

10

Creating Trust in Collaborative
Embedded Systems

Effective collaboration of embedded systems relies strongly on the assumption that all
components of the system and the system itself operate as expected. A level of trust is
established based on that assumption. To verify and validate these assumptions, we
propose a systematic procedure that starts at the design phase and spans the runtime of
the systems. At design time, we propose system evaluation in pure virtual environments,
allowing multiple system behaviors to be executed in a variety of scenarios. At runtime,
we suggest performing predictive simulation to get insights into the system’s decision-
making process. This enables trust to be created in the system part of a cooperation. When
cooperation is performed in open, uncertain environments, the negotiation protocols
between collaborative systems must be monitored at runtime. By engaging in various
negotiation protocols, the participants assign roles, schedule tasks, and combine their
world views to allow more resilient perception and planning. In this chapter, we describe
two complementary monitoring approaches to address the decentralized nature of
collaborative embedded systems.

Samira Akili, Humboldt Universität zu Berlin
Emilia Cioroaica, Fraunhofer IESE
Thomas Kuhn, Fraunhofer IESE
Holger Schlingloff, Fraunhofer FOKUS

© The Author(s) 2021

W. Böhm et al. (eds.), Model-Based Engineering of Collaborative Embedded Systems,

https://doi.org/10.1007/978-3-030-62136-0_10

217

https://doi.org/10.1007/978-3-030-62136-0_10
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62136-0_10&domain=pdf

218 Creating Trust in Collaborative Embedded Systems

10.1 Introduction

In its most general meaning, trust is the belief of one agent in the
capabilities and future actions of another agent. Relying on this belief,
the trustor hands over control to the trustee and faces negative
consequences if the trustee does not perform as expected. In
collaborative embedded systems (CESs), trust is important on several
levels, as depicted in Figure 10-1. Firstly, the components of the
collaborative system group (CSG) need to trust each other in order to
pursue common goals. Secondly, in safety-critical contexts, the
(human) user needs to trust the CSG to work as specified, and the CSG
itself needs to trust its environment to behave as laid down in the
specification. Thirdly, as each CES in the group may consist of
components from many different vendors, it needs some self-reliance,
that is, trust in its own components.

Besides the question “Who trusts whom?”, the question “Why trust?”
defines another dimension in the analysis of trust. Trustworthiness
can be established by a trustee in several ways: via certificates from
trusted third parties, via a history of reliable actions, or by giving
insights into its decision-making process. In the following, we
comment on each of these in the context of collaborative embedded
systems. Certificates from trusted third parties are used to increase the
trustworthiness of the trustee via the reputation of the certifying
institution. For example, an autonomous car would not be allowed to
enter a platoon if the software has not been certified by the respective
authorities. Certificates are usually issued for the design of a system.
At runtime, if certificates are used, there must be a mechanism that
can show that the certificates are original and unmodified.

Fig. 10-1: Aspects of trust around CESs

10.2 Building Trust during Design Time 219

A history of reliable actions can be established at design time — for
example, by means of extensive testing. This is the preferred way if
the system is deterministic, that is, in any given situation, it has a
unique, reproducible behavior. However, when nondeterministic
agents have to negotiate in their operation, this history is primarily
established during runtime. For example, in a group of transport
robots bidding for a certain job, a robot may be singled out if it has a
“bad reputation” of not accomplishing jobs on time. In game theory,
several scenarios, such as “tit for tat” and the “prisoner’s dilemma,”
have been investigated to develop a theory of trust in the presence of
competition.

Insights into the decision-making process is a trust-building
measure because it allows the trustor to predict the actions of the
trustee in advance. For collaborative embedded systems, this can be
realized by having each agent communicate not only decisions and
actions, but also goals, plans, and other reasons. Since the decision-
making process takes place at runtime, this communication is
inherently dynamic.

In the rest of this chapter, we elaborate on three methods for
building trust in collaborative systems. In Section 10.2, we describe an
architectural pattern that can be used for the certification of systems
at design time. In Section 10.3, we describe a method of predictive
simulation that allows trust to be built at runtime. In Section 10.4, we
describe online monitoring as a method for extrapolating future
behavior of a system from its past and present actions.

10.2 Building Trust during Design Time

In this section, we introduce the concept of a prototypical platform
that supports certification of software behavior. Trust at design time
is then built by verifying software execution in a multitude of
scenarios.

The introduction of autonomy into technical systems brings new
challenges for safety and security. Since the majority of accidents on
the roads are caused by driver error, one way of increasing safety is
to take away some of the driver’s responsibilities. However, such
autonomy is only permissible if a corresponding trust can be
established in the technical components. If the level of autonomy is
increased by the integration of third-party components, additional
trust checks are required. This is necessary because a software
component delivered as a black box can contain logic bombs

220 Creating Trust in Collaborative Embedded Systems

[Avizienis et al. 2004]. A vehicle that is part of a platoon is a
collaborative embedded system designed to be under the control of a
collaboration function. This collaboration function can negotiate
tactical goals with other vehicles, such as the creation of a vehicle
platoon. After an agreement on common goals has been reached,
system functions that follow the agreed goals are activated.

