
Online-Monitoring Autonomous Transport Robots
with an R-valued Temporal Logic

Felix Lorenz
Technical University Berlin and Fraunhofer FOKUS

Berlin, Germany

Holger Schlingloff
Humboldt University and Fraunhofer FOKUS

Berlin, Germany

Abstract—In this paper, we introduce real-valued temporal
logic (RVTL) for online monitoring of reactive and cyber-
physical systems. Our approach is based on classical metric
temporal logic (MTL) with a real-valued semantics, where the
truth value of a formula with respect to a finite trace depends on
the distance between the end of the trace and the bound of the
temporal operators in the formula. The assumed time model is
dense and pointwise, i.e., the basic propositions refer to events
reported by the system at specific times. We show that our logic
is applicable for collaborating cyber-physical systems by giving
example formulae from a case study of autonomous transport
robots in a factory. We sketch an algorithm for monitoring
RVTL formulae at runtime, and report on experiences with
this algorithm in an actual industrial deployment of the case
study.

Index Terms—Cyber-physical Production Systems and Indus-
try 4.0, Industrial Robots, Factory Automation

I. INTRODUCTION

Online monitoring is a lightweight formal method, where
the execution of a system is compared to its specification at
runtime. One challenge in online monitoring is to define
a suitable formalism that is expressive, easy to use and
allows efficient monitoring algorithms. A well-established
specification language for monitoring is Metric Temporal
Logic (MTL) [1]. It extends the usual temporal operators
“always”, “sometime” and “until” with quantitative timing
constraints. However, a problem with the usual semantics
of MTL is that the verdicts can only assume the usual
boolean truth values “true” and “false”. Thus, at runtime,
exceptional system behavior can be detected only upon
specification violation, possibly too late to initiate appropriate
corrective actions. In [2], we defined a five-valued logic
for runtime monitoring based on Linear Temporal Logic
(LTL). This approach can deal with incomplete information,
arising from the fact that during online monitoring of an
interactive system only part of the observed trace is available
at any given instant. Furthermore, it can handle uncertainties
in monitoring arising from the fact that observations in a
distributed system are possibly inaccurate due to interleaving
and internal nondeterminism of the components. However,
as LTL does not incorporate real-time constructs, that approach
can monitor timing properties only indirectly.

Here, we use a fragment of MTL instead, which has
temporal operators indexed by a real number to express
deadlines. We replace the usual semantics of MTL with
a real-valued semantics, where every formula is evaluated

according to the distance to a deadline. This way, more
information about the system state is available and decisions
about corrective actions can be made earlier than with the
usual two-valued MTL semantics. Particularly in large fleets
with many concurrent processes, runtime faults can propagate
and cause failures in other components, which can only be
detected with real-time information about the system group
state. We describe our semantics with a few example formulas,
and report on the application to an industrial use case.

Our paper is structured as follows: Following this introduc-
tion, in Section II we discuss real-time logics for monitoring
in general and MTL in particular. Subsequently, in Section III,
we describe our case study of collaborative autonomous
transport robots in a production factory environment. Then, in
Section IV, we define our logic for online-monitoring, which
we call R-Valued Temporal Logic (RVTL). In Section V,
we give some results of evaluating RVTL formulas on large
traces obtained from our case study. Finally, in Section VI,
we conclude our contribution by giving some directions for
further work.

II. RELATED WORK

Online monitoring as a particular form of runtime verifica-
tion (RV) is a subject which emerged already in the 1970’s, but
has received increased attention lately. For example, Ahrendt
et al. [3] report on the combination of static and runtime
verification for online monitoring of a open-source Java
shopping cart web application. Much of the work in RV has
been driven by the development of practical tools. Already in
2004, Delgado, Gates and Roach [4] gave a survey comparing
different runtime software-fault monitoring tools available
at the time. In 2014, the first international competition on
software for runtime verification took place ([5], [6]). Nine
different tools competed in specification and online monitoring
of C and Java programs. Although the results were quite
impressive with respect to memory footprint and runtime
overhead, the authors conclude that “designing a monitoring
framework that is portable, robust in its safety guarantees,
and minimally expensive remains an open problem.”

