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Creating Trust in Collaborative 
Embedded Systems 

Effective collaboration of embedded systems relies strongly on the assumption that all 
components of the system and the system itself operate as expected. A level of trust is 
established based on that assumption. To verify and validate these assumptions, we 
propose a systematic procedure that starts at the design phase and spans the runtime of 
the systems. At design time, we propose system evaluation in pure virtual environments, 
allowing multiple system behaviors to be executed in a variety of scenarios. At runtime, 
we suggest performing predictive simulation to get insights into the system’s decision-
making process. This enables trust to be created in the system part of a cooperation. When 
cooperation is performed in open, uncertain environments, the negotiation protocols 
between collaborative systems must be monitored at runtime. By engaging in various 
negotiation protocols, the participants assign roles, schedule tasks, and combine their 
world views to allow more resilient perception and planning. In this chapter, we describe 
two complementary monitoring approaches to address the decentralized nature of 
collaborative embedded systems.
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10.1 Introduction 

In its most general meaning, trust is the belief of one agent in the 
capabilities and future actions of another agent. Relying on this belief, 
the trustor hands over control to the trustee and faces negative 
consequences if the trustee does not perform as expected. In 
collaborative embedded systems (CESs), trust is important on several 
levels, as depicted in Figure 10-1. Firstly, the components of the 
collaborative system group (CSG) need to trust each other in order to 
pursue common goals. Secondly, in safety-critical contexts, the 
(human) user needs to trust the CSG to work as specified, and the CSG 
itself needs to trust its environment to behave as laid down in the 
specification. Thirdly, as each CES in the group may consist of 
components from many different vendors, it needs some self-reliance, 
that is, trust in its own components. 

 
  
  
 
 
 
 
 
 
 
 

 
Besides the question “Who trusts whom?”, the question “Why trust?” 
defines another dimension in the analysis of trust. Trustworthiness 
can be established by a trustee in several ways: via certificates from 
trusted third parties, via a history of reliable actions, or by giving 
insights into its decision-making process. In the following, we 
comment on each of these in the context of collaborative embedded 
systems. Certificates from trusted third parties are used to increase the 
trustworthiness of the trustee via the reputation of the certifying 
institution. For example, an autonomous car would not be allowed to 
enter a platoon if the software has not been certified by the respective 
authorities. Certificates are usually issued for the design of a system. 
At runtime, if certificates are used, there must be a mechanism that 
can show that the certificates are original and unmodified. 

Fig. 10-1: Aspects of trust around CESs 
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A history of reliable actions can be established at design time — for 
example, by means of extensive testing. This is the preferred way if 
the system is deterministic, that is, in any given situation, it has a 
unique, reproducible behavior. However, when nondeterministic 
agents have to negotiate in their operation, this history is primarily 
established during runtime. For example, in a group of transport 
robots bidding for a certain job, a robot may be singled out if it has a 
“bad reputation” of not accomplishing jobs on time. In game theory, 
several scenarios, such as “tit for tat” and the “prisoner’s dilemma,” 
have been investigated to develop a theory of trust in the presence of 
competition. 

Insights into the decision-making process is a trust-building 
measure because it allows the trustor to predict the actions of the 
trustee in advance. For collaborative embedded systems, this can be 
realized by having each agent communicate not only decisions and 
actions, but also goals, plans, and other reasons. Since the decision-
making process takes place at runtime, this communication is 
inherently dynamic. 

In the rest of this chapter, we elaborate on three methods for 
building trust in collaborative systems. In Section 10.2, we describe an 
architectural pattern that can be used for the certification of systems 
at design time. In Section 10.3, we describe a method of predictive 
simulation that allows trust to be built at runtime. In Section 10.4, we 
describe online monitoring as a method for extrapolating future 
behavior of a system from its past and present actions. 

10.2 Building Trust during Design Time 

In this section, we introduce the concept of a prototypical platform 
that supports certification of software behavior. Trust at design time 
is then built by verifying software execution in a multitude of 
scenarios. 

The introduction of autonomy into technical systems brings new 
challenges for safety and security. Since the majority of accidents on 
the roads are caused by driver error, one way of increasing safety is 
to take away some of the driver’s responsibilities. However, such 
autonomy is only permissible if a corresponding trust can be 
established in the technical components. If the level of autonomy is 
increased by the integration of third-party components, additional 
trust checks are required. This is necessary because a software 
component delivered as a black box can contain logic bombs 
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[Avizienis et al. 2004]. A vehicle that is part of a platoon is a 
collaborative embedded system designed to be under the control of a 
collaboration function. This collaboration function can negotiate 
tactical goals with other vehicles, such as the creation of a vehicle 
platoon. After an agreement on common goals has been reached, 
system functions that follow the agreed goals are activated. 

