Specification and Verification of
Collaborative Transport Robots

(Invited Paper)

Bernd-Holger Schlingloff
Fraunhofer FOKUS and Humboldt University, Berlin
holger.schlingloff at fokus.fraunhofer.de

Abstract—A collaborative embedded system is an intelligent
agent in a cyber-physical system which cooperates with others by
negotiation to fulfill individual and common goals. Examples are
self-driving cars, soccer-playing robots, or adaptive production
plants. In this contribution, we present the industrial case study
of autonomous transport robots in factory environments. In our
setting, the robots collaborate by competing for transport jobs
issued by the production machines. Each robot calculates its
individual cost incurring with the job (in terms of distance,
time, energy, wear and tear, etc.) and places a bid based on
this cost. Then a distributed voting takes place, where the
lowest cost bid wins the job. Here, we present our results of
specifying and verifying this scenario. We collected requirements
via user stories for the scenario, formulated these in suitable
specification languages, designed executable models as simulation
environments, and used statistical model checking and runtime
monitoring for analysing the scenario. We argue that for different
aspects of the case study, different analysis methods are to be
used. However, all of these methods can make use of the fact that
the goals of the individual agents coincide. Our results indicate
that by the individual optimization of the cost function, reliability
and performance of the collaborative group increases. We believe
that this result is typical for a large number of similar systems.

Index Terms—embedded systems; collaboration; specification;
verification; transport robots; AGV; model-based design.

I. INTRODUCTION

Embedded systems are ubiquitous in our society. It is
estimated that in 2017, around 75 to 100 billion embedded
systems were in use world-wide [1]. A growing trend is that
these devices are becoming more and more interconnected,
communicating via wireless links. This is the enabling factor
of emerging paradigms such as the Internet of Things, Industry
4.0, Smart Cities, Connected Healthcare etc. Common to all
these paradigms is that a group of embedded systems cooper-
ates to achieve certain common goals. We call a cyber-physical
system with this architecture a collaborative system group
(CSG), and the individual agent in this group a collaborative
embedded system (CES). In this paper, we argue that the goal-
directedness of each CES can be used to facilitate validation
and verification of the CSG. In contrast to general multi-agent
systems and multi-player games, in a collaborative system
the goals and intentions of individual components coincide.
Therefore, a global strategy for the CSG can be comprised of
local strategies for the individual CES. We believe that this
holds for a large group of industrial systems where the overall
goal is reached by collaboration of different actors.

Fig. 1. Transport robots in a factory

This article is structured as follows. First, we describe our
case study of autonomous transport robots. Then, in section III
we specify goals and targets for the CES in the case study.
In section IV, we model different strategies for achieving the
objectives, and report on our verification activities for these
strategies. Finally, we summarize our experiences and point
to some future work.

II. AUTONOMOUS TRANSPORT ROBOTS

Our case study deals with a fleet of autonomous transport
robots in a factory environment [2]. These driverless vehicles
are used for loading and unloading production machines, to
ensure a timely delivery and disposal of material to different
sites in a production process. In contrast to traditional auto-
matic guided vehicles, transport robots not only move without
a human driver, but can navigate freely in their environment,
without being bound to a fixed track. A typical fleet consists
of 4-20 robots, each with a carrying capacity of 50-200 kg
with a speed of 0.5-2 m/s [3]. Figure 1 depicts these robots
in action, carrying buckets of liquid. In the factory, there are
a number of production machines which need raw materials
as input, and produce assembled goods as output. The output
of one machine may be needed as input for another machine.
There is a storage where the raw materials and assembled
products are deposited. The task of the transport robots is to
service the production machines, by loading and unloading
the necessary materials. Each machine signals when it needs
being served. The challenge is to distribute the transport jobs

between the robots such that all jobs are accomplished in a
satisfactory way. That is, each machine should be served with a
minimal waiting time, the load distribution should be balanced,
the battery usage should be within defined boundaries, etc.

Here, we assume that each robot is an autonomous agent
which can decide on the jobs to accept, the route to drive,
the time to recharge, and various other things. There is no
global controller directing the whole fleet. The robots can
communicate via a wireless network, but this communication
is unreliable. There may be spaces where the robot is unreach-
able or can be reached only by some other robots.