Specification formalisms for runtime verification often are
based on classical automata theory or similar modelling
notations. For example, Delahaye, Kosmatov, and Signoles [7]
define an automaton-based specification language for moni-
toring and analyzing C programs. d’Amorim and Rosu [8]

use a monitoring language based on ω-automata. In [9], we
defined a monitoring specification language as an extension
of the live sequence charts defined by Harel and Damm. We
showed that this language has expressive power comparable
to linear temporal logic and ω-regular languages.

Metric temporal logic (MTL) emerged in the 1970’s as a
real-time extension to linear temporal logic. Koymans [1]
described its application to the specification of quantitative
temporal properties. It is a popular formalism to specify the
expected ordering and timing between events in reactive and
hybrid systems [10], and has been thoroughly analyzed in
terms of expressiveness [11], [12] and complexity [13], [14].
Ho, Ouaknine and Worrell [15] described the application
of MTL to online monitoring. Their algorithm is based on
rewriting arbitrary MTL formulas into LTL formulas to obtain
a good complexity. In contrast, we focus on the early detection
of potential problems. In [16], the authors defined a “robust”
semantics for MTL which inspired our R-valued semantics.
With robust semantics, the truth value of a formula over a
finite trace serves as an estimate of how far the execution
trajectory is from satisfying the respective property. However,
all prior works using this or similar robust semantics rely
on the metric distance of a signal to its specification for a
robustness estimate, whereas for RVTL we use the temporal
distance to a deadline. Additionally, by imposing specific
syntactical restrictions upon the temporal operators, we
obtain specification parameters that correspond to intuitively
understandable concepts: Deadlines and timeouts.

III. COLLABORATING TRANSPORT ROBOTS

Modern workflows as envisioned and encountered in
industry 4.0 production plants are characterized by highly
automated processes, a frequently changing arrangement of
assembly units and autonomous subcomponents. In such a
setting, transport robots will replace conveyor belts for more
seamless integration and scaling with a dynamically changing
factory layout.

In order for the production plant to achieve its intended
output, all transport orders must be completed within a certain
amount of time. Otherwise the machines will eventually halt
due to congestion or shortage of supplies. This constitutes the
main goal of a Collaborating Autonomous Transport Robot
(CATR) fleet, subordinate to which the robots have individual
goals such as finding the shortest path to the goal locations
or not depleting their battery. While in legacy management
architectures a single orchestration unit operated the whole
fleet, the transition to autonomous behavior necessitates the
addition of negotiation and consensus protocols.

In our example, the operating procedure of a CATR fleet
is as follows: After a machine has announced a pending
transport job to the broadcast network, the robots place
bids and agree on a winner akin to a consensus-based
auction algorithm such as the one introduced in [17]. The
winning robot adds the job to its queue and moves to the
source machine, subject to dedicated path and goal conflict
resolution protocols. Upon arrival, the robot obtains the
load via docking and load exchange procedures. Later the

navigation and load transfer steps are repeated for the
delivery part of the order. Finally, the robot either starts the
next job in its queue or finds and moves to an empty parking
spot.

Examining the execution logs of an actual fleet of nine
transport robots (legacy architecture), we need to determine the
boundary between expected and exceptional runtime behaviour
in order to define the scope of the monitoring problem. The
log file spans five full days and consists of roughly 700,000
steps at a rate of 1.3 events per second. The logged events can
be assigned to one of five categories, as presented in Figure 1.
The vast majority of log messages (more than 665K) consisted
of robots reporting their current position. Among the robots in
the system, the events and event types were almost uniformly
distributed.

Fig. 1: Distribution of events over time in the logged data.

The distributions show that robots being reported offline
and localizations frequently co-occur, hinting at a common
physical failure source. Since the monitor is instrumented
to obtain its trace from overhearing the broadcast network
(bus-monitor architecture, c.f. [18]), it can not directly
detect faults beyond those an individual robot can detect
itself. Instead we have to monitor for bounded reactiveness,
safety and timeout violations that may ultimately lead to
non-fulfillment of the global goal of the fleet.

Figure 2 shows the durations of three essential processes in
the fleet’s standard operating procedure, as contained in the
log. Here, “order processing” refers to the full job duration,
from order assignment to successful load delivery.

