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Abstract— Performance is one of the most important soft-
ware quality attributes. It heavily relies on system design
and software architecture. Therefore, performance evaluation
in the early design phases is important to avoid a time-
consuming costly trial-and-error approach. Model-based per-
formance prediction provides means of well-informed trade-off
decisions. It answers whether the software system will meet
its performance goals, and which of two or more competing
design alternatives is the most suitable. This paper investigates
the use of model checking for the analysis of performance
requirements in industrial scale problems. We model an actual
case study of autonomous transport robots in production plants,
to experiment with stochastic model checking for the prediction
of system performance. Via the case study, we show a modelling
strategy, a way to measure different performance metrics, and
the resulting trade-off decisions which can be made among
design alternatives.

I. INTRODUCTION

The characteristics and success of a software based sys-
tem is determined not only by its functionality, but also
by non-functional requirements. Important quality attributes
comprise requirements on performance, reliability, usability,
security, availability, and others [1]. Such non-functional
requirements may be driven by business considerations such
as costs and time-to-market. To create a successful system,
not only the functional requirements, but also the quality
attributes must be satisfied. However, often single software
quality attributes can not be considered in isolation. Software
quality attributes may depend on one another, or be in
conflict with each other. Finding the right balance between
competing software quality attributes often is the key point
in the construction of a system. A survey [2] of industrial
software development reports that usability, performance and
reliability are the three most important quality aspects. While
usability is a main quality goal for consumer systems, it is
largely a function of the user interface. On the other hand,
performance and reliability heavily rely on the system design
and software architecture. In the software industry, perfor-
mance investigations are often deferred until an implemen-
tation of the system has been build and measurements can be
conducted. Performance problems detected at this stage may
be so severe that they can require considerable changes in the
design, for example, at the software architecture level. With
such a development process, performance improvement often
becomes a time-consuming costly trial-and-error approach.

Therefore, it is necessary to develop methods for ana-
lyzing and balancing non-functional requirements early in

the development process. In a systematic engineering ap-
proach, performance should be predictable before the system
is actually realized. The predictions should be based on
scientific theories that enable a forecast, a kind of what-if
analysis, already on the model level [3]. Model checking is a
prominent approach to verify software design models. Safety
standards like IEC 61508 recommend the use of formal
verification, e.g., model checking, for achieving the highest
safety integrity level. Therefore, large research efforts have
gone into the development of model checking tools and tech-
niques for safety-critical systems. However, model checking
has not been widely used for the performance prediction
of systems. An industrial survey [4] showed that the most
common architecture review technique is experience-based
reasoning (83 percent). The use of mathematical analysis
and model checking is still not widely accepted.

In this paper, we investigate the use of model checking for
the analysis of non-functional requirements in industrial scale
problems. We model an actual case study of autonomous
transport robots in production plants, to experiment with
stochastic model checking for the prediction of system
performance. Via the case study, we show a modelling
strategy, a way to measure different performance metrics,
and the resulting trade-off decisions which can be made
among design alternatives. Our experiments show that model
checking is useful to make well-informed decisions on
various parameters of the design.

The rest of the paper is structured as follows: In section 2,
we briefly review performance metrics and mathematical
models. Section 3 recalls probabilistic model checking and
how it provides means of performance evaluation. Our case
study of autonomous transport robots is presented in sec-
tion 4. We discuss the results and implications in section 5.
Section 6 reviews related work. Finally, we conclude our
paper and outline future work.

II. PERFORMANCE PREDICTION

A. Metrics

Non-functional requirements are often specified ambigu-
ously. For example, the statement “The response time must
be as fast as possible” is difficult to verify. Therefore, the
requirement should be refined to a precise quantitative form,
e.g., “The response time shall be less than 0.5 seconds in 98
percent of all user input actions”. Performance is described
by specific metrics. The most important ones are response
time, throughput, and device utilization [5]. The response



Fig. 1. A stochastic timed automata

time of a system is defined as the difference between the
time at which an activity is completed and the time at which
it was initiated. The throughput of a system refers to the rate
at which a system handles requests; it is usually measured
in tasks per time unit. The device utilization refers to the
ratio of busy time of a resource by the total elapsed time of
a measurement period.

