
Fundamenta Informaticae 153 (2017) 173–198 173

DOI 10.3233/FI-2017-1536

IOS Press

Monitoring with Parametrized Extended Life Sequence Charts

Ming Chai∗

National Engineering Research Center of Rail Transportation Operation and Control System,

Beijing Jiaotong University, China &

Institut für Informatik, Humboldt Universität zu Berlin, Germany

chaiming@bjtu.edu.cn

Bernd-Holger Schlingloff
Institut für Informatik, Humboldt Universität zu Berlin, Germany &

Fraunhofer FOKUS, Berlin, Germany

hs@informatik.hu-berlin.de

Abstract. Runtime verification is a lightweight formal method that checks whether an execution
of a system satisfies a given property. A challenge in building a runtime verification system is
to define a suitable monitoring specification language, i.e., a language that is expressive, of rea-
sonable complexity, and easy to understand. In this paper, we extend live sequence charts (LSCs,
[1]) for the specification of properties in systems monitoring. We define Parametrized extended
LSCs (PeLSCs) by introducing the notions of necessary prechart, concatenation, and condition-
and assignment-structure. With these PeLSCs, necessary and sufficient conditions of certain ob-
servations, and parametric properties can be specified in an intuitive way. We prove some results
about the expressiveness of extended LSCs. In particular, we show that LSCs with necessary
precharts are strictly more expressive than standard LSCs, and that iteration-free extended LSCs
have the same expressive power as linear temporal logic (LTL). To generate monitors, we develop
translations of PeLSCs into hybrid logic. We show that the complexity of the word problem of
PeLSCs is linear with respect to the length of input traces, thus our formalism is well-suited for
online monitoring of communicating systems.

Keywords: Runtime verification, Live sequence charts, Parameterized property, LTL, Hybrid
logic

∗Address for correspondence: National Engineering Research Center of Rail Transportation Operation and Control System,
Beijing Jiaotong University, China.

Received December 2015; revised April 2017.

174 M. Chai, B-H. Schlingloff / Monitoring with Parametrized Extended Life Sequence Charts

1. Introduction

Even with most advanced quality assurance techniques, correctness of complex software is hard to
be guaranteed within the development phases. To solve this problem, runtime verification has been
proposed to provide on-going protection during the operational phase. Runtime verification checks
whether an execution of a computational system (formalized by a sequence of events) satisfies or
violates a given correctness property. It is performed using a monitor. This is a device or a piece
of software that observes the system under monitoring (SuM) and generates a certain verdict (true or
false) as the result. Compared to model checking and testing, in runtime verification one does not try
to cover all possible executions of the SuM. It detects failures of an SuM directly in its actual running
environment. This avoids some shortcomings of other techniques, such as imprecision of the model
in model checking, and inadequateness of the artificial environment in testing.

One of the main challenges in building a runtime verification system is to define a suitable specifi-
cation language for monitoring properties. A monitoring specification language should be expressive
and attractive [2]: The language should be able to express all interesting monitoring properties, and it
should keep the formulations simple for simple properties. A simple formulation means that the size
of the formula is small, and the formula is easily understood by users (e.g., system designers).

Over the last years, various runtime verification systems have been developed, using some forms
of temporal logic, including linear temporal logic (LTL), metric temporal logic (MTL), time proposi-
tional temporal logic (TPTL) and first-order temporal logic (LTLFO). Also, regular expressions and
context-free grammars are supported by many runtime verification systems. Although these speci-
fication languages are expressive and technically sound for monitoring, software engineers are not
familiar with them and need extensive training to use them efficiently.

Graphical languages such as message sequence charts (MSCs) and UML sequence diagrams
(UML-SDs) are widely used in industry for system specifications. However, as semi-formal lan-
guages, the semantics of MSCs and UML-SDs is not defined formally. One of the central questions
in this context is: “does an MSC (or a UML-SD) describe all possible executions, or does it describe
a set of sample executions of the system?” [3]. Since there does not seem to be an agreement on this
question, these languages are not suitable for specifying correctness properties to be monitored.

In this paper, we investigate the use of live sequence charts (LSCs) as proposed by Damm and
Harel [1] for monitoring specifications. The language of LSCs is an extension of MSCs. Using the
notions of universal and existential chart, it can express that a behaviour of a system is necessary or
possible. A universal chart specifies a necessary (i.e., required) behaviour of the system, whereas
an existential chart specifies a possible (i.e., allowed) behaviour. The LSC language also introduces
the notion of “temperature” of an element (i.e., hot and cold elements) for distinguishing between
mandatory (hot) elements and provisional (cold) elements.

For monitoring, we want to specify required behaviour in order to detect failures of a system.
Thus, we focus on universal LSCs. A universal chart typically consists of two components: a prechart
and a main chart. The intended meaning is that if the prechart is executed (i.e., the underlying system
exhibits an execution which is specified by the prechart), then the main chart must be executed after-
wards. The standard definition thus interprets the prechart as a sufficient condition for the main chart.
However, standard LSCs are not expressive enough for monitoring.

M. Chai, B-H. Schlingloff / Monitoring with Parametrized Extended Life Sequence Charts 175

Consider a client/server system that allows clients to access a server, and consider the following
properties, where a monitor can observe the propositional events login and logout.

(P1): Whenever there is a login to the server, it must be followed by a logout.
(P2): A logout event can not occur, unless it is preceded by a login.
(P3): Whenever a client performs a login to the server, it must logout within 200 sec.

Observing a login is a sufficient condition for a logout in P1, whereas it is a necessary condition in P2.
Property P3 involves parameters time and clients, which are on infinite and unspecified domains. The
expected executions of the first two properties can be formalized by the following regular expressions
L1 and L2, respectively. Let Στ be Σ\{login, logout}, i.e., the set of all events which are not a login
or logout.

L1 , Σ∗τ ◦ login ◦ Σ∗τ ◦ Σ∗τ ◦ logout ◦ Σ∗τ
L2 , Σ∗τ ◦ login ◦ Σ∗τ ◦ Σ∗τ ◦ logout ◦ Σ∗τ

For the property (P3), assume that each of the login and logout events carries a client name and
a time stamp. An execution of this system can be formalized by a sequence of parametrized events.
Each of the propositional events has two parameters client id (id) and time stamp (time). With these
definitions, property (P3) can be written more formally as follows:

Whenever a login event happens with (id = x) and (time = y), a logout event with (id = x′)
and (time = y′) should occur afterwards, where (x′ = x) and (y′ ≤ (y + 200)).

As has been proved in our previous work [4], necessary conditions of statements (i.e., with the
language of L2) cannot be expressed by a finite set of negation-free universal LSCs. Furthermore,
standard LSCs cannot express parametric properties (e.g., the property P3), where the correctness
depends on both the temporal relations of events and data carried by the events [5]. One possible
workaround for this shortage is to formalize each assignment of data with a unique atomic proposition.
However, since the domain of data can be infinite or unknown, this approach is not feasible in general.

To express properties with necessary conditions, we define extended LSCs (eLSCs) by introduc-
ing modal precharts. That is, we distinguish between precharts that are necessary and those that
are sufficient conditions of main charts. For dealing with parametric properties, we further define
parametrized eLSCs (PeLSCs) by introducing assignment- and condition-structures. An assignment
structure is used to store an arbitrary parameter value, and a condition structure is used to express
constraints on such values.

The PeLSCs of Fig. 1 specify the three properties above. The chart U1 is a standard LSC formal-
izing (P1). Property P2 cannot be formalized with LSCs; an eLSC for it is U2. Property P3 involves
parameters id and time and is expressed with the PeLSC U3.

In this paper, we analyze the expressiveness of various sub-languages of PeLSCs. For generating
monitors from such specifications, we translate PeLSCs into Hybrid Logic (HL) [6]. A monitor es-
sentially solves the word-problem: given a trace, decide whether the trace is in the language defined

176 M. Chai, B-H. Schlingloff / Monitoring with Parametrized Extended Life Sequence Charts

(a) LSC for P1 (b) eLSC for P2 (c) PeLSC for P3

Figure 1. Examples: extended LSCs for properties of a client/server system

by a monitoring property. As one main result of this paper, we prove that the complexity of the word-
problem of PeLSCs is linear if the propositions in the condition structures express only comparisons
of parameter values. Thus, monitoring can be done on-line, while the SuM is running.

The rest of the paper is organized as follows. Section 2 outlines related work. Section 3 introduces
parametrized eLSCs (PeLSCs), including their syntax and trace-based semantics. Section 4 presents
results on the expressiveness of eLSCs. Section 5 gives a translation of PeLSCs into HL, and proves
the complexity of the word problem of PeLSCs . Section 6 contains some conclusions and hints for
future work.

2. Related work

The problem of analysing MSCs and related formalisms has a long tradition. Alur et. al. study the
model checking problems of MSCs, MSC-graphs and hierarchical MSC-graphs [7]. They show that
the complexity of model checking for MSCs and synchronous MSC-graphs is coNP-complete, and
for asynchronous MSC-graphs it is undecidable. There are some runtime verification systems using
UML-SDs for specifying monitoring properties. Simmonds et. al. use UML-SD to monitor Web
Service Conversations [8]. Ciraci et. al. propose a technique to check the correspondence between
UML-SD models and implementations [9]. Unfortunately, MSCs and UML-SDs are not expressive
enough for monitoring because they cannot distinguish between required and allowed behaviours of a
system.

