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Goal-Based Strategy 
Exploration 

When	collaborative	embedded	systems	(CESs)	connect	to	form	a	group,	this	collaborative	
system	group	(CSG)	can	achieve	goals	that	are	beyond	the	reach	of	individual	systems.	
The	goals	such	a	group	can	achieve	depend	on	the	constituent	collaborative	embedded	
systems.	Consequently,	the	ability	of	a	collaborative	system	group	to	adapt	itself	is	driven	
by	 the	 capabilities	 of	 its	 collaborative	 embedded	 systems.	 This	 tight	 interconnection	
impedes	the	manual	handling	of	adaptation	strategies.	Therefore,	this	chapter	introduces	
a	 goal-based	 approach	 for	 strategy	 exploration	 that	 considers	 the	 peculiarities	 of	
collaborative	system	groups	and	collaborative	embedded	systems.	The	chapter	sets	out	
the	model-based	approach	to	adaptive	system	(group)	design,	incorporating	the	goals	of	
collaborative	 system	 groups	 and	 individual	 systems,	 and	 outlines	 corresponding	
automated	validation	methods.	We	demonstrate	the	applicability	of	our	approach	for	a	
case	example	of	collaborative	transport	robots.	
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9.1 Introduction 

The	 development	 of	 collaborative	 embedded	 systems	 (CESs)	 faces	
challenges	due	to	the	high	degree	of	complexity	that	results	from	the	
interplay	of	various	CESs	within	a	collaborative	system	group	(CSG).	
CSGs	are	formed	by	CESs	to	achieve	goals	that	individual	CESs	cannot	
achieve	 on	 their	 own.	 For	 example,	 collaborative	 autonomous	
transport	 robots	 (CESs)	 can	 form	 fleets	 (CSGs)	 to	 optimize	 the	
transportation	of	goods	in	a	factory.	In	a	CSG,	it	is	not	only	the	CESs	
that	have	goals;	the	CSG	also	has	goals	which	in	turn	result	from	the	
goals	 of	 the	 CESs.	 However,	 the	 different	 goals	 may	 be	 partially	
contradictory.	For	example,	an	individual	robot	may	be	interested	in	
conserving	its	battery	life,	while	the	fleet	as	a	whole	is	interested	in	
minimizing	disruption	in	production.	The	decentralized	organization	
and	 the	 dynamicity	 of	 such	 CSGs	 (for	 example,	 robots	may	 join	 or	
leave	the	fleet	during	runtime)	makes	them	highly	complex	and	their	
development	challenging.	

Therefore,	 we	 propose	 a	 goal-based	 approach	 for	 strategy	
exploration	that	considers	the	peculiarities	of	CSGs	and	CESs.	In	detail,	
we	introduce	a	goal	modeling	approach	tailored	to	the	specification	of	
goals	for	CESs	and	CSGs	and	show	how	strategies	can	be	developed	
based	 on	 these	 goals	 and	 operationalized.	 We	 demonstrate	 the	
applicability	 of	 our	 approach	 for	 a	 case	 example	 from	 the	 industry	
automation	 domain.	 Specifically,	 we	 illustrate	 the	 impact	 that	
different	strategies	for	a	fleet	of	autonomous	transport	robots	have	on	
the	fulfilment	of	goals	by	the	individual	robots.	

9.2 Goal Modeling for Collaborative System Groups 

Goal	models	 are	 used—often	 in	 the	 early	 development	 phases—to	
document	objectives	that	a	system	under	development	should	achieve	
[van	Lamsweerde	2001].	Goals	typically	document	the	rationales	for	
more	concrete	and	technical	requirements,	as	well	as	design	decisions	
[van	 Lamsweerde	 2001],	 [Yu	 1997].	 For	 a	 recent	 overview	 of	 goal	
modeling,	 please	 refer	 to	 [Horkoff	 et	 al.	 2017].	While	 several	 goal	
modeling	languages	have	been	proposed,	we	focus	on	the	use	of	the	
Goal-oriented	Requirement	Language	(GRL),	which	is	part	of	the	ITU-
standardized	 User	 Requirements	 Notation	 [International	
Telecommunication	Union	2012]	and	a	good	fit	for	CESs	and	CSGs	(cf.	
[Daun	et	al.	2019],	[Brings	et	al.	2020]).	

Challenges 
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GRL	is	based	on	the	i*	framework	[Yu	1997]	but	is	less	restrictive	
regarding	the	use	of	the	notational	elements	(cf.	[Horkoff	et	al.	2008]).	
GRL	encompasses	the	use	of	actors	to	denote	stakeholders	that	have	
some	goals	to	be	achieved	by	using	a	system	under	development	—	
that	is,	they	may	depend	on	other	actors	to	achieve	their	goals.	Most	
notably,	in	agent-oriented	software	engineering,	actors	are	also	used	
to	model	technical	systems	[Bresciani	et	al.	2004],	as	is	the	case	here.	

In	GRL,	the	intentions	of	actors	can	be	further	specified	by	means	
of	 several	 types	 of	 intentional	 elements.	 Intentional	 elements	 are	
subdivided	into	(hard)	goals,	soft	goals,	tasks,	resources,	and	beliefs,	
which	are	related	via	decompositions	and	contribution	 links.	 In	 the	
following,	we	illustrate	how	the	use	of	goal	modeling	can	foster	the	
engineering	of	CSGs.	