However, even though a collaborative system’s interaction with 
other systems happens at runtime, its safety architecture is decided in 
early development stages, at design time. A testing environment must 
therefore provide the ability to evaluate the system behavior in 
interaction with other systems whose behavior is unpredictable. 
Having a high number of successful test scenarios gives a high 
confidence that the CES will behave as specified during runtime and 
therefore deserves trust. For example, in the automotive domain, the 
behavior of a vehicle in a platoon must be tested in a high number of 
scenarios with other cars in order to give confidence that it complies 
with functional and non-functional specifications for platooning. 
Testing billions of scenarios on the road with actual cars is not 
feasible. Therefore, testing the system’s behavior in simulated 
scenarios is imperative. 

The testing framework we present in this section allows a high 
number of test scenarios to be executed for collaboration functions. 
Evaluation is performed in a virtual environment using simulation. 
The modular architecture of the framework allows the evaluation of 
additional software components of other autonomous systems, such 
as robots. 

In the area of testing collaborative systems, existing approaches 
propose evaluation of the architecture of the ecosystems formed 
around them. In addition to the systems and components involved in 
an operational collaboration, the ecosystem contains actors that make 
the technical collaboration possible and also benefit from it, such as 
organizations, users, and developers. In these approaches, the 
evaluation is done by measuring the health of these ecosystems [da 
Silva Amorim et al. 2017], [da Silva Amorim et al. 2016]. The main 
aspects for evaluating the health are robustness, productivity, and 
niche creation. In contrast to these approaches, we evaluate 
collaborative systems by considering the quality of service. When 
systems start to collaborate, the collaborative group presents a new 
interface to its environment. With a visualization tool, we provide 
easily understandable information about the effects of interactions 
between systems. The information demonstrates the effects of 

Design time verification 
requires testing in an 

extended set of 
scenarios 
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emergent services that can influence the health of the whole 
ecosystem. 

In [Kephart and Chess 2003], autonomous elements mutually 
provide and utilize services in order to achieve individual goals. The 
vision is to have flexible relationships between autonomous software 
agents, with these relationships being established via negotiations. 
Relationships are represented by service provisions, and an 
independent manager oversees the agreements. This approach is 
oriented towards analysis of agents’ interaction in an ecosystem. It 
provides a good base for reasoning about a system’s interactions. The 
approach we present complements this work by providing a testing 
framework for analyzing the effects of collaborations. 

Testing framework for CSGs 

The testing framework follows the model view controller [Krasner 
and Pope 1988] architectural pattern, which is explained below. This 
allows modular components that can be exchanged when technical 
advancements are made. It also supports the reuse of components. 
The framework supports testing of collaborative embedded systems 
in holistic scenarios. These scenarios are formed with the help of 
digital twins. A digital twin is a simulation model of some embedded 
system in the real world that is linked to this system throughout its 
lifetime. The digital twins accurately represent the effects of actions 
and predicted intentions of a collaborative embedded system (CES) in 
the collaborative system group (CSG). The framework displays the 
effects of decisions taken by collaboration functions. In our context, a 
digital twin comprises real-world data and simulation models. The 
simulation models accurately represent the physical process of a real-
world device. For example, within a platoon, the lead vehicle decides 
to increase the speed. The task of the collaboration function of a 
follower vehicle is to adjust the speed accordingly. In our testing 
framework, the lead vehicle and other cars are pure virtual entities for 
testing this collaboration function. For the follower vehicle, we have 
an actual ANKI car [ANKI 2020] (a model car on a scale of 1:10, with 
on-board electronics) that provides real-time data such as speed and 
position. We create a digital twin of this vehicle by combining a coarse 
simulation model with this data. In the framework, the behavior of the 
collaboration function can be observed via the digital twin. In contrast 
to a purely virtual approach, our framework allows the interaction 
between the hardware and the software to be tested in the physical 
car. 
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Model 

Model view controller [Krasner and Pope 1988] is an architectural 
pattern that divides the function of a framework into three 
components. We will demonstrate how this pattern can be used for 
testing CSGs. The functionality of a testing framework is to allow 
creation or integration of simulation models of CESs, definition of 
scenarios, execution of test cases, and evaluation of results. 

The basic task of the modeler component is to provide an editor 
for the definition of pure virtual entities of the CSG. Moreover, a digital 
twin—that is, the combination of real-world data with a coarse 
behavioral model of a CES—can be created in this component. This 
modular structure allows simple and interchangeable units. Both pure 
virtual entities and digital twins can be represented as functional 
mock-up units (FMU) that can be executed in combination by a co-
simulation platform. 