Harel et. al. propose a play-in/play-out approach [10] for modelling with LSCs. Behaviours of
the system are captured by play-in; and the system is tested by play-out through executing the LSC
specification directly. Bontemps et. al. prove that any LSC specification can be translated into LTL
formulae [11]. Kugler et. al. [12] develop a translation of LSCs into LTL formulae, where the size
of the resulting LTL formula is polynomial in the number of events appearing in the LSCs. The
expressive power and complexity of LSCs are discussed in the survey [13]. Kumar et. al. extend the
LSC language with Kleene star, subcharts, and hierarchical charts [14]. They translate an extended
LSC based communication protocol specification into an automaton, and verify some properties with

M. Chai, B-H. Schlingloff / Monitoring with Parametrized Extended Life Sequence Charts 177

the resulting automaton. Since all existing work is based on the standard LSC language, none of the
above papers addresses the expressiveness problem discussed in this paper.

Our parametric extension of LSCs is inspired by the treatment of time in live sequence charts
proposed by Harel et. al. [15]. There, a time constraint in LSCs is defined by a combination of
assignment- and condition structures. In contrast, we provide a more general notation for arbitrary
data parameters. There are several other runtime verification approaches for handling parametrized
events. The EAGLE logic [16], which is a linear µ-calculus, is one of the first logics in runtime
verification for specifying and monitoring data-relevant properties. Although EAGLE has a rather
high expressiveness, it also has high computational costs [17]. To avoid this problem, other rule-
based methods have been introduced. They are based on MetateM [18] and the Rete algorithm [19].
MetateM provides a framework of executing temporal formulae and Rete is an efficient algorithm for
matching patterns with objects. Inspired by MetateM, RuleR is an efficient rule-based monitoring
system that can compile various temporal logics [17]. LogicFire is an internal domain specification
language for artificial intelligence on basis of Rete [20]. These rule-based runtime verification systems
have a high performance. However, they are not attractive for practical applications. The language
of PeLSCs has comparable expressiveness, and monitors can be generated automatically with the
translation algorithm.

TraceMatches [21] is essentially a language of regular expressions. It extends the language of
AspectJ [22] by introducing free variables in the matching patterns. TraceContract is an API for trace
analysis, implemented in Scala, which is able to express parametric properties with temporal logic
[23]. Monitoring oriented programming (MOP) is an efficient and generic monitoring framework that
integrates various specification languages [24]. In particular, JavaMOP deals with parametric specifi-
cation and monitoring using TraceMatches [25]. TraceMatches and JavaMOP are defined on the basis
of trace slicing, which translates parametrized events into propositional events. With trace slicing, the
problem of checking parametrized event traces is translated into a (standard) propositional word prob-
lem. Although JavaMOP has a high performance, to our opinion its expressiveness is insufficient. As
pointed out in [26], trace slicing can only handle traces where all events with the same name carry the
same parameters. Our PeLSCs based approach overcomes this shortage by using formula rewriting
algorithms.

Various extensions of LTL have been proposed for parametric monitoring. If time is the only pa-
rameter, properties can be formalized with real-time logics such as TLTL [27], MTL [28] and TPTL
[29]. For other parameters, first order extensions of LTL have been introduced. Parametrized LTL
[30] contains a binary binding operator, and is further translated into parametrized automata for moni-
toring. First-order temporal logic LTLFO includes both first-order and temporal connectives [31]. For
monitoring LTLFO an algorithm using a spawning automaton has been developed [32]. A domain-
specific language for monitoring the exchange of XML messages of a web service is LTLFO+ [33].
This language has a lower complexity than full first order temporal logic. However, its expressiveness
is limited by only allowing to express equivalence of variables. Metric First-order Temporal Logic
(MFOTL) adds quantifiers to MTL [34], and has been used for monitoring data applications [35]. An
MFOTL monitoring system has been built based on a trace decomposing technique, which may intro-
duce additional errors/mistakes. Similar to the languages of automata, all these temporal logics have
difficulties in specifying concurrency properties. The language of PeLSCs can avoid these shortcom-

178 M. Chai, B-H. Schlingloff / Monitoring with Parametrized Extended Life Sequence Charts

ings. PeLSCs have a richer expressiveness than LTLFO+ by allowing to express general comparisons
of terms. Nonetheless, the word problem for certain PeLSCs is still linear with respect to the size of
traces.

3. Parametrized extended live sequence charts (PeLSC)

Message sequence charts (MSCs) represent communication protocols between actors. They have been
standardized by the ITU in the SDL language, and adapted as sequence diagrams in UML. Both SDL
and UML are widely used in industry for the modelling of computational systems.

To differentiate between necessary and possible behaviours of a system, Damm et al. extended the
MSC language to live sequence charts (LSCs) [1]. LSCs have been used to model systems in various
domains, e.g., railway [36], telecommunication [37], and biology [38].

3.1. Basic charts

The LSC language can be defined on the basis of basic charts. A basic chart is visually similar to an
MSC. It specifies the exchange of messages among a set of actors. Each actor is represented by its
lifeline (drawn as a vertical dashed line), and each message exchange is represented by a solid arrow
between two lifelines. With each message exchange, there are two actions associated: the action of
sending the message and the action of receiving it. Each action occurs at a unique position in a lifeline.
Intuitively, a basic chart describes a partial order between these actions as follows.

• An action at a higher position in a lifeline precedes an action at a lower position in the same
lifeline; and

• for each message m, the send-action of m precedes the receive-action of m.

Formally, we define basic charts as follows. Given a set AP of atomic propositions, let M , 2AP

be a set of messages, and Σ , (M × {!, ?}) an alphabet of events. That is, an event e is either
m! (indicating that message m is sent) or m? (indicating that m is received). A lifeline l is a finite
(possibly empty) sequence of events l , (e1, e2, ..., en), i.e., a word over Σ∗. Consider a k-tuple of
lifelines L , 〈l1, ..., lk〉 with li = (ei1, ..., ein′). We say that the event e occurs at the location (i, j) in
L if e = eij . An event occurrence o , (e, i, j) is a tuple consisting of an event e ∈ Σ and the location
(i, j) of e in L.

A communication 〈(m!, i, j), (m?, i′, j′)〉 is a pair of two event occurrences representing sending
and receiving of the same message m. A basic chart C is an n-tuple of lifelines L together with a set
C of communications, such that each event occurrence is contained in at most one communication.
Given a basic chart C and a sending event occurrence o = (m!, i, j) in a communication of C, we
define match(o) , (m?, i′, j′) to be the matching receiving event occurrence. An event occurrence
in a basic chart does not have to be part of a communication; it is possible that only the sending or the
receiving of a message occurs in the chart. In addition, an event is allowed to occur multiple times in
a basic chart, i.e., a basic chart can express that a message is repeatedly exchanged. However, each
event occurrence is unique.

M. Chai, B-H. Schlingloff / Monitoring with Parametrized Extended Life Sequence Charts 179

In accordance to the above informal description, we define the partial order relation ≺ induced by
a chart C on its event occurrences to be the smallest relation satisfying

1. For any 1 ≤ j < |li| with li being a lifeline in C, it holds that (e, i, j) ≺ (e′, i, j + 1), and
2. for any sending event occurrence o in a communication of C, it holds that o ≺ match(o).

We admit the non-degeneracy assumption proposed by Alur et. al. [39]: a basic chart cannot reverse
the receiving order of two identical messages sent by some lifeline. Formally, a basic chart is non-
degenerate if and only if for any two sending event occurrences o1 = (m!, i1, j1) and o2 = (m!, i2, j2)
(with the same message m), if o1 ≺ o2 then match(o1) ≺ match(o2). Henceforth, we consider non-
degenerate charts only.

For any event occurrence o = (e, i, j), let evt(o) , e be the event of o. We denote the set of events
appearing in a chart C by Evt(C) (where Evt(C) ⊆ Σ), and the set of event occurrences in C with
EOcc(C). Given EOcc(C) = {o1, o2, ..., on}, and let f : {1, ..., n} → {1, ..., n} be a (bijection)
permutation. A sequence (of(1), of(2), ..., of(n)) of event occurrences is called consistent with C, if
of(i) ≺ of(j) implies i < j for all 1 ≤ i, j ≤ n. That is, the total order of event occurrences in the
sequence must respect the partial order induced by the chart. An event trace σ is just a finite sequence
of events, i.e., a word over Σ∗. We say that σ is defined by the basic chart C, if σ is the projection of
some event occurrence sequence consistent with C to its events. Formally, the set of traces Traces(C)
defined by C is given as follows:

Traces(C) , {(e1, ..., en) | ∃(o1, ..., on) s.t ei = evt(oi) and (o1, ..., on) consistent with C}.

Let Στ be a set of silent events. For each basic chart C, the language L(C,Στ) consists of all traces
defined by C, interleaved with sequences of silent events from Στ :

L(C,Στ) , {(τ∗0 , e1, τ
∗
1 , e2, ..., τ∗n−1, en, τ∗n) | (e1, e2, ..., en) ∈ Traces(C), τ∗i ∈ Σ∗τ}.

The language L(C) of a basic chart is defined to be L(C,Σ\Evt(C)). A trace σ is admitted by a basic
chart C (denoted by σ C), if σ ∈ L(C).

3.2. Extended LSCs

A universal chart consists of two basic charts: a prechart (Pch , drawn as a hexagon) and a main chart
(Mch , drawn within a solid rectangle). We define extended LSCs (eLSCs) by introducing two cate-
gories of precharts: sufficient precharts (drawn within surrounding hashed hexagons) and necessary
precharts (drawn within surrounding solid hexagons).

Definition 3.1. An extended Live Sequence Chart (eLSC) is a tuple U , (Pch,Mch,Cate), where
Pch and Mch are basic charts, and Cate ∈ {Suff ,Nec} is the category (sufficient or necessary) of
the prechart.

Intuitively, an eLSC with a sufficient prechart (Pch,Mch,Suff) specifies all traces composed
of two segments such that, if the first segment is admitted by the prechart, then the second must be
admitted by the main chart; and an eLSC with a necessary prechart (Pch,Mch,Nec) specifies all

180 M. Chai, B-H. Schlingloff / Monitoring with Parametrized Extended Life Sequence Charts

traces composed of two segments such that, the first segment cannot be admitted by the prechart,
unless the second is admitted by the main chart.