Furthermore, the transport system as a whole must be robust
and flexible: It may be the case that roads or docking points
are blocked, robots fail or leave the fleet, and additional robots
are joining the collaboration. In our current setting, all robots
have the same capabilities; however, the design and analysis
methods should be able to handle heterogeneous fleets as well.

The robots perceive their environment with the help of a
laser scanner. Besides providing functional safety by inter-
rupting the power flow to the motors if anything comes within
a certain distance, the laser scanner delivers an accurate 2D-
image of the vicinity of the robot. The robot can use this image
for localisation. It has a pre-recorded map of the factory, and
matches the image with this map to find the maximal likely
position.

Using its own position and the position of a goal desti-
nation, the robot can calculate an optimal path towards the
goal. The map charts the location of docking and charging
stations, parking spots, navigable spaces, and one-way roads.
An example of a map with navigable area, loading points and
data scanned during operation is given in Figure 2.

If the planned path of a robot is blocked, e.g., by a human
standing in its way or another robot crossing the route, the
robot has to recalculate its path and circumvent the obstacle.

III. SPECIFICATION OF COLLABORATION

For specifying the different aspects of this scenario, we
employed several semi-formal and formal methods. First, we
collected user stories [4], which describe the whole transporta-
tion system from the viewpoint of human stakeholders.

A user story describes for users in a certain role an aim
which they can achieve by applying the system at a certain
time, as well as the reasons for pursuing this aim. User stories
may be exemplified via use case descriptions, formalized in
UML use case diagrams and sequence charts.

For example, the user story “Decentralized order manage-
ment” describes how the robots determine which one of them
accepts an order. It can be formulated as follows.

As a transport system operator (role) 1 want the
system to decide autonomously which robot accepts
a transport job (what) whenever a job is issued by
a machine (when), such that there is no need of a
central control (why).

This user story is exemplified by the following steps [5].

[[wno? [what?

[When?

Why?

1

Machine

Broadcasts transportation
need to robots

Every time a machine
has support or dispose
need (may be in ad-
vance and/or may be
with priority)

The production pro-
cess of the machine
is not allowed to
stop

2| Every |Calculates a bid for this | When a new transport | To get the infor-
Robot | transport (may be based | need is notified mation which robot
on individual cost and/or fits the best for this
other criteria) transport
3| Every | Determine winner by dis- | After bidding
Robot | tributed leader election al-
gorithm
4| Robot | Bid winner adds the trans- | When won a bid That the transport

port to its own transport need is satisfied

queue

From these user stories, we derived objectives for the
system. An objective is a specific requirement describing
a purpose of the system. In particular, the main objective
describes why the system is being built. Objectives can be
structured into a hierarchy, where lower levels support higher
levels. Moreover, they can be ordered according to their
importance, or level of contribution to the topmost objective.

Objectives can be categorized as goals and targets. A goal is
an objective with a clear criterion whether it has been reached
or not, whereas a target is an objective which can also be
partially met, to a higher or lower degree. A goal is a certain
state of affairs which an agent strives to reach or maintain. An
agent can be close to a target, but being close to a goal is the
same as missing it. Therefore, goals usually have a long-term
character, whereas targets are frequently re-evaluated.

For cyber-physical systems consisting of several indepen-
dent agents, we have to distinguish between objectives (goals
and targets) for the collaborative system group (CSG) and
for the individual collaborative embedded system (CES). The
individual objectives should support the group objectives.

In our case study, the overall objective of the CSG is
to provide transportation services to machines. The most
important high-level goal is to keep the maximal waiting
time of each machine below a given threshold. That is, if
the machine emits a request for a transport job, then it will
be serviced by exactly one robot within this threshold. The
rationale for this goal is that production machines often have a
buffer for incoming and outgoing materials. If the input buffer
is empty or the output buffer is full, the machine will stop
its operation. This needs to be avoided. A related high-level
target is to minimize the average waiting time of machines, in
order to cope with varying production speed. Low-level targets
include

o robustness and fault tolerance, e.g., being able to deal
with failures of (unloaded) robots, being able to circum-
vent temporary road blocks;

o scalability and flexibility, e.g., being able to dynamically
integrate new robots into the fleet, and being able to adapt
to changes in the factory topology;

o efficiency and durability, e.g., balancing the usage of
robots for equal wear and tear; and

e security, e.g., intruders and traitors cannot bring down the
system.