Fig. 2: Measured durations in the industrial use case

In the observed trace, undocking maneuvers have very
regular durations, while for order processing and docking
there are are several outliers where the process takes much
longer than usual. An accumulation of such local problems
could significantly affect the whole system. Subsequently, we

will show how to use quantitative temporal constraints to
detect such exceptions by monitoring.

IV. R-VALUED METRIC TEMPORAL LOGIC

Before we introduce our method, we establish a few
preliminary concepts that will be needed later on. We assume
a pointwise time model, where the System Under Monitoring
(SUM) produces a timestamped sequence of instantenous
events.

Definition 1 (Trace). A trace ρ ∈ (R≥0×Σ)∗ is a non-empty,
finite sequence of tuples (τ1, σ1), (τ2, σ2), . . . , (τn, σn), where
the events σi ∈ Σ are taken from the finite alphabet Σ = 2P

and the timestamps τi ∈ R≥0 form a time sequence as follows:
τ1 = 0 and τi ≤ τi+1 for all i with 1 ≤ i ≤ |τ |.

Given a formula ϕ in some temporal logic, we say that
a trace ρ is a model of ϕ if (ρ, i) � ϕ for all 1 ≤ i ≤ |ρ|.
The set of all models of ϕ is called the language of ϕ:
Lϕ = {ρ ∈ (R≥0 × Σ)∗|(ρ, i) � ϕ, 1 ≤ i ≤ |ρ|}.

Definition 2 (Good/bad prefix). Given a language Lϕ ⊆
(R≥0 × Σ)∗, we call a trace ρ ∈ (R≥0 × Σ)∗

• a bad prefix for Lϕ, if for all w ∈ (R≥0×Σ)∗, ρ◦w 6∈ Lϕ
• a good prefix for Lϕ, if for all w ∈ (R≥0×Σ)∗, ρ◦w ∈
Lϕ

where ◦ is the concatenation between two traces.

We shall henceforth use the short notation ρ ∈ bad(ϕ) if
ρ is a bad prefix of Lϕ and ρ ∈ good(ϕ) respectively.

The functional and non-functional requirements of a CATR
fleet necessitate the expression of quantitative timing con-
straints. More precisely, the constraints are intended to
represent deadlines by which we expect the system to have
or have not exerted certain behavior. We therefore restrict
classical MTL such that intervals are always left-bounded by
0. Furthermore, we assume that intervals are right-bounded
by a finite positive real number. Excluding unconstrained
temporal operators from the language ensures monitorability:
Specifications that exclusively contain bounded intervals
are essentially safety properties [19]. Safety properties are
monitorable at runtime [13].

This restricted version of MTL has all the required char-
acteristics for efficient CATR monitoring; together with the
R-valued semantics given below we call it RVTL.

Definition 3 (RVTL syntax). Given a finite set of atomic
propositions P, the syntax of a RVTL formula is defined by

ϕ := ⊥ | p | (ϕ→ ϕ) | (ϕ Ut ϕ)

where p ∈ P, and t ∈ R>0 is a positive, non-zero real
number.

Other operators can be defined as usual: ¬ϕ := (ϕ→ ⊥),
> := ¬⊥, (ϕ ∨ ψ) := (¬ϕ → ψ), (ϕ ∧ ψ) := ¬(¬ϕ ∨ ¬ψ),
♦t ϕ := > Ut ϕ, �t ϕ := ¬♦t ¬ϕ, etc.

Let R = R ∪ {±∞} and (R,≤) be its closure with the
usual ordering relation. Further let t : R × R → R and
u : R×R → R be the maximum and minimum functions

on the extended domain, i.e., (x t ∞) = (∞ t y) = ∞,
(xt−∞) = (−∞tx) = x, (xu−∞) = (−∞u y) = −∞,
(x u∞) = (∞u x) = x and for x, y 6∈ {∞,−∞}, we have
(x t y) = max(x, y) and (x u y) = min(x, y). Furthermore,
for some subset X ⊆ R let

d
and

⊔
be the supremum and

infimum functions over the set X , with
⊔
R =∞ and

d
R =

−∞. The robust semantics is defined using an evaluation
function JϕK(ρ, i) : ((R≥0 × Σ)∗,N) → R instead of the
satisfaction notation (ρ, i) � ϕ used for qualitative semantics.