However, even though a collaborative system’s interaction with
other systems happens at runtime, its safety architecture is decided in
early development stages, at design time. A testing environment must
therefore provide the ability to evaluate the system behavior in
interaction with other systems whose behavior is unpredictable.
Having a high number of successful test scenarios gives a high
confidence that the CES will behave as specified during runtime and
therefore deserves trust. For example, in the automotive domain, the
behavior of a vehicle in a platoon must be tested in a high number of
scenarios with other cars in order to give confidence that it complies
with functional and non-functional specifications for platooning.
Testing billions of scenarios on the road with actual cars is not
feasible. Therefore, testing the system’s behavior in simulated
scenarios is imperative.

The testing framework we present in this section allows a high
number of test scenarios to be executed for collaboration functions.
Evaluation is performed in a virtual environment using simulation.
The modular architecture of the framework allows the evaluation of
additional software components of other autonomous systems, such
as robots.

In the area of testing collaborative systems, existing approaches
propose evaluation of the architecture of the ecosystems formed
around them. In addition to the systems and components involved in
an operational collaboration, the ecosystem contains actors that make
the technical collaboration possible and also benefit from it, such as
organizations, users, and developers. In these approaches, the
evaluation is done by measuring the health of these ecosystems [da
Silva Amorim et al. 2017], [da Silva Amorim et al. 2016]. The main
aspects for evaluating the health are robustness, productivity, and
niche creation. In contrast to these approaches, we evaluate
collaborative systems by considering the quality of service. When
systems start to collaborate, the collaborative group presents a new
interface to its environment. With a visualization tool, we provide
easily understandable information about the effects of interactions
between systems. The information demonstrates the effects of

Design time verification
requires testing in an

extended set of
scenarios

10.2 Building Trust during Design Time 221

emergent services that can influence the health of the whole
ecosystem.

In [Kephart and Chess 2003], autonomous elements mutually
provide and utilize services in order to achieve individual goals. The
vision is to have flexible relationships between autonomous software
agents, with these relationships being established via negotiations.
Relationships are represented by service provisions, and an
independent manager oversees the agreements. This approach is
oriented towards analysis of agents’ interaction in an ecosystem. It
provides a good base for reasoning about a system’s interactions. The
approach we present complements this work by providing a testing
framework for analyzing the effects of collaborations.

Testing framework for CSGs

The testing framework follows the model view controller [Krasner
and Pope 1988] architectural pattern, which is explained below. This
allows modular components that can be exchanged when technical
advancements are made. It also supports the reuse of components.
The framework supports testing of collaborative embedded systems
in holistic scenarios. These scenarios are formed with the help of
digital twins. A digital twin is a simulation model of some embedded
system in the real world that is linked to this system throughout its
lifetime. The digital twins accurately represent the effects of actions
and predicted intentions of a collaborative embedded system (CES) in
the collaborative system group (CSG). The framework displays the
effects of decisions taken by collaboration functions. In our context, a
digital twin comprises real-world data and simulation models. The
simulation models accurately represent the physical process of a real-
world device. For example, within a platoon, the lead vehicle decides
to increase the speed. The task of the collaboration function of a
follower vehicle is to adjust the speed accordingly. In our testing
framework, the lead vehicle and other cars are pure virtual entities for
testing this collaboration function. For the follower vehicle, we have
an actual ANKI car [ANKI 2020] (a model car on a scale of 1:10, with
on-board electronics) that provides real-time data such as speed and
position. We create a digital twin of this vehicle by combining a coarse
simulation model with this data. In the framework, the behavior of the
collaboration function can be observed via the digital twin. In contrast
to a purely virtual approach, our framework allows the interaction
between the hardware and the software to be tested in the physical
car.

222 Creating Trust in Collaborative Embedded Systems

Model

Model view controller [Krasner and Pope 1988] is an architectural
pattern that divides the function of a framework into three
components. We will demonstrate how this pattern can be used for
testing CSGs. The functionality of a testing framework is to allow
creation or integration of simulation models of CESs, definition of
scenarios, execution of test cases, and evaluation of results.

The basic task of the modeler component is to provide an editor
for the definition of pure virtual entities of the CSG. Moreover, a digital
twin—that is, the combination of real-world data with a coarse
behavioral model of a CES—can be created in this component. This
modular structure allows simple and interchangeable units. Both pure
virtual entities and digital twins can be represented as functional
mock-up units (FMU) that can be executed in combination by a co-
simulation platform.

As a concrete implementation of this concept, Fraunhofer FERAL
[Kuhn et al. 2013] is a simulation environment used for rapid
development of architecture prototypes through coupling of
simulators, simulation models, and high-level models. It enables
abstract simulation models to be coupled with very detailed
simulation models and digital twins. The integration of virtual agents
and digital twins allows the evaluation of controlled decisions of real
cars in an extended set of scenarios. The simulator provides the
necessary environment for simulating and running the behavior of
multiple virtual CESs.

As an example of a real-world agent, ANKI cars are small-scale
model vehicles that can be programmed using the ANKI Software
Development Kit (SDK). This SDK provides access to the sensors and
actuators, and also to some higher-level functionality of the ANKI cars.
Each ANKI car is equipped with infrared sensors that read encodings
embedded in the track. Figure 10-2 shows the underside of an ANKI
car. The infrared sensor is positioned at the front and the drive motor
at the rear.