Given an eLSC U = (Pch,Mch,Cate), and the set Στ = (Σ\(Evt(Pch)∪Evt(Mch))) of silent
events of U , the languages L(Pch) and L(Mch) are defined to be L(Pch,Στ) and L(Mch,Στ),
respectively. For languages L and L′, let L be the complement of L and (L◦L′) be the concatenation
of L and L′. The semantics of eLSCs is defined as follows.

Definition 3.2. The language of an eLSC U , (Pch,Mch,Cate) is
L(U) , L(Pch) ◦ L(Mch), if Cate = Suff ; and
L(U) , L(Pch) ◦ L(Mch), if Cate = Nec.

The concatenation of two eLSCs U and U ′ represents the sequencing of the charts. It essentially
introduces additional sequencing restrictions on executions of the charts. The concatenation (U → U ′)
is intuitively understood as “an execution ofU is followed by an execution ofU ′”. A trace σ composed
of two segments υ and υ′ (i.e., σ , υυ′) is in the language of (U → U ′) if and only if υ and υ′ are
admitted by U and U ′, respectively. The set of event traces defined by (U → U ′) is

Traces(U → U ′) , Traces(U) ◦ Traces(U ′),

Given Στ
(U→U ′) = Σ\(Evt(U) ∪ Evt(U ′)), the language of (U → U ′) is then defined by

L(U → U ′,Στ
(U→U ′)) , {(τ

∗
(U→U ′), e1, τ∗(U→U ′), e2, ..., τ∗(U→U ′), en, τ∗(U→U ′))},

where (e1, ..., en) ∈ Traces(U → U ′) and τ∗(U→U ′) ∈ (Στ
(U→U ′))

∗. As above, the language L(U →
U ′) of the concatenation of U and U ′ is defined to be L(U → U ′,Στ

(U→U ′)).

Remark 3.3. Given an empty chart U∅ , ∅ (i.e., a chart with no communications) and any chart U
over an alphabet Σ = Evt(U), it holds that L(U → U∅) = L(U∅ → U) = L(U).

Similarly, the language L(U∗) of the iteration of universal charts can be defined as follows.

L(U0) , ∅,
L(Un) , (L(U)→ L(Un−1)), and

L(U∗) ,
⋃
i∈N L(U i).

An eLSC specification U is a finite set of (possible concatenated) eLSCs. The language of U is
L(U) , (

⋂
U∈U
L(U)) with the silent events τU ∈ Σ\(

⋃
U∈U

Evt(U)).

3.3. Parametrized eLSCs

We define parametrized eLSCs (PeLSCs) by introducing assignment structures and condition struc-
tures into eLSCs. An assignment structure is given by v := s with v being a variable and s being the
name of a parameter. Intuitively, this means that the variable v is evaluated to the value of a parameter
named s. In the graphical representation, an assignment structure is surrounded by a rectangle with a

M. Chai, B-H. Schlingloff / Monitoring with Parametrized Extended Life Sequence Charts 181

π

Figure 2. Notation for assignment structure (left) and condition structure (right)

sandglass icon at the top right corner. A condition structure is a simple numerical proposition π with
variables, parameters and values; the formal definition is given below. In a PeLSC, it is surrounded by
a rectangle. The graphical notations for assignment- and condition-structures are shown in Fig. 2.

In a PeLSC, assignment- and condition-structures combine naturally with event occurrences. In-
tuitively, an assignment structure stores the value of a parameter carried by the associated event oc-
currence; and a condition structure expresses the restrictions of parameters carried by the event oc-
currence. Formally, let N , {s1, s2, ...} be a countable set of nominals and D , {d1, d2, ...} be a
domain (e.g., integers or reals). A parameter is a pair p , 〈s, d〉 fromN ×D, where s is the name of
p and d is the value of p.

To formally define the syntax of PeLSCs, assume we are given a countable set of variables V ,
{v1, v2, ...}. An assignment structure is the defined to be a tuple assi , 〈v, s, o〉, where v is a variable,
s is the name of a parameter and o is an event occurrence in C. A condition structure is a pair
cond , 〈π, o〉, where π is a simple numerical proposition. This notion is defined as follows: Each
variable, parameter name and domain element is a simple numerical term. If t is a simple numerical
term and c is a domain element, than (t + c) is a simple numerical term. If t1 and t2 are simple
numerical terms, then t1 < t2 and t1 = t2 are simple numerical propositions. Finally, if π1 and π2 are
simple numerical propositions, then so are (π1 ∧ π2), (π1 ∨ π2) and ¬π1. Examples are v ≤ 5, s = 3
and s < (v + 10).

Assume that Σ is an alphabet of events and N and D are nominals and domain, as above. A
parametrized event is a pair w , 〈e,P〉, where e ∈ Σ is an event andP ∈ 2N×D is a set of parameters.
For example, in the chart P3 above, a parametrized event could be (login?, {(id, 1101), (time, 25)}).
We assume that each parameter name in P is unique, i.e., for all p, p′ ∈ P with p 6= p′ it holds that
the name of p is different from the name of p′. Parametrized events can be used as basic constituents
of an eLSC as above, resulting in parametrized eLSCs. Formally, a PeLSC is defined as follows.

Definition 3.4. A PeLSC is a tuple PU , (U,COND,ASSI), where U is an eLSC on parametrized
events, and COND and ASSI are sets of condition structures and assignment structures, respectively.

For the semantics of PeLSCs, a parametrized event trace t , (w1, ...,wn) is a (finite) sequence
of parametrized events. A PeLSC (U,COND,ASSI) defines a parametrized language (i.e., a set of
parametrized event traces). Intuitively, a parametrized event trace t = (〈e1,P1〉, ..., 〈en,Pn〉) is ad-
mitted by a PeLSC if (e1, ..., en) is admitted by U , and all propositions in COND are evaluated to true
with respect to the parameter values in (P1, ...,Pn). To formally define the latter notion, we have to
define the evaluation of a simple numerical proposition π in a parametrized event trace t at a particular
position wi.

If π does not contain any variables, then the value of π can simply be obtained by replacing all
parameter names by their respective values and applying basic arithmetic. If π contains a variable v,
then it can be evaluated to a boolean value (true or false) only if v has been assigned a certain value

182 M. Chai, B-H. Schlingloff / Monitoring with Parametrized Extended Life Sequence Charts

earlier. Therefore, we require our PeLSCs to satisfy an additional non-ambiguity assumption. We say
a PeLSC is non-ambiguous, if for any condition structure cond = (π(s′, v), o′) in COND, there exists
exactly one assignment structure assi(v, s, o) ∈ ASSI such that o ≺ o′. Under this assumption, a
value of a variable at a given event occurrence refers to a specific value of a certain parameter in a
precisely defined “earlier” event occurrence. The non-ambiguity assumption can be checked statically
on the structure of the PeLSC. Given a parametrized event trace of a non-ambiguous PeLSC and a
particular event, each simple numerical proposition can be evaluated to a boolean value by replacing
each variable by its value in the associated event.

A PeLSC PU defines all parametrized event traces (〈e1,P1〉, ..., 〈en,Pn〉) such that

• for any 1 ≤ i ≤ n, it holds that ei = evt(oi) with (o1, ..., on) being consistent with U ; and

• all simple numerical propositions in PU are evaluated to true.

By PTraces(PU) we denote the set of parametrized event traces defined by PU . A parametrized
event wτ , 〈τ,Pτ 〉 is a silent event of PU , if τ ∈ (Σ\Evt(U)) is a silent event of U .

Definition 3.5. The parametrized language defined by a PeLSC PU is

PL(PU) , {(w∗τ , w1, w
∗
τ , ..., w

∗
τ , wn, w

∗
τ)},

where (w1, ..., wn) ∈ PTraces(PU), and w∗τ are finite (possible empty) sequences of silent events.

4. Expressiveness of eLSCs

We assume that an eLSC specification U is defined over a given alphabet ΣU. If all events observed
from the system under monitoring are in ΣU, the language defined by the specification has no silent
events. We call such a specification a silence-free eLSC specification. We now investigate the expres-
sive power of silence-free eLSC specifications.

Theorem 4.1. eLSCs are strictly more expressive than standard (negation-free) LSCs.

Proof:
Clearly, standard LSCs are included in eLSCs: Any LSC (Pch,Mch) defines the same language as
the eLSC (Pch,Mch,Suff).

For the strict inclusion, consider, for instance, the language X , (Σ∗(aa)Σ∗) over the alphabet
Σ = {a, b}. This language can be defined by the silence-free eLSC (U1 → U2), see Fig. 3. The
language of U1 is L(U1) = aa ◦ b = (Σ∗b ∪ aab) = (Σ∗a ∪ ε ∪ aab), and the language of U2 is
L(U2) = b ◦ aa = (bΣ∗ ∪ baa) = (aΣ∗ ∪ ε ∪ baa). It can be seen that L(U1) ◦ L(U2) = Σ∗(aa)Σ∗.
Therefore, the language of (U1 → U2) is X . As proved by Bontemps [40], this language cannot be
defined by an LSC. ut

M. Chai, B-H. Schlingloff / Monitoring with Parametrized Extended Life Sequence Charts 183

eLSC U1

a
a

eLSC U2

b

a
a

b

Figure 3. eLSCs expressing Σ∗(aa)Σ∗ with Σ = {a, b}

In our previous work [4], we proved the slightly more general statement that given a prechart Pch
with L(Pch) = {(abc, acb)} and a main chart Mch with L(Mch) = {cd, dc}, the eLSC language
L(Pch) ◦ L(Mch) of (Pch,Mch,Nec) cannot be expressed by a finite set of negation-free LSCs.
This proof does not rely on the assumption that eLSCs are silence-free.