No	reasonable	system	is	supposed	to	behave	absolutely	arbitrarily.	
Each	system	has	goals	that	it	has	to	achieve.	A	CSG	is	formed	through	
the	cooperation	of	the	CESs,	 therefore	the	goals	of	the	CSG	must	be	
considered	 as	 early	 as	 during	 the	 design	 phase.	 The	 following	
distinction	between	goals	is	quite	natural:	we	refer	to	 local	goals	as	
goals	of	a	CES	and	global	goals	as	goals	of	a	CSG.	Global	goals	are	goals	
that	each	CES	of	the	CSG	aims	to	achieve,	while	local	goals	are	goals	
that	represent	the	interests	of	individual	CESs.	

This	allows	us	to	separate	goals	of	the	CSG	from	goals	of	the	CESs	
but	 also	 to	 denote	 relationships	 between	 both	 —	 for	 example,	 to	
identify	 where	 the	 CSG	 depends	 on	 the	 individual	 CESs	 in	 its	 goal	
fulfillment	and	vice	versa.	This	 is	 important	 information,	as	we	will	
see	later	on	that	these	dependencies	drive	design	decisions	and	result	
in	 the	 definition	 of	 explicit	 strategies.	 Figure	9-1	 shows	 an	 excerpt	
from	the	GRL	goal	model	of	an	 individual	 transport	robot.	The	goal	
model	emphasizes	the	transportation-related	goals	of	the	CESs.	The	
goal	model	depicts	the	robots’	responsibilities	for	route	calculation,	
performing	transport	tasks,	and	bidding	for	transport	tasks.	For	each	
robot,	 detailed	 sub-goals	 are	derived	 that,	 for	 example,	 define	how	
charging	is	to	be	handled	and	how	robot	breakdowns	must	be	treated.	

As	we	can	see,	the	goal	model	specifies	three	important	high-level	
goals	(which	are	defined	directly	after	the	root	node)	regarding	the	
safety	of	humans,	conducting	the	transport,	and	the	robustness	of	the	
robot.	 These	 goals	 are	 then	 refined	 until	 fine-grained	 tasks	 are	
reached,	 such	 as	 the	 tasks	 to	 determine	 obstacle	 positions	 and	 to	
communicate	 the	 obstacle’s	 position.	 These	 goals	 identified	 for	 the	
individual	robots	are	closely	related	to	the	overall	goals	of	the	CSG—
the	fleet	of	robots—as	each	individual	robot	depends	on	the	fleet	of	
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robots	 and	 vice	 versa.	 We	 investigated	 this	 issue	 in	 [Brings	 et	 al.	
2019],	[Brings	et	al.	2020]	in	more	detail.	

	
Fig. 9-1: GRL goal model for the individual transport robots 
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9.3 Goal-Based Strategy Development 

Collaboration	 can	 enable	 embedded	 systems	 to	 achieve	 goals	 that	
cannot	be	achieved	by	a	single	system	on	its	own.	Having	identified	
such	goals	(e.g.,	by	using	the	approach	from	Section	9.2),	one	of	the	
next	engineering	challenges	is	to	develop	behavior	(or	strategies)	for	
the	collaborating	systems	that	will	enable	the	goals	to	be	achieved.	In	
this	 section,	 we	 present	 concepts	 for	 going	 from	 identified	 goals	
towards	behavior	and	we	apply	the	concepts	to	an	example	in	the	use	
case	of	autonomous	transport	robots.	

The	goals	of	a	CSG	and	of	 the	 individual	CESs	describe	what	the	
systems	 should	 achieve	 at	 runtime.	 In	 general,	 those	 goals	 are	
described	 in	 a	way	 that	 is	 understandable	 for	humans.	There	 is	no	
specification	of	the	conditions	under	which	the	goals	are	achieved	or	
how	to	identify	goal	fulfillment.	For	example,	for	a	goal	such	as	“the	
maintenance	costs	of	the	system	group	are	minimized,”	at	design	time,	
there	is	no	information	about	which	maintenance	costs	are	minimal	
but	 still	 realistic:	 maintenance	 costs	 of	 zero	 are	 desirable	 but	 this	
cannot	 be	 achieved	 in	 a	 dynamic	 system.	 Additionally,	 there	 is	 no	
specified	point	in	time	for	checking	whether	this	goal	is	fulfilled	and,	
furthermore,	it	is	not	clear	what	measurements	are	needed	to	predict	
maintenance	costs.	

Key	 performance	 indicators	 (KPIs)	 are	 used	 to	 make	 goal	
fulfillment	 measurable:	 KPIs	 relate	 goals	 to	 observable	 system	
variables	 and	measure	 the	 degree	 to	which	 goals	 are	 fulfilled	 over	
time.	 Each	 goal	 is	 reflected	 by	 at	 least	 one	 KPI	 in	 order	 to	 enable	
assessment	of	the	system	behavior	at	each	point	in	time	with	respect	
to	the	goals.	We	look	at	KPIs	in	more	detail	in	Section	9.4.	

We	describe	system	behavior	in	terms	of	strategies:	from	a	formal	
perspective,	a	strategy	of	a	system	is	a	function	that	maps	the	history	
of	 the	 system	 behavior	 and	 its	 context	 to	 a	 (new)	 valuation	 of	 the	
system	variables.	In	other	words,	a	strategy	is	an	instruction	for	the	
system	regarding	how	to	behave	in	any	situation	it	could	face.	When	
designing	a	collaborative	embedded	system,	we	aim	for	strategies	that	
ensure	the	fulfillment	of	all	goals	“as	well	as	possible,”	using	KPIs	to	
measure	the	degree	of	goal	fulfillment.	

