
1

CrESt Use Cases

In this chapter, we present three use cases that are used throughout this book to
demonstrate the various systems engineering methods presented: vehicle platooning,
adaptable and flexible factories, and autonomous transport robots. The use cases are
chosen from real-life industrial tasks and exhibit all software engineering challenges that
are specific to the development of collaborative embedded systems.

Holger Schlingloff, Fraunhofer FOKUS

© The Author(s) 2021

W. Böhm et al. (eds.), Model-Based Engineering of Collaborative Embedded Systems,

https://doi.org/10.1007/978-3-030-62136-0_1

1

https://doi.org/10.1007/978-3-030-62136-0_1
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62136-0_1&domain=pdf

2 CrESt Use Cases

1.1 Introduction

To derive and present the systems engineering methods described in
this volume, three different industrial use cases are used throughout
the book. These are vehicle platooning, adaptable and flexible
factories, and autonomous transport robots. In the following, we
describe each use case up to a level of detail that shows clearly how
the respective process building blocks contribute to the overall
development of the use case. For each use case, we first give some
remarks on the historical evolution of the domain, then describe
requirements and application scenarios for the use case, and finally
describe the main challenges for development to be addressed in the
rest of the book.

1.2 Vehicle Platooning

In the “Vehicle Platooning” use case, we consider a group of vehicles
that share the goal of traveling together at high speed for some
distance. With the vehicles driving in a low-distance formation, the
overall air resistance is decreased and fuel consumption is
significantly reduced. Furthermore, more vehicles fit onto the street
and traffic may be more efficient. However, in order to avoid crashing
into one another, the vehicles have to communicate constantly.
Scenarios within this use case are as follows: forming and dissolving
a platoon, as well as single vehicles joining and leaving a platoon.

Cruise control (CC) in cars has been known since the 1950s. Up to
now, such systems have been and still are limited to isolated control
decisions executed individually based on local sensor data. In the
future, vehicle-to-vehicle and vehicle-to-roadside communication
technology will enable the cruise control systems to consider a vast
range of additional context information (e.g., general traffic
conditions, dangerous situations ahead, etc.). This will enable the
cruise control system to establish effective collaboration between
vehicles. This kind of collaborative cruise control will be the central
component of upcoming fully autonomous vehicles.

Adaptive cruise control (ACC) is a step towards such a
collaborative cruise control. It is an enhancement of conventional
cruise control systems that allows the vehicle equipped with ACC to
follow a vehicle in front with a pre-selected time gap by controlling
the engine, power train, and/or service brakes. This means that the

1.2 Vehicle Platooning 3

ACC is a system that requests the onboard computers to control the
vehicle’s acceleration and deceleration. The most common ACC
systems generally use automotive radar systems, placed at the front
of the car, and/or a camera placed on the interior rear mirror. The
radar is used to identify obstacles and predict their speed by sending
and receiving radio waves. Camera-only ACC systems are currently
being researched but are not yet state of the art. The ACC increases
and reduces the car speed and automatically adjusts the vehicle speed
to maintain a safe distance from vehicles ahead. The system may not
react to parked, stopped, or slow-moving vehicles; it alerts the driver
of an imminent crash and may apply limited braking but the main
responsibility for steering the car lies with the driver.

Fig. 1-1: SysML use case diagram “Platoon Membership”

Collaborative adaptive cruise control (CACC) takes the ACC
technology to the next level, enabling vehicles to adjust their speed to
the preceding vehicle in their lane with direct car-to-car
communication. In the following, we use “CACC” to denote the cyber-
physical system of communicating controllers in collaborating
vehicles (that is, the collaborative system group (CSG)) and “CACC
ECU” to denote the electronic control unit(s) in an individual vehicle
(that is, the collaborative embedded system (CES)). Compared to

4 CrESt Use Cases

classical ACC, a CACC can respond faster to speed changes by
preceding vehicles and even vehicles beyond the line of sight. These
advancements improve the stability of the traffic flow, increase driver
confidence, and allow distances to be minimized for vehicle-following.
Ultimately, this results in better use of a highway’s capacity and
greater fuel efficiency. To increase efficiency by leveraging the
collaborative aspect, the CACC may be observing several of the
following common goals and targets:

 Same destination (at least partially)
 Support when driving on an unknown road/to an unknown

destination
 Desired and steady cruising speed
 Reduced time and fuel consumption

Figure 1-1 shows the main SysML use case diagram1 for platooning.
Most of the collaborative aspects of the CACC functionality occur when
a platoon is formed. Before any automated vehicle control can start,
the vehicles have to notice each other and agree on a common driving
strategy. During this phase, several aspects have to be considered:

 The vehicles must be in a close range so that a platoon can be
formed physically. Therefore, the CACC must be aware of the
physical location, speed, and direction of each vehicle. As a
minimum, the vehicles must be aware of other CACC-capable
vehicles and cars in their immediate vicinity.