To generate monitors, in the following section we translate eLSCs to linear temporal logic (LTL) 1

over finite traces. We first show the expressiveness of iteration-free eLSCs (i.e., the subclass of eLSCs
with no iteration operators) as follows.

Theorem 4.2. The language of iteration-free eLSCs is at most as expressive as LTL.

Proof:
We have to show that any eLSC specification can be translated into an equivalent LTL formula. The
propositions from which the formula is built are the events appearing in the eLSC. We first prove that
any universal eLSC without iteration can be translated into an equivalent LTL formula. Consider a
basic chart C, the set Evt(C) , {e1, e2, ..., em} of events appearing in C, and a trace σ , (e1, e2,
..., en) in the set Traces(C). The propositional formula

νEvt(C) , (¬e1 ∧ ¬e2 ∧ · · · ∧ ¬em)

states that none of the events in Evt(C) is executed. We then define an LTL formula

α(σ,Evt(C)) , νEvt(C) U (e1 ∧ (X(nEvt(C) U (e2 ∧ · · · ∧ (νEvt(C) U (en ∧ ΓEvt(C)) · · ·)

with ΓEvt(C) , X G νEvt(C). The formula α(σ,Evt(C)) states that the trace σ is executed, where
ΓEvt(C) states that no event from Evt(C) can occur after the execution of σ.

Let XOR be the boolean exclusive-or connective. The formula

F(C1,Evt(C2)) , XOR
σ∈Traces(C1)

(α(σ,Evt(C2)))

states that exactly one of the traces in C1 is executed, with no silent events from Evt(C2). For a basic
chart C, in [13] it is shown that the formula F(C,Evt(C)) defines exactly the same language as L(C).

1We use symbols G, F, U, W and X for the LTL operators always, sometimes, until, weak until and next, respectively.

184 M. Chai, B-H. Schlingloff / Monitoring with Parametrized Extended Life Sequence Charts

In addition, we define

F((C1 → C2),Evt(C)) , XOR
σ∈Traces(C1)◦Traces(C2)

(α(Evt(C), σ))

for concatenation of charts. Note that this disjunction is finite, since Traces(C1) and Traces(C2) are
both finite; with iteration this would not work.

Given a universal chart U , (Pch,Mch,Cate) with Evt(U) = (Evt(Pch) ∪ Evt(Mch)), the
formulae

ΦSuff (U,Evt(U)) , (F(Pch,Evt(U))⇒ (F((Pch→Mch),Evt(U)))), and
ΦNec(U,Evt(U)) , (¬(F(Pch,Evt(U))⇒ ¬(F((Pch→Mch),Evt(U))))

define exactly the same languages as L(Pch, U,Suff) and L(Pch, U,Nec), respectively. ut

Remark that this proof does not require the eLSC specification to be silence-free. For theoretical
reasons, we now introduce a further slight extension of eLSCs. Let > be a special symbol in an
eLSC U to specify any event in the alphabet ΣU of U . In the graphical notation, the symbol > is
surrounded by a rectangle. The language defined by> in an eLSCU isL(>, U) ,

∨
e∈ΣU

e. From the
symbol >, we define >∗ and >+ to be any event sequence and any non-empty event sequence in ΣU ,
respectively. Formally, the languages defined by >∗ and >+ are L(>∗, U) , Σ∗U and L(>+, U) ,
Σ+
U , respectively. In the graphical representation, the symbol >∗ (resp. >+) can be placed at either

the bottom of a prechart or the top of a main chart. The language defined by the former chart is
(L(Pch) ◦Σ∗) (resp. (L(Pch) ◦Σ+))); and the language defined by the latter one is (Σ∗ ◦ L(Mch))
(resp. (Σ+ ◦ L(Mch))). Using the > symbol, we subsequently show that eLSCs are closed under
finite union and negation. As a remark, we note that we could have used a finite union operator (or
“choice” operator as in UML)

⋃
instead of> as an additional language element in our language; given

a PeLSC over an alphabet Σ, the symbol > is defined as
⋃
e∈Σ e. Omitting both > and

⋃
, however,

does not allow us to prove the subsequent expressivity results.

Theorem 4.3. Given a set of eLSCs U = {U1, ..., Un} without silent events (but possibly using >∗),
the complement of L(U) can be defined by a set of eLSCs (again, possibly using >∗).

Proof:
Given a set U = {U1, ..., Un} of eLSCs, the complement of U can be constructed as follows. In
the following part of this section, we denote the languages L(Pchi) and L(Mchi) by Pi and Mi,
respectively.

CASE I: Let all eLSCs in U be with sufficient precharts, and no eLSC in U have a >∗ in it. The
language of U is as follows.

L(U) =
⋂

1≤i≤n
(Pi ◦ Σ∗ ∪ (Pi ◦Mi))

=
(⋂

1≤i≤n
Pi ◦ Σ∗

)
∪
(⋂

1≤i≤n
(Pi ◦Mi)

)
∪
⋃

1≤k<n

(⋂
1≤i≤k

Pi ◦ Σ∗ ∩
⋂

k+1≤j≤n
(Pj ◦Mj)

)
(1)

M. Chai, B-H. Schlingloff / Monitoring with Parametrized Extended Life Sequence Charts 185

Given a basic chart C, we denote the size of C by |C|, i.e., the number of events appearing in a
prechart or a main chart (excluding >∗). Given xi = |Pchi| and x = max

1≤i≤n
|xi|, the subformula

(
⋂

1≤i≤n Pi ◦ Σ∗) of the above (1) equals to

⋃
1≤i≤n

(Pi ◦ Σ∗) = (
⋃

1≤i≤n
Pi) ◦ Σ∗ =

((
Σx\(

⋃
1≤i≤n

(Pi ◦ Σ(x−xi)))
)
◦ Σ∗

)
∪ ε.

In the following part of the proof, we use the abbreviations

A(i, k) , Σx\(
⋃

i≤j≤k
(Pj ◦ Σ(x−xj))),

B(i, k) ,
⋂

i≤j≤k
(Pj ◦Mj),

and
D(k) , (

⋂
1≤i≤k

Pi ◦ Σ∗ ∩
⋂

k+1≤j≤n
(Pj ◦Mj)).

Thus, L(U) = (A(1, n) ◦ Σ∗) ∪ ε ∪ B(1, n) ∪
⋃

1≤k≤nD(k). As a remark, all traces in A(i, k)
have length x. Moreover, all traces in B(i, k) have the same length. This holds because no chart has
>∗ in it. Let z(i,k) be the length of a trace in B(i, k). For any 1 ≤ k < n, it holds that

D(k) =

{
(A(1, k) ◦ Σ(z(k+1,n)−x)) ∩B(k + 1, n) if z(k+1,n) ≥ x
∅ otherwise

It can be seen that A(1, n), B(1, n) and all D(k) have a finite number of traces. This holds because
A(1, n) defines a subset of Σx; B(1, n) defines a finite number of intersections of (Pj ◦Mj), where Pj
andMj are both finite; andD(k) is defined by the intersection of someA(i, k) andB(i, k). Therefore,
the language of U can be written as a union of traces as follows.

L(U) =
(⋃
τa∈A(1,n)

(τa ◦ Σ∗)
)
∪ ε ∪

(⋃
τb∈B(1,n)

τb

)
∪
(⋃

1≤k<n

⋃
τd∈D(k)

τd

)
.

The complement of U is

L(U) =
(⋂
τa∈A(1,n)

(τa ◦ Σ∗)
)
∩ Σ+ ∩

(⋂
τb∈B(1,n)

τb

)
∩
(⋂

1≤k<n

⋂
τd∈D(k)

τd

)
. (2)

For any single trace τ , the complement τ of τ can be defined by an eLSC Uneg(τ) as shown in Fig.

4(a). The language of Uneg(τ) is L(Uneg(τ)) = τ ◦ Σ+ = τ . The eLSC U(Σ+) in Fig. 4(b) defines
Σ+. Let E = (A(1, n)∪B(1, n)∪

⋃
1≤k<nD(k)), the language of L(U) (i.e., the above (2)) can then

be defined by the set
(⋃

τ∈E{Uneg(τ)} ∪ {U(Σ+)}
)

of eLSCs.

186 M. Chai, B-H. Schlingloff / Monitoring with Parametrized Extended Life Sequence Charts

CASE II: If at least one eLSC in U has a >∗ in its prechart and/or main chart, the language of
D(k) introduces some traces with the structure (τ1 ◦ Σ∗ ◦ τ2). Moreover, if all eLSCs in U have >∗
in their prechart and/or main chart, the language of B(1, n) is defined by the conjunction of traces
with the structure (τ1 ◦ Σ∗ ◦ τ2). In both cases, the language L(U) is then defined by the intersection
of traces with the structures τ ◦ Σ∗, τ and τ1 ◦ Σ∗ ◦ τ2. For any (nonempty) traces τ1 and τ2, the
language τ1 ◦ Σ∗ ◦ τ2 can be defined by a set U′ = {U(τ1), U(τ2)} of eLSCs as shown in Fig. 4(d).
The language of U′ is

L(U′) = τ1Σ∗ ◦ Σ+ ∩ Σ+ ◦ Σ∗τ2 = τ1Σ∗ ∩ Σ∗τ2 = τ1Σ∗τ2

CASE III: Let all eLSCs in the set U be with necessary precharts, and no eLSC have a >∗. This
case is similar to CASE I. The language of U is

L(U) =
(⋂

1≤i≤n
Σ∗ ◦Mi

)
∪
(⋂

1≤i≤n
(Pi ◦Mi)

)
∪
⋃

1≤k<n

(⋂
1≤i≤k

Σ∗ ◦Mi ∩
⋂

k+1≤j≤n
(Pj ◦Mj)

)
.