Due	to	potential	conflicts	between	goals	and	unpredictable	context	
behavior,	 it	 is	 not	 always	possible	 to	 find	 a	 strategy	 that	 fulfills	 all	
goals	completely.	Hence,	we	have	to	decide	which	strategy	is	the	best	
match	for	the	goals,	even	if	there	is	no	perfect	solution.	The	definition	
of	a	quality	measure	 for	 strategies	 supports	 this	decision:	a	quality	
measure	 is	 a	partial	 order	 relation	on	 the	 set	of	 all	 strategies	 for	 a	
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system.	In	particular,	a	quality	measure	is	a	function	that	takes	two	
strategies	of	a	system	and	decides	whether	one	of	those	strategies	is	
better	than	the	other	one.	Not	all	strategies	are	comparable,	hence	the	
quality	 measure	 is	 only	 a	 partial	 order.	 By	 deciding	 whether	 one	
strategy	 is	 better	 than	 another	 one,	 the	 quality	 measure	 resolves	
potential	conflicts	between	goals	—	for	example,	by	prioritizing	the	
list	of	existing	KPIs.	The	relationship	between	goals,	KPIs,	and	quality	
measures	is	summarized	in	Figure	9-2.	

	
Fig. 9-2: Relationship between goals, KPIs, and quality measures of strategies	

In	 the	 following,	 we	 present	 a	 proof	 of	 concept	 example	 that	
illustrates	the	benefit	of	defining	KPIs	and	quality	measures	based	on	
goals	for	finding	appropriate	strategies.	

In	 the	 use	 case	 of	 autonomous	 transport	 robots,	one	 of	 the	 key	
objectives	is	the	transformation	from	a	central	fleet	management	to	a	
decentral	one.	This	requires	a	definition	of	how	the	robots	distribute	
transport	tasks	among	the	fleet	such	that	not	only	goals	of	individual	
robots,	 but	 also	 goals	 of	 the	 complete	 fleet,	 are	 fulfilled.	 In	 this	
example,	we	focus	on	the	distribution	of	transport	tasks	and	the	global	
goal	of	having	equal	wear	and	tear	among	all	robots	of	the	fleet.	This	
goal	 has	 industrial	 relevance,	 since	 it	 supports	 predictive	
maintenance	and	a	reduction	in	maintenance	costs	for	the	robots	—	
since	 all	 robots	 can	 be	maintained	 in	 a	 single	 appointment	 with	 a	
service	 team	 instead	 of	 needing	 a	 service	 team	 every	 time	 a	 robot	
reaches	some	given	threshold	for	distance	driven.	

To	make	this	goal	measurable,	we	define	a	KPI	for	the	difference	
between	distances	driven	per	robot.	More	precisely,	we	observe	the	
difference	between	the	robot	with	the	least	distance	driven	and	the	
robot	with	the	most	distance	driven.	To	keep	the	example	simple,	we	
omit	additional	KPIs	that	may	also	be	relevant	for	the	goal.	We	also	
focus	 on	 the	 decision	 on	 the	 distribution	 of	 transport	 jobs.	 Here,	
therefore,	a	strategy	for	a	transport	robot	is	determined	completely	
by	defining	which	transport	tasks	the	robot	takes	over.	
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We	define	the	quality	measure	for	strategies	as	follows:	
A	strategy	s	is	better	than	strategy	u	if	the	KPI	“difference	between	

the	robot	with	the	least	distance	driven	and	the	robot	with	the	most	
distance	 driven”	 after	 fulfilling	 a	 task	 is	 smaller	 (or	 equal)	 when	
applying	s	than	when	applying	u.	

We	define	three	alternative	strategies	for	task	distribution	among	
robots:		

• Strategy	1:	The	robot	with	the	lowest	distance	covered	so	far	
takes	over	the	job.	

• Strategy	2:	The	robot	with	the	lowest	additional	distance	to	
cover	for	the	task	fulfillment	takes	over	the	job.	

• Strategy	 3:	 For	 each	 robot,	 calculate	 the	 difference	 in	 the	
distance	 covered	 if	 the	 robot	 takes	over	 the	 job.	The	 robot	
with	the	smallest	calculated	difference	value	takes	over	the	
job.	

Considering	 the	 quality	 measure	 introduced	 above,	 we	 can	 use	
examples	 to	 show	 that	 the	 first	 two	 strategies	 are	not	 comparable.	
Furthermore,	we	can	formally	show	that	the	third	strategy	is	better	
than	the	first	and	the	second	one.	This	qualitative	comparison	can	be	
complemented	 by	 a	 quantitative	 simulation-based	 comparison:	 we	
used	 a	 MATLAB	 model	 of	 the	 fleet	 of	 robots	 and	 generated	 100	
random	 topologies	 for	 the	 factory,	 each	 defined	 by	 the	 distances	
between	relevant	locations	in	the	factory,	such	as	machines,	charging	
stations,	and	storage	facilities.	Each	factory	generated	consists	of	5	to	
30	relevant	locations.	The	distances	between	locations	were	chosen	
at	 between	 5	 and	 50	 meters.	 For	 each	 of	 those	 factory	 maps,	 we	
generated	 a	 list	 of	 100	 transport	 tasks	 between	 locations	 of	 the	
respective	 factory.	 Each	 of	 the	 three	 strategies	 for	 distributing	 the	
tasks	among	the	fleet	of	robots	was	applied.	The	number	of	robots	per	
fleet	was	chosen	randomly	as	between	2	and	20.	As	the	initial	state	of	
the	fleet,	each	robot	was	randomly	set	to	one	of	the	locations,	and	an	
initial	value	for	the	distance	already	covered	was	chosen	randomly	as	
between	0	and	200	meters.	After	each	task	distribution,	the	difference	
between	 the	 minimum	 and	 maximum	 costs	 of	 the	 robots	 after	
fulfilling	 all	 tasks	 they	 took	 over	 was	 calculated	 according	 to	 the	
quality	measure.	The	simulation	showed	the	following	results:	

1 In	 the	 simulation,	 we	 were	 able	 to	 verify	 that	 strategy	 3	
performs	better	than	the	two	other	strategies	with	regard	to	
the	 quality	 measure	 defined	 above.	 Additionally,	 the	
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simulation	 showed	 that	 strategy	 1	 and	 strategy	 2	 are	 not	
comparable.	