Combining the real
world with the virtual

world

Fig. 10-2: ANKI car/real-world agent

10.2 Building Trust during Design Time 223

An additional Bluetooth Low Energy (BLE) module enables a duplex
connection between every physical ANKI car and the SDK running on
a Linux machine. Messages through the BLE connection go in two
directions: commands from the simulator are sent from the simulator
to the ANKI car via the SDK, and position information is sent back to
the simulator. Position data consists of a combination of lane and
segment numbers, with this data being obtained by the infrared
sensor whenever the car crosses a checkpoint on the track.

View

The visualization engine of our framework receives information from
the modeler component. It displays the results of a co-simulation by
animating objects that reflect the dynamics within a test scenario.
Since modularization is at the component level in our approach, the
interfaces are complex. For an accurate representation of the behavior
of the CSG, a high amount of complex information is necessary. The
co-simulation platform produces information about the behavior of
the CSG with a variable degree of accuracy that can be adjusted
according to the testing intentions. If, for example, visualization of the
effect of a communication failure in a platoon is intended, then
messages describing this failure must be produced in the co-
simulation framework. In the visualization engine, the failure can be
displayed via a red alert symbol, for example. This means that it is
possible to “zoom” into specific details of the simulated scenario.
However, this possibility is limited by the bandwidth and computation
power available.

As a concrete implementation of the view component of a testing
framework, the Unity 3D game engine can provide a meaningful
visualization for the scenarios and decision effects. For example, if a
control decision has the effect of leading to a crash, this will be shown
in the simulation. The modeler and view component can be combined
with the observer design pattern. This is a behavioral pattern in which
a subject maintains a list of observers and notifies them of any state
changes by calling one of their methods. In our context, the subject is
the message sent from the modeler to the view component. Each CES
is an observer that reacts to this message by updating its state (i.e.,
position, speed, and acceleration).

224 Creating Trust in Collaborative Embedded Systems

Controller
In our framework, the controller is the component that interacts
directly with the user via web services. Through the controller, the
user can define scenarios for the evaluation. The controller sends
information about these scenarios to the modeler. It provides a
service to the real-world object, which contains information about the
pure virtual objects in the CSG. Other services include simulated
sensor and actuator values. These services can be combined through
service compositions. For example: the CACC (collaborative adaptive
cruise controller) in a car can subscribe to a service giving GPS
coordinates and to a service for the rotational speed of the wheels, and
can thus provide a service of reference acceleration. These services
are defined and composed in the controller and then passed to the
modeler.

As an implementation example, Google Blockly [Blockly 2020]
provides an intuitive framework for the definition of test scenarios. It
provides a language of blocks, where each block represents a possible
step in a test case. The semantics of a block can be defined in a suitable
programming language. The test designer can use drag and drop to
form complex test cases from the blocks. In our testing framework,
this graphical modelling of a test case is transformed into JavaScript
code that is parsed by our co-simulation tool FERAL. From there, it is

Fig. 10-3: Evaluation scenario visualized in Unity 3D from both a bird’s-eye view and
first-person perspective

10.3 Building Trust during Runtime 225

used to drive the Unity3D visualization. Figure 10-4 presents part of a
test case that describes the behavior of two virtual cars in a platoon.

In this section, we have shown how to combine real-world and
virtual-world entities in order to test a CSG. The collaborative
behavior of one CES in the group is tested in the simulation, whereas
its physical behavior is tested on the actual hardware platform. This
allows us to explore a wealth of collaboration scenarios with real-
world components without the risk of damage to the actual hardware.

10.3 Building Trust during Runtime

The previous section exhibited an approach and a prototypical
implementation for building trust at design time. However, some
aspects of trust can only be built during runtime, since not all
operational context can be foreseen in the design. In this section, we
describe a method of predictive simulation that allows trust to be built
at runtime.

During runtime, trust can be built through the addition of
predictive simulation and dynamic safeguarding on the CESs. For this
purpose, a software component simulating some aspects of the
behavior of a CES is used. The abstraction can be with respect to three
different aspects: timing behavior, functional behavior, and
communication behavior. In order to allow an efficient online
evaluation, only parts of the behavior should be modeled. With
suitable abstraction, the simulation can be executed faster than the
actual system behavior. It is therefore possible to foresee some effects
of decisions before they are implemented in the real world. Moreover,
the behavior of the simulated objects can be compared with the actual

Fig. 10-4: Control algorithm of one virtual car

226 Creating Trust in Collaborative Embedded Systems

behavior of the physical entities. We can therefore detect hardware
issues before they lead to problems. Such an approach requires the
evaluation of the collaboration behavior at runtime. Predictive
simulation and dynamic safeguarding can be used to build trust
between the collaborative systems. For example, in a platoon, the
follower vehicle needs to trust the lead vehicle not to make an
emergency brake without a previous alert. Both the lead vehicle and
the follower vehicle can run a simulation of the collaboration function.
The follower vehicle can use a predictive simulation to calculate
expected behaviors of the lead vehicle; if the lead vehicle behaves as
expected, this increases its reputation. Therefore, the other vehicles
may, for example, decrease the safety distance in the platoon. The lead
vehicle itself can use dynamic safeguarding of its behavior. For
example, it can simulate the collaboration function with respect to
emergency braking and alerting. If it detects that there might be an
emergency brake without prior alert, it can trigger an operational
failover procedure that, for example, sends an alarm to the other cars.
With this kind of runtime monitoring, it can increase its overall
trustworthiness.