 The vehicles must have a common driving direction. In the
simplest case, the CACC would know the complete routes that all
participating vehicles are about to travel. However, due to privacy
concerns, this may not be the case; only partial information may
be available from some vehicles.

 The vehicles should have a common or at least similar driving
characteristic or goal. A truck platoon that wants to drive as
economically and safely as possible might not be acceptable for a
driver of a powerful car who wants to travel as fast as possible.
Other drivers might not be willing to accept a very close distance
to the surrounding vehicles, which is necessary to maximize the
fuel savings. Such driving characteristics have to be negotiated
between the participants.

1 The term “SysML use case“ should not be confused with the three use cases for

collaborative embedded systems presented in this chapter. A SysML use case
describes a dedicated functionality for a certain actor.

1.2 Vehicle Platooning 5

 The vehicles must agree on their roles in a platoon. A lead vehicle
(LV) has to be selected; all other platoon members will be assigned
the role of a follower vehicle (FV). Either role might not be
acceptable for some drivers. During the negotiations, a car can be
a potential lead vehicle (PLV) or a potential follower vehicle (PFV).

A typical scenario for this use case is as follows. A vehicle drives on
the highway and wants to create a platoon. The CACC ECU of this
vehicle generates a platoon proposal and continuously broadcasts it
to other vehicles that might join the platoon. Another vehicle’s CACC
ECU receives the proposal and accepts it. After the acceptance, both
vehicles start a “platoon verification” routine, which includes a
platoon role allocation (PLV and PFV). During the verification, no
other vehicle can connect to the platoon. The PFV joins the PLV
longitudinally at the rear. The speed of both vehicles is synchronized
to establish a pairing. When the verification is closed and the platoon
is created, PLV becomes LV and PFV becomes FV1.

In the meantime, the platoon proposal remains active. Invitations
for other cars to join the platoon are continuously broadcast. If a PFV2
receives this request and accepts the proposal, the existing platoon
will be extended by another FV. In the simplest scenario, PFV2 must
join at the rear of the platoon — in other words, behind FV1. More
complex scenarios would allow a vehicle to also join somewhere in the
middle of an existing platoon. Assuming that the communication is
organized as a peer-to-peer network, PFV2 can pair with FV1 or LV,
depending on the platoon network topology. Once the pairing is
finished, the platoon join is closed; PFV2 becomes FV2 and the platoon
regulation takes control.

There are many more aspects and parameters that have to be
considered or negotiated during the build-up phase of a platoon. As
the vehicle platooning use case is considered in various chapters
throughout the book, we do not go into detail here. Moreover, there
are operations that may be reasonable but are not considered in this
book, such as changing the order or the leader of a platoon, fusing two
platoons into one, or splitting one platoon into two. A collaborative
platoon management system has to be flexible enough to cope with
such diverse information.

The CACC use case exhibits many challenges for advanced
software engineering, described as typical for the development of
CESs in Chapter 3: the complex functionality is realized mainly by
software, there is a high degree of networking of heterogeneous
components, and the system must act reliably and autonomously.
Furthermore, the development must take into account common and

6 CrESt Use Cases

conflicting goals of the CESs. The challenges addressed in this book
can be summarized as follows:

 Conception, implementation, and validation of a CACC that realizes
the function of driving in a platoon

 Assessment of the quality of the platoon regulation concept,
especially with respect to safety and reliability

 Platoon communication concept and its quality, especially the
security

 Heterogeneity of CESs built by different vendors (and the resulting
challenges for information exchange between these systems,
including standardization)

 Means to cope with uncertainties caused by imprecise and
possibly differing context perceptions of vehicles

Further challenges, which are not addressed here, include:

 Reliability of artificial intelligence techniques used for context
perception and the related uncertainty

 Elicitation of requirements for engineering methods and tools for
generalized collaborative car-to-car and car-to-X functionalities.

1.3 Adaptable and Flexible Factory

The use case “Adaptable and Flexible Factory” deals with production
modules that collaborate to build products on demand. Each module
consists of one or more production machines and offers one or more
production functions (e.g., cutting, assembly, inspection, or
forwarding of a workpiece). These functions can be combined in
different ways, and even dynamically recombined according to
changing customer needs. The common goal is to optimize the use of
production resources and machines for different usage scenarios.