2 As	 a	 quantitative	 result	 of	 the	 strategy	 comparison,	 we	
observed	that	the	average	differences	between	the	maximum	
and	minimum	costs	of	robots	of	the	same	fleet	is	the	smallest	
if	 the	robots	behave	according	to	strategy	3:	 the	mean	cost	
difference	between	robots	with	strategy	3	is	just	81%	of	the	
cost	difference	between	robots	with	strategy	1,	and	just	88%	
of	the	cost	difference	between	robots	with	strategy	2.	

Figure	9-3	shows	the	evolution	of	the	average	difference	between	the	
highest	 and	 lowest	 costs	 of	 robots	 over	 the	 number	 of	 distributed	
transport	 tasks	 for	 the	 three	 strategies.	 The	 figure	 illustrates	 that	
strategy	 3	 performs	 the	 best	 with	 regard	 to	 minimization	 of	 cost	
differences.	Strategy	1	has	the	least	convincing	performance.	

 
Fig. 9-3: Simulative comparison of cost differences for different strategies	

Our	 simulation	 shows	 that	 choosing	 the	 right	 strategy	 has	 a	
measurable	 impact	 on	 the	 performance	 of	 the	 fleet	 of	 robots.	 An	
explicit	 definition	 of	 a	 quality	 measure	 for	 strategies	 in	 the	 early	
design	phase	allows	us	to	identify	good	strategies	that	had	not	been	
thought	 of	 before	 (here,	 Strategy	 3,	 the	 best	 of	 the	 strategies	
considered,	was	introduced	as	a	new	strategy	after	the	definition	of	
the	 quality	 measure).	 Hence,	 considering	 strategies	 and	 quality	
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measures	 in	 the	 development	 of	 autonomous	 transport	 robots	 is	 a	
method	 that	 helps	 to	 improve	 the	 performance	 of	 the	 fleet	
significantly.	In	our	evaluation,	the	fulfillment	of	the	optimization	goal	
“equal	cost	distribution	among	the	fleet”	has	been	improved	by	nearly	
20%.	

9.4 Goal Operationalization (KPI Development) 

Developing	 a	 fleet	 of	 robots	 capable	 of	 performing	 transport	 jobs	
without	 central	 management	 necessitates	 good	 tracking	 of	
fleet/robot	performance	in	fulfilling	a	set	of	goals.	

The	fleet	of	robots	must	fulfill	multi-level	goals.	Some	of	the	goals	
must	be	fulfilled	absolutely,	while	others	can	be	fulfilled	in	relation	to	
other	goals.	This	defines	some	kind	of	trade-off	between	these	goals	
that	 have	no	 conflicts	with	 each	 other.	 In	 other	words,	 the	 level	 of	
fulfillment	of	these	goals	must	be	measured	and	analyzed	at	runtime	
to	evaluate	the	strategy	performance	that	defines	how	and	with	which	
priority	these	goals	must	be	accomplished.	

In	 order	 to	 measure	 the	 fulfillment	 of	 the	 goals	 as	 well	 as	
determine	 how	 well	 the	 fleet/automated	 guided	 vehicle	 (AGV)	 is	
performing,	we	have	to	define	KPIs.	These	KPIs	serve	as	feedback	data	
to	the	strategy	components,	which	can	lead	to	strategy	adjustments	to	
achieve	better	goal	accomplishment	if	the	present	accomplishment	is	
not	 good	 enough.	 In	 a	 multi-level	 goal	 system,	 it	 is	 helpful	 to	
categorize	the	KPIs.	These	categorizations	are	specific	to	a	use	case	
and	would	make	 it	 easier	 to	 define	 the	 trade-off	 between	 goals.	 In	
other	words,	this	would	give	indications	of	the	prioritization	of	such	a	
goal,	as	well	as	of	the	definition	of	the	interconnections	between	the	
goals	and	also	the	impact	of	not	achieving	them	among	each	other.	An	
example	of	KPI	categorization	for	autonomous	transport	robots	is	as	
follows:	

q Local/global	KPI	
q Historical/real-time	KPI	

Definition	9-4:	Local	KPIs	
The	term	local	KPI	refers	to	the	indicator	that	reveals	how	much	a	local	
goal	is	fulfilled	during	the	performance	of	the	robot.	

Definition	9-5:	Global	KPI	
The	term	global	KPI	refers	to	the	indicator	that	reveals	how	much	a	global	
goal	is	fulfilled	during	the	performance	of	the	fleet	of	robots.	

Goals in the fleet of 
robots 

Determining goal 
fulfillment using KPIs 
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Definition	9-6:	Historical	KPI	
These	KPIs	reveal	the	quantity	of	goals	fulfilled	during	a	certain	period	of	
the	fleet	performance	—	for	example,	one	week.	These	KPIs	can	be	used	
for	long-term	analysis	and	adjustments	of	the	strategy	catalog	at	design	
time.	