B. Performance Prediction

The number of parameters of a system that may vary
independently is called its degrees of freedom. Generally,
a projected software has many degrees of freedom, and,
thus, many design alternatives. In order to balance non-
functional requirements, software engineers have to explore
these alternatives and find optimal values for the parameters
of the system. This design space exploration can be done
using mathematical models and metrics. The model is solved
using either analytical, numerical or simulation techniques.
A quantitative prediction derived from such models enables
well-informed trade-off decisions in the early design phases.
It answers the question whether the software system will
meet its performance goals, and which of two or more
competing design alternatives is the most suitable.

C. Mathematical Modelling

Historically, the first performance evaluation methods were
based on queueing theory. In this theory, a queueing model
is constructed so that queue lengths and waiting time can be
predicted. This method has been widely applied especially
in telecommunications. Many systems, especially embed-
ded systems, require models integrating both real-time con-
straints and probabilistic aspects. Stochastic timed automata
(STA) [6] integrate both features into an extension of timed
automata (TA). TA are labeled transition systems with clocks
to measure time elapsed, guards to specify when an action is
enabled, and urgency constraints to force actions to happen
at some ultimate time instant. STA incorporate branching
edges where weights can be added to give a distribution
on discrete transitions and allow probabilistic transitions.
Fig. 1 shows an example of STA and its distribution of the
overall reachability time to S4 is given in Fig. 2. The timing
behavior is controlled by clock x. The states S{0,1,2,3} have
the invariant defined x ≤ 4. Each transition has the guard
condition defined x ≥ 2 and clock x is reset. Thus transitions
occur when the clock value is 2 ≤ x ≤ 4. In addition, the
transition from S0 follows the probabilistic choice ( 16 and
5
6 ).

Fig. 2. A distribution of reachability time

III. MODEL CHECKING APPROACH

This section recalls the basic concept of probabilistic
model checking and how it provides means of performance
analysis. Afterwards, we show comparisons of numerical
and statistical approaches in probabilistic model checking.
Finally, we give a brief introduction to UPPAAL SMC which
ii a tool for statistic model checking.

A. Probabilistic Model Checking and Performance Analysis

Model checking is an automated verification technique that
explores all possible system states of a finite-state model to
check whether a formal property holds for that model [7].
Typically, formal properties are expressed in temporal logic,
e.g., LTL and CTL. Traditionally, model checking has been
used to verify the functional correctness of systems, which
is represented as safety, liveness and fairness properties. The
extension of temporal logic with probabilistic property, such
as, Continuous Stochastic Logic (CSL) [8], Probabilistic real
time Computation Tree Logic (PCTL) [9] and Weighted
Metric Temporal Logic (WMTL) [10], provides a power-
ful means to specify both path-based and traditional state-
based performance measures on probabilistic models. The
probabilistic model checking incorporates the performability-
like evaluation techniques into model-checking tools. As
described in [11], the largest advantage of model checking
for performance analysis is that all algorithmic details, all
detailed and non-trivial numerical computation steps are hid-
den to the user. Without any expert knowledge on numerical
analysis techniques, performance evaluation is possible.

B. Statistical Model Checking

One of the major practical obstacles shared by model
checking is the state space explosion problem. Industrial
software systems often have massive states. Scaling model
checking technique to large systems has been a challenge for
decades and driven the development of various techniques to
combat against the state space explosion problem.

Probabilistic model checking is classified into numerical
and statistical approaches. The numerical approach can often
provide a higher accuracy than the statistical approach,
whose results are probabilistic in nature. However, the nu-
merical approach is far more memory intensive. Therefore,



the state explosion problem is even more severe. On the
other hand, the statistical approach uses far less memory
and is time intensive. A survey [12] demonstrates that the
complexity of both the numerical and the statistical approach
is typically linear in the time-bound of the property, but that
the statistical approach scales better with the size of the state
space. Furthermore, the statistical approach requires consid-
erably less memory than the numerical approach, allowing us
to verify models far beyond the scope of numerical solution
methods.

The core idea of statistical model checking (SMC) is to
monitor some simulations of the system, and then use results
from the statistics area (including sequential hypothesis
testing or Monte Carlo simulation) to decide whether the
system satisfies the property with some degree of confidence.
SMC can be seen as a trade-off between testing and formal
verification.