According to the VDI 5201 standard, flexibility and adaptability are
concepts that describe “the ability of manufacturing companies to
change in response to changing general conditions. […] Adaptability
refers to the ability to change involving structural changes to the
system, while flexibility refers to the ability to change without structural
changes.” Present day industrial production facilities mostly consist of
specialized production machines that are connected in a fixed way via
stationary transport devices such as belt or chain conveyors. The need
for adaptable and flexible factories is driven by several demands:

 Individualization and customization of products
 Variability of products in globalized markets

1.3 Adaptable and Flexible Factory 7

 New or changed customer requirements
 Shorter product life cycles
 Changing markets and varying sales figures

Clearly, these demands cannot be met with traditional production
systems. Adaptable and flexible factories are at the center of the
fourth industrial revolution, comparable to the transition from
individual manual production methods to mass production by
machines in the 19th century. The ultimate vision of Industry 4.0 is to
allow fully automatic production of individualized goods, reducing
changeover times to zero. In order to realize this vision, several
fundamental properties of a production system are required. The
production process must be modular and arranged in several stages.
Each production module must have a clearly defined set of capabilities
and must be decoupled from other modules. Finally, the mapping of
the process to modules and the topological layout of the process in the
factory must be flexible. As most modern production facilities satisfy
these requirements to some degree, the major obstacle to adaptable
and flexible factories lies in the complexity of the corresponding
systems engineering process.

Within this use case, we assume a factory is composed of multiple
independent units called production modules. A production module
can be thought of as a specific machine or device, or a tightly coupled
group of machines. This covers both process industries and discrete
manufacturing, where production modules are sometimes called
production cells. Modules may be aggregated into different production
lines that are substructures of a production facility. A factory may host
several such facilities.

In our terminology, a production module or cell is a CES. The CSG
is formed (statically or dynamically) according to a specific
production job: it consists of all modules in the factory which take part
in this particular production process. For a specific product
component (e.g., a motor), this can be the corresponding production
line. For a complete product (e.g., a car), the CSG consist of all modules
in the corresponding production facility.

A production module is characterized by its ability to interact with
the environment, which also includes communication with other
production modules, humans (e.g., operators or maintenance
engineers), and other entities within a factory (e.g., control systems or
manufacturing execution systems). Collaboration arises from this
possibility of interaction: several modules can form a production
chain for a certain type of product. General functions of a module are:

8 CrESt Use Cases

 Processing
 Assembly
 Quality control — for example, visual inspection
 Transportation
 Storage of products

Flexible production modules are capable of performing different
functions in the production chain. One example is a robot arm that can
change the tool fitted (e.g., a welding gun) for another one (e.g., a
digital camera). Adaptable production facilities are capable of
changing the way the different modules are interconnected. An
example is a mobile robot that can work in different production lines.
This example shows that in an adaptable production facility,
membership of a CES in a CSG can change dynamically.

In our use case, we consider a CSG for the production of
quadrocopters. Each product consists essentially of components from
five different classes:

 Mechanical sub-components
 Onboard electronic components
 Motors for the rotors
 Batteries
 Remote control units

Each of these components is available in several different variants,
hence there are a large number of different products that can be built.
The production process consists of several steps, which are
performed either in sequence, in parallel, or independently of each
other. Typical production steps are:

 Pre-assembly of rotor arms and rotor
 Pre-assembly of the body, including mounting of onboard

electronics and battery
 Attachment of four arms and rotors to the body
 Final assembly of the full product

For each individual production step, activities such as turning,
sticking, molding, drilling, screwing, etc. are necessary. The order of
assembly of the different parts, and a production system which can
realize this production task are shown in Figures 1-2 and 1-3.

1.3 Adaptable and Flexible Factory 9

Fig. 1-2: Process sequences “Quadrocopter” – order of assembly

The production facility (i.e., the CSG) is structured into two main lines
and several sidelines. Each line contains several production modules
(i.e., the CESs). Each module is capable of performing different
processing tasks (joining, sticking, gluing, soldering, etc.), allowing a
flexible production of parts for different quadrocopters within one
line. Moreover, the connection between sidelines and main lines can
be adapted dynamically according to changing demands. Given a
certain sequence of quadrocopters to be produced, the modules
collaborate to accomplish this job as quickly as possible and with the
most effective use of resources. Usually, this collaboration is
orchestrated by a central manufacturing execution system (MES). The
MES assigns each specific step of the production process to an
individual production module and adapts the flow between the
production lines accordingly. However, such a centralized control
component is not really necessary; it would be feasible to imagine the
production modules distributing the workload among themselves.