Definition	9-7:	Real-time	KPI	
These	KPIs	reveal	the	quantity	of	goals	fulfilled	at	runtime.	These	KPIs	can	
be	used	in	analysis	to	adjust	a	strategy	at	runtime.	

	

Example	9-8:	Decentralized	fleet	of	robots	
As	an	example,	the	following	table	shows	a	list	of	goals	and	their	relevant	
KPIs.	

Table	 KPIs	

Go
al
s	

Battery	health	and	
safety	

Minimum/maximum	
cell	voltage	[V]	 Real-time/local	

Equal	wear	and	
tear	

Distance	covered	by	
each	robot	in	a	given	
time	frame	
compared	to	the	
distances	covered	by	
other	robots	

Real-time/local	

As	soon	as	possible	
job	fulfillment	

The	difference	
between	the	earliest	
pick-up	time	and	
real	pick-up	time	[s]	

Historical/global	

As	soon	as	
necessary	
fulfillment	

The	time	frame	
between	real	
delivery	time	and	
latest	due	date	per	
transport	job	[s]	

Historical/global	

	
A	 set	 of	 goals	 for	 the	 autonomous	 transport	 robot	 use	 case	 is	 as	
follows:	

q Battery	health	and	safety:	Transport	robots	must	not	 let	their	
battery	deplete	or	overcharge.	

q Equal	wear	and	tear:	The	transport	robots	must	operate	in	such	
a	 way	 that	 all	 transport	 robots	 of	 the	 same	 age	 show	
approximately	the	same	usage.	
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q As	soon	as	possible	fulfillment:	The	fleet	of	robots	must	fulfill	
all	incoming	jobs	as	soon	as	they	are	requested.	

q As	soon	as	necessary	fulfillment:	The	fleet	of	robots	must	fulfill	
all	incoming	jobs	exactly	at	the	time	they	are	expected	to.	

By	 formalizing	 the	 KPIs	 identified	 and	 implementing	 them	 in	 a	
monitoring	tool,	we	can	keep	track	of	how	well	a	strategy	is	fulfilling	
the	desired	set	of	goals.	

9.5 Modeling Methodology for Adaptive Systems 
with MATLAB/Simulink 

The	development	of	CESs/CSGs	requires	a	well-founded	approach	for	
dealing	 with	 a	 number	 of	 difficulties	 that	 result	 from	 the	 high	
complexity	of	the	scenarios	involved	and	that	have	to	be	incorporated.	
For	 instance,	 an	autonomous	 fleet	of	 robots	must	 react	 to	dynamic	
changes	in	the	policy	of	the	manufacturing	execution	system	(MES),	
or	 the	 number	 and	 nature	 of	 its	members,	 in	 such	 a	 way	 that	 the	
overall	functionality	and	efficiency	of	the	CSG	is	safeguarded.	To	give	
an	example,	the	virtual	exploration	of	strategies	to	address	different	
goals	is	essential	to	improve	a	system’s	efficiency,	cf.	Section	9.2.	In	
this	context,	the	consistent	application	of	a	model-based	development	
process	 for	 CESs	 offers	 a	 variety	 of	 benefits,	 such	 as	 early	 and	
systematic	 validation	 of	 functional	 requirements	 that	 describe	 the	
CSG/CES	behavior.	Different	engineering	 solutions	 can	be	based	on	
suitable	system	model	variants	that	are	validated	and	compared	in	a	
fully	 or	 partly	 virtual	 context.	 Moreover,	 Simulink	 models	 can	
interface	 with	 typical	 robot	 middleware	 or	 communication	
frameworks,	such	as	the	Robot	Operating	System	(ROS).	For	instance,	
Simulink	models	may	define	ROS	nodes	or	generate	standalone	ROS	
nodes	based	on	C++	for	use	in	an	ROS	network.	

The	 model-based	 approach	 greatly	 benefits	 from	 tailored	 tool	
chains,	 which	 automate	 a	 large	 number	 of	 development	 activities,	
including	 requirements	 management,	 modeling	 and	 simulation,	 as	
well	as	integrated	quality	assurance.	For	instance,	in	the	case	of	the	
fleet	of	robots,	the	monitoring	of	the	distribution	process	for	incoming	
tasks	can	be	automatically	included	in	the	Simulink	model.	The	virtual	
representation	 provides	 a	 sound	 foundation	 for	 developing,	
maintaining,	 and	 extending	 the	 actual	 system	 and	 its	
hardware/software/mechanical	components	efficiently.	

With	 regard	 to	 the	 model	 notation,	 the	 domain-independent	
language	Simulink	is	suitable	for	describing	the	functional	behavior	of	

Adaptive systems face a 
plethora of complex 
scenarios to be 
accounted for 

Need for tailored tool 
chains 

Using Simulink 
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the	CSG	and	the	CESs	as	well	as	their	context.	In	the	case	of	a	fleet	of	
robots,	 the	 manufacturing	 execution	 system	 broadcasts	 different	
global	 goals	dynamically	 to	 the	 fleet	of	 robots.	Typically,	 the	global	
goals	define	a	trade-off	between	the	following	competing	objectives:	