As a concrete implementation of this concept, Fraunhofer FERAL 
[Kuhn et al. 2013] is a simulation environment used for rapid 
development of architecture prototypes through coupling of 
simulators, simulation models, and high-level models. It enables 
abstract simulation models to be coupled with very detailed 
simulation models and digital twins. The integration of virtual agents 
and digital twins allows the evaluation of controlled decisions of real 
cars in an extended set of scenarios. The simulator provides the 
necessary environment for simulating and running the behavior of 
multiple virtual CESs. 

As an example of a real-world agent, ANKI cars are small-scale 
model vehicles that can be programmed using the ANKI Software 
Development Kit (SDK). This SDK provides access to the sensors and 
actuators, and also to some higher-level functionality of the ANKI cars. 
Each ANKI car is equipped with infrared sensors that read encodings 
embedded in the track. Figure 10-2 shows the underside of an ANKI 
car. The infrared sensor is positioned at the front and the drive motor 
at the rear. 

 
 
 
 
 
 
 

 

Combining the real 
world with the virtual 

world 

Fig. 10-2: ANKI car/real-world agent 
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An additional Bluetooth Low Energy (BLE) module enables a duplex 
connection between every physical ANKI car and the SDK running on 
a Linux machine. Messages through the BLE connection go in two 
directions: commands from the simulator are sent from the simulator 
to the ANKI car via the SDK, and position information is sent back to 
the simulator. Position data consists of a combination of lane and 
segment numbers, with this data being obtained by the infrared 
sensor whenever the car crosses a checkpoint on the track. 

View 

The visualization engine of our framework receives information from 
the modeler component. It displays the results of a co-simulation by 
animating objects that reflect the dynamics within a test scenario. 
Since modularization is at the component level in our approach, the 
interfaces are complex. For an accurate representation of the behavior 
of the CSG, a high amount of complex information is necessary. The 
co-simulation platform produces information about the behavior of 
the CSG with a variable degree of accuracy that can be adjusted 
according to the testing intentions. If, for example, visualization of the 
effect of a communication failure in a platoon is intended, then 
messages describing this failure must be produced in the co-
simulation framework. In the visualization engine, the failure can be 
displayed via a red alert symbol, for example. This means that it is 
possible to “zoom” into specific details of the simulated scenario. 
However, this possibility is limited by the bandwidth and computation 
power available. 

As a concrete implementation of the view component of a testing 
framework, the Unity 3D game engine can provide a meaningful 
visualization for the scenarios and decision effects. For example, if a 
control decision has the effect of leading to a crash, this will be shown 
in the simulation. The modeler and view component can be combined 
with the observer design pattern. This is a behavioral pattern in which 
a subject maintains a list of observers and notifies them of any state 
changes by calling one of their methods. In our context, the subject is 
the message sent from the modeler to the view component. Each CES 
is an observer that reacts to this message by updating its state (i.e., 
position, speed, and acceleration). 
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Controller 
In our framework, the controller is the component that interacts 
directly with the user via web services. Through the controller, the 
user can define scenarios for the evaluation. The controller sends 
information about these scenarios to the modeler. It provides a 
service to the real-world object, which contains information about the 
pure virtual objects in the CSG. Other services include simulated 
sensor and actuator values. These services can be combined through 
service compositions. For example: the CACC (collaborative adaptive 
cruise controller) in a car can subscribe to a service giving GPS 
coordinates and to a service for the rotational speed of the wheels, and 
can thus provide a service of reference acceleration. These services 
are defined and composed in the controller and then passed to the 
modeler. 

As an implementation example, Google Blockly [Blockly 2020] 
provides an intuitive framework for the definition of test scenarios. It 
provides a language of blocks, where each block represents a possible 
step in a test case. The semantics of a block can be defined in a suitable 
programming language. The test designer can use drag and drop to 
form complex test cases from the blocks. In our testing framework, 
this graphical modelling of a test case is transformed into JavaScript 
code that is parsed by our co-simulation tool FERAL. From there, it is 

Fig. 10-3: Evaluation scenario visualized in Unity 3D from both a bird’s-eye view and 
first-person perspective 
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used to drive the Unity3D visualization. Figure 10-4 presents part of a 
test case that describes the behavior of two virtual cars in a platoon. 

In this section, we have shown how to combine real-world and 
virtual-world entities in order to test a CSG. The collaborative 
behavior of one CES in the group is tested in the simulation, whereas 
its physical behavior is tested on the actual hardware platform. This 
allows us to explore a wealth of collaboration scenarios with real-
world components without the risk of damage to the actual hardware. 