Given rj , |Mch j | and r , max
1≤j≤n

ri, we define

H(i, k) , Σr\(
⋃

i≤j≤k
(Σ(r−rj) ◦Mj))

and
G(k) ,

(⋂
1≤i≤k

Σ∗ ◦Mi ∩
⋂

k+1≤j≤n
(Pj ◦Mj)

)
.

For any 1 ≤ k < n, it holds that

G(k) =

{
(Σ(z(k+1,n)−r) ◦H(1, k)) ∩B(k + 1, n) if z(k+1,n) ≥ r
∅ otherwise

(where B(i, k) is defined as in CASE I). According to the above, the language of U is

L(U) =
(⋃
τh∈H(1,n)

(Σ∗ ◦ τh)
)
∪ ε ∪

(⋃
τb∈B(1,n)

τb

)
∪
(⋃

1≤k<n

⋃
τg∈G(k)

τg

)
.

the complement of U is

L(U) =
(⋂
τh∈H(1,n)

(Σ∗ ◦ τh)
)
∩ Σ+ ∩

(⋂
τb∈B(1,n)

τb

)
∩
(⋂

1≤k<n

⋂
τg∈G(k)

τg

)
.

Similar as the above, for any τh, the eLSC shown in Fig. 4(c)) defines Σ∗ ◦ τh.

CASE IV: Similar to the CASE II, if at least one eLSC in U has one or more >∗, the language
L(U) involves the intersection of traces with the structure τ1Σ∗τ2.

M. Chai, B-H. Schlingloff / Monitoring with Parametrized Extended Life Sequence Charts 187

CASE V: Let eLSCs in U involve both sufficient precharts and necessary precharts. The set can be
simply divided into two groups Usuff = {U1, ..., Um} and Unec = {Um+1, ..., Un}, where all eLSCs in
Usuff are with sufficient precharts and all eLSCs in Usuff are with necessary precharts. The language
of U is

L(U) =
(⋂

1≤i≤m
Pi ◦ Σ∗ ∩

⋂
m+1≤j≤n

Σ∗ ◦Mj

)
∪
(⋂

1≤i≤n
(Pi ◦Mi)

)
∪ ε

⋃
1≤k<m,m+1≤k′<n

(⋂
1≤i≤k

Pi ◦ Σ∗ ∩
⋂

k+1≤j≤m
(Pj ◦Mj) ∩

⋂
1≤i′≤k′

Σ∗ ◦Mi′ ∩
⋂

k′+1≤j′≤n
(Pj′ ◦Mj′)

)
The subformula

⋂
1≤i≤m

Pi ◦ Σ∗ ∩
⋂

m+1≤j≤n
Σ∗ ◦Mj is equal to

⋃
τa∈A(1,m)

(τa ◦ Σ∗) ∩
⋃

τh∈H(m+1,n)

(Σ∗ ◦ τh) =
⋃

τa∈A(1,m),τh∈H(m+1,n)

(τaΣ
∗τh).

Other subformulae can be reformulated by finite unions of traces. For any τa and τh, the language
τaΣ∗τh is defined by a set of eLSCs with the same structure as Fig. 4(d)).

eLSC Uneg(τa)

τ

T
+

(a) eLSC for τ

eLSC U(Σ+)

T
+

(b) eLSC for Σ+

eLSC Uneg(τh)

T
+

τh

T*

(c) eLSC for Σ∗ ◦ τh

eLSC U(τ1)

τ1

eLSC U(τ2)

τ2

T*

T+ T*

T+

(d) eLSC for τ1 ◦ Σ∗ ◦ τ2

Figure 4. eLSCs expressing the complement of sets
ut

As an example, consider the set U = {U1, U2} of eLSCs for the client/server system in Fig.
1. Given Σ = {login, logout}, the complement of U can be obtained as follows. In the silence-free
interpretation, the language L1 of Fig. 1(a) is

L1 = login ◦ logout = (login ◦ logout) ∪ (logout ◦ Σ∗) ∪ ε

Similarly, the language L2 of Fig. 1(b) is

L2 = login ◦ logout = (login ◦ logout) ∪ (Σ∗ ◦ login) ∪ ε.

Therefore, the language of U is L1 ∩ L2 = (login ◦ logout) ∪ (logout ◦ Σ∗ ◦ login) ∪ ε.

To complement the set U, it is first divided into two groups Us = {U1} and Un = {U2}. Let
P1 = {login} and P2 = {login} (resp. M1 = {logout} and M2 = {logout}) be the languages of pre-

188 M. Chai, B-H. Schlingloff / Monitoring with Parametrized Extended Life Sequence Charts

charts (resp. main charts) of U1 and U2, respectively. The language of U is

L(U) = (P1 ◦ Σ∗ ∪ (P1 ◦M1)) ∩ (Σ∗ ◦M2 ∪ (P2 ◦M2)) =

(P1 ◦ Σ∗∩Σ∗ ◦M2)∪(P1 ◦ Σ∗∩P2◦M2)∪((P1◦M1)∩Σ∗ ◦M2)∪((P1◦M1)∩(P2◦M2))∪ε. (3)

Since P1 = P2 and M1 = M2, the second and third subformula of the above (3) are empty. Therefore

L(U) = (P1 ◦ Σ∗ ∩ Σ∗ ◦M2) ∪ ((P1 ◦M1) ∩ (P2 ◦M2)) ∪ ε.

Since the size of the prechart of U1 is 1, the subformula P1 ◦ Σ∗ equals to
⋃
τa∈A(1,1)(τa ◦Σ∗), where

A(1, 1) = Σ1\P1 = logout. Similarly, since the size of the main chart of U2 is 1, the subformula
Σ∗ ◦M2 =

⋃
τh∈H(2,2)(Σ

∗ ◦ τh), where H(2, 2) = Σ1\M2 = login. The subformula (P1 ◦ Σ∗ ∩
Σ∗ ◦M2) then equals to (logout ◦ Σ∗ ◦ login). In addition, the language (P1 ◦M1) = (P2 ◦M2) =
(login ◦ logout). Therefore, the language L(U) equals to (logout ◦ Σ∗ ◦ login ∩ login ◦ logout ∩Σ+).
The subformula logout ◦ Σ∗ ◦ login has the same structure as τ1Σ∗τ2 introduced by CASE II in the
proof of Theorem 4.3. It can be defined by Fig. 4(d). The subformula login ◦ logout has the same
structure as τ introduced by CASE I. It can be defined by Fig. 4(a). The subformula Σ+ can be defined
by Fig. 4(b). Therefore, the language L(U) can be defined by the eLSCs depicted in Fig. 5.

eLSC Uneg1

logout

Client Serever

eLSC Uneg2

login

Client Serever

eLSC Uneg3

login

Client Serever

logout

T+

Figure 5. Negation of the client/server system

Theorem 4.4. For any eLSCs U1 and U2, the complement of L(U1 → U2) can be defined by a set of
eLSCs with concatenations.

Proof:
Given the concatenation U1 → U2 of eLSCs, the complement of U1 → U2 can be constructed as
follows. Similar to the proof of Theorem 4.3, we distinguish several cases.

Case I: Both U1 and U2 are with sufficient precharts. The language of U1 → U2 is

L(U1 → U2) = (P1Σ∗ ∪ (P1M1)) ◦ (P2Σ∗ ∪ (P2M2))

= (P1Σ∗ ◦ P2Σ∗) ∪ (P1Σ∗ ◦ (P2M2)) ∪ ((P1M1) ◦ P2Σ∗) ∪ (P1M1P2M2).

The complement of L(U1 → U2) is

L(U1 → U2) = P1Σ∗ ◦ P2Σ∗ ∩ P1Σ∗ ◦ (P2M2) ∩ (P1M1) ◦ P2Σ∗ ∩ P1M1P2M2. (4)

We now show that this language can defined by a set of eLSCs.

M. Chai, B-H. Schlingloff / Monitoring with Parametrized Extended Life Sequence Charts 189

We first prove that for any languages A and B, it holds that AB = ((AB) ∪ AΣ∗). From AB =
(AΣ∗ ∪ AB), we have AB = (AΣ∗ ∩ AB). Therefore, (AB ∪ AΣ∗) = ((AΣ∗ ∩ AB) ∪ AΣ∗) =
((AΣ∗∪AΣ∗)∩(AB∪AΣ∗)). SinceAB ⊆ AΣ∗, it holds thatAB ⊇ AΣ∗. Therefore, (AB∪AΣ∗) =
AB. Thus (AB ∪AΣ∗) = AB. Similarly, it also holds that AB = (AB ∪ Σ∗B).

Let x1 and x2 be the sizes ofP1 andP2 (excluding>∗), respectively. The subformulaP1Σ∗ ◦ P2Σ∗

of the above (4) can be reformulated as follows.

P1Σ∗ ◦ P2Σ∗ = (((Σx1\P1) ◦ Σ∗) ∪ ε) ◦ (((Σx2\P2) ◦ Σ∗) ∪ ε)
= ((Σx1\P1)Σ∗) ◦ ((Σx2\P2)Σ∗) ∩ (Σx1\P1)Σ∗ ∩ (Σx2\P2)Σ∗) ∩ ε

=
(⋂
τ1∈Σx1\P1,τ2∈Σx2\P2

τ1Σ∗τ2Σ∗
)
∩
(⋂
τ∈Σx1\P1

τΣ∗
)
∩
(⋂
τ∈Σx2\P2

τΣ∗
)

The language τ1Σ∗τ2Σ∗ = (τ1Σ∗τ2Σ∗∪Σ∗Σ∗) equals to τ1Σ∗τ2Σ∗. Based on Fig. 4 (d), the language
τ1Σ∗τ2Σ∗ can be defined by eLSCs with concatenations in Fig. 6.

eLSC U(τ1)

τ1

eLSC U(τ2)

τ2

T*

T+ T*

T+

eLSC U(Σ*)

T*

eLSC U(Σ*)

T*

Figure 6. Concatenated eLSCs for τ1Σ∗τ2Σ∗

The language τΣ∗ can be defined by an eLSC structured as shown in Fig. 4(a). Therefore, the
language P1Σ∗ ◦ P2Σ∗ can be defined by a set of (concatenated) eLSCs. Depending on whether the
main charts being with >∗, the subformulae P1Σ∗ ◦ (P2M2), (P1M1) ◦ P2Σ∗ and P1M1P2M2 can
be reformed to the intersection of languages with the structures τ1Σ∗τ2Σ∗, τ1Σ∗τ2 and/or τΣ∗. All of
these languages can be defined by some eLSCs as given above. Therefore, L(A→ B) can be defined
by a set of eLSCs.