1. Economy:	Minimize	the	total	distance	driven	by	all	CESs	—	i.e.,	the	
transport	robots.	

2. Robustness:	Keep	the	job	queue	lengths	of	each	robot	as	short	as	
possible.	

3. Performance:	 Maximize	 the	 number	 of	 jobs	 executed	 per	 time	
unit.	

4. Maintenance:	 Distribute	 the	 tasks	 such	 that	 all	 robots	 drive	 a	
similar	distance.	

As	mentioned	in	the	preceding	paragraphs,	KPIs	are	used	to	represent	
the	goals	 in	a	measurable	way.	A	suitable	collaboration	strategy	for	
the	 collaborative	 robot	 fleet	 members	 must	 be	 designed	
corresponding	to	the	given	goals,	cf.	Sections	9.2	and	9.3.	Therefore,	
the	fundamental	part	of	the	modeling	is	dedicated	to	the	distribution	
of	 the	 incoming	 transport	 jobs	 depending	 on	 the	 dynamically	
changing	 objectives.	 The	 collaborative	 fleet	 of	 robots	 consists	 of	 a	
finite	 number	 of	 robots	 that	 redundantly	 control	 and	maintain	 the	
required	data	 structures,	 such	 as	 job	queues,	 distances	driven,	 and	
their	batteries’	states	of	charge.	Based	on	this	data,	a	bidding	process	
determines	the	collaborative	robot	fleet	member	with	the	lowest	job	
execution	cost.	The	global	goals	are	encoded	using	a	suitable	bidding	
parameter	vector.	The	context	model,	which	represents	 the	highest	
level	in	the	hierarchy	of	system	models,	describes	the	interaction	of	
the	 transport	 robot	 with	 its	 environment	 —	 for	 example,	 the	
manufacturing	 execution	 system.	Furthermore,	 a	 suitable	 transport	
robot	 architecture	 that	 is	 capable	 of	 addressing	 adaptivity	 can	 be	
introduced	 based	 on	 a	 hierarchical	 decomposition.	 This	 approach	
yields	a	decomposition-type	model	that	defines	each	transport	robot’s	
components	 and	 interfaces.	 Most	 notably,	 the	 collaborative	 AGV	
controller	 (CAC)	 hosts	 the	 logic	 for	 calculating	 the	 bidding	 values	
based	on	the	current	system	state	and	goals.	Correspondingly,	each	
CAC	model	consists	of	the	following:	

q A	 reconfiguration	 unit,	 which	 is	 triggered	 whenever	 a	 new	
transport	 job	 is	 published	 or	 the	 collaborative	 robot	 fleet	
constituents	are	altered	
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q A	processing	unit	for	the	transport	robot	goals	—	that	is,	bidding	
values	for	the	autonomous	task	distribution	are	computed	from	
the	CAC	data,	as	well	as	from	the	bidding	parameters	associated	
with	the	currently	active	transport	robot	goal	and	the	member-
specific	local	goals	(e.g.,	maintaining	a	minimum	battery	level)	

q A	bidding	unit	that	determines	which	robot	receives	the	published	
task	

q A	unit	 that	holds	and	updates	 the	CAC	data	 (battery	 level,	path	
lengths,	etc.)	

q Units	 that	 manage	 the	 interface	 with	 ROS	 to	 determine	 path	
lengths	and	battery	states	

Figure	 9-9	 shows	 the	 resulting	 components	 in	 the	 system	
decomposition	model.	The	 system	behavior	 is	 fully	 composed	 from	
the	 behavior	models	 of	 each	 component.	 These	 component-related	
behavioral	models	represent	the	third	level	in	the	hierarchy	of	system	
models.	

	
Fig. 9-9: System decomposition model in Simulink 

The	 expected	 adaptive	 system	 response,	 which	 is	 subject	 to	
dynamically	varying	manufacturing	execution	system	policies,	must	
be	fully	captured	in	the	requirements	of	the	fleet	of	robots.	Compared	
to	natural	language-based	approaches,	which	are	still	widely	used	in	
practice,	 formalized	 requirement	 formats	 give	 rise	 to	unambiguous	
representations	of	requirements	of	the	fleet	of	robots.	Moreover,	with	
the	model-based	 approach,	 formalized	 requirement	 formats	 can	be	
fully	integrated	in	the	sense	that	state-based	or	event-based	triggers	
and	the	required	signal	response	can	be	fully	defined	using	references	
to	model	entities,	such	as	signal	specifications	or	design	parameters.	

Capturing MES policies 
in the requirements 
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In	conjunction	with	the	efficient	definition	of	appropriate	test	cases,	
virtual	validation	of	adaptive	CSG	behavior	can	be	automated	based	
on	automatic	test	execution	and	assessment.	The	assessment	relies	on	
the	 comparison	 of	 the	 logged	 output	 signals	 of	 the	 executable	
Simulink	CSG	model	with	the	expected	output	signals	as	defined	in	the	
formalized	requirement.	

9.6 Collaboration Framework for Goal-Based 
Strategies 

9.6.1 Fleet Management in Collaborative Resource Networks 

A	fleet	management	system	of	the	transport	robots	coordinates	and	
monitors	 the	 use	 and	 status	 of	 a	 CSG,	 including	 the	 offered	
functionalities	emerging	from	the	available	resources.	For	example,	a	
group	 of	 transport	 robots	 offering	 the	 operational	 resource	 of	
transporting	 items.	 In	 a	 collaborative,	 goal-based	 approach,	 these	
functionalities	 should	 be	 realized	 in	 a	 decentralized	 fashion	 and	
distributed	 to	 the	 transport	 robots	 so	 that	 they	 can	 be	 executed	
collectively	in	a	fleet	of	robots.	As	mentioned	before,	this	requires	the	
ability	of	each	CES	to	achieve	its	individual	goals	and	to	contribute	in	
an	optimal	way	to	the	goals	of	the	fleet/CSG.	