10.3 Building Trust during Runtime 

The previous section exhibited an approach and a prototypical 
implementation for building trust at design time. However, some 
aspects of trust can only be built during runtime, since not all 
operational context can be foreseen in the design. In this section, we 
describe a method of predictive simulation that allows trust to be built 
at runtime. 

During runtime, trust can be built through the addition of 
predictive simulation and dynamic safeguarding on the CESs. For this 
purpose, a software component simulating some aspects of the 
behavior of a CES is used. The abstraction can be with respect to three 
different aspects: timing behavior, functional behavior, and 
communication behavior. In order to allow an efficient online 
evaluation, only parts of the behavior should be modeled. With 
suitable abstraction, the simulation can be executed faster than the 
actual system behavior. It is therefore possible to foresee some effects 
of decisions before they are implemented in the real world. Moreover, 
the behavior of the simulated objects can be compared with the actual 

Fig. 10-4: Control algorithm of one virtual car 
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behavior of the physical entities. We can therefore detect hardware 
issues before they lead to problems. Such an approach requires the 
evaluation of the collaboration behavior at runtime. Predictive 
simulation and dynamic safeguarding can be used to build trust 
between the collaborative systems. For example, in a platoon, the 
follower vehicle needs to trust the lead vehicle not to make an 
emergency brake without a previous alert. Both the lead vehicle and 
the follower vehicle can run a simulation of the collaboration function. 
The follower vehicle can use a predictive simulation to calculate 
expected behaviors of the lead vehicle; if the lead vehicle behaves as 
expected, this increases its reputation. Therefore, the other vehicles 
may, for example, decrease the safety distance in the platoon. The lead 
vehicle itself can use dynamic safeguarding of its behavior. For 
example, it can simulate the collaboration function with respect to 
emergency braking and alerting. If it detects that there might be an 
emergency brake without prior alert, it can trigger an operational 
failover procedure that, for example, sends an alarm to the other cars. 
With this kind of runtime monitoring, it can increase its overall 
trustworthiness. 

Predictive simulation is applicable for collaborative embedded 
systems in various domains. In the following, we focus on the specific 
context of automotive software engineering. In order to build trust, 
we can evaluate the collaboration function of a connected vehicle in a 
runtime predictive simulation. The collaboration function is deployed 
on the vehicle together with its corresponding abstractions. 
Complementary to the original algorithm, an abstraction defines an 
acceptable behavior range of output values for each combination of 
input values and internal state of the algorithm. When the car is 
driving on the road, the abstract behavior is continuously evaluated 
in simulated scenarios, where the simulated environment is an 
abstraction of the actual environment as observed by the sensors of 
the car. Correctness and trustworthiness of the collaboration function 
are validated by observing the effects of the simulation. In our work, 
we consider a distinction between correctness and trustworthiness. A 
software component that successfully passes all systematic tests and 
shows a correct behavior may still not be worthy of trust. This can 
happen if, at a later point in time, the software component shows an 
unexpected malicious behavior because of hidden timing bombs 
[Avizienis et al. 2004]. This means that the behavior is evaluated in a 
secured virtual environment (Figure 10-5, phase 1). Since the 
simulation is faster than the real evolution of the scenario, possible 
errors in the implementation of the collaboration function can be 
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detected in advance and protective measures can be taken. For 
example, if a car in a platoon receives an alert from the lead vehicle 
while leaving the platoon, the simulation could show the effects of 
neglecting the alert. 

Dynamic safeguarding builds trust in the conformity of the 
collaboration function with its abstract representation (Figure 10-5, 
phase 2). This technology requires the parallel execution of the 
collaboration function and its abstractions (timing behavior, 
functional behavior, and communication behavior). Conformity is 
checked by comparing the actual behavior of the software with the 
ranges allowed by the abstraction. For example, if there is an 
emergency braking in the platoon, each car must apply a very accurate 
force to the brakes in order to avoid a collision with the preceding or 
succeeding car. The simulation could check whether the actual force 
applied to the brakes is within the force limits that were previously 
validated. 

Predictive simulation can be realized with two possible strategies. 
Firstly, it can be based on a set of well-defined situations that evaluate 
the behavior in a virtual environment. Secondly, linked predictive 
simulation virtualizes the vehicle’s current situation and predicts 
sensor data to reflect a forecast situation from the near future. Linked 
predictive simulation evaluates the abstractions in situations that are 
not covered by the first strategy. For example, in a platoon, when the 
lead car approaches an obstacle, we can monitor the abstraction of the 
collaboration function that sends adjusted desired speed commands 
to the following vehicles. If we observe that the collaboration function 
fails with this task, there is a big problem. Usually, today, this is solved 
by handing control back to the driver. Therefore, the lead car needs 
sufficient time to possibly override the decisions of the collaboration 

Fig. 10-5: Phases of the runtime trust evaluation method 
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function if they are detected to be faulty. Thus, the execution of 
predictive simulation must be fast enough to allow operational 
failover solutions. 