Case II: Both U1 and U2 are with necessary precharts. The language of the complement of U1 →
U2 is L(U1 → U2) = Σ∗M1 ◦ Σ∗M2 ∩ Σ∗M1 ◦ P2M2 ∩ P1M1 ◦ Σ∗M2 ∩ P1M1P2M2. Given some
traces τ1 and τ2, the language can be defined by the intersection of languages with the structures
Σ∗τ1Σ∗τ2, Σ∗τ , τ1Σ∗τ2Σ∗, τ1Σ∗τ2 and Σ∗τΣ∗. The language Σ∗τ1Σ∗τ2 = (Σ∗τ1Σ∗τ2) ∪ Σ∗Σ∗.
The language Σ∗τΣ∗ = (Σ∗τΣ∗) ∪ (Σ∗Σ∗) = Σ∗τΣ∗.

Case III: U1 is with a sufficient prechart and U2 is with a necessary prechart. The language of the
complement ofU1 → U2 isL(U1 → U2) = P1Σ∗ ◦ Σ∗M2∩P1Σ∗P2M2∩P1M1Σ∗M2∩P1M1P2M2.

Case IV: U1 is with a necessary prechart and U2 is with a sufficient prechart. The language of the
complement ofU1 → U2 isL(U1 → U2) = Σ∗M1 ◦ P2Σ∗∩Σ∗M1P2M2∩P1M1P2Σ∗∩P1M1P2M2.

It can been seen that all these languages can be defined by eLSCs as given in Fig. 4. ut

190 M. Chai, B-H. Schlingloff / Monitoring with Parametrized Extended Life Sequence Charts

Given a set U = {Uch1 → Uch′1, ..., Uchn → Uch′n} of concatenated eLSCs and languages
X1 and X2, the language L(U) of U is defined by some languages with the structures X1 ◦ X2,
X1 ◦ X2, X1X2 and X1 ◦ X2. According to the categories of the precharts, the intersections of the
four languages can be reformed by traces with the structures τ1Σ∗τ2Σ∗, τΣ∗, τ1Σ∗τ2, Σ∗τΣ∗ and/or
Σ∗τ1Σ∗τ2. The complement of L(U) is then defined by the intersection of the complement of the
above traces. As shown in the proofs of Theorem 4.3 and 4.4, all of these traces can be defined by
(concatenated) eLSCs. Therefore, the complement of L(U) can be defined by a set of concatenated
eLSCs. That is, the language of

⋃
1≤i≤n(Uchi → Uch′i) can be defined by concatenated eLSCs. The

complement of the language of (U1 → ...→ Un) equals to ((L(Uch1) ◦ L(Uch2) ◦ ... ◦ L(Uchn))∪
L(Uch1)Σ∗). Since the language L(Uch2) ◦ ... ◦ L(Uchn) can be iteratively reformed, it can be
reduced to some languages of L(Uchi)→ L(Uchj) and L(Uchi)Σ∗. Therefore, the complement of
L(Uch2) ◦ ... ◦ L(Uchn) can be defined by a set of concatenated eLSCs. By iteratively rewriting the
sublanguages, the complement of a set of concatenated eLSCs can be defined by traces with the same
structures as the above. Therefore, the language of silence-free eLSC specifications is closed under
negation.

Theorem 4.5. Silence-free eLSC specifications without iteration have the same expressive power as
star-free regular expressions.

Proof:
Since LTL defines the star-free regular languages, and the iteration-free eLSC language is at most as
expressive as LTL, the language is also at most as expressive as star-free regular expressions. We
have to prove that any star-free language can be defined by a set of eLSCs. That is, for every star-free
regular expression σ there exists an eLSC specification Uσ such that L(Uσ) = L(σ).

The empty language ∅ can be defined by a set U∅ = {Uε, Ua} of eLSCs as shown in Fig. 7. The
language of Uε is L(Uε) = ε ◦ ε = ε ◦ Σ+ = ε, and the language of Ua is L(Ua) = a ◦ ε = a.
The language of U∅ is L(U∅) = {ε} ∩ {a} = ∅. According to theorems above, the complement
σ of an expression σ can be defined by an eLSC. Union of expressions {σ1, ..., σn} can be defined
by σ1 ∩ ... ∩ σn. The concatenation of single traces can be defined by the concatenation of eLSCs
directly. The complement of concatenations can be expressed by an eLSC specification. Therefore,
any star free language can be defined by a set of eLSCs.

eLSC Uε eLSC Ua

a

Figure 7. eLSCs expressing regular language
ut

It is well known that LTL over finite traces has exactly the same expressiveness as star-free regular
languages. Therefore, the following corollary holds.

M. Chai, B-H. Schlingloff / Monitoring with Parametrized Extended Life Sequence Charts 191

Corollary 4.6. Silence-free eLSC specifications without iteration have the same expressive power as
LTL over finite traces.

As an example, given an (finite) alphabet Σ and a, b ∈ Σ with a 6= b, the LTL formula (a U b)
defines the language a∗bΣ∗. (Note that this language can also be defined by a star-free expression). It
can be defined by the eLSC specification U , {(U(Σ∗) → U(e) → U(b))|e ∈ Σ \ a} as shown in
Fig. 8. That is, for the eLSC specification has one concatenated chart for every e ∈ Σ\a. The language
of U(e) is L(U(e)) = eΣ∗, and the language of U(b) is L(U(b)) = bΣ∗ ◦ ε = bΣ∗. Therefore, the
language of U is

L(U) ,
⋂
e∈Σ\a(Σ

∗ ◦ eΣ∗ ◦ bΣ∗).

As shown above, Σ∗eΣ∗ = Σ∗eΣ∗. The language L(U) defines all traces σ = σ1σ2 such that σ2 =
bΣ∗ and σ1 ∈

⋂
e∈Σ\a(Σ

∗eΣ∗). Since
⋂
e∈Σ\a(Σ

∗eΣ∗) = a∗, the language L(U) is a∗bΣ∗.

eLSC U(e)

e

T+

eLSC U(b)

b
T*

eLSC U(Σ*)

T*

T*

Figure 8. eLSCs expressing (aU b)

Remark 4.7. It is easy to see that with iteration, eLSCs are equal in expressivity to regular expres-
sions.

5. A translation of PeLSCs into HL formulae

For specifying and monitoring actual systems, PeLSCs are more appropriate than eLSCs. In this sec-
tion, we translate PeLSCs into formulae of hybrid logic (HL) [41]. This will allow us to automatically
generate monitors from PeLSC specifications. Given a PeLSC PU , the resulting formula ϕ(PU) is
the conjunction of two sub-formulae ϕ(U) and d(cond):

• ϕ(U) is an LTL formula representing the temporal requirements of PU ; and

• d(cond) is an HL formula specifying the parameter constraints of PU .

5.1. Translation of eLSCs into LTL

We first present a translation from an eLSC into LTL. In contrast to the general translation given in
section 4, Theorem 4.2, here we use event occurrences (rather than events) as propositions for the
temporal formula. Each event occurrence in a chart is unique; this allows a more efficient translation.

192 M. Chai, B-H. Schlingloff / Monitoring with Parametrized Extended Life Sequence Charts

Let EOcc(C) be the set of event occurrences in a basic chart C. From C, we define the LTL formula
ξC , ψC ∧ γC ∧ yC , where

ψC ,
∧
e≺e′

(¬e′We)

γC ,
∧

e∈EOcc(C)

(¬eW(e ∧XG¬e))

yC ,
∧

e∈EOcc(C)

Fe

The formula ψC specifies that if e ≺ e′ then e′ cannot occur before e in a trace . The formula
γC specifies that each e can only occur at most once in the trace. The formula yC specifies that every
event appearing in the chart will eventually occur in the trace.

With these formulae, we can then obtain LTL formulae from eLSCs with necessary and sufficient
precharts. From an eLSC U , (Pch,Mch,Cate), we define the following formulae.

ξPch , ψPch ∧ γPch ∧ yPch, and ξMch , ψMch ∧ γMch ∧ yMch,
χ ,

∧
e′∈EOcc(Pch)

((
∧

e∈EOcc(Mch)

(¬e))We′)

ϕ(U) , ((ξPch ∧ χ)⇒ ξMch) if Cate = Suff; and

ϕ(U) , (¬(ξPch∧ χ)⇒ ¬ξMch) if Cate = Nec.

The formula χ specifies that events appearing in the main chart cannot occur until all events
appearing in the prechart have occurred in a trace. From this definition it directly follows that the
formula ϕ(U) defines the language of U .

5.2. Translation of PeLSCs into HL

In this subsection, we present a translation of PeLSCs into a subclass of hybrid logic [41]. With the
translation, it can then be checked by the resulting formula whether an observation is admitted by a
PeLSC.

The formalism of HL has a type of symbols called nominals. A nominal represents the name of
a parameter. Let s be a nominal and x be a free variable. An HL formula may contain the dow-
narrow binder “x ↓ s.”. When evaluating an HL formula over a parametrized event trace, the dow-
narrow binder assigns all variables x in the formula to the value of the parameter s of the “current”
parametrized event. For instance, an HL formula (x ↓ s.ϕ(x)) is satisfied by a parametrized event
trace t , (〈e1,P1〉, ..., 〈en,Pn〉) if and only if ϕ(d) is satisfied by (e1, ..., en) with 〈s, d〉 ∈ P1.