A	 collaboration	 framework	 provides	 the	 generic	 collaboration	
functionalities	needed	during	development	and	operation	of	the	CESs	
and	 the	 CSG.	 These	 functionalities	 support	 the	 CESs	 in	 making	
informed	 decisions.	 Each	 CES,	 thereby,	 decides	 independently	 and	
takes	 appropriate	 actions.	 This	 allows	 for	 self-governing	 and	 self-
organizing	 functionalities	 to	 have	 secure	 and	 trusted	 interactions	
between	the	CESs	in	the	CSG.	Most	importantly,	the	framework	must	
provide	 the	 capability	 to	 set	 up	 and	 execute	 interactions	 and	
communication	between	the	CESs	in	the	CSG.	

Fleet management 
systems coordinate 

resource usage 

The collaboration 
framework provides 

generic functionalities 
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Fig. 9-10: Example AGV scenario for goal-based, collaborative fleet management 

Figure	9-10	shows	an	exemplary	scenario	for	a	collaborative,	goal-
based	fleet	management.	The	exemplary	scenario	represents	a	factory	
floor	as	 the	 scope	of	 a	 fleet	of	 robots	with	 two	production	units	as	
transport	robots,	three	AGVs	as	CESs,	and	one	delivery	unit	as	a	CES.	
Products	output	by	the	production	units	must	be	transported	to	the	
delivery	 unit	 by	 autonomous	 transport	 robots.	 For	 this	 exemplary	
scenario	 and	 considering	 only	 the	 transport	 resource	 allocation,	 a	
collaboration	framework	must	enable:	

q The	production	units	to	announce	new	transport	requests	
q The	robots	to	receive	transport	request	announcements	
q The	 robots	 and	 the	 productions	 units	 to	 coordinate	 the	

assignment	and	fulfillment	of	tasks	
q All	 system	 components	 to	 monitor	 relevant	 information	 and	

behavior	 in	 order	 to	 elaborate	 on	 the	 level	 of	 achievement	 of	
individual	and	fleet	goals	

The	following	section	explains	how	such	a	collaboration	framework	
can	be	designed	based	on	a	set	of	communication	patterns	and	a	typed	
object	 model	 for	 a	 decentrally	 organized	 CSG.	 The	 communication	
patterns	 provide	 models	 of	 how	 the	 CESs	 can	 communicate	 and	
hereby	interact	with	each	other.	The	typed	object	model	ensures	that	
the	basic	communication	data	model	between	the	CESs	matches	and	
is	extensible.	
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9.6.2 Collaboration Framework 

A	 collaboration	 framework,	 like	 the	 one	 provided	 by	 Coaty	
(https://coaty.io),	 is	 designed	 to	 enable	 autonomous	 Internet	 of	
Things	 (IoT)	 devices,	 as	well	 as	 people	 and	 services,	 to	 interact	 in	
changing	 scenarios.	 Here,	 we	 apply	 it	 to	 a	 self-organizing	 fleet	
management,	whereby	the	following	properties	must	be	fulfilled:	

q Loose	coupling:	CESs	must	be	able	 to	 interact	 independently	of	
each	 other.	 Thus,	 a	 tight	 coupling	 with	 other	 CESs	 or	 system	
components	 would	 hinder	 the	 collaboration	 approach.	 A	
preferable	 approach	 would	 not	 apply	 device-centric	
communication	 concepts	but	 instead,	 a	decentralized	 and	data-
centric	 concept	 based	 on	 an	 event	 architecture,	 as	 typically	
applied	in	publish-subscribe	communication	principles.	This	also	
allows	CESs	to	participate	in	or	leave	CSGs	on	demand.	

q Any-to-any	communication:	CESs	must	be	able	to	interact	in	one-
to-one,	one-to-many,	many-to-one,	or	many-to-many	CES-to-CES	
communication	 scenarios.	 In	 addition,	 all	 communication	
scenarios	 should	 be	 available	 as	 one-way	 communication	 for	
publishing	 and	 subscribing	 information	 topics	 and	 two-way	
communication	for	request-response	communication.	

q Interoperability:	Besides	having	a	standard	set	of	communication	
patterns	 for	 modeling	 the	 interaction	 between	 CESs,	 for	
interoperability,	 an	 extensible	 data	 model	 for	 CES	 interaction	
must	be	established.	

q Collaboration	functions:	CESs	must	be	able	to	take	advantage	of	
generic	collaboration	functions,	such	as	negotiation	or	consensus	
finding.	This	is	especially	important	to	enable	implementation	of	
the	multi-level	goal	strategies	for	CES	and	CSG.	

q Programmability,	extensibility,	and	portability:	The	collaboration	
framework	must	be	designed	in	such	a	way	that	it	can	be	easily	
extended	and	programmed.	

The	exemplary	collaborative	 IoT	 framework	Coaty	 fulfills	 these	key	
properties.	It	is	based	on	a	lightweight	and	modular	architecture	that	
allows	 extensibility	 by	 means	 of	 specific	 connectors,	 adapters,	
building	blocks,	etc.	