Predictive simulation is applicable for collaborative embedded
systems in various domains. In the following, we focus on the specific
context of automotive software engineering. In order to build trust,
we can evaluate the collaboration function of a connected vehicle in a
runtime predictive simulation. The collaboration function is deployed
on the vehicle together with its corresponding abstractions.
Complementary to the original algorithm, an abstraction defines an
acceptable behavior range of output values for each combination of
input values and internal state of the algorithm. When the car is
driving on the road, the abstract behavior is continuously evaluated
in simulated scenarios, where the simulated environment is an
abstraction of the actual environment as observed by the sensors of
the car. Correctness and trustworthiness of the collaboration function
are validated by observing the effects of the simulation. In our work,
we consider a distinction between correctness and trustworthiness. A
software component that successfully passes all systematic tests and
shows a correct behavior may still not be worthy of trust. This can
happen if, at a later point in time, the software component shows an
unexpected malicious behavior because of hidden timing bombs
[Avizienis et al. 2004]. This means that the behavior is evaluated in a
secured virtual environment (Figure 10-5, phase 1). Since the
simulation is faster than the real evolution of the scenario, possible
errors in the implementation of the collaboration function can be

10.3 Building Trust during Runtime 227

detected in advance and protective measures can be taken. For
example, if a car in a platoon receives an alert from the lead vehicle
while leaving the platoon, the simulation could show the effects of
neglecting the alert.

Dynamic safeguarding builds trust in the conformity of the
collaboration function with its abstract representation (Figure 10-5,
phase 2). This technology requires the parallel execution of the
collaboration function and its abstractions (timing behavior,
functional behavior, and communication behavior). Conformity is
checked by comparing the actual behavior of the software with the
ranges allowed by the abstraction. For example, if there is an
emergency braking in the platoon, each car must apply a very accurate
force to the brakes in order to avoid a collision with the preceding or
succeeding car. The simulation could check whether the actual force
applied to the brakes is within the force limits that were previously
validated.

Predictive simulation can be realized with two possible strategies.
Firstly, it can be based on a set of well-defined situations that evaluate
the behavior in a virtual environment. Secondly, linked predictive
simulation virtualizes the vehicle’s current situation and predicts
sensor data to reflect a forecast situation from the near future. Linked
predictive simulation evaluates the abstractions in situations that are
not covered by the first strategy. For example, in a platoon, when the
lead car approaches an obstacle, we can monitor the abstraction of the
collaboration function that sends adjusted desired speed commands
to the following vehicles. If we observe that the collaboration function
fails with this task, there is a big problem. Usually, today, this is solved
by handing control back to the driver. Therefore, the lead car needs
sufficient time to possibly override the decisions of the collaboration

Fig. 10-5: Phases of the runtime trust evaluation method

228 Creating Trust in Collaborative Embedded Systems

function if they are detected to be faulty. Thus, the execution of
predictive simulation must be fast enough to allow operational
failover solutions.

Figure 10-6 depicts predictive simulation and dynamic
safeguarding in a closed control loop. The abstractions of the
collaboration functions are executed in a secured simulated
environment. During this predictive simulation, the order, type, and
number of events are recorded and form the reference to which the
actual execution of the software function on the electronic control unit
is compared. The deviations between the expected behavior and the
actual behavior are fed to a decision component that decides who
controls the vehicle. If considerable deviations are detected, the
execution of the software function is stopped and a higher trusted
failover behavior is executed instead.

The software function is the subject of trust evaluation.
Implementation of the method on safety-critical systems requires
trusted design and verification of the platform components with
appropriate ASIL (automotive safety integrity levels) set for each of
them. Predictive simulation and dynamic safeguarding are a means to
increase the trust and safety of the collaboration in a CSG. At the core
of these methods is an abstract function description that is monitored
during runtime. In the following, we elaborate on approaches that
deal with monitoring the actual system behavior with respect to a
formal specification.

10.4 Monitoring Collaborative Embedded Systems

While the above approach requires a full-scale system model in order
to be able to override faulty system behavior, this may not always be

Fig. 10- 6: Platform concept

10.4 Monitoring Collaborative Embedded Systems 229

feasible. In this section, we present runtime verification as a
lightweight method of monitoring a system for correct and safe
operation. The general assumption is that a human supervisor can
intervene and start a recovery routine if some faulty runtime behavior
is detected. The runtime verification methods we present can be used
to establish trust of a user in the CSG. As in the approach above, this is
achieved by giving insights into the decision-making process.

There are manifold sources of runtime faults of an embedded
system, and even more of a collaborative embedded system group
(CSG). Within such a system, we have to deal with problems stemming
from coordination and communication, concurrency, conflicting
goals, and more.

In the remainder of this chapter, we describe the basic concepts of
runtime monitoring and identify the challenges of applying it to
collaborative embedded system groups. We then introduce two
techniques that address some of the challenges identified.