A condition structure in a PeLSC can be either without or with variables, the following formulae
are defined.

• Given a condition structure cond = (prop(s), o) involving no variables and evt(o) = e, we
define the following HL formula

d(cond) , � (x ↓ s.(e⇒ prop(x))).

The formula specifies that whenever the event e occurs, it must carry a parameter 〈s, d〉 such
that the proposition prop(d) is evaluated to true.

M. Chai, B-H. Schlingloff / Monitoring with Parametrized Extended Life Sequence Charts 193

• Let prop(s, v) be a proposition containing (without loss of generality) one variable v. According
to the non-ambiguity assumption, for a condition structure cond = (prop(s, v), o) with evt(o) =
e, there is an assignment structure assi(s′, v, o′) with evt(o′) = e′ and o′ ≺ o. We define the
following HL formula

d(cond) , �((e′ ∧ ♦e)⇒ (x ↓ v.(e′ ∧ ♦y ↓ s′.(e ∧ (prop(x, y)))))).

Given a condition structure with variable v and the associated assignment structure with the
same variable v, let e and e′ be the events combined with these two structures, respectively.
This formula expresses that if both of the events occur, then the proposition must be evaluated
to true with the values of the parameters carried by the two events. That is, under the non-
ambiguity assumption, if events combined with the assignment- and the condition structure
occur at positions i and j of the trace, respectively, the proposition prop(d′, d) is true with
〈s, d〉 ∈ Pi and 〈s′, d′〉 ∈ Pj .
If cond contains more than one variable, the formula d(cond) is similar.

From a PeLSC PU , (U,COND,ASSI) we define the HL formula

ϕ(PU) ,

(
ϕ(U) ∧

∧
cond∈COND

d(cond)

)
.

The formula expresses that a parametrized event trace t = (〈e1,P1〉, ..., 〈en,Pn〉) satisfies the formula
ϕ(PU) if and only if (e1, ..., en) is in the language defined by U , and the parameters carried by the
events meet the constraints of the condition structures. From these definitions, the following theorem
is immediate.

Theorem 5.1. Any parametrized event trace t is admitted by a PeLSC PU iff t |= ϕ(PU).

Proof:
The proof follows directly from the definitions. ut

Note that in this translation we use only a restricted subset HL’ of full hybrid logic, which does
not involve quantification and the @-operator.

Theorem 5.2. The complexity of the translation of PeLSC specifications into HL’ is polynomial in
the number of events occurring in the chart, with a constant nesting depth of temporal operators.

Proof:
Given a basic chart C, we define the number of events occurring in the chart as |C|. We consider
the worst case of the translation, where any two events in a prechart or in a main chart are ordered
by ≺. In this case, the formula ψC (the first formula of Section 5.1) consists of a conjunction of all
2-combinations of events. Given a PeLSC PU with |Pch| = p and |Mch| = m, the formulae ψPch
and ψMch thus have size 4

(
p
2

)
= 4p!

2!(p−2)! = 2p(p − 1) and 2m(m − 1), respectively. The size of all

194 M. Chai, B-H. Schlingloff / Monitoring with Parametrized Extended Life Sequence Charts

other sub-formulae of ϕ(PU) are linear with respect to p and m. Therefore, any PeLSC PU with
|PU | = n can be translated into an HL’ formula ϕ(PU) with length O(n2).

The maximal nesting of temporal operators appears in γC with a depth of 3; the formula d(cond)
involves a nesting of temporal and hybrid operators of depth 4. ut

We now prove that the translation can be used to obtain an efficient monitoring algorithm for
PeLSC specifications of parametrized event traces.

Theorem 5.3. The complexity of monitoring PeLSC specifications on parametrized event traces is
linear with respect to the length of the trace.

Proof:
We first show that the complexity of the model checking problem of HL’ on finite sequences is linear
with respect to the size of the model. Let ϕ = x ↓ s.ψ(x) be an HL’ formula, where we assume
without loss of generality that ψ is an LTL formula (without further binding operators). Furthermore,
let t be a parametrized event trace with σ , (e1, ..., en) and ρ , (P1, ...,Pn). The trace t satisfies ϕ
if and only if σ |= ψ(d) with (s, d) ∈ P1. The sub-formulae of ϕ are comparisons of terms and can
be directly evaluated to a boolean value true or false, given the integer value of d. Therefore, the
problem of checking ϕ over t can be reduced to the problem of checking ψ over σ. The complexity of
checking whether a trace σ satisfies an LTL formula ψ is linear with respect to the length of σ. ut

0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

0 200 400 600 800 1000 1200

M
o

n
it

o
ri

n
g

 E
ff

ic
ie

nc
y

(R
e

w
ri

te
s)

Length of Traces

(a) Parametric requirements (d(cond))

0.00E+00

2.00E+04

4.00E+04

6.00E+04

8.00E+04

1.00E+05

1.20E+05

1.40E+05

1.60E+05

1.80E+05

0 200 400 600 800 1000 1200

M
o

n
it

o
ri

n
g

 E
ff

ic
ie

n
cy

(r
e

w
ri

te
s)

Length of Traces

(b) Temporal requirements (ϕ(U))

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

100 200 300 400 500 600 700 800 900 1000

C
h

e
ck

in
g

ti
m

e
 (m

s)

Length of traces

(c) Checking time by Maude (ms)

Figure 9. Monitoring efficiency for P3

M. Chai, B-H. Schlingloff / Monitoring with Parametrized Extended Life Sequence Charts 195

According to this theorem, the language of PeLSCs is feasible for runtime verification. The mon-
itoring algorithm proceeds by rewriting formulae along the trace, according to the semantics of the
logic. We implemented such an algorithm in the rewriting environment Maude [42]. As experimental
results, in Fig. 9 we show the number of rewrites for the property P3 with respect to the length of
the trace. The property P3 is comprised of an eLSC and two condition structures with assignments
(i.e., with variables). Fig. 9(a) shows the monitoring efficiency for the condition structures, Fig. 9(b)
shows the monitoring efficiency for the eLSC, and Fig. 9(c) shows the checking time of the formula
by Maude. In this monitoring implementation, most of the execution time is spent on checking the
subformula d(cond). We suspect that due to its internal organization of data, the execution time of
Maude is quadratic in the number of clauses. The subformula ϕ(U) takes about 100ms to check 1000
parametrized events.

6. Conclusion

In this paper, we defined and investigated the visual formalism PeLSC for monitoring specifica-
tions. This formalism extends classical LSCs by introducing modal pre-charts, regular operators,
and assignment- and condition structures. The language can intuitively express sufficient- and neces-
sary conditions of properties, and constraints of data (e.g., time values) carried by events. We proved
that the formalism is strictly more expressive than the language of LSCs. For generating monitors,
we developed a translation of PeLSCs into HL and proved that the complexity of monitoring PeLSC
specifications is polynomial with respect to the length of the trace. This allowed us to develop an
effective monitoring prototype for our formalism.

There are several interesting topics for future work. Firstly, the implementation reported in this
paper was done as a proof-of-concept, showing that the approach of PeLSC based monitoring is fea-
sible. Since the size of resulting formulae is often large, translating eLSC into LTL formulae is not
an efficient way for monitoring. Therefore, we are currently developing a more efficient implemen-
tation, which can check eLSC specifications directly. Secondly, in this paper we only considered a
subset of the original LSC language, excluding conditions and “cold” elements. Even though we do
not think that the full LSC language poses additional fundamental problems, this needs to be worked
out. Last but not least, it remains open to define an automaton concept which has exactly the same
expressiveness as our PeLSCs.

Ackowledgment

This work was supported by the Project Sponsored by the Scientific Research Foundation for talents,
Beijing Jiaotong University (NO. 2016RC006); the National Natural Science Foundation of China
(U1434209); the National Basic Research Program of China (NO.2014CB340703); the Foundation of
State Key Laboratory of Rail Traffic Control and Safety (NO.RCS2015ZT002); and the Fundamental
Research Funds for the Central Universities (NO. 2016JBZ004, NO. 2016JBM007).

196 M. Chai, B-H. Schlingloff / Monitoring with Parametrized Extended Life Sequence Charts

References
[1] Damm W, Harel D. LSCs: Breathing Life into Message Sequence Charts. Formal Methods in System

Design, 2001;19(1):45–80. doi:10.1023/A:1011227529550.

[2] Havelund K. Monitoring with Data Automata. In: Leveraging Applications of Formal Methods, Verifica-
tion and Validation. Specialized Techniques and Applications, pp. 254–273. Springer, 2014. doi:10.1007/
978-3-662-45231-8 18.

[3] Ben-abdallah H, Leue S. Timing Constraints in Message Sequence Chart Specifications. In: In IFIP.
Chapman. Hall, 1997. doi:10.1007/978-0-387-35271-8 6.

[4] Chai M, Schlingloff BH. Monitoring Systems with Extended Live Sequence Charts. In: Runtime Ver-
ification - 5th International Conference, RV 2014, Toronto, ON, Canada, September 22-25, 2014. Pro-
ceedings. 2014 pp. 48–63. doi:10.1007/978-3-319-11164-3 5. URL http://dx.doi.org/10.1007/

978-3-319-11164-3_5.

[5] Chai M, Schlingloff BH. Monitoring with Parametrized Extended Life Sequence Charts. In: Concurrency,
Specification & Programming. 2015 pp. 88–102.

[6] Blackburn P, Seligman J. Hybrid Languages. Journal of Logic, Language and Information, 1995;4(3):251–
272. doi:10.1007/BF01049415. URL http://dx.doi.org/10.1007/BF01049415.