Figure 10-6 depicts predictive simulation and dynamic 
safeguarding in a closed control loop. The abstractions of the 
collaboration functions are executed in a secured simulated 
environment. During this predictive simulation, the order, type, and 
number of events are recorded and form the reference to which the 
actual execution of the software function on the electronic control unit 
is compared. The deviations between the expected behavior and the 
actual behavior are fed to a decision component that decides who 
controls the vehicle. If considerable deviations are detected, the 
execution of the software function is stopped and a higher trusted 
failover behavior is executed instead. 

The software function is the subject of trust evaluation. 
Implementation of the method on safety-critical systems requires 
trusted design and verification of the platform components with 
appropriate ASIL (automotive safety integrity levels) set for each of 
them. Predictive simulation and dynamic safeguarding are a means to 
increase the trust and safety of the collaboration in a CSG. At the core 
of these methods is an abstract function description that is monitored 
during runtime. In the following, we elaborate on approaches that 
deal with monitoring the actual system behavior with respect to a 
formal specification. 

10.4 Monitoring Collaborative Embedded Systems 

While the above approach requires a full-scale system model in order 
to be able to override faulty system behavior, this may not always be 

Fig. 10- 6: Platform concept 
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feasible. In this section, we present runtime verification as a 
lightweight method of monitoring a system for correct and safe 
operation. The general assumption is that a human supervisor can 
intervene and start a recovery routine if some faulty runtime behavior 
is detected. The runtime verification methods we present can be used 
to establish trust of a user in the CSG. As in the approach above, this is 
achieved by giving insights into the decision-making process. 

There are manifold sources of runtime faults of an embedded 
system, and even more of a collaborative embedded system group 
(CSG). Within such a system, we have to deal with problems stemming 
from coordination and communication, concurrency, conflicting 
goals, and more. 

In the remainder of this chapter, we describe the basic concepts of 
runtime monitoring and identify the challenges of applying it to 
collaborative embedded system groups. We then introduce two 
techniques that address some of the challenges identified. 

Runtime Monitoring 

Runtime monitoring is a popular approach for verifying the behavior 
of complex systems at runtime by checking the observed execution 
against a specification [Leucker and Schallhart 2009], [Bartocci et al. 
2018]. This approach enables a fallback policy to be invoked if a 
deviation of the actual behavior from the specified behavior is 
detected. In the typical setup, the system under monitoring (SUM) is 
instrumented such that it emits signals or events that are processed 
by a monitor. The monitor, usually being much smaller and simpler to 
verify than the SUM, provides a formal guarantee of the detection of 
certain property violations. There have been many suggestions for 
specification languages, which vary in their complexity and 
expressiveness. 

In general, there are two different approaches to constructing a 
runtime monitor for distributed systems. The monitor can be an 
additional computational entity of the system or it can be part of each 
component in the system. A centralized approach is often easier to 
implement, especially for systems already deployed. Furthermore, a 
centralized approach adds almost no computational overhead to each 
component. In contrast, a distributed approach scales naturally with 
an increasing number of components. This holds even if components 
are added dynamically at runtime. Moreover, there are applications 
(such as autonomous vehicle platooning) that are simply unfit for a 
monitoring third party. 
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Within the context of collaborative embedded systems, we are 
especially concerned with distributed runtime monitoring 
approaches. Since each CES in a CSG has its own goals and plans, it is 
more natural for a CES to also have its own monitor. Hence, in our 
approach, each component of the system is equipped with a monitor 
such that the monitors themselves build a collaborative system group 
(cf. Figure 10-7). In order to evaluate properties that rely on 
information produced by more than one component, monitors 
communicate by exchanging messages. Furthermore, a centralized 
monitor has to scale with the increasing number of systems at runtime 
and must be updated whenever a system with new capabilities (and 
thus new specifications) joins the collaborative group at runtime.  

Runtime Monitoring of Collaborative System Groups 

In a collaborative system group, collaborative embedded systems 
work together to achieve a shared goal and thereby provide a specific 
functionality. The successful completion of this core function requires 
collaboration, which is implemented by the use of interaction 
protocols for coordination or negotiation. As interaction protocols are 
thus the foundation of a CSG’s behavior, the runtime monitoring of 
those protocols is at the core of our approach. Before providing an 
example and introducing two specification formalisms, we derive 
requirements for the runtime monitoring of CSGs: 

Distributedness: To enable collaboration, CSG members exchange 
information via messages and perform local computations. If no global 
clock exists, asynchronous communication must be supported by the 
CSG architecture. Additionally, observable behavior can be described 
at the group level and at the individual level. While properties relating 
to the behavior of a single CES can be checked locally by monitoring 
methods for the verification of cyber-physical systems [Luckcuck et 

Fig. 10-7: (a) Centralized runtime monitoring (b) Distributed runtime monitoring 
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al. 2019], the specification of the group behavior requires a language 
suitable for the expression of distributed system properties. 