Runtime Monitoring

Runtime monitoring is a popular approach for verifying the behavior
of complex systems at runtime by checking the observed execution
against a specification [Leucker and Schallhart 2009], [Bartocci et al.
2018]. This approach enables a fallback policy to be invoked if a
deviation of the actual behavior from the specified behavior is
detected. In the typical setup, the system under monitoring (SUM) is
instrumented such that it emits signals or events that are processed
by a monitor. The monitor, usually being much smaller and simpler to
verify than the SUM, provides a formal guarantee of the detection of
certain property violations. There have been many suggestions for
specification languages, which vary in their complexity and
expressiveness.

In general, there are two different approaches to constructing a
runtime monitor for distributed systems. The monitor can be an
additional computational entity of the system or it can be part of each
component in the system. A centralized approach is often easier to
implement, especially for systems already deployed. Furthermore, a
centralized approach adds almost no computational overhead to each
component. In contrast, a distributed approach scales naturally with
an increasing number of components. This holds even if components
are added dynamically at runtime. Moreover, there are applications
(such as autonomous vehicle platooning) that are simply unfit for a
monitoring third party.

230 Creating Trust in Collaborative Embedded Systems

Within the context of collaborative embedded systems, we are
especially concerned with distributed runtime monitoring
approaches. Since each CES in a CSG has its own goals and plans, it is
more natural for a CES to also have its own monitor. Hence, in our
approach, each component of the system is equipped with a monitor
such that the monitors themselves build a collaborative system group
(cf. Figure 10-7). In order to evaluate properties that rely on
information produced by more than one component, monitors
communicate by exchanging messages. Furthermore, a centralized
monitor has to scale with the increasing number of systems at runtime
and must be updated whenever a system with new capabilities (and
thus new specifications) joins the collaborative group at runtime.

Runtime Monitoring of Collaborative System Groups

In a collaborative system group, collaborative embedded systems
work together to achieve a shared goal and thereby provide a specific
functionality. The successful completion of this core function requires
collaboration, which is implemented by the use of interaction
protocols for coordination or negotiation. As interaction protocols are
thus the foundation of a CSG’s behavior, the runtime monitoring of
those protocols is at the core of our approach. Before providing an
example and introducing two specification formalisms, we derive
requirements for the runtime monitoring of CSGs:

Distributedness: To enable collaboration, CSG members exchange
information via messages and perform local computations. If no global
clock exists, asynchronous communication must be supported by the
CSG architecture. Additionally, observable behavior can be described
at the group level and at the individual level. While properties relating
to the behavior of a single CES can be checked locally by monitoring
methods for the verification of cyber-physical systems [Luckcuck et

Fig. 10-7: (a) Centralized runtime monitoring (b) Distributed runtime monitoring

10.4 Monitoring Collaborative Embedded Systems 231

al. 2019], the specification of the group behavior requires a language
suitable for the expression of distributed system properties.

Embeddedness: Being an embedded system, a CES is usually subject
to stringent timing requirements. For automotive applications, the
variability in timing is usually bounded by a range of milliseconds,
whereas for the transport robot use case deadlines are given in
seconds and originate from the CSG’s context, for example,
manufacturing execution system (MES) execution cycles. If the
systems repeatedly fail to adhere to the timing requirements, the
faults can accumulate and ultimately cause a fleet failure. Another
consequence of acting in the physical world and, more precisely, of
being connected via a wireless network, is the possibility of message
loss. Finally, embedded systems have limited computational
resources and are often powered by battery. Thus, implementations
must be efficient and the number of messages exchanged for
negotiation between CESs, as well as for communication between
monitors, should be minimal.

Runtime Monitoring of Interaction Protocols

In this section, we provide an example of an interaction protocol of the
transport robot use case, which serves as the subject for our runtime
monitoring approach. We then introduce two specification
formalisms, each targeting different aspects of the challenges
identified for runtime monitoring of CSGs and give a high-level
description of how to apply them to the example introduced.

Figure 10-8 shows an Agent UML (AUML) [Cabac et al. 2004]
sequence diagram of the distributed order assignment, an auction-
based algorithm, used to assign transport jobs in the transport robot
use case. AUML is a natural fit for the description of interaction
protocols because it is widespread, relatively easy to use, and can
serve as a semi-formal development artifact at every stage of the
system design process.

The protocol is initiated whenever a machine broadcasts the need
for transport to the fleet. Two general things should be noted here.
First, a protocol deadline of 120 seconds is specified in the top left
corner to ensure the (timely) termination of the protocol. Second, we
use different execution lines for the CES and CSG, yet the former is by
definition a member of the latter. This is necessary to model the
perspective of a CES, where a monitor ultimately resides. Initially, the
MES addresses the entire CSG via a broadcast message, represented
by an empty circle arrowhead. After the announcement is received, all
robots will wait two seconds before continuing with the protocol,

232 Creating Trust in Collaborative Embedded Systems

which is specified as (d:5) under the message. At this point, two
concurrent threads (parallel vertical bars) are run per robot: one for
sending messages and one for receiving messages. This way, no false
assumptions about the order of events are incorporated into the
model. The robot will then continue to inform the fleet about its
readiness to participate in the current auction. A diamond box with a
cross represents an “exclusive or” decision — that is, a robot should
only ever send one of the two messages. Every other member of the
CSG makes an analogous decision. All participating units then
calculate their bids in a subroutine (which is not shown in the
diagram) and notify the fleet again via broadcast. Each CES announces
its bid via broadcast message and waits for all other bids to arrive,
with the same number of bids as participation announcements
expected in total. The bids of all participating CESs should be received
within 10 seconds, which is represented by the vertical line on the
right-hand side of the figure. The winner is determined using the bids
received, where the robot with the highest bid wins; IDs can be used
for symmetry breaking. The black circular arrowhead indicates that
the winning CES will then notify the machine with a reliable message
that is sent until it has been acknowledged.