C. UPPAAL SMC Model Checker

UPPAAL SMC [13] is an extension of UPPAAL for statis-
tical model checking. The model checker verifies quantitative
properties by estimating the probabilities and probability
distributions over time with given confidence levels. The tool
consists of a graphical modeling editor, a simulator, and a
verifier. The modeling formalism of UPPAAL SMC is based
on a stochastic timed automata (STA). The component STAs
communicate via broadcast channels and shared variables to
generate Networks of Stochastic Timed Automata (NSTA).
In the verifier, a formal property is specified by Weighted
Metric Temporal Logic (WMTL) and it is mainly classified
into three types:

Probability estimation: The probability PM (♦x≤Cap)
for a given NSTA M can be estimated by the query:
“Pr[bound] (ap)”, where ap is a conjunction of predicates
over the state of a NSTA and bound defines how to bound
the runs. The bound is defined either by time, by cost or by
number of discrete steps.

Hypothesis testing: Whether the probability
PM (♦x≤Cap) for a given NSTA M is greater or equal to a
certain threshold p ∈ [0, 1] can be estimated by the query:
“Pr[bound] (ψ) >= p”. The formula ψ is either <>q or []q
where q is a state predicate.

Probability comparison: Whether the probability
PM (♦x≤Cap1) is greater than PM (♦x≤Cap2) can
be estimated by the query: “Pr[bound1](ψ1) >=
Pr[bound2](ψ2)”.

IV. CASE STUDY

We investigate the use of model checking for the analysis
of performance requirements in industrial scale problems. In
this section, we give a general idea of autonomous transport
robots and its typical usage scenario. Then we address a
performance modeling and a way to measure performance
metrics.

A. Autonomous Transport Robots
A collaborative embedded systems (CES) is an intelligent

agent in a cyber-physical system which cooperates with
others by negotiation to fulfill a common task [14]. The ad-
vantages of CES are autonomous, scalability, changeableness
and redundancy. Our case study is applied to autonomous
transport robots, which is one of industrial CES. Autonomous
transport robots is vehicles designed for carrying loads
in storage facilities and production plants. A typical fleet
consists of 4-20 robots which can carry 50-200 kg load
each. Their main use is in production logistics to ensure a
timely delivery and disposal of material to different sites in
a production process. Given the description of a target point,
the robot autonomously determines its current position, the
optimal route to the destination and the maximal speed along
this route. A typical usage scenario is given below:

1) An assemble station creates a job which requires a
robot to deliver the packet to the target location

2) The assemble station notifies to the master control
station

3) The master control station assigns the job to an idling
robot

4) The robot goes to the station and loads the packet
5) The robot travels to the specific target location au-

tonomously
6) The robot unloads the packet once the robot reaches

the target location
7) The robot notifies to the master control station that the

job is done
If there is no robot available, the job is postponed until some
robot finishes its current job.

A practical issue shared in this realm is difficulty in
estimating the optimal number of robots to achieve the
desired throughput. If a road in production plants is narrow,
a robot has to wait while another robot is passing through
the road in order to avoid collisions. If a production plant
consists of multiple floors, a robot has to check the avail-
ability of lifts and wait until one of them becomes free.
Generally, as the number of robots increases, more jobs can
be handled at once. However, the probability of collisions
among robots also becomes higher. The throughput does not
rise linearly because of overheads of the synchronization,
and even overheads make the throughput worse.

B. Performance Modeling
The purposes of constructing performance model are to

evaluate how many robots are necessary to satisfy its per-
formance goals, and which of design alternatives is the most
suitable. For these purposes, a model of software system
should be easily compared with design alternatives under the
several usage scenarios and environments where the software
system is deployed. That should be taken into account in
the modeling process. Our model of autonomous transport
robots is composed of three kinds of submodels (shown in
Fig. 3), that is, system model, usage model and resource
model. Submodels keep loose coupling among each other
and can be modified independently.



Fig. 3. The performance model structure

System model is the model of software system. Our system
model comprises the behavior model of robot, the model
of job scheduler and the model of synchronization between
the robots. The behavior model of robot is defined based
on the scenario explained in the previous section. During
autonomous operation, the robot has to travel to specific
target locations. Assume that each robot has the map which
determines the accessible floor space and allows the robot
to find the optimal route from the its current position to the
target location. A factory layout floor plan is modeled on
adjacency matrix. The behavior model of robot determines
the optimal route by Dijkstra’s algorithm so that the model
can be independent from the topology of factory layout floor
plan. The model of job scheduler determines the assignment
of tasks to robots. Whenever a request for a transport job
arrives, the job scheduler checks which robot is available.
If there is more than one robot available, it is determined
which of these has the best conditions. The job scheduler
follows a simple first-in, first-out (FIFO) way. The model
of synchronization purposes to resolve collisions between
robots. When the road is narrow, only one robot can go
through at a time. To avoid collisions, a robot has to wait
while another robot is passing through the road. This type
of synchronization mechanism has been formalized as a
semaphore model. Cicirelli et al. [15] proposed a library
of UPPAAL timed automata with respect to concurrent and
synchronization mechanisms. We model the synchronization
to realize the exclusive control on a counting semaphore
automata based on the library. If there are several waiting
robots, the one with the highest priority is scheduled first.
The case study evaluates three variants of scheduling policy
as follows:

1) FIFO
2) Prioritize robots with the packet

Fig. 4. Timed automata of assemble station

Fig. 5. Topology of factory floor plan

3) Prioritize robots without the packet

These variants of scheduling policy are considered as design
alternatives.

Usage model is the model of usage scenario and workload.
Usage scenario refers a sequence to stimulate the software
system and its intervals. Workload represents the number of
users concurrently present in the system. In another word,
usage model defines interactions between users and the
software system. Our usage model is the model of assemble
stations which create jobs periodically. We formalize two
types of usage model: optimal usage model and jitter usage
model. The optimum usage model produces a job without
any jitter. After generating the first job at an arbitrary time
instant, the model produces jobs periodically with a period p.
In jitter usage model, on the other hand, each job (apart form
the initial one) is produced within an interval [p− a, p+ b].
The jitter usage model is formalized as non-anchord jitter
automata (shown in Fig. 4) on the basis of [16]. Notice that
for a = b = 0 we obtain a timed automata that is equivalent
to the optimal usage model.

Resource model is the environment model where the
software system is deployed, for example, network, servers
and physical environment. Our resource model is the factory
layout floor plan where the autonomous transport robots
is deployed. We modeled a typical topology of floor plan,
shown in Fig. 5. Each node is connected by a weighted edge,
which represents distance between a node to node. Node 0
represents robot pool where all robots are allocated at the
beginning. The assemble stations are placed at node 1. Target
location is assigned at node 4. The road between node 2 and
3 is the critical section where only one robot can go through
at a time. Robots need to wait at node 2 or 3 until other
robots pass through the road.

C. Performance Metrics

As stated in Section 2, we consider three types of perfor-
mance metrics, i.e., response time, throughput, and device
utilization. We illustrate how to measure and verify these
metrics in UPAALL SMC.



Response time refers time difference between the time
when a packet is created by an assemble station and the
time when a robot finish to deriver the packet to the target
location. The requirement is declared like “The response time
within the first 1000 time unit shall be less than X time
unit in 80 percent of all requests”. The response time is
summation of the queueing time until the robot loads the
packet, and the delivery time from the assemble station to
the target location. However UPPAAL SMC doesn’t allow
clock values to store into local variables. We can not measure
response time by this way. As an alternative solution, we
create an observer automaton which capture the lifetime
of a packet between the creation and the end. Ideally, the
observer automaton should be created every time when the
packet is created by assemble stations. However the dynamic
creation of automata is not supported by UPPAAL SMC.
We prepare one observer automaton and assign a lifetime of
packet dynamically at a time. This solution enables to take
some samples of response time through the runtime. The
query over the observer automaton (ObsRes) is expressed as
hypothesis testing pattern: “Pr[<=1000] ([] ObsRes.Active
imply ObsRes.x <= X) >= 0.8”.

Throughput refers the number of packets delivered in a
certain unit. The requirement is declared like “The through-
put within the first 1000 time unit shall be more than X in
90% cases”. We also create an observer automaton which
counts the total number of delivered packets by robots. The
query over the observer automaton (ObsThr) is expressed:
“Pr[<=1000] (<> ObsThr.num packet >= X) >= 0.9”.

Device utilization refers the ratio of waiting time at the
critical section to total delivery time, and the ratio of idling
time to total activation time. For the same reason as response
time, these ratios can not be measured. Instead of using
ratios, we redefine the requirements, like “The each waiting
time within the first 1000 time unit shall be less than X
time unit in 80 percent of all cases” and “The each idling
time within the first 1000 time unit shall be less than
X time unit in 80 percent of all cases”. The queries are
expressed: “Pr[<=1000] ([] forall(i:T) Robot(i).WAIT imply
Robot(i).x <= X) >= 0.8” and “Pr[<=1000] ([] forall(i:T)
Robot(i).IDLE imply Robot(i).x <= X) >= 0.8”.