Definition 4 (RVTL semantics). The evaluation JϕK(ρ, i) of
a formula ϕ at step i (at time τi) of the trace ρ is defined
inductively by

J⊥K(ρ, i) = −∞

JpK(ρ, i) =

{
∞, if p ∈ σi

−∞, otherwise

J(ϕ→ ψ)K(ρ, i) = (−JϕK(ρ, i) t JψK(ρ, i))
J(ϕ Ut ψ)K(ρ, i) =

(τi + t− τ|ρ|), if (τi + t) ≥ τ|ρ| and for all k with

i ≤ k ≤ |ρ| . (JϕK(ρ, k) 6= −∞∧ JψK(ρ, k) 6=∞)⊔
j∈{l∈N|(τl−τi)≤t}

(
JψK(ρ, j) u

d
i≤k<jJϕK(ρ, l)

)
,

otherwise.

For the derived operators, we have:

J¬ϕK(ρ, i) = −JϕK(ρ, i)
Jϕ ∨ ψK(ρ, i) = JϕK(ρ, i) t JψK(ρ, i)
Jϕ ∧ ψK(ρ, i) = JϕK(ρ, i) u JψK(ρ, i)
J♦t ϕK(ρ, i) =

(τi + t− τ|ρ|), if (τi + t) ≥ τ|ρ| and

JϕK(ρ, k) 6=∞ for all k with i ≤ k ≤ |ρ|⊔
j∈{l∈N|(τl−τi)≤t} JϕK(ρ, j), otherwise.

In particular, J♦t ϕK(ρ, i) =∞ iff there is a j with i ≤ j ≤
|ρ| such that (τi + t) ≥ τj and JϕK(ρ, j) =∞.

J�t ϕK(ρ, i) =
− (τi + t− τ|ρ|), if (τi + t) ≥ τ|ρ| and

JϕK(ρ, k) 6= −∞ for all k with i ≤ k ≤ |ρ|
−
⊔
j∈{l∈N|(τl−τi)≤t}−JϕK(ρ, j), otherwise.

Intuitively, the semantics can be summarized as follows.
The two boolean truth values correspond to ±∞. An eval-
uation result from the reals indicates that there are some
continuations of ρ that satisfy the formula and some that
don’t (see Lemma 3). In that case, the value quantifies
how much time is left for a certain event to (not) occur
and decide the boolean truth value of the formula before
its deadline is surpassed, similarly to the robustness degree
of [16]. Example 1 illustrates the temporal evolution of the
verdict JϕK(ρ, 1) for three different formulae as the trace
is observed event by event. The dashed lines indicate an
evaluation to ∞ (green) or −∞ (red).

Example 1. Given the trace ρ = ((0, a), (2, a), (4, b), (6, b),
(8, b), (10, c), (12, c)), consider two policy specifications:

ϕ1 = ♦15 c (Bounded response)

ϕ2 = �10 (a ∨ b) (Bounded safety)

Figure 3 presents the result of evaluating JϕK(ρi, 1) for every
prefix ρi = ((τ1, σ1), . . . , (τi, σi)), 1 ≤ i ≤ |ρ| of the trace ρ.

6
8

10
12
14
16

= 15.0(c)

(0, a) (2, a) (4, b) (6, b) (8, b) (10, c) (12, c)
10

8
6
4
2

= 10.0((a b))

Fig. 3: Evaluation of Jϕ1,2K(ρi, 1) over every prefix ρi of the
example trace.

For bounded response patterns like ϕ1, the robustness value
is initially high and positive and decreases towards zero
with increasing prefix length. For bounded safety properties
like ϕ2, it starts negative and increases towards zero. At
τ6 = 10 a c event occurs at which point Jϕ1K(ρ, 1) = ∞
and Jϕ2K(ρ, 1) = −∞.

Next we discuss a series of key properties of RVTL. The
following lemma states that a monitor following the RVTL
semantics is stable, i.e., its verdict never changes from true
(false) to something else upon reading the next event produced
by the system.