These fleet-related goals and targets must be complemented

-
| =

[S [

Sk i i

‘ i
Y e E—
LRy %Mf—;j T

L

o B B

8 -
=

=
|
e 1 e =
- < =
i ar I
"{T*:r o |
Mo f e = |
\ T Bl
] | T .
| el |
T oo =il

Fig. 2. Factory map with scanned floor plan, nogo-areas (grey), and docking and charging stations

with individual objectives for each CES. The topmost goal
for each robot is to accomplish each transport job it has
accepted, if this is within its capabilities. A related target is
to accomplish the accepted transport jobs as fast as possible.

In order to support the topmost global goal “each request
will be serviced”, corresponding objectives for the individual
robots must be set. For example, an individual target could be
to service as many requests as possible.

However, in isolation, this target might be too coarse, as
it might lead robots to “self-destructive” behaviour such as
neglected charging, extensive wear and tear, congestion of
roads in the factory, etc. As an example, consider the case
when a robot has a low battery level which would allow to
finish one more transport job, but it would risk running out of
energy on the subsequent way to a charging station. Here, we
have a conflict between different individual goals and targets.
Should the robot prioritize the target of servicing as many
requests as possible over the goal of never running out of
battery? This shows that the targets must be refined with an
appropriate strategy which takes all objectives into respect.

Further goals and targets include

o keeping within designated floor areas,

« being able to cope with obstacles and road blocks,

o keeping battery level at 40-70%,

o minimizing the occupation time of docking and charging
points,

¢ minimizing the number and length of empty trips, and

« avoiding rests outside designated parking areas.

For the formal specification of goals, temporal logics can
be used. A classical example is the property “for every request
there is a subsequent response”. This is written in linear
temporal logic (LTL, [6]) as follows.

O(request — Oresponse)

In our setting, properties refer to real-time values. Therefore,
timed temporal logics are necessary. The property that every
request for service by a machine is fulfilled within 60 time
units by some robot can be written in metric temporal logic
(MTL, [7]) as follows.

O(request(m;) = < <goIry at(m;,ry))

Here, the existential quantifier is a finite disjunction rang-
ing over the finite set of robots. Other goals need spacial,
epistemic, or strategic operators for formalization. It is much
harder to express quantitative targets in classical or modal
logics. If the bounds are made explicit (as in the example
formula above), we can use these bounds in formulas. For
example, we can specify performance in Weighted Metric
Temporal Logic (WMTL, [8]). This logic contains an operator
P which returns the probability of a statement within a certain
time period. As an example, let the response time be the time
difference between the time when a job is created and the
time when the job is finished. The property “The response
time within the first 1000 time units shall be less than 450
time units in 80% of all requests” can be written in WMTL
as follows.

(P <=1000(3(Job.Active — (Job.clock < 450))) > 0.8)

However, we are not completely satisfied with these spec-
ification logics. In a way, they do not allow to adequately
translate the natural-language formulation of the targets. The
numerical borders (1000 time units, 450 time units, 80%)
are introduced artificially for the purpose of specification,
they do not appear in the original target. Therefore, we are
currently looking for other means of formalization which allow
to precisely formulate also fuzzy requirements in an uncertain
and dynamic context.

IV. VERIFICATION AND VALIDATION

In the most general meaning, a strategy is an operationaliza-
tion of goals and targets. Given a state of an agent, a strategy
allows the agent to make a decision as to which action to
perform. Following an adequate strategy should eventually
lead to attaining the objectives. Strategies can be formulated in
state-transition-based modelling formalisms. There have been
many suggestions of such formalisms, from Kripke structures
and finite automata to UML state machine diagrams.

We derived various models for our case study, reflecting
the defined objectives. For example, a strategy supporting the
topmost goal of servicing each machine in time consists of
an auctioning mechanism for issued transport requests. This
strategy can be formulated in natural language as follows.