Embeddedness: Being an embedded system, a CES is usually subject 
to stringent timing requirements. For automotive applications, the 
variability in timing is usually bounded by a range of milliseconds, 
whereas for the transport robot use case deadlines are given in 
seconds and originate from the CSG’s context, for example, 
manufacturing execution system (MES) execution cycles. If the 
systems repeatedly fail to adhere to the timing requirements, the 
faults can accumulate and ultimately cause a fleet failure. Another 
consequence of acting in the physical world and, more precisely, of 
being connected via a wireless network, is the possibility of message 
loss. Finally, embedded systems have limited computational 
resources and are often powered by battery. Thus, implementations 
must be efficient and the number of messages exchanged for 
negotiation between CESs, as well as for communication between 
monitors, should be minimal. 

Runtime Monitoring of Interaction Protocols 

In this section, we provide an example of an interaction protocol of the 
transport robot use case, which serves as the subject for our runtime 
monitoring approach. We then introduce two specification 
formalisms, each targeting different aspects of the challenges 
identified for runtime monitoring of CSGs and give a high-level 
description of how to apply them to the example introduced. 

Figure 10-8 shows an Agent UML (AUML) [Cabac et al. 2004] 
sequence diagram of the distributed order assignment, an auction-
based algorithm, used to assign transport jobs in the transport robot 
use case. AUML is a natural fit for the description of interaction 
protocols because it is widespread, relatively easy to use, and can 
serve as a semi-formal development artifact at every stage of the 
system design process. 

The protocol is initiated whenever a machine broadcasts the need 
for transport to the fleet. Two general things should be noted here. 
First, a protocol deadline of 120 seconds is specified in the top left 
corner to ensure the (timely) termination of the protocol. Second, we 
use different execution lines for the CES and CSG, yet the former is by 
definition a member of the latter. This is necessary to model the 
perspective of a CES, where a monitor ultimately resides. Initially, the 
MES addresses the entire CSG via a broadcast message, represented 
by an empty circle arrowhead. After the announcement is received, all 
robots will wait two seconds before continuing with the protocol, 
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which is specified as (d:5) under the message. At this point, two 
concurrent threads (parallel vertical bars) are run per robot: one for 
sending messages and one for receiving messages. This way, no false 
assumptions about the order of events are incorporated into the 
model. The robot will then continue to inform the fleet about its 
readiness to participate in the current auction. A diamond box with a 
cross represents an “exclusive or” decision — that is, a robot should 
only ever send one of the two messages. Every other member of the 
CSG makes an analogous decision. All participating units then 
calculate their bids in a subroutine (which is not shown in the 
diagram) and notify the fleet again via broadcast. Each CES announces 
its bid via broadcast message and waits for all other bids to arrive, 
with the same number of bids as participation announcements 
expected in total. The bids of all participating CESs should be received 
within 10 seconds, which is represented by the vertical line on the 
right-hand side of the figure. The winner is determined using the bids 
received, where the robot with the highest bid wins; IDs can be used 
for symmetry breaking. The black circular arrowhead indicates that 
the winning CES will then notify the machine with a reliable message 
that is sent until it has been acknowledged. 

Fig. 10-8: An AUML diagram of distributed order assignment in the autonomous 
transport robots use case 
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Monitoring Functional Correctness 

Certifying distributed algorithms are a distributed runtime 
monitoring technique [Voellinger and Akili 2018]. For its 
(distributed) input-output pair (i, o), a certifying distributed 
algorithm (CDA) computes, in addition to the output o,  a witness w. A 
witness is an object which can be used in a formal argument for the 
correctness of the input-output pair. A witness predicate Γ holds for 
the triple (i, o, w) if the pair (i, o) is correct. The witness predicate is 
decided by a distributed checker algorithm at runtime. The idea is that 
a user of a CDA does not have to trust the actual algorithm but rather 
the checker, which is simpler and can be formally verified. Using the 
terminology of runtime verification, a checker acts as a monitor for a 
system running a CDA. The system itself is instrumented to 
additionally compute a witness. 
CDAs can be used to verify functional correctness at runtime. With 
respect to the distributed order assignment (Figure 10-8), we 
identified the following functional specification:  

 Agreement: All robots agree on the winner triple (winnerID, 
winner bid, jobID) 

 Existence: There is a robot with the winnerID 
 Maximum: The winner’s bid is maximal among all bids 

For a robot k, we consider its unique identifier as input (ik := {k}) and 
a triple containing the ID of its determined winner, the bid of its 
determined winner, and job ID as local output (ok := {(winnerIDk, 
winnerBidk , jobIDk )}. The witness of robot k consists of its own bid as 
well as a set containing the outputs of all other robots  (wk := (bidk, 
{ol  |  l ∈ ID and l ≠ k}). 