Lemma 1. Let ϕ be a RVTL formula and ρ be an arbitrary
finite execution trace. Then for any (τ, σ) ∈ (R≥0 × Σ) it
holds that

JϕK(ρ, i) =∞⇒ JϕK(ρ ◦ (τ, σ), i) =∞ (1)
JϕK(ρ, i) = −∞⇒ JϕK(ρ ◦ (τ, σ), i) = −∞ (2)

Proof. We show stability by structural induction over ϕ.
The base case where ϕ is composed of only symbols from
P ∪ {⊥,→} trivially satisfies stability, because in that case
JϕK(ρ, i) only depends on σi which is fixed (Definition 1).

Case ϕ = ϕ1 Ut ϕ2: Assume that at time step p = |ρ|
with τp − τi ≤ t we have Jϕ2K(ρ, p) =∞, and for all q with
i ≤ q < p it holds that Jϕ1K(ρ, q) = ∞. Then JϕK(ρ, i) =⊔
j≤p

(
Jϕ2K(ρ, j) u

d
i≤k<jJϕ1K(ρ, l)

)
= ∞, which is the

least upper bound of R and thus appending an arbitrary suffix
to ρ will not change the result of the outer supremum.

Conversely, assume that at time step p = |ρ| with
τp − τi ≤ t we have Jϕ1K(ρ, p) = −∞, and for all
q with i ≤ q ≤ p we have Jϕ2K(ρ, q) = −∞. Then⊔
j≤p

(
Jϕ2K(ρ, j) u

d
i≤k<jJϕ1K(ρ, l)

)
= −∞ because for

all q with i ≤ q ≤ p it holds that Jϕ2K(ρ, q) = −∞
by assumption. Likewise for any j > p it holds thatd
i≤k<jJϕ1K(ρ, l) = −∞ because Jϕ1K(ρ, p) = −∞ by

assumption. Finally, since −∞ is the greatest lower bound
of R, thus no addition to the set will change the result of the
inner infimum.

Next we show that for any given formula expressible
in RVTL its good and bad prefixes coincide with their MTL
counterparts.

Lemma 2. Let ϕ be an arbitrary RVTL formula and ϕ̃ be
its counterpart expressed in MTL by replacing all constraints
t with the corresponding intervals [0, t]. Further let ρ ∈
(R≥0 × Σ)∗ be an arbitrary finite trace. Then

ρ ∈ good(ϕ) ⇐⇒ ρ ∈ good(ϕ̃) (3)
ρ ∈ bad(ϕ) ⇐⇒ ρ ∈ bad(ϕ̃) (4)

Proof. We prove our claim by structural induction on ϕ. If ϕ
contains no temporal operators, every trace is a good or a bad
prefix of ϕ and the equivalence immediately follows from
the semantics of MTL and RVTL. To complete the induction
we show that it also holds for the non-trivial case.

Case ϕ = ϕ1 Ut ϕ2 (ϕ̃ = ϕ̃1 U[0,t] ϕ̃2). First we show
ρ ∈ good(ϕ̃) =⇒ ρ ∈ good(ϕ). If ρ ∈ good(ϕ̃) then
there exists a time step p with i ≤ p ≤ |ρ|, τp ∈ [0, t],
(ρ, p) � ϕ̃2, and for all i ≤ q < p it holds that (ρ, q) � ϕ̃1.
Then by applying the base case we get JϕK(ρ, p) =∞ and
by Lemma 1 it follows that JϕK(ρ ◦ (τ, σ), i) = ∞ for any
(τ, σ) ∈ (R≥0 × Σ). Hence ρ ∈ good(ϕ).

To complete the equivalence, it remains to show that ρ ∈
good(ϕ) =⇒ ρ ∈ good(ϕ̃). By Lemma 1 it is established
that for ρ ∈ good(ϕ), there must be a time step p with
i ≤ p ≤ |ρ|, τp − τi ≤ t, Jϕ2K(ρ, p) = ∞, and for all
i ≤ q < p it holds that Jϕ1K(ρ, q) =∞. Then the base case
again gives (ρ, i) � ϕ̃ and by stability of MTL it is true that
ρ ∈ good(ϕ̃).

The proof for bad prefixes proceeds analogously. This
completes the induction step.