Each robot maintains a local queue of accepted transport
jobs and estimated completion times. If a machine issues a

ReboterZustand1

jobsuche

bbewerbung()
al 1= 0

finish

beender
erfuegbarJobsgl 0 && alive > 1

& JoblDGlebal
alive = alive -1

obnummer && a I= winnerlD
JobCloseBewerberNr = JobCloseBewerberNr -1

iegerehrung

wegkosten

standknoten = jobzielknoten

Jobverteiler1

iegerehrur
bereinigeL isten()

finish

JoblDGlobal == jobnummer && b != winnerlD
JobCloseBewerberNr = JobCloseBewerberNr -1

egkoster

standknoten = jobzielknoten

Fig. 3. Model of transport system with two robots

new request, the robot calculates an estimated arrival time at
this machine. The job mileage is the distance between the
last position in this list and the location of the machine. The
estimated arrival time is the estimated completion time of the
last job in the task queue and the estimated travel time for
the job mileage. If this estimated arrival time is within the
deadline of the job, the robot places the job mileage as a bid.
Then, the robot waits and collects other bids. After a certain
deadline, the robot selects and communicates the lowest bid.
If no bids or more than one lowest bid arrived, this is an error
an bidding must start again. Otherwise, if the robot has placed
the lowest bid itself, the job is appended to the task queue.
This strategy does not take into respect power consumption,
battery charging, wear and tear, and other targets. We formu-
lated and modelled further strategies, e.g., the following.

¢ Random: In the bidding, each robot bids a randomly
chosen amount.

o Shortest time: Each robot bids the estimated arrival time
at the machine.

o Highest energy: Each robots bid its current battery level
(highest bid wins). A variant is to bid the estimated
energy after completing the last job in the task list.

o The bidding sum is a function of the job mileage, and
the total mileage of the robot.

« First-come-first-served: Each robot records a queue of all
issued requests. Whenever a robot becomes idle, it takes

the first unserved request from this list and signals it to
the others.

These strategies cover the assignment of tasks to robots.
Of course, the other objectives must be supported by appro-
priate strategies as well. For example, in order to realize the
global goal of fast and reliable service, we have to model a
mechanism with which the robots communicate information
amongst themselves. Each agent should distribute information
about its environment, e.g., obstacles, road blocks and map
updates. Moreover, it should also convey some information
about itself, e.g., current position and planned route.

For the formalization of these strategies, we used transition
systems, timed automata, stochastic timed automata, and in-
terpreted systems programming language. In general, a model
of the whole systems consists of three parts:

« A model of system, i.e., the robots and their behaviour,

« a model of the static environment, i.e., the floor plan of

the factory, and

« a model of the dynamic use of the system, i.e., a descrip-

tion of the transport jobs.

As an example, Figure 3 shows (part of) an UPPAAL model
with two robots and one transport job generator, where the
robots follow the auctioning mechanism described above [9].
The floor plan of the factory environment is modelled as a
weighted symmetric finite graph, where the distance between
machines is calculated by Dijkstra’s shortest path algorithm.

Given the formalization of a goal in computation tree logic
(CTL), this model allows its automatic verification by model
checking. Since the modelling formalisms we used do not
allow the dynamic creation of agents, we had to fix the number
of robots to a fixed constant. For models of decent size, the
verification is quite fast. As a typical example, with two or
three robots and five to ten machines, most properties can
be verified within a few seconds However, there is a state
space explosion with respect to the number of robots and
docking stations. Since there is little independence in the
parallelism, partial order reductions did not really help to
reduce the complexity. Nevertheless, since in practice both of
these parameters are limited, this is a viable approach.

p-a <= X <= p+b
s!
x=0

Fig. 4. Timed automaton for production with jitter

To a certain degree, stochastic models can help to optimize
certain parameters of a system. We modelled a factory with
a narrow passway between the storage and the production
machines, which can only be occupied by one robot at a
time [10]. All transport jobs have to use this passway. To avoid
collisions, a robot has to wait while another robot is passing
through the passway. If several robots want to pass, they have
to coordinate who is allowed to pass first.

B simulation(12) - bereit _loj x|
Jobs: Gesamt 19 InBearbeitung: 2 Erledigt 17 Gesamtiange: 624.25 Auswertung: AlleJobserledigt MNein Gesamtwartezeit der Maschinen: 00:20:44(00:11:22) durchschnitfich: 00:01:12{00:00:39
[T »
= Name: 0 #lobs 0 |~
|=| vVergeben: Ja(1) In Arbeit .] [X 39 Y: 3 L
von: 16 Nach: : Jobvon: — nach: -
Aktivab: 0001 Lange i enercie: [|
Abgehalt: Ja Erledigt [l Beladen: Nein Aufladen Nein
] Name: 1 #Jobs: 0
Vergeben: Ja(0) In Arbeit | X 10 Y9
von: 33 Nach: N Jobwon: nach: -
Aktivab: 00:02 Lange:] EETE |:|
Abgehaolt Ja Erledigt | Beladen:Mein Aufladen: Nein
1 Name: 2 #Jobs: 0
Tl varnahan 1221 _In Arhait X8 Y3 |
[Tl Il . arhe -
Ein Roboter 12 | | Play || Pause | FPS: 117 Geschwindigkeit L E| Simulierte Zeit: 00:02:08 | Latex Tabe

