPLC 2014 - 18th International Software Product Line Conference.
Florence, 2014.

Alexander Knapp, Markus Roggenbach, and Bernd-Holger Schlingloff. Au-
tomating test case selection in model-based software product line develop-
ment. IJSI, 9, No. 2:153-175, 2015.

Alexander Knapp and Jochen Wuttke. Model Checking of UML 2.0 Inter-
actions. In Proc. MoDELS 2006 Wsh.s, LNCS 4364, pages 42-51. Springer,
2007.

Krzysztof Kuchcinski and Radoslaw Szymanek. JaCoP - Java Constraint
Programming Solver. Technical report, Lund University, 2013.

92

[43]

[44]

[45]

[46]

Hartmut Lackner. Domain-Centered Product Line Testing. PhD thesis,
Humboldt-Universitat zu Berlin, 2017.

Hartmut Lackner and Bernd-Holger Schlingloff. Modeling for automated
test generation - a comparison. In Holger Giese, Michaela Huhn, Jan
Phillips, and Bernhard Schétz, editors, Dagstuhl-Workshop MBEES: Mod-
ellbasierte Entwicklung eingebetteter Systeme VIII, Schloss Dagstuhl, Ger-
many, 2012, Tagungsband Modellbasierte Entwicklung eingebetteter Sys-
teme, pages 57-70. fortiss GmbH, Miinchen, 2012.

Beatriz Prez Lamancha, Macario Polo, and Mario Piattini. Systematic
Review on Software Product Line Testing. Comm. Comp. Inf. Sci., 170:58—
71, 2013.

Malte Lochau, Johannes Biirdek, Stefan Holzle, and Andy Schiirr. Spec-
ification and automated validation of staged reconfiguration processes for

dynamic software product lines. Software €& Systems Modeling, 16(1):125—
152, Feb 2017.

Malte Lochau, Ina Schaefer, Jochen Kamischke, and Sascha Lity. Incre-
mental Model-Based Testing of Delta-Oriented Software Product Lines.
In David Hutchison, Takeo Kanade, Josef Kittler, Jon M. Kleinberg,
Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz,
C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos,
Doug Tygar, Moshe Y. Vardi, Gerhard Weikum, Achim D. Brucker, and
Jacques Julliand, editors, Tests and Proofs, volume 7305 of Lecture Notes
in Computer Science, pages 67-82. Springer Berlin Heidelberg, Berlin and
Heidelberg, 2012.

John D. McGregor. Testing a Software Product Line, 2001.

John D. McGregor, Linda M. Northrop, Salah Jarrad, and Klaus Pohl.
Initiating Software Product Lines. IEEE Softw., 19(4):24-27, 2002.

Atif Memon. Advances in Computers, volume 86. Academic Press, 2012.

Paulo Anselmo da Mota Silveira Neto, Ivan do Carmo Machado, John D.
McGregor, Eduardo Santana de Almeida, and Silvio Romero de Lemos
Meira. A Systematic Mapping Study of Software Product Lines Testing.
Inf. Softw. Techn., 53(5):407-423, 2011.

H. Muccini and A. van der Hoek. Towards Testing Product Line Archi-
tectures. Electronic Notes in Theoretical Computer Science, 82(6):99-109,
2003.

Glenford J. Myers, Corey Sandler, and Tom Badgett. The art of software
testing. John Wiley & Sons, Hoboken and N.J, 3rd ed edition, 2012.

Object Management Group. Unified Modeling Language Superstructure.
Version 2.4.1. Specification, OMG, 2011.

93

[55]

[62]

[63]

[64]

Jeff Offutt, Shaoying Liu, Aynur Abdurazik, and Paul Ammann. Gener-
ating test data from state-based specifications. The Journal of Software
Testing, Verification and Reliability, 13:25-53, 2003.

Erika Mir Olimpiew and Hassan Gomaa. Model-Based Testing for Appli-
cations Derived from Software Product Lines. ACM SIGSOFT Software
Engineering Notes, 30(4):1-7, 2005.

Sebastian Oster, Ivan Zorcic, Florian Markert, and Malte Lochau. MoSo-
PoLiTe: tool support for pairwise and model-based software product line
testing. In VaMoS ’11, pages 79-82, 2011.

David Lorge Parnas. On the Design and Development of Program Families.
IEEE Trans. Softw. Eng., 2(1):1-9, 1976.

Jan Peleska. Industrial-Strength Model-Based Testing - State of the Art
and Current Challenges. FElectronic Proceedings in Theoretical Computer
Science, 111:3-28, 2013.

Gilles Perrouin, Sebastian Oster, Sagar Sen, Jacques Klein, Benoit Baudry,
and Yves Traon. Pairwise testing for software product lines: comparison
of two approaches. Software Quality Journal, 20(3-4):605-643, 2012.