Algorithm An essential quality of an online monitoring
algorithm is trace-length independence, that is, a monitor
should not need to store the trace in its memory in order to
produce verdicts. A common approach to achieve trace-length
independence is to consume the events as they are received by
the monitor and use them to update some internal state [20].

Our Algorithm for online monitoring of RVTL is based
on storing and recursively updating subformulae upon the
arrival of a new event. The main monitoring procedure
monitor(ϕ, ρ) contains the instrumentation which directly
observes the events as they are produced by the system group.
For every event (τi, σi), it creates a formula object ϕ from
a specification written in RVTL and replaces any atomic
proposition p that does not occur within the scope of a
temporal operator with true iff p = σi and false otherwise.
With the resulting formula, a monitor is instantiated and
updated by calling the eval function (Algorithm 1) for every
future event (τj , σj) until the instance has been decided as
defined below. A formula object of the form ϕ1 Ut ϕ2 contains
the attributes decided, ←−ϕ1 (used to store (τk, Jϕ1K(ρ, k)) for
all i ≤ k ≤ |ρ|), and←−ϕ2. We call a formula decided (decided

= true) if for any step j with i ≤ j ≤ |ρ| and τj ≤ τi + t
it is the case that either ϕ2 = ∞ or ϕ1 = −∞. Then, we
do not need to store any further instances in ←−ϕ1 and ←−ϕ2

because the truth value of ϕ only depends on the evaluations
of ϕ1 and ϕ2 between step i and step j (Lemma 1). An
upper bound on the space complexity of our algorithm is
given by the number of subformulae we have to store and
evaluate before ϕ is ultimately decided. Let |ϕ| be the nesting
depth of the temporal operators in the formula and tl be the
greatest deadline of all subformulae at nesting level l. In
the worst case, the decision only occurs after all deadlines
in ϕ have been surpassed in which case the complexity is
O
(∏|ϕ|

l=1(tl · eventrate)
)

, which is exponential in the nesting
depth |ϕ|.

Algorithm 1: RVTL evaluation Algorithm
input : A formula object ϕ, the timestamp τi with

respect to which ϕ is evaluated and the last
received event (τj , σj).

output : The verdict JϕK(ρ, 1) after observing (τj , σj)
1 Function eval(ϕ, τi, τj , σj):
2 result ←∞
3 switch ϕ do
4 case b ∈ B do
5 if b = ⊥ then result ← −∞
6 case p ∈ P do
7 if p 6= σj then result ← −∞
8 case ϕ1 → ϕ2 do
9 result ← −1 · (−1·eval(ϕ1, τi, τj , σj) t

eval(ϕ2, τi, τj , σj))
10 case ϕ1 Ut ϕ2 do
11 update(ϕ, τj , σj)
12 if τj − τi ≤ t and not ϕ.decided then
13 result← τj − (τi + t)
14 else
15 result←⊔

(τk,vk)∈←−ϕ2

(
vk u

d
{(τl,vl)∈←−ϕ1|l<k} vl

)
16 end
17 end
18 end
19 return result

Lemma 3. Let ϕ be a RVTL formula and ρ ∈ (R×Σ)∗ be
a trace. Then

monitor(ϕ, ρ) =∞ ⇐⇒ ρ ∈ good(ϕ)

monitor(ϕ, ρ) = −∞ ⇐⇒ ρ ∈ bad(ϕ)

In other words, the monitor decides the prefix problem.

Lemma 3 follows directly from Lemma 2 and the
construction of Algorithm 1.

Algorithm 2: RVTL update Algorithm

1 Function update(ϕ, τj , σj):
2 ←−ϕ1 ←←−ϕ1 ∪ (τj ,eval(ϕ1, τj , τj , σj))
3 ←−ϕ2 ←←−ϕ2 ∪ (τj ,eval(ϕ2, τj , τj , σj))
4 foreach (τk, v) ∈ ←−ϕ1 do
5 if |v| 6=∞ then v ← eval(ϕ1, τk, τj , σj)
6 if v = −∞ then ϕ.decided← true
7 end
8 foreach (τk, v) ∈ ←−ϕ2 do
9 if |v| 6=∞ then v ← eval(ϕ2, τk, τj , σj)

10 if v =∞ then ϕ.decided← true
11 end
12 return

V. EVALUATION

The duration requirements for the various processes in
a CATR fleet described in Section III can directly be translated
into RVTL formulae as given in Table I.