We distinguish between input, output and witness of single robots 
and those of the whole CSG. We denote the latter as global input I, 
global output O and global witness W, and define these as the union of 
the corresponding local items of all robots. 

We formalize the specification as the three global predicates Γagree, 
Γexist, Γmax over the global input, output, and witness. 

If Γagree holds for (I, O, W), then the property agreement holds. For 
each of the global predicates, we introduce a local predicate that can 
be checked by a monitor for each robot: γagree, γexist, γmax. We forgo the 
formalization of the predicates but only state their meaning. 

The local predicate γagree holds for robot k if its winner triple equals 
the winner triple of all other robots. If γagree holds for all robots, Γagree 

holds for the CSG. The predicate γmax holds for a robot if its bid is less 
than or equal to its winner bid. The predicate γmax must hold for all 
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robots. However, note that this predicate would hold for all robots 
even if each robot had a different winnerBid to compare its bid with. 
To verify the maximum among all bids, each robot has to compare its 
bid with the same winner bid. However, with γagree holding for all 
robots, this is ensured. Hence, if γmax and γagree hold for all robots, Γagree 

holds for the CSG. The predicate γexist holds for a robot k if its ID and 
bid equals its winner-ID and -bid, that is, if k chooses itself as a winner. 
There must be one robot for which γexist holds. Together with γagree 

holding for all robots, this ensures that there is exactly one winner. 
Hence, if γexist and γagree hold for all robots, Γexist holds for the CSG. 

The monitor of a robot k must communicate with the monitors of 
all other robots in order to collect their outputs, which are contained 
in wk. Based on (ik, ok, wk), the monitor of a robot evaluates γagree, γexist, 
γmax based on its robot input, output, and witness. To decide Γagree, Γexist 

and Γmax, the monitors have to combine their results, for example, 
using a spanning tree as communication topology. To ensure the 
correctness of the result, a reliable message passing mechanism such 
as remote procedure call must be used for this exchange. 

 
Monitoring Correct Timing Behavior 
Temporal logics are widely employed in the field of runtime 
monitoring to specify system properties [Bauer et al., 2011]. A well-
established specification language for monitoring is Metric Temporal 
Logic (MTL), which enriches the temporal operators □ (always), ◇ 
(sometime), and U (until) with quantitative timing constraints. The 
syntax of MTL is given by: 

φ ::= ⊥ | p | (φ → ψ) | (φ U t ψ) 
The until operator has a scalar constraint t ∈ ]0, ∞[, which 

intuitively corresponds to a deadline. Other operators can be defined 
as usual: ¬φ := (φ → ⊥),  ⊤ := ¬⊥,  (φ ∨ ψ) := (¬φ → ψ),  (φ ∧ ψ) := ¬(¬φ 
∨ ¬ψ), (φ ⊕ ψ) := ((φ ∨ ψ) ∧ ¬(φ ∧ ψ)) , ◇t φ := (⊤ Ut φ),  □t φ := ¬◇t 
¬φ, etc. In order to define the semantics of an MTL formula with 
respect to some SUM, the SUM is instrumented to produce a trace of 
timestamped events ρ = (τ1, σ1), (τ2, σ2), ..., (τn, σn) ∈ (ℝ ≥0×Σ )∗ over a 
finite alphabet Σ. The length of a trace is denoted as |ρ|. The semantics 
of ⊥, p, and → is de ined as in classical Boolean logic. For example, (ρ, 
i) ⊨ (φ → ψ) if (ρ, i) ⊨ φ implies (ρ, i) ⊢ψ. The semantics of the until 
operator Ut is as follows: 

(ρ, i) ⊨ (φ Ut ψ) if there exists a j such that 
i < j < |ρ|,   (ρ, j) ⊨ ψ,   τj − τi ≤ t,  
and (ρ, k) ⊨ φ for all k with i < k < j 
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In other words, ψ must be true some time before the deadline t has 
been passed and before that, φ has to continually hold. 