[7] Alur R, Yannakakis M. Model Checking of Message Sequence Charts. In: CONCUR’ 99 Concurrency
Theory, pp. 114–129. Springer, 1999. doi:10.1007/3-540-48320-9 10.

[8] Simmonds J, Chechik M, Nejati S, Litani E, O??Farrell B. Property Patterns for Runtime Monitoring of
Web Service Conversations. In: Runtime Verification. Springer, 2008 pp. 137–157. doi:10.1007/978-3-
540-89247-2 9.

[9] Ciraci S, Malakuti S, Katz S, Aksit M. Checking the Correspondence between UML Models and Im-
plementation. In: Runtime Verification. Springer, 2010 pp. 198–213. URL http://doc.utwente.nl/

74133/.

[10] Harel D, Kugler H, Marelly R, Pnueli A. Smart Play-out of Behavioral Requirements. In: Formal Methods
in Computer-aided Design. Springer, 2002 pp. 378–398. doi:10.1007/3-540-36126-X 23.

[11] Bontemps Y, Schobbens PY. The Computational Complexity of Scenario-based Agent Verification and De-
sign. Journal of Applied Logic, 2007;5(2):252–276. URL https://doi.org/10.1016/j.jal.2005.

12.013.

[12] Kugler H, Harel D, Pnueli A, Lu Y, Bontemps Y. Temporal Logic for Scenario-based Specifications.
In: Tools and Algorithms for the Construction and Analysis of Systems, pp. 445–460. Springer, 2005.
doi:10.1007/978-3-540-31980-1 29.

[13] Harel D, Maoz S, Segall I. Some Results on the Expressive Power and Complexity of LSCs. In: Pillars of
computer science, pp. 351–366. Springer, 2008. doi:10.1007/978-3-540-78127-1 19.

[14] Kumar R, Mercer EG. Verifying Communication Protocols Using Live Sequence Chart Specifications.
Electronic Notes in Theoretical Computer Science, 2009;250(2):33–48. URL https://doi.org/10.

1016/j.entcs.2009.08.016.

[15] Harel D, Marelly R. Playing with Time: On the Specification and Execution of Time-enriched LSCs. In:
Modeling, Analysis and Simulation of Computer and Telecommunications Systems, 2002. MASCOTS
2002. Proceedings. 10th IEEE International Symposium on. IEEE, 2002 pp. 193–202. URL http://dl.

acm.org/citation.cfm?id=882460.882611.

M. Chai, B-H. Schlingloff / Monitoring with Parametrized Extended Life Sequence Charts 197

[16] Barringer H, Goldberg A, Havelund K, Sen K. Rule-based Runtime Verification. In: Verification, Model
Checking, and Abstract Interpretation. Springer, 2004 pp. 44–57. doi:10.1007/978-3-540-24622-0 5.

[17] Barringer H, Rydeheard D, Havelund K. Rule Systems for Run-time Monitoring: from Eagle to RuleR.
Journal of Logic and Computation, 2010;20(3):675–706. URL https://doi.org/10.1093/logcom/

exn076.

[18] Barringer H, Fisher M, Gabbay D, Gough G, Owens R. MetateM: A Framework for Programming in
Temporal Logic. In: de Bakker J, de Roever WP, Rozenberg G (eds.), Stepwise Refinement of Distributed
Systems Models, Formalisms, Correctness, volume 430 of Lecture Notes in Computer Science, pp. 94–
129. Springer Berlin Heidelberg. ISBN 978-3-540-52559-2, 1990. doi:10.1007/3-540-52559-9 62. URL
http://dx.doi.org/10.1007/3-540-52559-9_62.

[19] Forgy CL. Rete: A Fast Algorithm for the Many Pattern/many Object Pattern Match Problem. Artificial
intelligence, 1982;19(1):17–37.

[20] Havelund K. Rule-based Runtime Verification Revisited. International Journal on Software Tools for
Technology Transfer, 2015;17(2):143–170. doi:10.1007/s10009-014-0309-2.

[21] Allan C, Avgustinov P, Christensen AS, Hendren L, Kuzins S, Lhoták O, De Moor O, Sereni D, Sittam-
palam G, Tibble J. Adding Trace Matching with Free Variables to AspectJ. In: ACM SIGPLAN Notices,
volume 40. ACM, 2005 pp. 345–364.

[22] Kiczales G, Hilsdale E, Hugunin J, Kersten M, Palm J, Griswold WG. An Overview of AspectJ. In:
ECOOP 2001Object-Oriented Programming, pp. 327–354. Springer, 2001. ISBN:3-540-42206-4.

[23] Barringer H, Havelund K. TraceContract: A Scala DSL for Trace Analysis. In: Butler M, Schulte
W (eds.), FM 2011: Formal Methods, volume 6664 of Lecture Notes in Computer Science, pp. 57–72.
Springer Berlin Heidelberg. ISBN 978-3-642-21436-3, 2011. doi:10.1007/978-3-642-21437-0 7. URL
http://dx.doi.org/10.1007/978-3-642-21437-0_7.

[24] Chen F, Roşu G. Mop: an Efficient and Generic Runtime Verification Framework. In: ACM SIGPLAN
Notices, volume 42. ACM, 2007 pp. 569–588. doi:10.1145/1297105.1297069.

[25] Meredith PO, Jin D, Griffith D, Chen F, Roşu G. An Overview of the MOP Runtime Verification Frame-
work. International Journal on Software Tools for Technology Transfer, 2012;14(3):249–289. doi:10.
1007/s10009-011-0198-6.

[26] Barringer H, Falcone Y, Havelund K, Reger G, Rydeheard D. Quantified Event Automata: Towards
Expressive and Efficient Runtime Monitors. In: FM 2012: Formal Methods, pp. 68–84. Springer, 2012.
doi:10.1007/978-3-642-32759-9 9.

[27] Bauer A, Leucker M, Schallhart C. Runtime Verification for LTL and TLTL. ACM Transactions on
Software Engineering and Methodology (TOSEM), 2011;20(4):14. doi:10.1145/2000799.2000800.

[28] Basin D, Klaedtke F, Zălinescu E. Algorithms for Monitoring Real-time Properties. In: Runtime Verifica-
tion. Springer, 2012 pp. 260–275. doi:10.1007/978-3-642-29860-8 20.

[29] Chai M, Schlingloff BH. A Rewriting Based Monitoring Algorithm for TPTL. In: Concurrency, Specifi-
cation & Programming. 2013 pp. 61–72.

[30] Stolz V. Temporal Assertions with Parametrized Propositions. Journal of Logic and Computation,
2010;20(3):743–757. doi:10.1093/logcom/exn078.

[31] Merz S. Decidability and Incompleteness Results for First-order Temporal Logics of Linear Time. Journal
of Applied Non-Classical Logics, 1992;2(2):139–156.

198 M. Chai, B-H. Schlingloff / Monitoring with Parametrized Extended Life Sequence Charts

[32] Bauer A, Küster JC, Vegliach G. From Propositional to First-order Monitoring. In: Runtime Verification.
Springer, 2013 pp. 59–75.

[33] Halle S, Villemaire R. Runtime Monitoring of Message-based Workflows with Data. In: Enterprise Dis-
tributed Object Computing Conference, 2008. EDOC’08. 12th International IEEE. IEEE, 2008 pp. 63–72.
doi:10. 1109/EDOC.2008.32.

[34] Basin D, Klaedtke F, Müller S. Policy Monitoring in First-order Temporal Logic. In: Computer Aided
Verification. Springer, 2010 pp. 1–18. doi:10.1007/978-3-642-14295-6 1.

[35] Basin D, Caronni G, Ereth S, Harvan M, Klaedtke F, Mantel H. Scalable Offline Monitoring. In:
Bonakdarpour B, Smolka S (eds.), Runtime Verification, volume 8734 of Lecture Notes in Com-
puter Science, pp. 31–47. Springer International Publishing. ISBN 978-3-319-11163-6, 2014. doi:
10.1007/978-3-319-11164-3 4. URL http://dx.doi.org/10.1007/978-3-319-11164-3_4.

[36] Bohn J, Damm W, Klose J, Moik A, Wittke H, Ehrig H, Kramer B, Ertas A. Modeling and Validating
Train System Applications Using Statemate and Live Sequence Charts. In: Proc. IDPT. Citeseer, 2002.

[37] Combes P, Harel D, Kugler H. Modeling and Verification of a Telecommunication Application Using
Live Sequence Charts and the Play-engine Tool. Software & Systems Modeling, 2008;7(2):157–175.
doi:10.1007/s10270-007-0069-5.

[38] Fisher J, Harel D, Hubbard EJA, Piterman N, Stern MJ, Swerdlin N. Combining State-based and Scenario-
based Approaches in Modeling Biological Systems. In: Computational Methods in Systems Biology.
Springer, 2005 pp. 236–241.

[39] Alur R, Etessami K, Yannakakis M. Inference of Message Sequence Charts. Software Engineering, IEEE
Transactions on, 2003;29(7):623–633. doi:10.1109/TSE.2003.1214326.

[40] Bontemps Y. Relating Inter-Agent and Intra-Agent Specifications. Ph.D. thesis, PhD thesis, University of
Namur (Belgium), 2005.

[41] Franceschet M, de Rijke M, Schlingloff BH. Hybrid Logics on Linear Structures: Expressivity
and Complexity. In: Temporal Representation and Reasoning, 2003 and Fourth International Confer-
ence on Temporal Logic. Proceedings. 10th International Symposium on. IEEE, 2003 pp. 166–173.
doi:10.1109/TIME.2003.1214893.

[42] Ölveczky PC. Real-Time Maude 2.3 Manual. Research report http://urn. nb. no/URN: NBN: no-35645,
2004. URL http://urn.nb.no/URN:NBN:no-18692Delav.