ϕ1 orderCreated → ♦t1 orderCompleted

ϕ2 loaded → ¬offline Ut2 unloaded

ϕ3 docked → ¬offline Ut3 undocked

ϕ4 startDocking → ♦t4 docked

ϕ5 localized → �t5 ¬startLocalization

TABLE I: Formal specifications

The problem setup favors a violation monitoring approach,
where the monitor checks the whole trace for time steps
i with JϕK(ρ, i) = −∞. The atomic propositions are
abstractions that must hold for all instances of the respective
entity (order for ϕ1, robot for ϕ2−5) at runtime.

Figure 4 shows the result of evaluating the currently
undecided instance of ϕ2 for every robot over the first 200K
steps in the dataset. The policy ϕ2 states that it takes a robots
a certain amount of time to deliver a load to its destination
and during transport, the robot is not reported as being offline.
Based on the explorative analysis performed in Section III,
we set the deadline t2 in ϕ2 to 1000 and record time steps
where an active instance is violated.

The results hint at the benefit of using RVTL for CATR
monitoring. Over the first 80K steps (roughly 24 hours) only
a single violation is recorded due to robot 7 going offline
during transport. Then within the next 50K time steps we see
multiple robots taking longer than usual for the completion of
their transport jobs, and between steps 100k and 120k multiple
robots are switched off due to a human operator resetting the
fleet. From this observation, we draw two conclusions: (a) It
is possible that a single fault source in the fleet’s environment
caused all delays by preventing the robots from reaching their
goal locations in time. (b) The R-valued semantics provide
more per-step information about the state of the whole system
than two-valued approaches to monitoring.

Fig. 4: R-valued evaluations of Jϕ2K(ρi, i) per monitor per
time step for the first 150k events. Crossses mark violations of
the specification, whereas circles indicate the corresponding
robot being reported as offline.

Our proof-of-concept implementation is written in Python
and has a per-step computation time around 0.5 ms for
the presented trace and example specifications on a AMD
FX-8350 @ 4.0GHz. Thus, even with commodity hardware
we can increase the fleet size by orders of magnitude
and still be able to monitor efficiently. Faster algorithms
based on tableaus [21], timed automata [22] and rewriting
techniques [20] have been discussed for real-time logics and
adaptating the RVTL semantics to these is straightfoward.
Furthermore, the monitoring can be easily scaled up with an
increasing fleet size and number of formulas: With parametric
monitoring [23], a single monitor is instantiated for every
parameter binding in the formulas. If a new event is observed,
only the relevant instances have to be updated, significantly
reducing the per time step complexity.

VI. CONCLUSION

In this paper, we address the issue of monitoring a fleet of
collaborative autonomous transport robots at runtime. Based
on an analysis of logs from a real system we determined
the boundary between normal and exceptional fleet behavior
and concluded that we need the ability to express quanti-
tative temporal relationshipts between system events. We
propose RVTL, a fragment of the well-established logic MTL
and develop a R-valued semantics which provides runtime
information about the distance between the current time step
and a temporal formula’s deadline. RVTL’s syntax is simple
and the quantitative parameters correspond to intuitively
applicable concepts such as deadlines and timeouts. As a
proof of concept we implement a simple but trace-length
independent algorithm for online monitoring of RVTL and
evaluate it against the example trace. The results show that
our approach is scalable with an increasing fleet size and the
collection of individual R-valued verdicts presents a picture
of the system health that contains early signs of runtime faults
which are not visible from any individual verdict alone.
As a prospect for future work, it might be favorable to
remove the dedicated monitoring appliance altogether and
instead either use another consensus algorithm to determine a
single monitoring robot at runtime or distribute the monitoring

entirely. The latter brings new opportunities and challenges,
e.g., with respect to how individual verdicts are consolidated
to arrive at a collective monitoring verdict.

REFERENCES

[1] R. Koymans, “Specifying real-time properties with metric temporal
logic,” Real-time systems, vol. 2, no. 4, 1990.