V. PERFORMANCE PREDICTION AND TRADE-OFF
ANALYSIS

We run verifications on UPPAAL SMC. The parameter
settings of our usage model is shown in Table I. We allocate 6
assemble stations which create jobs every 100 time units with
maximum 30 time units of jitter. As the number of robots
increases, more jobs can be handled at once. However the
probability of collision among robots also becomes higher.
Thus the throughput does not rise linearly because of over-
heads of the synchronization. Even the overhead makes the
throughput worse. It is important to find the optimal number
of robots to achieve the performance targets. We vary the
number of robots from 4 to 20 and verify whether the model
satisfy each performance target. Performance requirements
should be specified for the peak hour because it is that

TABLE I
PARAMETER OF ASSEMBLE STATIONS

Parameter Value
Number of Assemble Stations 6

Job Creation Intervals (p) 100
Jitter (a, b) 30

TABLE II
VERIFICATION RESULTS OF FIFO SCHEDULING MODEL

Number of Robots
Performance Property 9 10 11 12 13 15

ResTime <= 450 in 80% cases U U U U S S
Throughput >= 30 in 90% cases U S S U U S

WaitTime <= 50 in 80% cases S S U U U U
IdleTime <= 450 in 80% cases S S S U U U

hour that matters the most in almost all applications [5].
We analyze the performance of the system at the first 1000
time unit.

Table II presents significant cases of the verification result
by FIFO scheduling model. In the table, letter “S” stands
for satisfied and “U” stands for unsatisfied. The result
shows that there is no configuration which satisfies all
performance targets. 10 robots case balances throughput and
device utilization. On the other hand, 15 robots case balances
response time and throughput. The results provide well-
informed trade-off decision for stakeholders. The decision
will be made through prioritizing performance metrics and
considering other quality attributes and business considera-
tions.

Secondly, we compare design alternatives which have
different scheduling policy of synchronization. Table III
shows the verification result of the model whose scheduling
policy prioritize the robots with the packet. This result shows
that performance is worse than the FIFO scheduling policy.
The result of prioritizing the robots without the packet
is almost same as Table III. These results prove that the
FIFO scheduling policy is the most suitable design from the
performance point of view.

VI. RELATED WORK

In the context of software architecture, performance eval-
uation is known as the way of model checking, simulation
and scenario-based approach.

A comprehensive overview on the model checking ap-
proach to continuous time Markov chains and Markov reward
models is explained in [17]. The paper also presents typical

TABLE III
VERIFICATION RESULTS OF PRIORITIZING ROBOTS WITH THE PACKET

SCHEDULING MODEL

Number of Robots
Performance Property 9 10 11 12 13 15

ResTime <= 450 in 80% cases U U U U S S
Throughput >= 30 in 90% cases U U U U U S

WaitTime <= 50 in 80% cases U U U U U U
IdleTime <= 450 in 80% cases S S S U U U



types of performance and dependability measures in CSL. As
an example of industrial scale problem using probabilistic
model checking for performance evaluation, Bozzano et
al. [18] defines extended AADL (Architecture Analysis and
Design Language) model which aims to handle aerospace
systems.

A simulation approach to evaluate component based soft-
ware architectures is presented in Palladio [3]. A software
architecture model formalized by Palladio Component Model
(PCM) is transformed into a queueing networks for perfor-
mance analysis and a discrete time Markov chains (DTMCs)
for reliability analysis.

A scenario-based evaluation, known as Architecture Trade-
off Analysis Method (ATAM), is presented in [19]. ATAM
is used to evaluate software architecture and identify the
conflicts and trade-offs among software quality attributes
by defining critical scenarios and assessing them in group
meetings.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated the use of model checking
for the analysis of non-functional requirements in industrial
scale problems. We modeled an actual case study of au-
tonomous transport robots in production plants, to experi-
ment with stochastic model checking for the prediction of
system performance. Via the case study, we addressed how
to construct the performance model and how to formal-
ize performance metrics. We ran performance verifications
on UPPAAL SMC. The verification results provided well-
informed trade-off decision with respect to how many robots
are necessary to satisfy the performance goals, and which
design alternatives is the most suitable. In the future, we plan
to extended it to handle more complex systems. This paper
dealt with the system comprised of homogeneous robots.
Verification of a system with heterogeneous robots whose
capabilities are diverse is more challenging. Our long is
performance modelling and verification of decentralized AI
systems (multi-agent systems), where robots interact with
each other and autonomously decide upon which jobs to
accept.
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