Gilles Perrouin, Sagar Sen, J. Klein, B. Baudry, and Yves Le Traon. Au-
tomated and Scalable T-wise Test Case Generation Strategies for Software
Product Lines. In ICST ’10: International Conference on Software Test-
ing, Verification and Validation, pages 459-468, Los Alamitos and Calif
and Piscataway and N.J, 2010. IEEE Computer Society and IEEE.

Klaus Pohl, Giinter Bockle, and Linden, Frank J. van der. Software Prod-
uct Line Engineering: Foundations, Principles and Techniques. Springer-
Verlag New York, Inc, Secaucus and NJ and USA, 2005.

Klaus Pohl and Andreas Metzger. Software Product Line Testing. Com-
munications of the ACM, 49(12):78-81, 2006.

Ina Schaefer. Variability Modelling for Model-Driven Development of Soft-
ware Product Lines Systems, Linz, Austria, January 27-29, 2010. Proceed-
ings. In David Benavides, D. Batory, and Paul Grinbacher, editors, Fourth
International Workshop on Variability Modelling of Software-Intensive Sys-
tems, Linz, Austria, January 27-29, 2010. Proceedings, volume 37 of ICB-
Research Report, pages 85-92. Universitat Duisburg-Essen, 2010.

Klaus Schmid and Holger Eichelberger. EASy-Producer: From product
lines to variability-rich software ecosystems. In Proceedings of the 20th

International Systems and Software Product Line Conference, pages 309—
309. ACM, 2016.

o4

[66]

[67]

[70]

[71]

73]

[74]

Amir Molzam Sharifloo, Andreas Metzger, Clément Quinton, Luciano
Baresi, and Klaus Pohl. Learning and evolution in dynamic software prod-
uct lines. In Proceedings of the 11th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, SEAMS ’16, pages
158-164, New York, NY, USA, 2016. ACM.

Zoé Stephenson, Yuan Zhan, John Clark, and John McDermid. Test Data
Generation for Product Lines - A Mutation Testing Approach. In Birgit
Geppert, Charles Krueger, and Jenny Li, editors, SPLiT ’04: Proceedings
of the International Workshop on Software Product Line Testing, pages
13-18, Boston and MA, 2004.

Thomas Thiim, Christian Késtner, Fabian Benduhn, Jens Meinicke, Gunter
Saake, and Thomas Leich. FeatureIDE: An Extensible Framework for
Feature-oriented Software Development. Sci. Comp. Prog., 79:70-85, 2014.

Thomas Thiim, Christian Késtner, Fabian Benduhn, Jens Meinicke, Gunter
Saake, and Thomas Leich. Featureide: An extensible framework for feature-
oriented software development. Sci. Comput. Program., 79:70-85, January
2014.

Mark Utting and Bruno Legeard. Practical model-based testing: A tools
approach. Morgan Kaufmann Publishers Inc., San Francisco and CA and
USA, 1 edition, 2006.

Markus Voelter. DSL engineering: Designing, implementing and using
domain-specific languages. CreateSpace Independent Publishing Platform,
2013.

Stephan Weiflleder. Influencing Factors in Model-Based Testing with UML
State Machines: Report on an Industrial Cooperation. In David Hutchi-
son, Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern,
John C. Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bern-
hard Steffen, Madhu Sudan, Demetri Terzopoulos, Doug Tygar, Moshe Y.
Vardi, Gerhard Weikum, Andy Schiirr, and Bran Selic, editors, Model
Driven Engineering Languages and Systems, volume 5795 of Lecture Notes
in Computer Science, pages 211-225. Springer Berlin Heidelberg, Berlin
and Heidelberg, 2009.

Stephan WeiBlleder and Dehla Sokenou. ParTeG - A Model-Based Testing
Tool. Softwaretechnik-Trends, 30(2), 2010.

Stephan Weiflleder, Florian Wartenberg, and Hartmut Lackner. Automated
Test Design for Boundaries of Product Line Variants. In Khaled El-Fakih,
Gerassimos Barlas, and Nina Yevtushenko, editors, Testing Software and
Systems, volume 9447, pages 86—101. Springer International Publishing,
Cham, 2015.

99

[75]

[76]

Justyna Zander, Ina Schieferdecker, and Pieter J. Mosterman. A Taxonomy
of Model-Based Testing for Embedded Systems from Multiple Industry
Domains. In Justyna Zander, Ina Schieferdecker, and Pieter J. Mosterman,
editors, Model-based testing for embedded systems, Computational analysis,
synthesis, and design of dynamic systems. CRC Press, Boca Raton, 2011.

Yunshan Zhao, Yawen Wang, Yunzhan Gong, Honghe Chen, Qing Xiao,
and Zhaohong Yang. STVL: Improve the precision of static defect detection
with symbolic three-valued logic. APSEC, pages 179-186, 2011.

96