Fig. 1-3: Example production system for the assembly of a quadrocopter

10 CrESt Use Cases

The diagram in Figure 1-3 is an abstract model of the production
facility. Given appropriate models of the production modules and
their interconnections in the production facility, plus a description of
the necessary production steps for each product and the estimated
demand for each product, the best possible system configuration can
be determined via simulation. In particular, simulation can be used to
show the manufacturability of certain products or sequences of
products, to determine the best timing of the modules and lines, to
avoid bottlenecks and optimize the layout and output of the facility,
and to calculate the cost per unit and management costs. Chapter 12
shows how to create adequate models for this use case.

Challenges for the design of adaptable and flexible factories, which
are addressed in this book, are as follows:

 Definition of engineering methods and a corresponding process
for the design of an adaptable and flexible factory

 Integration of qualities into the engineering methods and models
— for example, safety, reliability, and security

 Creation of models for production modules and facilities
 Description of production processes and validation of orders
 Simulation and analysis methods for these models:

o For proving properties of the CESs as well as the CSG
o For managing variability in the CSG
o For risk assessment and risk decomposition

 Engineering tools that support the adapted engineering methods
 Migration concept for converting a legacy production site into an

adaptable and flexible factory step by step

1.4 Autonomous Transport Robots

Our third use case deals with autonomous transport robots, which are
driverless vehicles for loading and unloading production modules in
a factory. Since they are not stationary, autonomous transport robots
can realize the material flow between flexible units in an adaptable
production facility. In our terminology, each robot is a CES, and the
fleet of robots is the CSG that provides the transport service to the
production facility. We explore a decentralized control scenario,
where each robot can decide which transport job to accept and
accomplish. The common goal of the fleet is to keep production going
— that is, no production module may ever stop due to lack of supply
material or abundance of processed material.

1.4 Autonomous Transport Robots 11

In present-day factories, traditional transport systems such as
conveyor belts or rollers are increasingly being replaced by
automated guided vehicles (AGV). The task of these AGVs is to provide
an automated flow of material between storage, machinery,
workspaces, and shipping department — for example, to transport
small load carriers, trays, barrels, and coils. Moreover, they can be
used for the automated transport of components to quality control or
refinishing operation spaces, and for the transport of tools and testing
equipment to assembly lines or working spaces.

The advantages of AGVs in comparison to stationary conveyor
systems are:

 Scalability: A fleet may grow as necessary with regard to the
number of transportation tasks. If business demands grow, new
vehicles can be added to the fleet easily.

 Changeability: The layout of a production process can be changed
easily, as no stationary equipment has to be rebuilt.

 Fault tolerance: With stationary equipment, even a small failure
of a single part often means that the whole process is halted. If one
of several AGVs malfunctions, however, the others can simply
take over its tasks.

 Reduced space: In general, vehicles use less space than conveyors;
moreover, they can be stowed away if not in use. In fact, as
modern transport robots use the same walkways as human
factory workers, the additional space requirements are minimal.

 Easy deployment: Since there is no construction work necessary,
AGVs can be deployed at a production site within a relatively
short amount of time.

The first generation of AGVs, introduced in the 1950s, were capable of
following a white line or other optical markers on the floor. They used
to drive on circular one-way routes on dedicated lanes in the factory.
Thus, there were only a few advantages compared to stationary
conveyor systems. The second generation, which emerged around
1970, still had to use dedicated areas that humans were not allowed
to enter but could localize themselves in these areas via photoelectric
and inductive sensors. Thus, they could move more or less freely
within a blocked segment of the traffic route, which allowed more
flexibility. Laser scanners for distance measurement became available
in the 1990s, with safety features available only from the 2000s. A
rotating laser scanner for distance measurement can not only stop the
AGV if a person approaches, it can also build a digital map of the
factory environment and allow the AGV to move freely in the facility.

12 CrESt Use Cases

An autonomous transport robot is an AGV that can navigate
autonomously. It does not require any kind of markings, reflectors, or
track guidance. Using a pre-recorded map of the environment, it finds
its path by itself, without the need for fixed routes on traffic ways.
Localization is done via comparison of the data from the integrated
laser scanner with an internal map of the factory. Routing is also
autonomous: when a robot receives an order to transport a load from
point A to point B, it uses the map to calculate an optimal path. In the
case of there being an unexpected obstacle on this path—for example,
a pallet that the vehicle cannot circumvent—the robot comes up with
an alternative route. If no alternative exists, the robot reports to the
central management software that the order cannot be executed.