Fig. 10-8: An AUML diagram of distributed order assignment in the autonomous
transport robots use case

10.4 Monitoring Collaborative Embedded Systems 233

Monitoring Functional Correctness

Certifying distributed algorithms are a distributed runtime
monitoring technique [Voellinger and Akili 2018]. For its
(distributed) input-output pair (i, o), a certifying distributed
algorithm (CDA) computes, in addition to the output o, a witness w. A
witness is an object which can be used in a formal argument for the
correctness of the input-output pair. A witness predicate Γ holds for
the triple (i, o, w) if the pair (i, o) is correct. The witness predicate is
decided by a distributed checker algorithm at runtime. The idea is that
a user of a CDA does not have to trust the actual algorithm but rather
the checker, which is simpler and can be formally verified. Using the
terminology of runtime verification, a checker acts as a monitor for a
system running a CDA. The system itself is instrumented to
additionally compute a witness.
CDAs can be used to verify functional correctness at runtime. With
respect to the distributed order assignment (Figure 10-8), we
identified the following functional specification:

 Agreement: All robots agree on the winner triple (winnerID,
winner bid, jobID)

 Existence: There is a robot with the winnerID
 Maximum: The winner’s bid is maximal among all bids

For a robot k, we consider its unique identifier as input (ik := {k}) and
a triple containing the ID of its determined winner, the bid of its
determined winner, and job ID as local output (ok := {(winnerIDk,
winnerBidk , jobIDk)}. The witness of robot k consists of its own bid as
well as a set containing the outputs of all other robots (wk := (bidk,
{ol | l ∈ ID and l ≠ k}).

We distinguish between input, output and witness of single robots
and those of the whole CSG. We denote the latter as global input I,
global output O and global witness W, and define these as the union of
the corresponding local items of all robots.

We formalize the specification as the three global predicates Γagree,
Γexist, Γmax over the global input, output, and witness.

If Γagree holds for (I, O, W), then the property agreement holds. For
each of the global predicates, we introduce a local predicate that can
be checked by a monitor for each robot: γagree, γexist, γmax. We forgo the
formalization of the predicates but only state their meaning.

The local predicate γagree holds for robot k if its winner triple equals
the winner triple of all other robots. If γagree holds for all robots, Γagree

holds for the CSG. The predicate γmax holds for a robot if its bid is less
than or equal to its winner bid. The predicate γmax must hold for all

234 Creating Trust in Collaborative Embedded Systems

robots. However, note that this predicate would hold for all robots
even if each robot had a different winnerBid to compare its bid with.
To verify the maximum among all bids, each robot has to compare its
bid with the same winner bid. However, with γagree holding for all
robots, this is ensured. Hence, if γmax and γagree hold for all robots, Γagree

holds for the CSG. The predicate γexist holds for a robot k if its ID and
bid equals its winner-ID and -bid, that is, if k chooses itself as a winner.
There must be one robot for which γexist holds. Together with γagree

holding for all robots, this ensures that there is exactly one winner.
Hence, if γexist and γagree hold for all robots, Γexist holds for the CSG.

The monitor of a robot k must communicate with the monitors of
all other robots in order to collect their outputs, which are contained
in wk. Based on (ik, ok, wk), the monitor of a robot evaluates γagree, γexist,
γmax based on its robot input, output, and witness. To decide Γagree, Γexist

and Γmax, the monitors have to combine their results, for example,
using a spanning tree as communication topology. To ensure the
correctness of the result, a reliable message passing mechanism such
as remote procedure call must be used for this exchange.

Monitoring Correct Timing Behavior
Temporal logics are widely employed in the field of runtime
monitoring to specify system properties [Bauer et al., 2011]. A well-
established specification language for monitoring is Metric Temporal
Logic (MTL), which enriches the temporal operators □ (always), ◇
(sometime), and U (until) with quantitative timing constraints. The
syntax of MTL is given by:

φ ::= ⊥ | p | (φ → ψ) | (φ U t ψ)
The until operator has a scalar constraint t ∈]0, ∞[, which

intuitively corresponds to a deadline. Other operators can be defined
as usual: ¬φ := (φ → ⊥), ⊤ := ¬⊥, (φ ∨ ψ) := (¬φ → ψ), (φ ∧ ψ) := ¬(¬φ
∨ ¬ψ), (φ ⊕ ψ) := ((φ ∨ ψ) ∧ ¬(φ ∧ ψ)) , ◇t φ := (⊤ Ut φ), □t φ := ¬◇t
¬φ, etc. In order to define the semantics of an MTL formula with
respect to some SUM, the SUM is instrumented to produce a trace of
timestamped events ρ = (τ1, σ1), (τ2, σ2), ..., (τn, σn) ∈ (ℝ ≥0×Σ)∗ over a
finite alphabet Σ. The length of a trace is denoted as |ρ|. The semantics
of ⊥, p, and → is de ined as in classical Boolean logic. For example, (ρ,
i) ⊨ (φ → ψ) if (ρ, i) ⊨ φ implies (ρ, i) ⊢ψ. The semantics of the until
operator Ut is as follows:

(ρ, i) ⊨ (φ Ut ψ) if there exists a j such that
i < j < |ρ|, (ρ, j) ⊨ ψ, τj − τi ≤ t,
and (ρ, k) ⊨ φ for all k with i < k < j

10.4 Monitoring Collaborative Embedded Systems 235

In other words, ψ must be true some time before the deadline t has
been passed and before that, φ has to continually hold.

With respect to the protocol presented, the following formula
expresses that within five seconds after receiving the announce
message, each robot declares its participation or non-participation in
the bidding:

φ1 = (announce → (□5 ¬(participate ⊕ not-participate)))

Analogously, the following formula expresses the 10 second timeout
for placing a bid:

φ2 = (participate → □10 bid)

One such monitor checking the formulas above runs for each robot.
Thus, the method is implicitly constrained to specify properties of the
actions and observations of a single robot.

The Boolean semantics of MTL given above has been extended to a
real-valued semantics, where the truth value of a formula is a real
number (where ∞ represents true and -∞ false) [Dokhanchi et al.
2014]. This value gives the robustness of validity or falsity of a
formula φ: If φ evaluates to the positive robustness ε, then the
specification is true and, moreover, the trace can tolerate
perturbations up to ε and still satisfy the specification. Similarly, if the
robustness is negative, then the specification is false and, moreover,
the trace under ε perturbations still do not satisfy it. This is useful for
monitoring, e.g., properties such as “If a town sign is detected, within
3 seconds, the speed is reduced to 50 km/h”, which is formulated as

(town-sign → ◇3 (speed<50))

In each timed event, the truth value of the basic event (speed<50)
could depend on the value of the actual speed minus 50, thus a trace
where the speed is reduced to 40 km/h has a higher robustness value
than one where it is reduced only to 49 km/h.

In [Lorenz and Schlingloff 2018], we use a similar idea, however,
instead of giving a fuzzy semantics to basic propositions, we let the
truth value reflect the robustness with which deadlines are met. In our
logic RVTL, the truth value of a formula with respect to a finite trace
depends on the distance between the end of the trace and the bounds
of the temporal operators in the formula. Formally,

(ρ,i)⟦◇t φ⟧ = (τi+t) - τn, if (τi+t)≥τn and (ρ,k)⟦◇t φ⟧<∞ for all i≤k≤n,
and (ρ,i)⟦◇t φ⟧ = inf {(ρ,j)⟦φ⟧ | (τi+t)≥τj}, else.

236 Creating Trust in Collaborative Embedded Systems

Intuitively, if the deadline extends past the end of the trace and φ is
not satisfied until then, the truth value of ◇t φ reflects how much time
is left to satisfy φ. Otherwise, the truth value coincides with the
classical meaning in MTL. Therefore, the value (ρ,i)⟦◇t φ⟧ provides
runtime information about the distance between the current time step
and the deadline t for φ. It quantifies how much time is left for φ to
become true before its deadline is surpassed. The value of the dual
formula (ρ,i)⟦ □t φ⟧ is calculated similarly:

(ρ,i)⟦□t φ⟧ = τn - (τi+t), if (τi+t)≥τn and (ρ,k)⟦□t φ⟧ >-∞ for all i≤k≤n,
and (ρ,i)⟦□t φ⟧ = sup {(ρ,j)⟦φ⟧ | (τi+t)≥τj}, else.

That is, if the deadline extends past the end of the trace, then the truth
value of □t φ reflects the “obligation” to obey φ for some prolonged
time; otherwise, the truth value coincides with the classical meaning.
With such a semantics, we can issue a warning already if deadlines are
nearly missed, even before an error occurred. A typical formula is

φ3 = (orderCreated→ ◇600 orderCompleted)

which states that every transport job should be completed within ten
minutes. Monitoring this formula for several days in a real production
environment shows situations where “near misses” accumulate more
and more, until finally “real misses” of the deadline occur. In a
collaborative work environment, such an agglomeration of problems
can be an early indication that the size of the fleet needs to be
increased.

10.5 Conclusion

In this chapter, we elaborated on a notion of trust in the context of
collaborative embedded systems. We discussed how different aspects
of trust can be addressed at design time and runtime. During design
time, testing the behavior of collaboration functions in an extended
set of test scenarios creates trust by enabling software behavior
certification. During design time, the prediction of software and
system behavior gives insights into decisions. In the case of dangerous
predictions, failover behavior can be triggered. We then presented
runtime monitoring — a lightweight method for establishing trust of
a user in a CSG. To this end, we introduced two runtime monitoring
techniques: certifying distributed algorithms and runtime verification
with temporal logics. Certifying distributed algorithms are tailored for
distributed runtime monitoring and therefore well-suited for
application to non-intermediate interaction through negotiation

10.6 Literature 237

protocols. The method supports distribution of a specification for the
global behavior of the system in a way that partial specifications can
be checked locally at each component. Temporal logics, on the other
hand, are a good fit to address the challenges posed by the physical
embedding of a CES. They can be used to express the timing of
behaviors as typically required for embedded systems. Moreover,
multi-valued variants of linear temporal logic can even help to detect
progressing fault chains before they lead to failures.