The	framework	uses	event-based	communication	flows	with	one-
way/two-way	 and	 one-to-many/many-to-many	 communication	
patterns	 to	 realize	 decentralized	 prosumer	 scenarios	 for	 CESs.	 It	
thereby	combines	the	characteristics	of	both	classic	request-response	
and	publish-subscribe	communication,	but	maintains	the	data-centric	
and	loose-coupling	characteristics.	In	contrast	to	classic	client-server	

The IoT framework 
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Event-based 
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systems,	all	participants	in	the	system	are	equal	in	that	they	can	act	
both	 as	 producers/requesters	 and	 consumers/responders.	 These	
communication	patterns	(cf.	Figure	9-11)	allow	data	to	be	discovered,	
queried,	 shared,	 and	 updated	 on	 demand	 in	 a	 distributed,	
decentralized	CSG.	In	addition,	the	collaborative	IoT	framework	Coaty	
allows	for	a	distributed	implementation	of	triggering	context-specific	
remote	operations	and	dynamic	context-specific	information	routing	
between	 CESs	 by	 its	 IORouting	 concept.	 The	 IORouting	 concept	
(https://coatyio.github.io/coaty-js/man/developer-guide/#io-
routing)	 introduces	 a	 way	 to	 dynamically	 route	 information	 flows	
between	information	sources	of	a	CES	and	information	actors	that	use	
the	 information.	 This	 information	 routing	 takes	 place	 based	 on	
changes	in	the	observed	operation	context	of	the	CSG.	The	challenging	
issue	 of	 reaching	 programmability	 in	 such	 highly	 complex,	
distributed,	 asynchronous	 systems	 of	 CESs	 in	 a	 CSG	 is	 achieved	 by	
applying	 the	reactive	programming	paradigm.	The	extensible	 typed	
object	 model	 applied,	 with	 a	 set	 of	 basic	 core	 object	 types,	 can	
represent	domain-specific	 system	characteristics	 such	 as	 tasks,	 etc.	
Furthermore,	 each	 CES	 is	 represented	 as	 an	 object	 such	 that	
interoperability	can	be	maintained	without	losing	extensibility.	

Applying	this	kind	of	collaboration	framework,	a	set	of	CESs	that	
form	a	CSG	can	collaborate	by	means	of	a	decentralized	 interaction	
and	communication	network.	

	
Fig. 9-11: Collaborative IoT framework communication pattern as realized in Coaty 

https://coatyio.github.io/coaty-js/man/developer-guide/#io-routing
https://coatyio.github.io/coaty-js/man/developer-guide/#io-routing
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9.6.3 Collaboration Design in Decentralized Fleet 
Management 

The	collaboration	framework	referred	to	above	allows	us	to	perform	
and	 model	 the	 collaboration	 design	 of	 a	 decentralized	 fleet	
management.	 The	 following	 five	 different	 functional	 areas	must	 be	
designed	for	the	collaboration:	

1. Modeling	 and	 announcement	 of	 tasks	 to	 the	 fleet	 of	 robots	
with	 their	 functional	and	non-functional	 requirements	 to	be	
executed	

2. Observation	of	these	tasks	by	the	individual	transport	robots	
3. Monitoring	 local	 system’s	 and	 fleet	 of	 robots’	 states	 at	 each	

individual	transport	robot	
4. Application	of	 the	 transport	robots’	goals	and	 the	goals	of	a	

fleet	of	robots	to	calculate	an	offer	for	tasks	
5. Decentralized	coordination	of	the	decision,	based	on	the	CES	

offers,	about	which	CES	receives	the	task	

Let	us	consider	the	exemplary	scenario	from	Figure	9-10;	this	could	
be	 designed	 in	 a	 simplified	 way	 as	 follows:	 all	 transport	 robots	
observe	transport	tasks	and	other	relevant	system	states.	All	systems	
observe	 transport	 task	 bids.	 The	 production	 unit	 issues	 a	 new	
transport	task,	with	weight,	pick-up	and	drop-off	positions,	a	bidding	
strategy,	 and	a	bidding	period.	The	 robots	 calculate	a	 cost	 function	
based	on	their	individual	goals	and	the	fleet	goals	and	issue	the	result	
as	 a	 transport	 task	 bid	 to	 the	 CSG.	 Each	 robot	 evaluates	 the	 bids	
received	for	the	defined	bidding	period	and	then	decides	whether	it	
wins	the	negotiation.	If	it	does,	the	CES	announces	the	self-assignment	
of	 the	 task	 and	 the	 CSG	 places	 the	 task	 in	 its	 local	 job	 queue	 and	
executes	the	task	in	accordance	with	its	priorities	in	the	job	queue.	

As	mentioned	before,	this	scenario	is	very	simplified	and	does	not	
include	any	 failure	handling	etc.	 It	 shows	 that	 transport	 robots	can	
interact	 with	 each	 other	 in	 a	 fleet	 of	 robots	 using	 a	 collaboration	
framework	 in	 a	 powerful	 way,	 allowing	 collaborative	 goal-based	
strategies	to	be	modeled	and	implemented	in	a	structured	way	that	
can	be	validated.	

9.7 Conclusion 

CESs	connect	to	form	a	group	in	order	to	achieve	local	and	global	goals	
by	following	the	best	possible	strategy.	The	interconnection	between	
goals,	KPIs,	monitoring,	and	strategy	shapes	the	core	concept	of	the	
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goal-based	strategy	exploration	method.	In	this	chapter,	we	presented	
the	 concepts	 for	 moving	 from	 identified	 goals	 towards	 strategy	
development.	We	then	applied	the	concepts	to	an	example	from	the	
use	case	of	collaborative	autonomous	transport	robots.	 In	doing	so,	
we	focused	on	the	challenge	of	how	to	develop	a	set	of	strategies	in	
which	 multi-level	 goals	 must	 be	 achieved.	 Therefore,	 the	 goal	
fulfillment	must	be	measured	and	qualified	for	each	strategy.	

We	 also	 introduced	 the	 modeling	 tool	 and	 collaboration	
framework	to	support	the	application	of	this	approach	to	an	industrial	
use	case	to	reveal	some	of	the	challenges	in	forming	such	a	CSG.	
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