Fig. 5. Simulator for various strategies

The dynamic usage model determines that all machines
cyclically issue requests, each with a certain frequency x,,. We
attached a jitter [a, b] to the frequency x,,. That is, if a request
is issued at time ¢, the next request will be issued at any time
in the interval [t+ 2., —a, t+ 2, +b]. Figure 4 shows a timed
automaton for this behaviour. Model checking of appropriate
WMTL formulas revealed that the model is highly sensitive
to this jitter. Whereas for certain scenarios where a = b =0
congestion could be avoided, with @ > 0 and b > 0 the worst-
case performance was drastically reduced. Model checking, in
contrast to simulation, considers all possible executions, and
thus can reveal best-case and worst-case behaviour.

However, also for stochastic timed automata, a state space
explosion occurs. In order to be able to evaluate the be-
haviour of the CSG with many robots and stations under
different strategies, we implemented a tailored simulator [11].
A screenshot of this simulator is shown in Figure 5. Here,
a transport job is given as a tuple (time, from, to).
The list of transport jobs is depicted on the left side of the
simulator window. The robots, their current occupation status
and battery level are given on the right side. The main area
of the simulation window shows the floor plan, docking and
loading stations, and a visualization of the robot’s movements.
The screenshot shows a map corresponding to the floor plan
in Figure 2. Simulation mode, number of robots, strategy and
simulation speed can be set with appropriate buttons. The
simulator logs the overall time until all jobs are completed,
the completion time for each jobs, idling time of machines,
average load and travelled distances per robot and in total.

Extensive simulation runs yielded two main results. Firstly,
the ranking of different strategies depended strongly on which
target metrics was used: Shortest overall time, shortest maxi-
mal idling time, best throughput, etc. Secondly, for each strat-
egy there were scenarios where they performed particularly
good, and others where they failed. However, some strategies
(notably, “random”) scored almost always bad, whereas others
(notably, “job mileage” and “shortest time”) were mostly in

the top group [11].

From these results, we draw the following conclusions.
Finding the “right” scheduling strategy is a high-dimensional
optimization problem which has many Pareto-optimal solu-
tions. That is, it is not possible to improve in one result param-
eter without loosing in others. Moreover, since the simulation
depended on many parameters, maybe a “learning” strategy
which adapts the robot’s behaviour to different contexts might
outperform all fixed strategies. Formal verification of learning
systems, however, is still in its infancy.

An alternative to formal verification of static models and
programs is dynamic verification at runtime. Online monitor-
ing is a technique where the observed traces of a running
system are compared to a formal specification. Traces can
be obtained from a prototypical implementation, or from a
simulation as described above. A challenge is to design a
monitoring system which can detect and flag problems early,
ideally even before they occur. That is, the monitor should
raise an alarm even while the system is acting normally, if it
has a tendency to drift into the exceptional behaviour.

To this end, we extended the semantics of metric temporal
logic MTL (see above). Basically, we consider traces of finite
length, which are processed one step after the other. A formula
in a timed trace at a certain instant not only can be true or
false, but the truth value additionally can be any real number.
As long as the truth value of a formula in a model is not
determined according to the standard semantics, we assign it a
“likelihood” of being satisfied. This “likelihood” is calculated
from the distance of the deadlines in the formula to the end
of the trace, and the respective values for the sub-formulas.

We implemented an algorithm for monitoring our extended
semantics [12]. For the evaluation of this algorithm, we
collected traces from (a centralized version of) our transport
robot case study. These traces covered a duration of several
days up to a week of operation, and contained more than 105
timed events. By analysing the response time of the transport
system to issued requests, we found a quite high variance of

this value (between 1 and 100 min). Evaluating the MTL
response property given above (every job will be fulfilled
within 60 sec) revealed that property violation tended to “build
up”: several “near misses” were followed by a definite miss.
This could not have been found by classical boolean-valued
monitoring methods.