[2] M. Chai and B.-H. Schlingloff, “System monitoring with a five-valued
ltl.” Journal of Multiple-Valued Logic & Soft Computing, vol. 26, 2016.

[3] W. Ahrendt, J. M. Chimento, G. J. Pace, and G. Schneider, “Verifying
data-and control-oriented properties combining static and runtime
verification: theory and tools,” Formal Methods in System Design,
vol. 51, no. 1, pp. 200–265, 2017.

[4] N. Delgado, A. Q. Gates, and S. Roach, “A taxonomy and catalog
of runtime software-fault monitoring tools,” IEEE Transactions on
Software Engineering, vol. 30, no. 12, pp. 859–872, Dec 2004.

[5] E. Bartocci, B. Bonakdarpour, and Y. Falcone, “First international
competition on software for runtime verification,” in International
Conference on Runtime Verification. Springer, 2014, pp. 1–9.

[6] E. Bartocci, Y. Falcone, B. Bonakdarpour, C. Colombo, N. Decker,
K. Havelund, Y. Joshi, F. Klaedtke, R. Milewicz, G. Reger et al., “First
international competition on runtime verification: rules, benchmarks,
tools, and final results of crv 2014,” International Journal on Software
Tools for Technology Transfer, pp. 1–40, 2017.

[7] M. Delahaye, N. Kosmatov, and J. Signoles, “Common specification
language for static and dynamic analysis of c programs,” in Proceedings
of the 28th Annual ACM Symposium on Applied Computing. ACM,
2013, pp. 1230–1235.

[8] M. d’Amorim and G. Roşu, “Efficient monitoring of ω-languages,” in
International Conference on Computer Aided Verification. Springer,
2005, pp. 364–378.

[9] M. Chai and B.-H. Schlingloff, “Monitoring with parametrized extended
life sequence charts,” Fundamenta Informaticae, vol. 153, no. 3, pp.
173–198, 2017.

[10] A. Kane, O. Chowdhury, A. Datta, and P. Koopman, “A case study on
runtime monitoring of an autonomous research vehicle (arv) system,”
in Runtime Verification. Springer, 2015.

[11] D. D’Souza and P. Prabhakar, “On the expressiveness of mtl in the
pointwise and continuous semantics,” International Journal on Software
Tools for Technology Transfer, vol. 9, no. 1, 2007.

[12] H.-M. Ho, “On the expressiveness of metric temporal logic over
bounded timed words,” in International Workshop on Reachability
Problems. Springer, 2014.

[13] J. Ouaknine and J. Worrell, “Safety metric temporal logic is fully
decidable,” in TACAS, vol. 3920. Springer, 2006.

[14] ——, “Some recent results in metric temporal logic,” in International
Conference on Formal Modeling and Analysis of Timed Systems.
Springer, 2008.

[15] H.-M. Ho, J. Ouaknine, and J. Worrell, “Online monitoring of metric
temporal logic,” in International Conference on Runtime Verification.
Springer, 2014.

[16] G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic
specifications,” in FATES/RV. Springer, 2006.

[17] H.-L. Choi, L. Brunet, and J. P. How, “Consensus-based decentralized
auctions for robust task allocation,” IEEE transactions on robotics,
vol. 25, no. 4, 2009.

[18] A. Goodloe and L. Pike, “Monitoring distributed real-time systems: a
survey and future directions (nasa/cr-2010-216724),” 2010.

[19] J. Rushby, “Runtime certification,” in International Workshop on
Runtime Verification. Springer, 2008.

[20] P. Thati and G. Roşu, “Monitoring algorithms for metric temporal logic
specifications,” Electronic Notes in Theoretical Computer Science, vol.
113, 2005.

[21] T. A. Henzinger, “It’s about time: Real-time logics reviewed,” in
International Conference on Concurrency Theory. Springer, 1998.

[22] J. Ouaknine and J. Worrell, “On the decidability and complexity of
metric temporal logic over finite words,” arXiv preprint cs/0702120,
2007.

[23] G. Rosu and F. Chen, “Semantics and algorithms for parametric
monitoring,” arXiv preprint arXiv:1112.5761, 2011.