In this use case, we consider a fleet of autonomous transport
robots as a CSG. Currently, transport robot fleets are managed and
controlled centrally. A fleet organization system AIC (AGV interface
controller) is in contact with the customer’s manufacturing execution
system and translates material requisitions into transportation tasks
for the fleet. Criteria for the AIC’s choice can include the vehicle’s
distance to the pick-up-area, avoiding robots driving without a task,
and the battery status of the robots. From the AIC, the robots receive
simple instructions with a “pick up here, carry there” structure and
then plan the route to get to their destination, with each robot taking
little individual action and robots gathering information first and
foremost from the central controlling system.

Fig. 1-4: Central and decentralized fleet management

Here, we are considering transport robots as individuals with
goals, foresight, and an awareness of the other robots in the fleet.
Individual robots are granted a higher level of autonomy, and the
central AIC is no longer necessary. The task management system
merely offers tasks that must be performed, and the robots distribute
these amongst themselves according to individual capabilities (see
Figure 1-4). This has several advantages. Among other improvements,

1.4 Autonomous Transport Robots 13

it increases the overall efficiency, making more sensible use of
resources and moving in ways that ensure no robot becomes a
hindrance for others.

The user story in Table 2-5 describes how autonomous
cooperating robots can determine which one of them fulfils an order
for transportation. If a new order is given and several robots are
available to take it, there must be a decision about which one of these
robots will actually perform the task. This can be accomplished via a
“bidding” process in which each robot calculates its factors playing
into this task — for example, how far away it currently is from the
pick-up area or what its current battery charge status is. It then sends
these combined factors to the other robots as a bid. Depending on
which robots can offer the most practical circumstances, a distributed
consensus protocol is used to decide which robot takes the order.

Table 2-5: User story for distribution of transport jobs

 Who? What? When? Why?
1 Production

Module
Broadcasts
transportation
need to robots

Every time a
module has
need of support
or availability
(may be in
advance
and/or may be
with priority)

The
production
process of
the module
is not
allowed to
stop

2 Every
Robot

Calculates a bid
for this
transport (may
be based on
individual cost
and/or other
criteria)

When a new
transport need
is notified

To get the
information
about which
robot is the
best fit for
this
transport

3 Every
Robot

Determine
winner by
distributed
leader election
algorithm

After bidding

4 Winning
Robot

Adds the
transport to its
own transport
queue

When a bid is
won

That the
transport
need is
satisfied

14 CrESt Use Cases

Further challenges in this use case are as follows:

 Cooperative path planning: Ideally, each robot should share the
information about blocked paths with the other robots in the fleet.
This information must be updated at frequent intervals. A more
advanced option would allow path planning according to the
traffic situation and the presumed paths of the other robots.

 Fault tolerance: The transportation system is not allowed to halt
if some of the robots are offline (in a dead spot where there is no
wireless reception) or cannot localize themselves because of
massive differences between the observed and expected
environment.

 Flexible fleet size: It should be possible to integrate a new robot
into an existing and operating fleet without stopping production.
After it has authorized itself, the new robot receives map and task
information from the others and is able to collaborate in the fleet
as a coequal partner.

 Distributed logging and monitoring: For a possible “transport as
a service” operation mode, the fleet must remember all relevant
transactions. The logging of this data must be safe and secure—
for example, via a block chain mechanism.

Acknowledgement: The author wishes to acknowledge the
contributions to the CrESt use case descriptions by the authors of the
respective deliverables, in particular Oliver Kreuzmann, Stefan Penz,
Jorge Castillo, Suryo Buono, Birthe Böhm, Roland Rosen, Jan Vollmar,
Jan Christoph Wehrstedt, Wolfram Klein, Sebastian Schröck,
Constantin Hildebrandt, Alexander Ludewig, Birte Caesar, Marian
Vorderer, Michael Hassel, Sebastian Törsleff, Jan Winhuysen, Tobias
Schüle, Michael Nieke, Jan Stefan Zernickel, Susanne Dannat, André
Schmiljun, Henry Stubert, and Janina Samuel. Moreover, the author
thanks the reviewers Torsten Bandyszak, Birthe Böhm, Birte Caesar,
Alexander Hayward, Jörg Kirchhof, Vincent Malik, Nikolaus Regnat,
Sebastian Schroeck, and Jan Christoph Wehrstedt for their valuable
remarks.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	1 CrESt Use Cases
	1.1 Introduction
	1.2 Vehicle Platooning
	1.3 Adaptable and Flexible Factory
	1.4 Autonomous Transport Robots