10.6 Literature
[ANKI 2020] Overdrive – https://anki.com/en-us/overdrive.html; accessed on

07/14/2020.

[Avizienis et al. 2004] A. Avizienis, J.-C. Laprie, B. Randell, C. Landwehr: Basic Concepts
and Taxonomy of Dependable and Secure Computing. In: IEEE Transactions on
Dependable and Secure Computing, 2004, pp.11-33.

 [Bartocci et al. 2018] E. Bartocci, Y. Falcone, A. Francalanza, G. Reger: Introduction to
Runtime Verification. In: Lectures on Runtime Verification, 2018, pp. 1-33.

[Bauer et al. 2011] A. Bauer, M. Leucker, C. Schallhart: Runtime Verification for LTL and
TLTL. In: ACM Transactions on Software Engineering and Methodology (TOSEM),
2011, pp. 1-64.

[Blockly 2020] Google Blockly – https://developers.google.com/blockly; accessed on
07/14/2020.

[Cabac et al. 2004] L. Cabac, D. Moldt: Formal Semantics for AUML Agent Interaction
Protocol Diagrams. In: International Workshop on Agent-Oriented Software
Engineering, 2004, pp. 47-61.

[da Silva Amorim et al. 2016] S. da Silva Amorim, J. D. McGregor, E. S. de Almeida, C. von
Flach, G Chavez: Software Ecosystems Architectural Health: Challenges x Practices.
In: Proceedings of the 10th ECSA Workshops. ACM, 2016, pp. 1-7.

 [da Silva Amorim et al. 2017] S. da Silva Amorim. F. S. S. Neto, J. D. McGregor, E. S. de
Almeida, C. von Flach, G Chavez: How Has the Health of Software Ecosystems Been
Evaluated?: A Systematic Review. In: Proceedings of the 31st Brazilian Symposium
on Software Engineering. ACM, 2017, pp. 14–23.

[Dokhanchi et al. 2014] A. Dokhanchi, B. Hoxha, G.s Fainekos: On-Line Monitoring for
Temporal Logic Robustness. 5th International workshop on Runtime Verification
(RV 2014), Toronto. Springer LNCS 8734, 2014, pp. 231-246.

[Kephart and Chess, 2003] J. O. Kephart, D. M. Chess: The Vision of Autonomic
Computing. Computer, vol. 36, no. 1, pp. 41–50, 2003.

[Krasner and Pope 1988] G. Krasner, S. Pope: A Cookbook for Using the Model-View-
Controller User Interface Paradigm in Smalltalk -80. In: Journal of Object-Oriented
Programming.

[Kuhn et al. 2013] T. Kuhn, T. Forster, T. Braun, R. Gotzhein: Feral — Framework for
Simulator Coupling on Requirements and Architecture Level. In: Formal Methods

https://anki.com/en-us/overdrive.html
https://developers.google.com/blockly

238 Creating Trust in Collaborative Embedded Systems

and Models for Codesign (MEMOCODE), 2013 EleventhIEEE/ACM International
Conference on. IEEE, 2013, pp. 11–22.

[Leucker and Schallhart 2009] M. Leucker, C. Schallhart: A Brief Account of Runtime
Verification. In: The Journal of Logic and Algebraic Programming, Vol. 78 Issue 5,
2009, pp. 293-303.

[Lorenz and Schlingloff 2018] F. Lorenz, H. Schlingloff: Online-Monitoring Autonomous
Transport Robots with an R-valued Temporal Logic. 14th International IEEE
Conference on Automation Science and Engineering (CASE), 2018.

[Luckcuck et al. 2019] M. Luckcuck, M. Farrel, L. Dennis, C. Dixon, M. Fisher: Formal
Specification and Verification of Autonomous Robotic Systems: A Survey. In: ACM
Computing Surveys (CSUR), 2019, pp.1-41.

[Voellinger and Akili 2018] K. Völlinger, S. Akili: On a Verification Framework for
Certifying Distributed Algorithms: Distributed Checking and Consistency. In:
International Conference on Formal Techniques for Distributed Objects,
Components, and Systems, 2018, pp. 161-180.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	10 Creating Trust in Collaborative Embedded Systems
	10.1 Introduction
	10.2 Building Trust during Design Time
	Testing framework for CSGs
	Model
	View
	Controller

	10.3 Building Trust during Runtime
	10.4 Monitoring Collaborative Embedded Systems
	Runtime Monitoring
	Runtime Monitoring of Collaborative System Groups
	Distributedness:
	Embeddedness:
	Runtime Monitoring of Interaction Protocols
	Monitoring Functional Correctness
	Agreement:
	Existence:
	Maximum:
	Monitoring Correct Timing Behavior
	U
	Ut

	10.5 Conclusion
	10.6 Literature