With respect to the protocol presented, the following formula 
expresses that within five seconds after receiving the announce 
message, each robot declares its participation or non-participation in 
the bidding: 

φ1 = (announce → (□5 ¬(participate ⊕ not-participate))) 

Analogously, the following formula expresses the 10 second timeout 
for placing a bid: 

φ2 = (participate → □10 bid) 

One such monitor checking the formulas above runs for each robot. 
Thus, the method is implicitly constrained to specify properties of the 
actions and observations of a single robot. 

The Boolean semantics of MTL given above has been extended to a 
real-valued semantics, where the truth value of a formula is a real 
number (where ∞ represents true and -∞ false) [Dokhanchi et al. 
2014]. This value gives the robustness of validity or falsity of a 
formula φ: If φ evaluates to the positive robustness ε, then the 
specification is true and, moreover, the trace can tolerate 
perturbations up to ε and still satisfy the specification. Similarly, if the 
robustness is negative, then the specification is false and, moreover, 
the trace under ε perturbations still do not satisfy it. This is useful for 
monitoring, e.g., properties such as “If a town sign is detected, within 
3 seconds, the speed is reduced to 50 km/h”, which is formulated as 

(town-sign → ◇3 (speed<50)) 

In each timed event, the truth value of the basic event (speed<50) 
could depend on the value of the actual speed minus 50, thus a trace 
where the speed is reduced to 40 km/h has a higher robustness value 
than one where it is reduced only to 49 km/h. 

In [Lorenz and Schlingloff 2018], we use a similar idea, however, 
instead of giving a fuzzy semantics to basic propositions, we let the 
truth value reflect the robustness with which deadlines are met. In our 
logic RVTL, the truth value of a formula with respect to a finite trace 
depends on the distance between the end of the trace and the bounds 
of the temporal operators in the formula. Formally,  

(ρ,i)⟦◇t φ⟧ = (τi+t) - τn, if (τi+t)≥τn and (ρ,k)⟦◇t φ⟧<∞ for all i≤k≤n, 
and (ρ,i)⟦◇t φ⟧ = inf {(ρ,j)⟦φ⟧ | (τi+t)≥τj}, else. 
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Intuitively, if the deadline extends past the end of the trace and φ is 
not satisfied until then, the truth value of ◇t φ reflects how much time 
is left to satisfy φ. Otherwise, the truth value coincides with the 
classical meaning in MTL. Therefore, the value (ρ,i)⟦◇t φ⟧ provides 
runtime information about the distance between the current time step 
and the deadline t for φ. It quantifies how much time is left for φ to 
become true before its deadline is surpassed. The value of the dual 
formula (ρ,i)⟦ □t φ⟧ is calculated similarly: 

(ρ,i)⟦□t φ⟧ = τn - (τi+t), if (τi+t)≥τn and (ρ,k)⟦□t φ⟧ >-∞ for all i≤k≤n, 
and (ρ,i)⟦□t φ⟧ = sup {(ρ,j)⟦φ⟧ | (τi+t)≥τj}, else. 

That is, if the deadline extends past the end of the trace, then the truth 
value of □t φ reflects the “obligation” to obey φ for some prolonged 
time; otherwise, the truth value coincides with the classical meaning. 
With such a semantics, we can issue a warning already if deadlines are 
nearly missed, even before an error occurred. A typical formula is 

φ3 = (orderCreated→ ◇600 orderCompleted) 

which states that every transport job should be completed within ten 
minutes. Monitoring this formula for several days in a real production 
environment shows situations where “near misses” accumulate more 
and more, until finally “real misses” of the deadline occur. In a 
collaborative work environment, such an agglomeration of problems 
can be an early indication that the size of the fleet needs to be 
increased. 

10.5 Conclusion 

In this chapter, we elaborated on a notion of trust in the context of 
collaborative embedded systems. We discussed how different aspects 
of trust can be addressed at design time and runtime. During design 
time, testing the behavior of collaboration functions in an extended 
set of test scenarios creates trust by enabling software behavior 
certification. During design time, the prediction of software and 
system behavior gives insights into decisions. In the case of dangerous 
predictions, failover behavior can be triggered. We then presented 
runtime monitoring — a lightweight method for establishing trust of 
a user in a CSG. To this end, we introduced two runtime monitoring 
techniques: certifying distributed algorithms and runtime verification 
with temporal logics. Certifying distributed algorithms are tailored for 
distributed runtime monitoring and therefore well-suited for 
application to non-intermediate interaction through negotiation 
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protocols. The method supports distribution of a specification for the 
global behavior of the system in a way that partial specifications can 
be checked locally at each component. Temporal logics, on the other 
hand, are a good fit to address the challenges posed by the physical 
embedding of a CES. They can be used to express the timing of 
behaviors as typically required for embedded systems. Moreover, 
multi-valued variants of linear temporal logic can even help to detect 
progressing fault chains before they lead to failures. 
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