V. CONCLUSION AND FURTHER WORK

We presented results in the specification and verification of
collaborative embedded systems. As a case study, we described
an indoor logistics system consisting of autonomous transport
robots in factories. For the specification of the system, we
used a stepwise refinement approach: From purposes via
objectives to strategies. We specified the aims of the system
with user stories in controlled natural language, augmented
by scenarios as sequences of steps. From this, we derived
formal objectives for the system. We categorized the objectives
as goals or targets, depending on whether they are purely
qualitative or also quantitative. Furthermore, we showed how
to formalize the goals in various temporal logics. Then, we
identified strategies supporting the defined goals and targets.
We formalized the strategies in different state-transition-based
modelling formalisms, and used simulation and model check-
ing to analyse these models. Finally, we showed how to apply
monitoring techniques to analyse long execution traces of the
system for the accumulation of problems.

From our results, we can draw the following conclusions.
Firstly, there is no “one size fits all” method for the formal
analysis of such complex systems. We used different methods,
e.g., timed automata, for different verification goals, e.g.,
correct timing. For the defined targets, we used quantitative
analysis methods such as stochastic simulation and proba-
bilistic model checking. However, these methods forced us
to introduce artificial bounds. Therefore, we are trying to
find method which can give precise results also for fuzzy
requirements and approximative targets.

Secondly, our analysis was facilitated by the fact that
we were dealing with collaborative rather than competitive
systems. In this paradigm, the individual strategy of each agent
contributes to the aims of the whole system. The environment
has no “strategy” to adverse the outcome. Therefore, by an
individual optimization, the performance of the collaborative
group increases. We believe that this observation is typical for
a large number of similar systems. However, we could not
yet make this statement precise. Therefore, we are looking for
strategic logics which allow to formally characterize collabo-
ration aspects in embedded systems. This might improve the
development process by an automated synthesis of collabora-
tive strategies.

REFERENCES

[1] https://www.quora.com/How-many-embedded-systems-are-there

[2] H. Schlingloff, H. Stubert, and W. Jamroga: Collaborative embedded
systems — a case study. In: Proc. EITEC 2016 - 3rd Int. Workshop on
Emerging Ideas and Trends in Engineering of Cyber-Physical Systems.
CPS-Week, Wien, Apr. 2016.

[3] http://www.insystems.de/en/produkte/proant-transport-roboter/

[4] M. Cohn: User Stories applied for agile software development. Addison-
Wesley, Amsterdam 2004.

[5] J. Zernickel, S. Dannat, A. Schmiljun, H. Stubert, and J. Samuel: CrESt
Deliverable UC.AP4.D1, Cooperating transport robots. Internal Report,
Aug. 2017

[6] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi: On the temporal analysis
of fairness. Proc 7th ACM POPL, 1980.

[7] R. Koymans, Specifying real-time properties with metric temporal logic.
Real-time systems, vol. 2, no. 4, 1990.

[8] P. Bulychev, A. David, K. Larsen, A. Legay, G. Li, and D. Bggsted
Poulsen. Rewrite-based statistical model checking of WMTL. 3rd RV,
Istanbul, 2012,

[9] F. Walter: Modellierung und Verifikation von Sicherheit und Lebendigkeit
eines Systems mobiler Transportroboter mit Modellpriifung zeitbehafteter
Automaten. Bachelor’s Thesis, Humboldt Universitit zu Berlin, Institut
fiir Informatik, 2016.

[10] R. Arai, H. Schlingloff: Model-based performance prediction by statis-
tical model checking, an industrial case study of autonomous transport
robots. In: Proc. 25th CS&P 2017 - Concurrency, Specification and
Programming. Warsaw, Sept. 2017.

[11] F. Sitzmann: Simulation und Vergleich der Effektivitit verschiedener
Job-Scheduling-Verfahren fiir autonome Transportroboter. Bachelor’s
Thesis, Humboldt Universitit zu Berlin, Institut fiir Informatik, 2018.

[12] F. Lorenz and H. Schlingloff: Online-Monitoring Autonomous Transport
Robots with an R-valued Temporal Logic. Submitted to CASE 2018.

ACKNOWLEDGMENT

This work was funded by the BMBF Project CrESt, FKZ
01|S16043 G&E The author would like to thank the industrial
partner InSystems Automation GmbH for providing the case
study of this work. In particular, Jan Stefan Zernickel from
InSystems provided valuable feedback on an early version of
this paper.

